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Abstract
Off-policy evaluation often refers to two related
tasks: estimating the expected return of a policy
and estimating its value function (or other func-
tions of interest, such as density ratios). While re-
cent works on marginalized importance sampling
(MIS) show that the former can enjoy provable
guarantees under realizable function approxima-
tion, the latter is only known to be feasible under
much stronger assumptions such as prohibitively
expressive discriminators. In this work, we pro-
vide guarantees for off-policy function estimation
under only realizability, by imposing proper reg-
ularization on the MIS objectives. Compared to
commonly used regularization in MIS, our reg-
ularizer is much more flexible and can account
for an arbitrary user-specified distribution, under
which the learned function will be close to the
groundtruth. We provide exact characterization
of the optimal dual solution that needs to be re-
alized by the discriminator class, which deter-
mines the data-coverage assumption in the case
of value-function learning. As another surprising
observation, the regularizer can be altered to relax
the data-coverage requirement, and completely
eliminate it in the ideal case with strong side in-
formation.

1. Introduction
Off-policy evaluation (OPE) often refers to two related tasks
in reinforcement learning (RL): estimating the expected
return of a target policy using a dataset collected from a dif-
ferent behavior policy, versus estimating the policy’s value
function (or other functions of interest, such as density ra-
tios). The former is crucial to hyperparameter tuning and
verifying the performance of a policy before real-world de-
ployment in offline RL (Voloshin et al., 2019; Paine et al.,
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2020; Zhang & Jiang, 2021). The latter, on the other hand,
plays an important role in (both online and offline) train-
ing, often as the subroutine of actor-critic-style algorithms
(Lagoudakis & Parr, 2003; Liu et al., 2019), but is also gen-
erally more difficult than the former: if an accurate value
function is available, one could easily estimate the return by
plugging in the initial distribution.

Between the two tasks, the theoretical nature of off-policy
return estimation is relatively well understood, especially
in terms of the function-approximation assumptions needed
for sample-complexity guarantees. Among the available al-
gorithms, importance sampling (IS) and its variants (Precup
et al., 2000; Thomas et al., 2015; Jiang & Li, 2016) do not
require any function approximation, but incur exponential-
in-horizon variance. Fitted-Q Evaluation (Ernst et al., 2005;
Le et al., 2019) can enjoy polynomial sample complexity
under appropriate coverage assumptions, but the guarantee
requires the function class to satisfy the strong Bellman-
completeness assumption, i.e. closure under the Bellman op-
erator (Chen & Jiang, 2019; Xie et al., 2021). Marginalized
importance sampling (MIS) methods, which have gained
significant attention recently (Liu et al., 2018; Xie et al.,
2019; Uehara et al., 2020; Nachum et al., 2019a), use two
function classes to simultaneously approximate the value
and the density-ratio (or weight) function and optimize min-
imax objectives. Notably, it is the only family of methods
known to produce accurate return estimates with a poly-
nomial sample complexity, when the function classes only
satisfy the relatively weak realizability assumptions (i.e.,
they contain the true value and weight functions).

In comparison, little is known about off-policy function es-
timation, and the guarantees are generally less desirable.
Not only do the limitations of IS and FQE on return esti-
mation carry over to this more challenging task, but MIS
also loses its major advantage over FQE: despite the some-
what misleading impression left by many prior works, that
MIS can handle function estimation the same way as return
estimation, 1 MIS for function estimation often requires
unrealistic assumptions, such as prohibitively expressive
discriminators. For concreteness, a typical guarantee for

1 For example, Liu et al. (2019) assume access to a weight
estimation oracle and cited Liu et al. (2018) as a possible instance.
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function estimation from MIS looks like the following (see
e.g., Theorem 4 of Liu et al. (2018) and Lemmas 1 and 3 of
Uehara et al. (2020)):

Proposition 1 (Function estimation guarantee for MIS,
informal). Suppose the offline data distribution dD sat-
isfies dD(s, a) > 0,∀s, a. Given value-function class
Q with qπ ∈ Q and weight class W = RS×A, qπ =
argminq∈Q maxw∈W L(w, q) for some appropriate pop-
ulation loss function L.

To enable the identification of the value function qπ, the
result requires the discriminator class W to be the space
of all possible functions over the state-action space (W =
RS×A). In the finite-sample regime, using such a class
incurs a sample complexity that depends on the size of the
state-action space, which completely beats the purpose of
function approximation.

In addition, these results only hold asymptotically, where
the function of interest can be exactly identified in a point-
wise manner. Such an overly strong guarantee is unrealistic
in the finite-sample regime, where one can only hope to
approximate the function well in an average sense under
some distribution, i.e., finite-sample performance guaran-
tees should ideally bound ∥q̂ − qπ∥2,ν for the learned q̂,
where ∥ · ∥2,ν is ν-weighted 2-norm. Such fine-grained anal-
yses are non-existent in MIS. Even in the broader literature,
such results not only require Bellman-completeness-type
assumptions (Uehara et al., 2021), they also come with some
fixed ν (which is not necessarily dD; see Section 2) and the
user has no freedom in choosing ν. This creates a gap in the
literature, as downstream learning algorithms that use off-
policy function estimation as a subroutine often assume the
estimation to be accurate under certain specific distributions.
For example, in the setting of online policy optimization,
Abbasi-Yadkori et al. (2019) require value estimates to be
accurate on the occupancy of the (unknown) optimal policy,
and (Kakade & Langford, 2002) require them to be accurate
on the occupancy of the learning policy at each iteration
2. Choosing ν to be the initial state-action distribution is
well-suited for off-policy return estimation(see Appendix F).
In offline RL, Liu et al. (2019) assume access to weight and
value function estimation oracles on ν = dD.

To summarize, below are two important open problems on
off-policy function estimation:

1. Is it possible to obtain polynomial3 sample complexity
for off-policy function estimation, using function classes

2 While the occupancies of these policies may not be known
in general, they may be estimated from samples or approximated
using domain knowledge. We give a more nuanced discussion in
the conclusion.

3 By “polynomial”, we mean polynomial in the horizon, the
statistical capacities and the boundedness of the function classes,
and the parameter that measures the degree of data coverage.

that only satisfy realizability-type assumptions?

2. Can we specify a distribution ν to the estimation algo-
rithm, such that the learned function will be close to the
groundtruth under ν?

In this work, we answer both open questions in the positive.
By imposing proper regularization on the MIS objectives,
we provide off-policy function estimation guarantees under
only realizability assumptions on the function classes. Com-
pared to commonly used regularization in MIS (Nachum
et al., 2019a; Nachum & Dai, 2020; Yang et al., 2020), our
regularizer is much more flexible and can account for an ar-
bitrary user-specified distribution ν, under which the learned
function will be close to the groundtruth. We provide exact
characterization of the optimal dual solution that needs to
be realized by the discriminator, which determines the data-
coverage assumption in value-function learning. As another
surprising observation, the regularizer can be altered to relax
the data-coverage requirement, and in the ideal case com-
pletely eliminate it when strong side information is available.
Proof-of-concept experiments are also conducted to validate
our theoretical predictions.

2. Related Works
Regularization in MIS The use of regularization is very
common in the MIS literature, especially in DICE algo-
rithms (Nachum et al., 2019a;b; Yang et al., 2020). How-
ever, most prior works that consider regularization use tabu-
lar derivations and seldom provide finite-sample function-
approximation guarantees on even return estimation, let
alone function estimation. (An exception is the work of
Uehara et al. (2021), who analyze related estimators un-
der Bellman-completeness-type assumptions; see the next
paragraph.) More importantly, while some existing DICE es-
timators are subsumed as our special cases when we choose
very simple regularizers (see Remark 3 in Section 5), prior
works provide very limited understanding in how the choice
of regularizers affects learning guarantees, and hence have
only considered these naı̈ve forms of regularization (typi-
cally state-action-independent and under dD)—as different
forms of regularization are essentially treated equally under
a coarse-grained theory (Yang et al., 2020). In contrast,
we provide much more fine-grained characterization of the
effects of regularization, which leads to novel insights about
how to design better regularizers.

Fitted-Q Evaluation (FQE) Outside the MIS literature,
one can obtain return and value-function estimation guar-
antees via FQE (Duan et al., 2020; Chen & Jiang, 2019; Le
et al., 2019; Uehara et al., 2021). However, it is well un-
derstood that FQE and related approaches require Bellman-
completeness-type assumptions, such as the function class
being closed under the Bellman operator. Even putting aside
the difference between completeness vs. realizability, we al-
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low for a user-specified error-measuring distribution, which
is not available in FQE or any other existing method. The
only distribution these methods are aware of is the data dis-
tribution dD, and even so, FQE and variants rarely provide
guarantees on ∥q̂ − qπ∥2,dD , but often on the Bellman error
(e.g., ∥q̂ − T π q̂∥2,dD ) instead (Uehara et al., 2021), and ob-
taining guarantees on a distribution of interest often requires
multiple indirect translations and loose relaxations.

LSTDQ Our analyses focus on general function approxima-
tion. When restricted to linear classes, function estimation
guarantees for qπ under dD can be obtained by LSTDQ
methods (Lagoudakis & Parr, 2003; Bertsekas & Yu, 2009;
Dann et al., 2014) when the function class only satisfies real-
izability of qπ (Perdomo et al., 2022). However, this requires
an additional matrix invertibility condition (see Assumption
3 of Perdomo et al. (2022)), and it is still unclear what this
condition corresponds to in general function approxima-
tion 4. Moreover, many general methods—including MIS
(Uehara et al., 2020) and other minimax methods (Antos
et al., 2008; Xie et al., 2021)—coincide with LSTDQ in the
linear case, so the aforementioned results can be viewed
as a specialized analysis leveraging the properties of linear
classes.

PRO-RL (Zhan et al., 2022) Our key proof techniques are
adapted from Zhan et al. (2022), whose goal is offline policy
learning. They learn the importance weight function wπ for
a near-optimal π, and provide ∥ŵ − wπ∥2,dD guarantees
as an intermediate result. Despite using similar technical
tools, our most interesting and surprising results are in the
value-function estimation setting, which is not considered
by Zhan et al. (2022). Our novel algorithmic insights, such
as incorporating error-measuring distributions and approxi-
mate models in the regularizers, are also potentially useful
in Zhan et al. (2022)’s policy learning setting. Our analy-
ses also reveal a number of important differences between
OPE and offline policy learning, which will be discussed in
Appendix A.

3. Preliminaries
We consider off-policy evaluation (OPE) in Markov Deci-
sion Processes (MDPs). An MDP is specified by its state
space S , action space A, transition dynamics P : S ×A →
∆(S) (∆(·) is the probability simplex), reward function
R : S × A → ∆([0, 1]), discount factor γ ∈ [0, 1), and an
initial state distribution µ0 ∈ ∆(S). We assume S and A
are finite and discrete, but their cardinalities can be arbitrar-
ily large. Given a target policy π : S → ∆(A), a random
trajectory s0, a0, r0, s1, a1, r1, . . . can be generated as s0 ∼
µ0, at ∼ π(·|st), rt ∼ R(·|st, at), st+1 ∼ P (·|st, at),

4 It is hinted by Uehara et al. (2020) that the invertibility is
related to a loss minimization condition in MIS, but the connection
only holds for return estimation.

∀t ≥ 0; we use Eπ and Pπ to refer to expectation and prob-
ability under such a distribution. The expected discounted
return (or simply return) of π is J(π) := Eπ[

∑
t γ

trt]. The
Q-value function of π is the unique solution of the Bell-
man equations qπ = T πqπ , with the Bellman operator T π :
RS×A → RS×A defined as ∀q ∈ RS×A, (T πq)(s, a) :=
Er∼R(·|s,a)[r] + γ(Pπq)(s, a). Here Pπ ∈ R|S×A|×|S×A|

is the state-action transition operator of π, defined as
(Pπq)(s, a) := Es′∼P (·|s,a),a′∼π(·|s′)[q(s

′, a′)]. Functions
over S × A (such as q) are also treated as |S × A|-
dimensional vectors interchangeably.

In OPE, we want to estimate qπ and other functions of
interest based on a historical dataset collected by a pos-
sibly different policy. As a standard simplification, we
assume that the offline dataset consisting of n i.i.d. tu-
ples {(si, ai, ri, s′i)}ni=1 sampled as (si, ai) ∼ dD, r =
R(si, ai), and s′i ∼ P (·|si, ai). We call dD the (of-
fline) data distribution. As another function of interest,
the (marginalized importance) weight function wπ is de-
fined as wπ(s, a) := dπ(s, a)/dD(s, a), where dπ(s, a) =
(1− γ)

∑∞
t=0 γ

tPπ[st = s, at = a] is the discounted state-
action occupancy of π. For technical convenience we as-
sume dD(s, a) > 0 ∀s, a, so that quantities like wπ are
always well defined and finite.5 Similarly to qπ, wπ also
satisfies a recursive equation, inherited from the Bellman
flow equation for dπ: dπ = (1 − γ)µπ

0 + γP̃πdπ, where
(s, a) ∼ µπ

0 ⇔ s ∼ µ0, a ∼ π(·|s) is the initial state-action
distribution, and P̃π = (Pπ)⊤ is the transpose of the transi-
tion matrix.

Function Approximation We will use function classes
Q and W to approximate qπ and wπ, respectively. We
assume finite Q and W , and extension to infinite classes
under appropriate complexity measures (e.g., covering num-
ber) is routine and orthogonal to the main insights of the
paper.

Additional Notation ∥ · ∥2,ν :=
√
Eν [(·)2] is the weighted

2-norm of a function under distribution ν. We also use a stan-
dard shorthand f(s, π) := Ea∼π(·|s)[f(s, a)]. u◦v between
two vectors u and v of the same dimension is elementwise
multiplication, and u/v is elementwise division.

4. Value-function Estimation
In this section we show how to estimate q̂ ≈ qπ with guar-
antees on ∥q̂ − qπ∥2,ν for a user-specified ν, and identify
the assumptions under which provable sample-complexity
guarantees can be obtained. We begin with the familiar

5 It will be trivial to remove this assumption at the cost of
cumbersome derivations. Also, these density ratios can still take
prohibitively large values even if they are finite, and we will need to
make additional boundedness assumptions to enable finite-sample
guarantees anyway, so their finiteness does not trivialize the analy-
ses.



Beyond the Return: Off-policy Function Estimation

Bellman equations, that qπ is the unique solution to:

Er∼R(·|s,a)[r] + γEs′∼P (·|s,a)[q(s
′, π)]− q(s, a) = 0,

∀s, a ∈ S ×A.
(1)

While the above set of equations uniquely determines
q = qπ, this is only true if we can enforce all the |S × A|
constraints, which is intractable in large state-space prob-
lems. In fact, even estimating (a candidate q’s violation of)
a single constraint is infeasible as that requires sampling
from the same state multiple times, which is related to the
infamous double-sampling problem (Baird, 1995).

To overcome this challenge, prior MIS works often relax
(1) by taking a weighted combination of these equations,
e.g.

EdD [w(s, a) (r(s, a) + γq(s′, π)− q(s, a))] = 0,

∀w ∈ W. (2)

In words, instead of enforcing |S × A| equations, we only
enforce their linear combinations; the linear coefficients
are dD(s, a) · w(s, a), and w belongs to a class W with
limited statistical capacity to enable sample-efficient esti-
mation. While each constraint in (2) now be efficiently
checked on data, this comes with a big cost that a solu-
tion to (2) is not necessarily qπ. Prior works handle this
dilemma by aiming lower: instead of learning q̂ ≈ qπ, the
problem becomes tractable if we only aim to learn q̂ that
can approximate the policy’s return, i.e. Es∼µ0

[q̂(s, π)] ≈
J(π) = Es∼µ0

[qπ(s, π)]. While Uehara et al. (2020) show
that this is possible under wπ ∈ W , they also show ex-
plicit counterexamples where q̂ ̸= qπ even with infinite
data. As a result, how to estimate q̂ ≈ qπ under comparable
assumptions (instead of the prohibitive W = RS×A as in
Proposition 1) is still an open problem.

4.1. Estimator
We now describe our approach to this problem. Recall that
the goal is to obtain error bounds for ∥q̂ − qπ∥2,ν for some
distribution ν ∈ ∆(S × A) provided by the user. Note
that we do not require information about r and s′ that are
generated after (s, a) ∼ ν and only care about the (s, a)
marginal itself, so the user can pick ν without knowing the
transition and the reward functions of the MDP. We assume
that ν is given in a way that we can take its expectation
E(s,a)∼ν [(·)]; the extension to the case where ν is given via
samples is straightforward.

To achieve this goal, we first turn (1) into an equivalent con-
strained convex program: given a collection of strongly con-
vex and differentiable functions f = {fs,a : R → R}s,a—

we will later discuss its choice—consider

min
q

E(s,a)∼ν [fs,a(q(s, a))] (3)

s.t. Er∼R(·|s,a)[r] + γEs′∼P (·|s,a)[q(s
′, π)]− q(s, a) = 0,

∀s, a.

The constraints here are the same as (1). Since (1) uniquely
determines q = qπ, the feasible space of (3) is a singleton,
so we can impose any objective function on top of these con-
straints, and it will not change the optimal solution (which
is always qπ, the only feasible point). Here, we use an ob-
jective function of the form E(s,a)∼ν [fs,a(q(s, a))], where
ν is the user-provided distribution of interest. Choosing
fs,a(q(s, a)) = 0 ∀s, a, for example, recovers MQL in Ue-
hara et al. (2020). With this choice, however, as shown in
Proposition 1, qπ cannot be identified without prohibitive
assumptions. As we will see, other choices of f will serve
as important regularizers in the function-approximation set-
ting, and will be crucial for our function estimation guaran-
tees.

Remark 1 ((s, a)-dependence of f ). Regularizers in prior
works are (s, a)-independent (Nachum et al., 2019a; Yang
et al., 2020; Zhan et al., 2022). As we will see in Sec-
tion 4.3, allowing for (s, a)-dependence is very important
for designing regularizers with improved guarantees and
performances.

We now rewrite (3) in its Lagrangian form, with dD ◦ w
serving the role of dual variables:

min
q

max
w

Lq
f (q, w) := Eν [fs,a(q(s, a))] (4)

+ EdD [w(s, a) (r(s, a) + γq(s′, π)− q(s, a))] .

Finally, our actual estimator approximates (4) via finite-
sample approximation of the population loss Lq

f , and
searches over restricted function classes Q and W for q
and w, respectively:

(q̂, ŵ) = argmin
q∈Q

argmax
w∈W

L̂q
f (q, w), (5)

where L̂q
f (q, w) := Eν [fs,a(q(s, a))]

+ 1
n

∑n
i=1 w(si, ai) (ri + γq(s′i, π)− q(si, ai)) .

Intuition for identification Before giving the detailed
finite-sample analysis, we provide some high-level intu-
itions for why we can obtain the desired guarantee on
∥q̂ − qπ∥2,ν . Note that (4) is structurally similar to (2),
and we still cannot verify the Bellman equation for qπ in
a per-state-action manner, so the caveat of (2) seems to
remain; why can we identify qπ under ν?

The key here is to show that it suffices to check the loss func-
tion Lq

f only under a special choice of w (as opposed to all of
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RS×A). Importantly, this special w is not w = wπ; rather, it
is the function w∗

f in the saddle-point solution of our regular-
ized objective, (qπ, w∗

f ) = argminq argmaxw Lq
f (q, w),

for which we later provide the closed form. As long as
w∗

f ∈ W—even if W is extremely “simple” and contains
nothing but w∗

f—we can identify qπ . Intuitively, wπ should
not appear in our analysis at all: wπ is defined with respect
to the initial distribution of the MDP µ0, which has nothing
to do with our goal of bounding ∥q̂ − qπ∥2,ν .

To see that, it is instructive to consider the special case of
W = {w∗

f} and the limit of infinite data. In this case, our es-
timator becomes argminq∈Q Lq

f (q, w
∗
f ). By the definition

of saddle point:

Lq
f (q

π, w∗
f ) ≤ Lq

f (q, w
∗
f ), ∀q.

While this shows that qπ is a minimizer of the loss, it does
not imply that it is a unique minimizer. However, identi-
fication immediately follows from the convexity brought
by regularization: since f : R → R is strongly convex,
q → Eν [fs,a(q(s, a))] as a mapping from RS×A to R is
strongly convex under ∥ · ∥2,ν (see Lemma 7 in Appendix B
for a formal statement and proof), and Lq

f (q, w
∗
f ) inherits

such convexity since the other terms are affine in q. It is then
obvious that qπ is the unique minimizer of Lq

f (q
π, w∗

f ) up to
∥ · ∥2,ν , that is, any minimizer of Lq

f must agree with qπ on
(s, a) pairs supported on ν. Our finite-sample analysis below
shows that the above reasoning is robust to finite-sample
errors and having functions other than w∗

f in W .

4.2. Finite-sample Guarantees
In this subsection we state the formal guarantee of our esti-
mator for qπ , and the assumptions under which it holds. We
start with the condition on the regularization function f :

Assumption 1 (Strong convexity of f ). Assume fs,a : R →
R is nonnegative, differentiable, and Mq-strongly convex
for each s ∈ S, a ∈ A. In addition, assume both fs,a and
f ′
s,a take finite values for any finite input.

This assumption can be satisfied by a simple choice of
fs,a(x) =

1
2x

2, which is independent of (s, a) and yields
Mq = 1. Alternative choices of f are discussed in Sec-
tion 4.3. Next are the realizability and boundedness of W
and Q:

Assumption 2 (Realizability). Suppose w∗
f ∈ W , qπ ∈ Q.

Assumption 3 (Boundedness of W and Q). Suppose W
and Q are bounded, that is,

Cq
Q := max

q∈Q
∥q∥∞ < ∞,

Cq
W := max

w∈W
∥w∥∞ < ∞.

As a remark, Assumption 2 implicitly assumes the exis-
tence of w∗

f . As we will see in Section 4.3, the existence

and finiteness of w∗
f is automatically guaranteed given the

finiteness of f ′
s,a (Assumption 1) and dD(s, a) > 0 ∀s, a.

More importantly, Assumptions 2 and 3 together imply that
∥qπ∥∞ ≤ Cq

Q and ∥w∗
f∥∞ ≤ Cq

W , which puts constraints
on how small Cq

Q and Cq
W can be. For example, it is com-

mon to assume that Cq
Q = 1

1−γ , i.e., the maximum possible
return when rewards are bounded in [0, 1], and this way
∥qπ∥∞ ≤ Cq

Q will hold automatically. The magnitude of
∥w∗

f∥∞ and Cq
W , however, is more nuanced and interesting,

and we defer the discussion to Section 4.3.

Now we are ready to state the main guarantee for identifying
qπ . All proofs of this section can be found in Appendix B.

Theorem 2. Suppose Assumptions 1, 2, 3 hold. Then, with
probability at least 1− δ,

||q̂ − qπ||2,ν ≤ 2

√
ϵqstat
Mq

,

where ϵqstat =
(
Cq

W + (1 + γ)Cq
WCq

Q
)√

2 log
2|W||Q|

δ /n.

Theorem 2 shows the desired bound on ∥q̂ − qπ∥2,ν , which
depends on the magnitude of functions in W and Q as
well as their logarithmic cardinalities, which are standard
measures of statistical complexity for finite classes. One
notable weakness is the O(n−1/4) slow rate; this is due to
translating the ϵqstat = O(n−1/2) deviation between L and
L̂ into ∥q̂ − qπ∥2,ν via a convexity argument, which takes
square root of the error. The possibility of and obstacles to
obtaining an O(n−1/2) rate will be discussed in Section 7.

4.3. On the Closed Form of w∗
f and the Data Coverage

Assumptions
One unusual aspect of our guarantees in Section 4.2 is that
we do not make any explicit data coverage assumptions, yet
such assumptions are known to be necessary even for re-
turn estimation (typically the boundedness of wπ = dπ/dD).
Indeed, our data-coverage assumption is implicit in Assump-
tions 2 and 3, which require ∥w∗

f∥∞ ≤ Cq
W < ∞. If data

fails to provide sufficient coverage, ∥w∗
f∥∞ will be large

and our bound in Theorem 2 will suffer due to a large value
of Cq

W .

To make the data coverage assumption explicit, we provide
the closed-form expression of w∗

f :

Lemma 3. The saddle point of (4) is (qπ, w∗
f ) =

argminq argmaxw Lq
f (q, w), where

w∗
f = (I − γP̃π)−1 (ν ◦ f ′(qπ)) /dD. (6)

Here f ′(qπ) is the shorthand for [f ′
s,a(q

π(s, a))]s,a ∈
RS×A.

The closed-form expression in (6) looks very much like a
density ratio: if we replace ν ◦ f ′(qπ) with µπ

0 , we have
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(I−γP̃π)−1µπ
0 = dπ/(1−γ), and the expression would be

the ratio between dπ and dD (up to a horizon factor). There-
fore, w∗

f can be viewed as the density ratio of π against dD

when π starts from the “fake” initial distribution ν ◦ f ′(qπ).
However, ν ◦ f ′(qπ) is in general not a valid distribution, as
it is not necessarily normalized or even non-negative, mak-
ing ∥w∗

f∥∞ difficult to intuit. Below we give relaxations
of ∥w∗

f∥∞, which are more interpretable and give novel
insights into how to relax the data-coverage assumption via
tweaking f .

Proposition 4. ∥w∗
f∥∞ ≤ 1

1−γ · ∥dπν/dD∥∞ · ∥f ′(qπ)∥∞,
where dπν is the discounted state-action occupancy of π
under ν as the initial state-action distribution.

The proposition states that ∥w∗
f∥∞ can be bounded if

data provides sufficient coverage over dπν , and if f ′(qπ) is
bounded. The former shows that dD needs to cover not only
ν, but also state-action pairs reachable by π starting from ν.
The latter is easily satisfied, and can be bounded again for
concrete choices of f , e.g. ∥f ′(qπ)∥∞ ≤ ∥qπ∥∞ ≤ 1

1−γ

for fs,a(x) = 1
2x

2.

Designing f to relax the coverage assumption Lemma 3
shows that the coverage assumption (∥w∗

f∥∞) depends on f
(or rather its derivative f ′), which opens up the possibility
of properly designing f to relax it. In fact, we could com-
pletely eliminate the coverage assumption if we could set
f ′(qπ) = 0, but that would require unrealistically strong
side information.

As a concrete example, consider fs,a(x) = 1
2 (x −

qπ(s, a))2, and it is easy to verify that f ′
s,a(q

π(s, a)) =

x − qπ(s, a)|x=qπ(s,a) = 0. Compared to fs,a(x) =
1
2x

2,
the new f essentially adds a 1st-order term qπ(s, a) · x to
change w∗

f , while leaving the convexity required by As-
sumption 1 intact, which only depends on the 2nd-order
term 1

2x
2. Of course, this is not a viable choice of f in

practice as it requires knowledge of qπ, which is precisely
our learning target.

While the reason fs,a(x) = 1
2 (x − qπ(s, a))2 can elimi-

nate the coverage requirement is obvious retrospectively
(qπ already minimizes Eν [f(q)] even without any data), our
analyses apply much more generally and characterize the ef-
fects of arbitrary f on the coverage assumption. Inspired by
this example, we can consider practically feasible choices
such as fs,a(x) = 1

2 (x − q̃(s, a))2, where q̃ is an approxi-
mation of qπ obtained by other means, e.g. a guess based
on domain knowledge. If q̃ ≈ qπ, our estimator enjoys
significantly relaxed coverage requirements. But even if q̃ is
a poor approximation of qπ , it does not affect our estimation
guarantees as long as the condition implied by Proposition 4
is satisfied. (In fact, fs,a(x) = 1

2x
2 is a special case of

q̃ ≡ 0.) Such a use of approximate models is similar to how
doubly robust estimators (Dudı́k et al., 2011; Jiang & Li,

2016; Thomas & Brunskill, 2016) enjoy reduced variance
given an accurate model, and remain unbiased even if the
approximate model is arbitrarily poor. We will also empiri-
cally evaluate the effectiveness of this idea in Section 6.

5. Weight-function Estimation
Similar to value-function estimation, our methodology can
also be applied to estimate the weight function wπ. Due
to the similarity with Section 4 in the high-level spirit, we
will be concise in this section and only explain in detail
when there is a conceptual difference from Section 4. Some
notations (such as the function classes W and Q) will be
abused, but we emphasize that this section considers a dif-
ferent learning task than Section 4, so they should be viewed
as different objects (e.g., the realizability assumptions for
W and Q below will be different from those in Section 4).

As before, we assume that the user provides a distribution6

η ∈ ∆(S × A) and our goal is to develop an estimator
with guarantees on ∥ŵ − wπ∥2,η. Analogous to Section 4,
consider

min
w

E(s,a)∼η[fs,a(w(s, a))] (7)

s.t. dD(s, a)w(s, a) = (1− γ)µπ
0 (s, a)

+ γ
∑

s′,a′ Pπ(s, a|s′, a′)dD(s′, a′)w(s, a),

∀s, a.

Here f = {fs,a}s,a will need to satisfy similar assumptions
as in Section 4. The constraints are the Bellman flow equa-
tions with a change of variable d(s, a) = dD(s, a) ·w(s, a).
Their unique solution is d(s, a) = dπ(s, a) (and hence
w(s, a) = dπ(s, a)/dD(s, a)), thus the feasible space is
again a singleton, and the objective does not alter the opti-
mal solution. We then use dual variables q to rewrite (7) in
its Lagrangian form:

min
w

max
q

Lw
f (q, w) (8)

:= Eη[fs,a(w(s, a))] + (1− γ)Eµ0 [q(s, π)]

+ EdD [w(s, a)(γq(s′, π)− q(s, a))]

We approximate the saddle-point solutions by optimizing
the empirical loss L̂w

f over restricted function classes W,Q:

(ŵ, q̂) = argmax
w∈W

argmin
q∈Q

L̂w
f (q, w),

where L̂w
f (q, w) :=

Eη[fs,a(w(s, a))] +
1−γ
n0

∑n0

j=1 q(sj , π)

+ 1
n

∑n
i=1 w(si, ai)(γq(s

′
i, π)− q(si, ai)),

6 Recall we assume dD(s, a) > 0 ∀s, a for technical conve-
nience. When this is not the case, η should be supported on dD , as
the target function wπ is only defined on the support of dD .
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and {sj}n0
j=1 is a separate dataset sampled i.i.d. from µ0 to

provide information about initial distribution.

We provide the closed-form expression for the saddle point
of Lw

f below, which resembles the Q-function for a proxy
reward function f ′(wπ) ◦ η/dD.

Lemma 5. The closed form solutions of (8) are (wπ, q∗f ) =
argminw argmaxq L

w
f (q, w), where

q∗f = (I − γPπ)−1(f ′(wπ) ◦ η/dD). (9)

Remark 2 (Data Coverage Assumption). As we will see,
the only data coverage assumption we need is the bounded-
ness of wπ = dπ/dD. Since wπ is the function of interest
and practical algorithms can only output functions of well-
bounded ranges, such an assumption is an essential part of
the learning task itself and hardly an additional requirement.
Moreover, unlike Section 4, changing f here will not affect
the data-coverage assumption, though it still alters q∗f , and a
properly chosen f (e.g., with f ′(wπ) ≈ 0) can still result in
a q∗f with small magnitude and thus make learning easier.

Remark 3 (Connection to DualDICE). We can recover
DualDICE (Nachum et al., 2019a) by choosing fs,a(x) =
1
2x

2 and ν = dD. Despite producing the same estimator,
the derivations and assumptions under which the two works
analyze the estimator are different. Their Theorem 2 only
provides return estimation guarantees, and depends on an
implicit assumption of highly expressive function classes7

similar to Proposition 1. Moreover, they do not characterize
how the choice of f can affect the learning guarantees (their
f is (s, a)-independent). This is one of the main insights
of our paper and leads to the discovery of more practical
regularizers, e.g. fs,a(x) = 1

2 (x− w̃(s, a))2 with model w̃.

Below we present the assumptions, then learning guarantee
for ŵ.

Assumption 4 (Strongly Convex Objective). Suppose for
all s, a, fs,a is differentiable, non-negative, and Mw-
strongly convex. Further, suppose fs,a and its derivative
take finite values on any finite inputs, and let Cw

f :=
maxw∈W ||f(w)||∞.

Assumption 5 (Realizability). Suppose wπ ∈ W , q∗f ∈ Q.

Assumption 6 (Bounded W and Q). Let Cw
W :=

maxw∈W ||w||∞ and Cw
Q := maxq∈Q ||q||∞. Suppose W

and Q are bounded function classes, that is, Cw
W < ∞ and

Cw
Q < ∞.

7 In our notation, they measure the approximation error of W as
maxw′∈RS×A minw∈W ∥w − w′∥, essentially requiring W (and
similarly Q) to closely approximate every function over S × A.
However, we suspect that they could have measured realizability
errors instead without changing much of their proofs.

Theorem 6. Suppose Assumptions 4, 5, 6, hold. Then w.p.
≥ 1− δ,

∥ŵ − wπ∥2,η ≤ 2

√
ϵwstat
Mw

,

where ϵwstat = (1 + γ)Cw
WCw

Q

√
2 log

4|Q||W|
δ /n

+ (1− γ)Cw
Q

√
2 log

4|Q|
δ /n0.

6. Experiments
We now provide experimental results to verify our theoret-
ical predictions and insights. As Yang et al. (2020) have
performed extensive experiments on return estimation with
simple regularization (fs,a(x) = 1

2x
2), we focus on the task

of qπ estimation, and the following two questions unique to
our work:
Q1. When the goal is to minimize ∥q̂ − qπ∥2,ν , how much
benefit does regularizing with ν bring in practice, compared
to regularizing with other distributions (or no regularization
at all)?
Q2. Can incorporating (even relatively poor) models in
regularization (e.g., fs,a(x) = 1

2 (x − q̃(s, a))2 from Sec-
tion 4.3) improve estimation?

Setup We study these questions in a large tabular Gridwalk
environment (Nachum et al., 2019a; Yang et al., 2020), with
a deterministic target policy π that is optimal, and a behavior
policy that provides limited coverage over the target policy;
see Appendix D for details. To mimic the identification chal-
lenges associated with restricted function classes, we use a
linear function class Q = {Φ⊤α : α ∈ Rd} and discrimina-
tor class W = {Φ̃⊤β : β ∈ Rk}, where k < d ≪ |S ×A|.
The features Φ ∈ R|S×A|×d, Φ̃ ∈ R|S×A|×k are chosen to
satisfy the realizability assumptions of all estimators. Under
linear classes, our estimator ((5)) becomes a convex opti-
mization problem with d variables and k linear constraints,
and can be solved by standard packages. This allows us to
avoid difficult minimax optimization—which is still an open
problem in the MIS literature—and focus on the statistical
behaviors of our estimators, which is what our theoretical
predictions are about.

Remark 4. When no regularization is used, our estimator
coincides with MQL (Uehara et al., 2020). If we further
had Φ̃ = Φ, the estimator would coincide with LSTDQ.
While Section 2 mentioned that LSTDQ enjoys function-
estimation guarantees (Perdomo et al., 2022) (and folklore
suggests they extend to Φ̃ ̸= Φ), the guarantee only holds
in the regime of k ≥ d, i.e., the k linear constraints are
over-determined. In our case, however, we have under-
determined constraints (k < d), creating a more challenging
learning task (which our theory can handle) where LSTDQ’s
guarantees do not apply.

Choice of Distributions We consider a set of diverse distri-
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Figure 1. Error of off-policy return and function estimation as a function of sample size. Legend shows regularizing distribution ν and
header shows error-measuring distribution ν′ (see text). Error bars show 95% confidence intervals calculated from 1000 runs.
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Figure 2. Estimation error when the regularizer incorporates a model q̃, where x-axes represent the parameter m that controls the quality
of q̃. Sample size is 500 and the results are from 500 runs.

butions V = {dD, µπ
0 , d

π, U, p}, where U is uniform over
S × A and p ∝ (dπ ◦ I[wπ > 50]). The distribution p
isolates the least-covered states reached by π, which makes
learning an accurate Q-function on ν a harder task.

Results for Q1 We use a default regularizer f = 1
2x

2

with different regularizing distributions ν ∈ V , and measure
∥q̂ − qπ∥2,ν′ for different ν′. The results are shown in
Figure 1, and exhibit the expected trend. For example,
regularizing with ν = p performs poorly when the error is
measured under ν′ = dD and U due to the large mismatch
between ν and ν′. However, when ν′ = p (rightmost panel),
regularizing with ν = p significantly outperforms others.
Similar behaviors can also be observed on U , though they
are certainly not absolute (e.g., ν = dD does not do very
well on ν′ = dD), which suggests potential directions for
more refined theory. Moreover, using no regularization
(“none”) generally does not perform well for any ν′, but still
manages to achieve a high accuracy for return estimation
J(π), which is consistent with prior theory (Uehara et al.,
2020) that return estimation does not require regularization.

Results for Q2 We now use fs,a(x) = 1
2 (x−q̃(s, a))2 with

different q̃ to verify how the quality of q̃ affects estimation
accuracy. We first consider a “uniform model” q̃ = mqπ +
(1 − m)q, where q is a constant and m ∈ [0, 1] controls
the quality q̃. As shown in Panels 1 & 3 of Figure 2, our

estimator’s accuracy generally improves with a better q̃ (i.e.,
as m increases). Moreover, equipping q̃ with an appropriate
regularizing distribution ν (e.g., ν = U for both panels)
can significantly outperform no regularization, even with a
very poor q̃ (e.g., m = 0.1). It also outperforms the model
prediction itself (i.e., q̂ = q̃), showing that the improvement
is not from simply taking predictions from q̂, but instead
from using the regularization to better identify qπ from data.

The previous model’s quality is uniform across S ×A. We
then consider a scenario where q̃ is zeroed out outside p’s
support, making it only a good approximation of qπ on p.
In this case, we see that regularization cannot benefit much
from the model when the error is measured on ν′ = U
(Panel 2), but when ν′ = ν = p (Panel 4), regularization
can still bring benefits, as expected from our theory.

7. Discussion and Conclusion
In this paper, we showed that proper regularization can
yield function-estimation guarantees for MIS methods under
only realizable function approximation. Our results iden-
tify when and why accurate off-policy estimates of weight
and value functions, which play important roles in larger
reinforcement learning algorithms, can be obtained, and
provide insight into how different regularizers lead to better
estimates. Compared to prior works, our regularizer is
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more flexible and can accommodate a user-specified error-
measuring distribution. Further theoretical investigation
provides fine-grained characterization of how the choice of
regularization affects learning guarantees, which leads to
the discovery of regularizers that incorporate approximate
models (such as q̃). While the superiority of such regulariz-
ers is perhaps obvious retrospectively, it is not allowed in
the prior works’ derivation that assumes (s, a)-independent
regularization, and our theoretical results provide a deep un-
derstanding for even more general regularization schemes.

In Appendix A, we provide further discussions on two top-
ics: (1) the barriers to obtaining a faster O(n−1/2) rate, and
(2) comparison to Zhan et al. (2022) reveals interesting dif-
ferences between off-policy function estimation and policy
learning, and insights in this paper may also be useful for
the policy learning task. In Appendix E we discuss robust-
ness to approximation and optimization errors. Finally, in
Appendix F, we discuss how estimated functions can be
used in downstream off-policy evaluation tasks, and provide
corresponding estimation guarantees.

For the aforementioned off-policy evaluation and off-policy
learning (Liu et al., 2019) tasks, function estimation is (nat-
urally) generally required to be accurate on ν = dD or µπ

and η = dD (Liu et al., 2018; Perdomo et al., 2022; Liu
et al., 2019), and samples or exact distributions are accessi-
ble to the user. To this end, our method provides a concise
answer to a missing piece of off-policy algorithms.

However, the interaction of our method with online training
methods is less clear. As mentioned in the introduction,
online algorithms using off-policy function estimation as
a subroutine, such as (Kakade & Langford, 2002; Abbasi-
Yadkori et al., 2019), may require the estimates to be ac-
curate on unknown distributions such as dπ or dπ

∗
(where

π∗ is the optimal policy), which may not be immediately
accessible to the user. If samples from a replay buffer are
used to estimate functions of π, our method would provide
estimation guarantees over ν corresponding to the distribu-
tion of the buffer. Under appropriate coverage assumptions,
a change of distribution could then be used to convert these
guarantees over ν to a guarantee over dπ. In other cases,
the user may be able to use domain knowledge to “guess” a
distribution ν close to or covering the unknown distribution
of interest. Then our guarantees for function estimation
over ν could similarly, with a change of distribution, be
converted to guarantees on the true distribution of interest.
To this end, an important avenue of future work involves a
thorough investigation of how our off-policy function esti-
mation method interacts with such online learning methods,
their assumptions, and their guarantees.
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A. Further Discussions
Faster rate One weakness of our result is the O(n−1/4) slow rate of estimation. While O(n−1/2) generalization error
bounds for related stochastic saddle point exist (Zhang et al., 2021), they only apply to strongly-convex-strongly-concave
problems, whereas our problem is strongly-convex-non-strongly-concave (Lq

f is affine in w and Lw
f is affine in q), making

the result not directly applicable. One immediate idea is to introduce dual regularization to make our objectives also strongly
concave in the discriminator. However, while primal regularization does not change the feasible space and guarantees that
the learned function will be qπ (or wπ, respectively), dual regularization does change the optimal solution, introducing a
bias. This leads to a trade-off between the improvement in error bounds due to strong concavity and the additional bias, and
our preliminary investigation shows that an optimal trade-off between the two sources of errors still leads to an O(n−1/4)
rate. Therefore, improving the rate (if it is possible at all) will require novel technical tools for the generalization analyses of
strongly-convex-non-strongly-concave stochastic saddle point problems, which will be an interesting future direction.

On a related note, while the rate for estimating qπ and wπ is only O(n−1/4), we can combine them in a doubly robust form
to get O(n−1/2) rate for return estimation by careful choices of the regularizing distributions ν and η; see Appendix F for
details.

Comparison to off-policy learning As mentioned earlier, our results are enabled by technical tools adapted from Zhan
et al. (2022), whose work focuses on off-policy policy learning and learns wπ for a near-optimal π that is accurate under dD

as an intermediate step. While most of our surprising observations are in the value-function learning scenario (Section 4),
comparing our guarantee for learning wπ (Section 5) to that of Zhan et al. (2022) still yields interesting observations
about the difference between off-policy evaluation and learning. Most notably, we do not need to control the strength of
regularization in (3), since the feasible space is a singleton and there is no objective before we introduce Eν [f(q)]. In
contrast, the feasible space is not a singleton in Zhan et al. (2022) (it is the space of all possible occupancies) and there is
already a return optimization objective, so Zhan et al. (2022) need to carefully control the strength of their regularization. As
a consequence, Zhan et al. (2022) obtain O(n−1/6) rate, showing how off-policy learning is potentially more difficult than
off-policy function estimation. Another interesting difference is related to our exact characterization of w∗

f and q∗f : Zhan
et al. (2022) do not have a closed-form expression for their optimal dual solution. Such a lack of direct characterization leads
to requiring additional assumptions to guarantee the boundedness of such variables (see their Assumptions 11 and 12), which
is not a problem in our setting. Finally, our analyses lead to novel algorithmic ideas such as using state-action-dependent
regularizers and incorporating approximate models in the regularizers, which are potentially also useful for policy learning.

B. Proofs for Section 4
B.1. Proof of Theorem 2
From Assumption 1 and Lemma 7, we know that the regularization function Eν [fs,a(q(s, a))] is an M -strongly convex
function in q on the ∥ · ∥2,ν norm. Now consider Lq

f (q, w
∗
f ), the Lagrangian function (4) at the optimal discriminator w∗

f .
Since Lq

f (q, w
∗
f ) is composed of the regularization function plus terms that are linear in q, Lq

f (q, w
∗
f ) is also an M -strongly

convex function in q.

As (qπ, w∗
f ) is the saddle point solution of Lq

f , we know qπ = argminq L
q
f (q, w

∗
f ). Then from the strong convexity of Lq

f ,

||q̂ − qπ||2,ν ≤

√√√√2
(
Lq
f (q̂, w

∗
f )− Lq

f (q
π, w∗

f )
)

Mq

≤
√

4ϵqstat
Mq

, (Lemma 9)

where ϵqstat is given in Lemma 8.

We provide the helper lemmas and their proofs below:

Lemma 7. Suppose fs,a : R → R is M -strongly convex. Then Eν [fs,a(q(s, a))] : R|SA| → R is M -strongly convex on
∥ · ∥ν .

Proof. From the strong convexity of fs,a, for any x, y ∈ R,

fs,a(x)− fs,a(y) ≤ f ′
s,a(x)(x− y)− M

2
(x− y)2
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Then for q, q′ ∈ R|SA|,

Eν [fs,a(q(s, a))]− Eν [fs,a(q
′(s, a))]

≤ Eν [f
′
s,a(q(s, a))(q(s, a)− q′(s, a))]− Eν [

M

2
(q(s, a)− q′(s, a))2]

≤ Eν [f
′
s,a(q(s, a))(q(s, a)− q′(s, a))]−

(
min
s,a

M

2

)
Eν [(q(s, a)− q′(s, a))2]

= ⟨∇qEν [fs,a(q(s, a))], q − q′⟩ − M

2
Eν [(q(s, a)− q′(s, a))2]

since ∇qEν [fs,a(q(s, a))] = ν ◦ f ′
s,a(q), which gives our result.

Lemma 8. Suppose Assumption 3 holds. Then for all (q, w) ∈ Q×W , w.p. ≥ 1− δ,

|L̂q
f (q, w)− Lq

f (q, w)| ≤ ϵqstat,

where ϵqstat =
(
Cq

W + (1 + γ)Cq
WCq

Q
)√ 2 log

2|W||Q|
δ

n .

Proof. From the linearity of the expectation, it is clear that Lq
f (q, w) = E[L̂q

f ]. Let li =
w(si, ai) (r(si, ai) + γq(s′i, π)− q(si, ai)). From Assumption 3,

|li| ≤ ∥w∥∞ + (1 + γ)∥w∥∞∥q∥∞
≤ Cq

W + (1 + γ)Cq
WCq

Q

Then using Hoeffding’s inequality with union bound, for all q, w ∈ Q×W , w.p. ≥ 1− δ,∣∣∣∣∣ 1n
n∑

i=1

li − EdD [li]

∣∣∣∣∣ ≤ (
Cq

W + (1 + γ)Cq
WCq

Q
)√2 log 2|W||Q|

δ

n
= ϵqstat

Lemma 9. Under Assumptions 1, 2, 3, w.p. ≥ 1− δ,

Lq
f (q̂, w

∗
f )− Lq

f (q
π, w∗

f ) ≤ 2ϵqstat.

where ϵqstat is given in Lemma 8.

Proof. We decompose the error as follows:

Lq
f (q

π, w∗
f )− Lq

f (q̂, w
∗
f ) = Lq

f (q
π, w∗

f )− Lq
f (q

π, ŵ(qπ)) (1) ≥ 0

+ Lq
f (q

π, ŵ(qπ))− L̂q
f (q

π, ŵ(qπ)) (2) ≥ −ϵqstat

+ L̂q
f (q

π, ŵ(qπ))− L̂q
f (q̂, ŵ) (3) ≥ 0

+ L̂q
f (q̂, ŵ)− L̂q

f (q̂, w
∗
f ) (4) ≥ 0

+ L̂q
f (q̂, w

∗
f )− Lq

f (q̂, w
∗
f ) (5) ≥ −ϵqstat

Combining the terms gives the result, and we provide a brief justification for each inequality below. Terms (2) and (5) follow
from Lemma 8.

Term (1) ≥ 0 since (qπ, w∗
f ) is the saddlepoint solution.

Term (3) ≥ 0, since L̂q
f (q̂, ŵ) = L̂q

f (q̂, ŵ(q̂)), and q̂ = argminq∈Q L̂q
f (q, ŵ(q)), and qπ ∈ Q.

Term (4) ≥ 0 because w∗
f ∈ W .
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B.2. Proof of Lemma 3
Since strong duality holds, the saddle point (qπ, w∗

f ) satisfies the KKT conditions. Then from stationarity, for all (s, a),

0 = ν(s, a)f ′
s,a(q

π(s, a)) + γ
∑
s′,a′

Pπ(s, a|s′, a′)dD(s′, a′)w∗
f (s

′, a′)− dD(s, a)w∗
f (s, a).

Writing this in matrix form, letting f ′(qπ) be shorthand for [f ′
s,a(q

π(s, a))]s,a ∈ RS×A, w∗
f must satisfy the equality:

(I − γP̃π)(dD ◦ w∗
f ) = ν ◦ f ′(qπ) =⇒ dD ◦ w∗

f = (I − γP̃π)−1 (ν ◦ f ′(qπ)) .

B.3. Proof of Proposition 4
Rearranging the closed form of w∗

f from Lemma 3 and taking the absolute value of both sides,

dD ◦ |w∗
f | = |(I − γP̃π)−1 (ν ◦ f ′(qπ)) |

≤ ∥f ′(qπ)∥∞|(I − γP̃π)−1ν|

=
1

1− γ
∥f ′(qπ)∥∞ · dπν

Then dividing both sides by dD element-wise, this implies

|w∗
f | ≤

1

1− γ
∥f ′(qπ)∥∞ · (dπν/dD)

≤ 1

1− γ
∥f ′(qπ)∥∞ · ∥dπν/dD∥∞

As the above inequality holds for all (s, a),

||w∗
f ||∞ ≤ 1

1− γ
∥f ′(qπ)∥∞ · ∥dπν/dD∥∞.

C. Proofs for Section 5
C.1. Derivation of Lagrangian Objective (8)
For completeness, we demonstrate how the Lagrangian objective in (8) is derived from the constrained convex program in
(7). Letting q ∈ RS×A be the dual variable, (7) can be written in Lagrangian form and rearranged as follows:

Lw
f (w, q) = Eη[fs,a(w(s, a))]

+
∑
s,a

q(s, a)
(
(1− γ)µπ

0 (s, a) + γ
∑
s′,a′

Pπ(s, a|s′, a′)dD(s′, a′)w(s′, a′)− dD(s, a)w(s, a)
)

= Eη[fs,a(w(s, a))] + (1− γ)Eµ0
[q(s, π)]

+
∑
s,a

q(s, a)
(
γ
∑
s′,a′

Pπ(s, a|s′, a′)dD(s′, a′)w(s′, a′)− dD(s, a)w(s, a)
)

= Eη[fs,a(w(s, a))] + (1− γ)Eµ0 [q(s, π)]

+
∑
s′,a′

dD(s′, a′)w(s′, a′)γ
∑
s,a

Pπ(s, a|s′, a′)q(s, a)−
∑
s,a

dD(s, a)w(s, a)q(s, a)

= Eη[fs,a(w(s, a))] + (1− γ)Eµ0
[q(s, π)]

+
∑
s,a

dD(s, a)w(s, a)γ
∑
s′,a′

Pπ(s′, a′|s, a)q(s′, a′)−
∑
s,a

dD(s, a)w(s, a)q(s, a)

= Eη[fs,a(w(s, a))] + (1− γ)Eµ0
[q(s, π)]

+
∑
s,a

dD(s, a)w(s, a)
(
γ
∑
s′,a′

Pπ(s′, a′|s, a)q(s′, a′)− q(s, a)
)

= Eη[fs,a(w(s, a))] + (1− γ)Eµ0
[q(s, π)] + EdD [w(s, a)(γq(s, π)− q(s, a))]

which is exactly (8).
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C.2. Proof of Lemma 5
From the KKT stationarity conditions:

0 = dD(s, a)
(
γEs′∼P (·|s,a)

[
q∗f (s

′, π)
]
− q∗f (s, a)

)
− ν(s, a)f ′

s,a(w
π(s, a))

or in matrix form, letting f ′(wπ) be shorthand for [f ′
s,a(w

π(s, a))]s,a ∈ RS×A,

η ◦ f ′(wπ) = dD ◦ (I − γPπ)q∗f

Then q∗f must satisfy

(I − γPπ)q∗f = f ′(wπ) ◦ η/dD =⇒ q∗f = (I − γPπ)−1(f ′(wπ) ◦ η/dD)

C.3. Proof of Theorem 6
The proof is of a similar nature as the proof of Theorem 2 (Appendix B.1). From Assumption 4 and Lemma 7, we know that
that Lw

f (w, q
∗
f ) is an M -strongly convex function in w on the || · ||2,η norm. Since (wπ, q∗f ) is the saddle point solution of

Lw
f , from strong convexity we know that the error of ŵ is bounded as

||ŵ − wπ||2,dD ≤

√√√√2
(
Lw
f (w

π, q∗f )− Lw
f (ŵ, q

∗
f )
)

Mw

≤
√

4ϵwstat
Mw

(Lemma 11),

where ϵwstat is given in Lemma 10.

Remark 5. In Theorem 6 of the main text, there is an additional O(C
w
f /

√
n) term in the statistical error ϵwstat, which would

arise if the regularization function Eη[fs,a(w(s, a))] were to be estimated from samples. However, we state early on in the
paper that we assume the regularizer can be calculated exactly, as sampling is a trivial extension. Correspondingly, the
correct expression for the statistical error is:

ϵwstat = (1 + γ)Cw
WCw

Q

√
2 log

4|Q||W|
δ /n + (1− γ)Cw

Q

√
2 log

4|Q|
δ /n0,

and, to remain consistent with the rest of the paper, we provide the proof and lemma for this ϵwstat below.

Lemma 10. Suppose Assumption 6 holds. Then for all (w, q) ∈ W ×Q, w.p. ≥ 1− δ,

|L̂w
f (w, q)− Lw

f (w, q)| ≤ ϵwstat,

where ϵwstat = (1 + γ)Cw
WCw

Q

√
2 log

4|Q||W|
δ

n + (1− γ)Cw
Q

√
2 log

4|Q|
δ

n0
.

Proof. Let li = w(si, ai)(γq(s
′
i, π)− q(si, ai)). Using Assumption 6,

|li| ≤ (1 + γ)||w||∞||q||∞
≤ (1 + γ)Cw

WCw
Q

Then using Hoeffding’s inequality with union bound, w.p. ≥ 1− δ/2 we have that for all w, q ∈ W ×Q,∣∣∣∣∣ 1n
n∑

i=1

li − EdD [li]

∣∣∣∣∣ ≤ (1 + γ)Cw
WCw

Q

√
2 log 4|W||Q|

δ

n

Similarly, for all q ∈ Q, w.p. ≥ 1− δ/2,∣∣∣∣∣ 1n0

n0∑
i=1

q(s0,i, π)− Eµ0
[q(s0,i, π)]

∣∣∣∣∣ ≤ Cw
Q

√
2 log 4|Q|

δ

n0
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Since Lw
f (w, q) = Eη[fs,a(w(s, a))] + EdD [li] + Eµ0

[q(s0, π)], but the first term can be calculated exactly, taking a union
bound over the above two inequalities, we have that w.p. ≥ 1− δ,

|L̂w
f (w, q)− Lw

f (w, q)| ≤ (1 + γ)Cw
WCw

Q

√
2 log 4|Q||W|

δ

n
+ (1− γ)Cw

Q

√
2 log 4|Q|

δ

n0

Lemma 11. Under Assumptions 4, 5, 6, w.p. ≥ 1− δ,

Lw
f (w

∗
f , q

∗
f )− Lw

f (ŵ, q
∗
f ) ≤ 2ϵwstat

Proof of Lemma 11 We decompose the error as follows:

Lw
f (ŵ, q

∗
f )− Lw

f (w
π, q∗f ) = Lw

f (ŵ, q
∗
f )− L̂f (ŵ, q

∗
f ) (1) ≥ −ϵwstat

+ L̂w
f (ŵ, q

∗
f )− L̂w

f (ŵ, q̂) (2) ≥ 0

+ L̂w
f (ŵ, q̂)− L̂w

f (w
π, q̂(wπ) (3) ≥ 0

+ L̂w
f (w

π, q̂(wπ))− Lw
f (w

π, q̂(wπ) (4) ≥ −ϵwstat

+ Lw
f (w

π, q̂(wπ))− Lw
f (w

π, q∗f ) (5) ≥ 0

Combining the inequalities gives the result. We give a brief justification for each term below. Terms (1) and (4) follow from
Lemma 10.

Term (2) ≥ 0, since q∗f ∈ Q.

Term (3) ≥ 0 since wπ ∈ W and ŵ = argmaxw∈W L̂w
f (w, q̂(w)).

Term (5) ≥ 0 since (wπ, q∗f ) is a saddle point solution.

D. Additional Details of the Experiments
D.1. Derivation
We now derive the system of equations for our value function estimation experiments in Section 6. Letting the regularization
function be fs,a(x) =

1
2x

2 for all (s, a), the objective is

min
q

max
w

Lq
f (q, w) =

1

2
Eν [q

2(s, a)] + EdD [w(s, a) (r(s, a) + γq(s′, π)− q(s, a))] , (10)

Letting En denote the empirical average over D for clarity, with empirical samples and the linear classes Q,W , the objective
becomes:

min
q∈Q

max
w∈W

L̂q
f (q, w) =

1

2
Eν [α

⊤ϕ(s, a)ϕ(s, a)⊤α] + β⊤
(
En [ϕ(s, a)r(s, a)]

+ En

[
γϕ(s, a)ϕ(s′, π)⊤ − ϕ(s, a)ϕ(s, a)⊤

]
α
)

Since β ∈ Rd, maxw∈W L̂q
f (q, w) = +∞ for any q, unless α sets the the second term to 0. This is satisfied by α such that

En

[
ϕ(s, a)ϕ(s, a)⊤ − γϕ(s, a)ϕ(s′, π)⊤

]
α = En [ϕ(s, a)r(s, a)] .

However, there may in general be infinite feasible α depending on the linear features and samples. For our specific linear
parameterization of Q,W , the constraints form an underdetermined d× k system of equations, which has infinite solutions.

This is where the regularization term Eν [α
⊤ϕ(s, a)ϕ(s, a)⊤α] comes into play. For any regularizing distribution ν, our

method will output a solution that minimizes this term, i.e. that minimizes the norm of q = Φ⊤α on ν. If ν = 0, for
example, the algorithm will output any feasible point; if ν = 1/|SA|, the algorithm will output q with smallest L2 norm.
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Connection to LSTDQ When using the same linear class for W and Q, the solution to the constraints in (3) (i.e., ignoring
the regularization objective)—if the solution is unique given matrix invertibility—coincides with LSTDQ (Uehara et al.,
2020). As mentioned in Section 2, LSTDQ enjoys function-estimation guarantees under matrix invertibility. In fact, we
believe it is possible to extend the analysis even when Q and W use different features of dimensions d and k, respectively;
as long as k ≥ d and the matrix in (3) has full row-rank8 (i.e., overdetermined), similar guarantees for LSTDQ should still
hold, though we are not aware of an explicit documentation of this fact. In contrast, our setup is more challenging as we are
in the regime of k < d, and the constraints in (3) is underdetermined, nullifying the guarantees of LSTDQ. In such cases,
the use of regularization is important for guaranteeing function estimation, as also shown in our experiments.

D.2. Experimental Setup
Feature Design In total, the tabular environment has 400 state-action values, and we design Φ to aggregate states that
correspond to unique entries (within 3 decimal places) of qπ . In Figure 1, Φ̃ is composed of the set of features given by

{(I − γP̃π)−1(ν ◦ qπ)/dD, (I − γP̃π)−1(ν ◦ qπ)}ν∈V .

The first of these two entries is the closed-form solution of w∗
f given in Lemma 3, and satisfies the realizability requirements

of all methods; the second is included for optimization stability.

In Figure 2, we use a model with constant value equal to the average value of qπ on the support of p, i.e. q =
1/|SA|

∑
s,a q

π(s, a) · 1{p>0}. To maintain realizability when the model is included in the regularization function, Φ̃
is composed of the set{

(I − γP̃π)−1(ν ◦ qπ), (I − γP̃π)−1(ν ◦ qπ ◦ I(q̃ > 0)), (I − γP̃π)−1(ν ◦ I(q̃ > 0))
}
ν∈V

The reason why this preserves realizability is as follows. When ν is the regularization distribution, and the input model is
q̃ = (mqπ + (1−m)q) ◦ 1(p > 0)) for some constant q, the closed-form solution w∗

f can be expanded as

w∗
f = (I − γP̃π)−1(ν ◦ (qπ − q̃))

= (I − γP̃π)−1(ν ◦ qπ)−m · (I − γP̃π)−1(ν ◦ 1(p > 0) ◦ qπ)

− (1−m)q · (I − γP̃π)−1(ν ◦ 1(p > 0)),

which implies w∗
f can be expressed as a linear combination of the three previously defined features.

Solver We solve the linear system using CVXPY with optimizer SCS (Diamond & Boyd, 2016; Agrawal et al., 2018).

Environment The Gridwalk is a 10x10 environment with 4 actions corresponding to cardinal directions. The objective is
to reach the goal state (lower right corner). In each state, the agent receives a reward inversely proportional to its distance
from a goal state. Each trajectory terminates after 100 steps. The initial states are randomly distributed over the upper half
of the grid.

The target policy is defined to be a deterministic optimal policy that always moves towards the goal by first going right,
and then down. To create a strong shift, the behavioral policy is designed to largely explore only the bottom left portion of
the grid, providing poor coverage over the target policy and starting states. Specifically, letting the following probabilities
refer to distributions over actions [RIGHT, DOWN, LEFT, UP], the target policy π has distribution [1, 0, 0, 0] over actions
until it hits the right wall, then [0, 1, 0, 0]. The behavior policy takes [0.1, 0.4, 0.5, 0] until it hits the right wall, then takes
[0, 0.5, 0.5, 0].

E. Approximation and Optimization Error
The main results of this paper (Theorems 2, 6) utilize assumptions on realizability (Assumption 2, 5), as well as (implicit)
assumptions of perfect optimization. In this section, we analyze how approximation errors, i.e. when the saddle point
solution is not contained in Q×W , and optimization errors affect our error bounds. Due to the similarity in proofs between
value function and weight learning, we provide them only for value function learning; analogous methods can be used to
derive similar results for weight learning.

8 In the finite-sample regime, one needs to lower-bound the smallest singular value of such matrices instead of imposing full-rankness
(Perdomo et al., 2022).
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E.1. Finite-sample Guarantees
First, we relax the realizability requirements of Assumption 2. Define the approximation errors:

ϵapprox,q = min
q∈Q

max
w∈W

|EdD [w(s, a)(T πq(s, a)− q(s, a))] + Eν [fs,a(q(s, a))− fs,a(q
π(s, a))]|

ϵapprox,w = min
w∈W

max
q∈Q

|EdD [(w(s, a)− w∗
f (s, a))(T πq(s, a)− q(s, a))]|

ϵapprox := ϵapprox,q + ϵapprox,w.

ϵapprox,q is composed of the worst-case weighted combination of Bellman errors of the best candidate q ∈ Q, as well as
the difference between the regularization function at q and qπ . The error ϵapprox,w measures the distance between the best
candidate w ∈ W and the saddle point solution w∗

f by projecting the difference onto the worst-case Bellman error T πq− q.

Remark 6. To increase intuition of ϵapprox,q, we can relax the difference in regularization terms as Eν [fs,a(q(s, a)) −
fs,a(q

π(s, a))] ≤ Cq
f ′ ||qπ − q||2,ν , which is also the norm upon which the q̂ estimation guarantee is given (Theorem 2)

. Reflecting the nature of the value function estimation task, this states that, even if there is a candidate q ∈ Q with low
Bellman error (e.g. if data is sparse), ϵapprox,q will still be large if q is far from qπ on the desired distribution ν.

Next, we can also relax the (implicit) assumptions that the estimates (q̂, ŵ) are the true optima of (5), e.g. q̂ =

argminq∈Q L̂q
f (q, ŵ(q)) and ŵ = argmaxw∈W L̂q

f (q̂, w). Letting ŵ(q) = argmaxw∈W L̂(w, q), define the following
optimization errors:

ϵopt,w ≥ L̂q
f (q̂, ŵ(q̂))− L̂q

f (q̂, ŵ)

ϵopt,q ≥ L̂q
f (q̂, ŵ(q̂))−min

q∈Q
L̂q
f (q, ŵ(q))

ϵopt := ϵopt,q + ϵopt,w.

ϵopt,w states that the estimate ŵ should not be too far from the best discriminator in W for q̂, while ϵopt,q states that the
estimate q̂ should not be too far from the minimax solution.

Using the above definitions, we provide the following generalization of Theorem 2, which accounts for approximation and
optimization errors.

Theorem 12. Under Assumptions 1 and 3, with probability at least 1− δ,

||q̂ − qπ||2,ν ≤
√

4ϵqstat + 2ϵapprox + 2ϵopt
Mq

,

where ϵqstat is given in Theorem 2.

E.2. Proof of Theorem 12
The proof takes the same overall steps as the proof of Theorem 2 (Appendix B.1), but relies on Lemma 13 to incorporate the
approximation and optimization errors:

||q̂ − qπ||2,ν ≤

√√√√2
(
Lq
f (q̂, w

∗
f )− Lq

f (q
π, w∗

f )
)

Mq

≤
√

4ϵqstat + 2ϵapprox,q + 2ϵapprox,w + 2ϵopt,q + 2ϵopt,w
Mq

. (Lemma 13)

Below, we state and prove the helper lemma, which bounds the difference between the Lagrangian objective (4) at the saddle
point (qπ, w∗

f ) and the point (q̂, w∗
f ):

Lemma 13. Under Assumptions 1 and 3, w.p. ≥ 1− δ,

Lq
f (q̂, w

∗
f )− Lq

f (q
π, w∗

f ) ≤ 2ϵqstat + ϵapprox,q + ϵapprox,w + ϵopt,q + ϵopt,w.
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Proof. With some abuse of notation (as q̃, w̃ previously referred to models used with the regularizer), for brevity in this
section, let q̃ be the minimizer of ϵapprox,q and w̃ be the minimizer of ϵapprox,w. That is,

q̃ = argmin
q∈Q

max
w∈W

|EdD [w(s, a)(T πq(s, a)− q(s, a))] + Eν [f(q(s, a))− f(qπ(s, a))]|

w̃ = argmin
w∈W

max
q∈Q

|EdD [(w(s, a)− w∗
f (s, a))(T πq(s, a)− q(s, a))]|.

Decompose the error as follows:

Lq
f (q

π, w∗
f )− Lq

f (q̂, w
∗
f ) = Lq

f (q
π, w∗

f )− Lq
f (q

π, ŵ(q̃)) (1) ≥ 0

+ Lq
f (q

π, ŵ(q̃))− Lq
f (q̃, ŵ(q̃)) (2) ≥ −ϵapprox,q

+ Lq
f (q̃, ŵ(q̃))− L̂q

f (q̃, ŵ(q̃)) (3) ≥ −ϵstat

+ L̂q
f (q̃, ŵ(q̃))− L̂q

f (q̂, ŵ) (4) ≥ −ϵopt,q

+ L̂q
f (q̂, ŵ)− L̂q

f (q̂, w̃) (5) ≥ −ϵopt,w

+ L̂q
f (q̂, w̃)− Lq

f (q̂, w̃) (6) ≥ −ϵstat

+ Lq
f (q̂, w̃)− Lq

f (q̂, w
∗
f ) (7) ≥ −ϵapprox,w

First, (1) holds because (qπ, w∗
f ) is the saddle point solution of Lq

f over all q, w ∈ R× R. The statistical errors in (3) and
(6) follow from Lemma 8.

Next, we justify the optimization errors. For (4),

L̂q
f (q̃, ŵ(q̃))− L̂q

f (q̂, ŵ) ≥ L̂q
f (q̃, ŵ(q̃))− L̂q

f (q̂, ŵ(q̂)) ≥ min
q∈Q

L̂q
f (q, ŵ(q))− L̂q

f (q̂, ŵ(q̂)) ≥ −ϵopt,q.

For (5),

L̂q
f (q̂, ŵ)− L̂q

f (q̂, w̃) ≥ L̂q
f (q̂, ŵ)− max

w∈W
L̂q
f (q̂, w) ≥ −ϵopt,w

Finally, we justify the approximation errors, starting with (2). Note that for any q, w ∈ Q×W ,

|Lq
f (q

π,w)− Lq
f (q, w)|

= |EdD [w(s, a)(T πq(s, a)− q(s, a)− T πqπ(s, a) + qπ(s, a))]

+ Eν [fs,a(q(s, a))− fs,a(q
π(s, a))]|

= |EdD [w(s, a)(T πq(s, a)− q(s, a))] + Eν [fs,a(q(s, a))− fs,a(q
π(s, a))]|

≤ max
w∈W

|EdD [w(s, a)(T πq(s, a)− q(s, a))] + Eν [fs,a(q(s, a))− fs,a(q
π(s, a))]|.

Then since q̃ was chosen to minimize the above expression,

Lq
f (q

π,ŵ(q̃))− Lq
f (q̃, ŵ(q̃))

≥ −max
w∈W

|EdD [w(s, a)(T π q̃(s, a)− q̃(s, a))] + Eν [fs,a(q̃(s, a))− fs,a(q
π(s, a))]|

= −min
q∈Q

max
w∈W

|EdD [w(s, a)(T πq(s, a)− q(s, a))] + Eν [fs,a(q(s, a))− fs,a(q
π(s, a))]|

= −ϵapprox,q.

Next we justify (8). For any w ∈ W and q ∈ Q,

|Lq
f (q, w)− Lq

f (q, w
∗
f )| = |EdD [(w(s, a)− w∗

f (s, a))(T πq(s, a)− q(s, a))]|
≤ max

q∈Q
|EdD [(w(s, a)− w∗

f (s, a))(T πq(s, a)− q(s, a))]|.
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Then since w̃ was chosen to minimize the RHS of the above inequality,

Lq
f (q̂, w̃)− Lq

f (q̂, w
∗
f ) ≥ −max

q∈Q
|EdD [(w̃(s, a)− w∗

f (s, a))(T πq(s, a)− q(s, a))]|

= − min
w∈W

max
q∈Q

|EdD [(w(s, a)− w∗
f (s, a))(T πq(s, a)− q(s, a))]|

= −ϵapprox,w.

Combining these inequalities gives the lemma statement.

F. Off-Policy Return Estimation
Section 4 demonstrates how q-value estimates q̂ can be obtained, and Section 5 demonstrates how weight estimates ŵ can
be obtained. The estimates q̂ and/or ŵ can additionally be used for downstream off-policy evaluation (OPE) of the policy’s
value J(π), which can be equivalently defined in the following three ways:

J(π) = (1− γ)Es0∼µ0 [q
π(s0, π)] (“value function-based”)

J(π) = E(s,a)∼dD,r∼R(·|s,a)[w
π(s, a) · r] (“weight-based”)

J(π) = (1− γ)Es0∼µ0 [q
π(s0, π)] (“doubly robust”)

+ E(s,a)∼dD,r∼R(·|s,a),s′∼P (·|s,a)[w
π(s, a)(r + qπ(s′, π)− qπ(s, a))]

With finite samples and estimates q̂ and ŵ approximating qπ and wπ , respectively, their corresponding off-policy estimators
are:

Ĵq(π) = (1− γ)
1

n0

n0∑
i=1

q̂(s0,i, π)

Ĵw(π) =
1

n

n∑
i=1

ŵ(si, ai)ri

Ĵdr(π) = (1− γ)
1

n0

n0∑
j=1

q̂(s0,j , π) +
1

n

n∑
i=1

ŵ(si, ai) (ri + q̂(s′i, π)− q̂(si, ai))

While the OPE estimator Ĵdr(π) utilizes both the weights and value functions, Ĵw(π) and Ĵq(π) utilize only one or the
other. As a result, when q̂ and ŵ are estimated as in Sections 4 and 5, respectively, Ĵw(π) and Ĵq(π) both inherit their
O(n−1/4) sample complexities:

Corollary 14. Suppose Assumptions 1, 2, and 3 hold, and let
(q̂, ) = argminq∈Q argmaxw∈W L̂q

f (q, w). Then with probability ≥ 1− 2δ,

|Ĵq(π)− J(π)| ≤ ϵqeval +
√

Cµπ
0 /ν

· ϵqest,

where ϵqeval = (1− γ)Cq
Q

√
2 log

2|Q|
δ /n0, Cµπ

0 /ν
= ||µπ

0/ν||∞, and ϵqstat is as in Theorem 2.

Corollary 15. Suppose Assumption 4, 5, and 6 hold, and let
(ŵ, ) = argminw∈W argmaxq∈Q L̂w

f (q, w). Then with probability ≥ 1− 2δ,

|Ĵw(π)− J(π)| ≤ ϵweval +
√

CdD/η · ϵwest,

where ϵweval = Cw
W

√
2 log

2|W|
δ

n , CdD/η = ∥dD
/η∥∞, and ϵwest is as in Theorem 6.

However, when q̂ and ŵ are used together in the doubly robust estimator Ĵdr, their estimation error becomes multiplicative,
and Ĵdr(π) can achieve the O(n− 1

2 ) fast rate of convergence. In Theorem 16 below, we present two versions this guarantee.
The first requires no additional assumptions beyond dD > 0, which we already make (see footnote 5), but involves the
largest singular value of I − γPπ , which may be difficult to characterize. The second utilizes an additional assumption, and
replaces the singular value with an occupancy ratio, stated below. The assumption requires that all next states s′ are also
present as states s in transitions of dD (a condition which may reasonably hold in practice), and is also made by (Uehara
et al., 2021).
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Assumption 7 (Next State Coverage). Let dD(s) =
∑

a d
D(s, a) be the marginal distribution of states s in dD, and

dDs′ (s) :=
∑

s′,a′ P (s|s′, a′)dD(s′, a′) be the marginal distribution of next states s′. Suppose

Cs′/s := ||dDs′ (·)/dD(·)||∞ < ∞

Theorem 16. Suppose Assumption 1, 2, 3, 4, 5, and 6 hold. Let ŵ and q̂ be estimated from:

(q̂, ) = argmin
q∈Q

argmax
w∈W

L̂q
f (q, w)

(ŵ, ) = argmin
w∈W

argmax
q∈Q

L̂w
f (q, w).

Then with probability ≥ 1− 3δ,

|Ĵdr(π)− J(π)| ≤ ϵdreval + σmax(I − γPπ) ·
√
CdD/ηCdD/ν · ϵwest · ϵ

q
est,

If Assumption 7 additionally holds, with probability ≥ 1− 3δ,

|Ĵdr(π)− J(π)| ≤ ϵdreval +
(
1 + γ

√
Cs′/sCπ/πD

)
·
√

CdD/ηCdD/ν · ϵwest · ϵqest,

where ϵdreval = (1− γ)Cq
Q

√
2 log

2|Q|
δ /n0 + Cw

W(1 + (1 + γ)Cq
Q)

√
2 log

2|W||Q|
δ /n, σmax denotes the largest singular value,

and ϵqest and ϵwest are as in Theorems 2 and 6.

As the evaluation error ϵdreval in Theorem 16 is O(n−1/2), the sample complexity of doubly robust estimation is rate-limited
by ϵwest · ϵ

q
est, the product of weight and value function estimation errors. If both functions can be estimated at an O(n−1/4)

rate, as is true of our method, then Ĵdr(π) attains the overall O(n−1/2) fast rate. Finally, while Theorem 16 assumes for
simplicity that the same Q,W classes are used in both of its optimization problems, it can easily be extended to the case
where different pairs of function classes are used as long as the required assumptions hold.

Remark 7 (Comparison to Related Work). (Yang et al., 2020) conduct experiments comparing off-policy evaluation
using Ĵq(π), Ĵw(π), Ĵdr(π), and generally observe that Ĵdr(π) has higher variance and worse performance than either
Ĵq(π) or Ĵw(π). Though at first glance this may appear to contradict Theorem 16, that is actually not the case; in fact,
our theoretical analysis provides insight into why (Yang et al., 2020) may observe such a phenomenon. In contrast to
Theorem 16, when using Ĵdr(π) (Yang et al., 2020) utilize saddle point predictions (q̂, ŵ) from either only value function
learning or only weight learning, e.g. (q̂, ŵ) = argminq∈Q argmaxw∈W L̂q

f (q, w) that approximates (qπ, w∗
f ). Continuing

with this example (and the same applies to weight learning), it is clear from our analysis that ŵ estimated in such a manner
may not approximate wπ at all, leading to increased estimation error of Ĵdr(π) over Ĵq(π). First, the closed-form solution
we have derived for w∗

f in (Lemma 3) shows that w∗
f may have a significantly different magnitude from wπ . Second, even if

ν and f were chosen such that w∗
f ≈ wπ, as per the reasons stated in Section 4.1, we are not even guaranteed to output

ŵ close to w∗
f since Lq

f is not regularized in w. In order to obtain the estimation benefits of doubly robust estimation, our
analysis shows that q̂ and ŵ should be separately estimated from their respective optimization problems, then combined in
Ĵdr(π). This is in accordance with similar results from Kallus & Uehara (2020) and Uehara et al. (2021).

F.1. Proof of Corollary 14
Let J̃(π) = (1− γ)Eµ0

[q̂(s, π)]. We decompose the error as

|Ĵ(π)− J(π)| ≤ |Ĵ(π)− J̃(π)|+ |J̃(π)− J(π)|

First we bound |Ĵ(π)− J̃(π)|. Using Hoeffding’s with union bound, for all q ∈ Q, w.p. ≥ 1− δ,∣∣∣∣∣ 1n0

n∑
i=1

q(s0,i, π)− Eµ0
[q(s, π)]

∣∣∣∣∣ ≤ (1− γ)Cq
Q

√
2 log 2|Q|

δ

n0
:= ϵqeval,
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which implies |Ĵ(π)− J̃(π)| ≤ ϵqeval. For the second term, let Cµπ
0 /ν

= ||µπ
0/ν||∞. Then w.p. ≥ 1− δ

|J̃(π)− J(π)| = (1− γ)|⟨µπ
0 , q̂ − qπ⟩|

≤ (1− γ)||q̂ − qπ||1,µπ
0

≤ (1− γ)||q̂ − qπ||2,µπ
0

= (1− γ)
√

Cµπ
0 /ν

||q̂ − qπ||2,ν

≤ (1− γ)
√
Cµπ

0 /ν
ϵqest

using Theorem 2 in the last line.

F.2. Proof of Corollary 15
Let J̃(π) = EdD [ŵ(s, a)r(s, a)]. We decompose the error as

|Ĵw(π)− J(π)| ≤ |Ĵw(π)− J̃(π)|+ |J̃(π)− J(π)|

For the first term, using Hoeffding’s with union bound, w.p. ≥ 1− δ, for all w ∈ W ,∣∣∣∣∣ 1n
n∑

i=1

w(si, ai)ri − EdD [w(s, a)r(s, a)]

∣∣∣∣∣ ≤ Cw
W

√
2 log 2|W|

δ

n
:= ϵweval

which implies |Ĵ(π)− J̃(π)| ≤ ϵweval. For the second term,

|Ĵ(π)− J(π)| = |⟨ŵ · dD, r⟩ − ⟨wπ · dD, r⟩|
≤ ||dD · (ŵ − wπ)||1||r||∞
≤ ||dD · (ŵ − wπ)||1 = ||ŵ − wπ||dD,1

≤ ||ŵ − wπ||dD,2

≤
√
CdD/η||ŵ − wπ||2,η

≤
√
CdD/ηϵ

w
est

w.p. ≥ 1− δ, using Theorem 6 in the last line. Taking a union bound over both terms gives the stated result.

F.3. Proof of Theorem 16
Let J̃(π) = (1− γ)Eµπ

0
[q̂(s, a)] + EdD [ŵ(s, a)(r + q̂(s′, π)− q̂(s, a))]. Again we decompose the error as:

|Ĵdr(π)− J(π)| ≤ |Ĵdr(π)− J̃(π)|+ |J̃(π)− J(π)|.

For the first term, since E[Ĵdr(π)] = J̃(π), w.p. ≥ 1− δ we have that ∀ q, w ∈ Q×W ,

|Ĵdr(π)− J̃(π)| ≤ (1− γ)Cq
Q

√
2 log 2|Q|

δ

n0
+ Cw

W(1 + (1 + γ)Cq
Q)

√
2 log 2|W||Q|

δ

n
:= ϵdreval

For the second term,

|J̃(π)− J(π)| = |(1− γ)⟨q̂, µπ
0 ⟩+ ⟨ŵ · dD, r + γPπ q̂ − q̂⟩ − (1− γ)⟨qπ, µπ

0 ⟩|
= |(1− γ)⟨q̂, µπ

0 ⟩+ ⟨ŵ · dD, r + γPπ q̂ − q̂⟩ − (1− γ)⟨qπ, µπ
0 ⟩ − ⟨ŵ · dD, r + γPπqπ − qπ⟩|

= |⟨q̂ − qπ, (1− γ)µπ
0 + (γPπ,⊤ − I)(dD · ŵ)⟩|

=
∣∣∣〈q̂ − qπ, (I − γPπ,⊤)(dD · wπ − dD · ŵ)

〉∣∣∣
≤ ||(I − γPπ)(q̂ − qπ)||2,dD ||ŵ − wπ||2,dD
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where the last equality is due to the fact that (1−γ)µπ
0 = (I−γPπ)(dD·wπ), and the final inequality is from Cauchy-Schwarz.

We can automatically bound the ||ŵ − wπ||2,dD term using Theorem 6, and it remains to bound ||(I − γPπ)(q̂ − qπ)||2,dD .
We will consider two cases, first when dD > 0 thus Diag(dD) is invertible, and second, when Assumption 7 is satisfied.

In the first case, let D = Diag(dD), which by assumption is invertible. Then

||(I − γPπ)(q̂ − qπ)||22,dD = (q̂ − qπ)⊤(I − γPπ)⊤D(I − γPπ)(q̂ − qπ)

= ||D1/2(I − γPπ)(q̂ − qπ)||22
= ||D1/2(I − γPπ)D−1/2D1/2(q̂ − qπ)||22
≤ ||D1/2(q̂ − qπ)||22||D1/2(I − γPπ)D−1/2||22
= ||q̂ − qπ||2dD,2||I − γPπ||22

in the last line using the fact that the eigenvalues of a matrix A and L−1AL are the same for any invertible matrix L. Thus,
denoting the largest singular value of a matrix by σmax,

|J̃(π)− J(π)| ≤ σmax (I − γPπ) ||ŵ − wπ||2,dD ||q̂ − qπ||2,dD

Using Theorem 6 and Theorem 2 in the last line to control the errors of ŵ and q̂ in the last line, followed by a union bound
over the three inequalities, gives the result.

For the second case, we can directly apply Lemma 17:

|J̃(π)− J(π)| ≤ ||(I − γPπ)(q̂ − qπ)||2,dD ||ŵ − wπ||2,dD

≤
(
||q̂ − qπ||2,dD + γ||Pπ(q̂ − qπ)||2,dD

)
||ŵ − wπ||2,dD

≤
(
1 + γ

√
Cs′/sCπ/πD

)
||q̂ − qπ||2,dD ||ŵ − wπ||2,dD ,

and again applying Theorem 6 and Theorem 2 gives the result.

Lemma 17 uses Assumption 7 to bound the distance in value functions under the transition operator, and is stated and proved
below.

Lemma 17. Under Assumption 7,

||Pπ(q̂ − qπ)||2,dD ≤
√
Cs′/sCπ/πD ||q̂ − qπ||2,dD .

Proof. Define ||Pπ||2,dD := supx ̸=0 ||Pπx||2,dD/||x||2,dD . Then

||Pπ(q̂ − qπ)||2,dD ≤ ||Pπ||2,dD ||q̂ − qπ||2,dD .

It remains to bound ||Pπ||2,dD . For any x,

||Pπx||22,dD = E(s,a)∼dD

[(
E(s′,a′)∼Pπ(·|s,a)[x(s

′, a′)]
)2]

≤ E(s,a,s′,a′)∼dD×Pπ [x(s′, a′)2]

≤ max
s,a

∣∣∣∣ dDs′ (s)π(a|s)
dD(s)πD(a|s)

∣∣∣∣E(s,a)∼dD [x(s, a)2]

= Cs′/sCπ/πD ||x||22,dD

This implies that ||Pπ||2,dD ≤
√

Cs′/sCπ/πD , which gives the stated result.


