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Abstract

The hallucination of code generation models hinders their applicability to systems
requiring higher safety standards. One critical bottleneck in addressing code
hallucination is the difficulty of identifying the functional correctness of generated
code, due to its unnatural form. We address this core bottleneck by automatically
generating unit tests using dynamic code analysis tools, leveraging the executable
nature of code. Accordingly, we propose selective code generator that abstains
from uncertain generations — based on the functional correctness evaluated by
generated unit tests — to theoretically control the correctness among non-abstained
answers, Le., the false discovery rate. Finally, we propose to use generated unit
tests in evaluation as well as in learning for precise code evaluation, calling this
paradigm FuzzEval. We demonstrate the efficacy of our method along with the
controllability of code hallucination and reasonable selection efficiency.

1 Introduction

Large language models (LLMs) are recently proven to be performant in various tasks, including
question-answering, summarization, mathematical reasoning, and algorithmic problem-solving [1} 2,
3| 14]). Along with language generation, code generation is closely related but has its own benefit as a
core task for addressing many applications, including mathematical solving via program of thought,
security patch generation, and general program development [, |6} [7]].

Recent development on large code models have primarily focused on enhancing model performance
[8L 9] — thereby indirectly controlling the functional hallucination. However, direct control methods
to address functionality hallucination in code generation, i.e., a situation where generated code does
not satisfy a desired functionality, remain unexplored.

In contrast to hallucination control in code, heuristic and certified methods for hallucination control in
natural language generation have been extensively studied beyond enhancing the model performance.
For example, the language hallucination is heuristically measured by generating multiple answers
and checking the consensus among them [[10} [11]. As more sophisticated methods, hallucination is
carefully controlled by certified methods, including conformal prediction [12] and selective prediction
[13], providing certified ways to mitigate language hallucination [[14} [15,116].

We claim that a critical bottleneck in mitigating code hallucination mainly stems from the intricacy
of identifying functional equivalence between two code snippets due to the un-natural form of code.
In natural language, textual entailment [17] is the main building block in measuring the semantic
correctness of an answer, i.e., an answer is correct if a question-associated context entails the answer.
Given this definition on the correctness between two sentences, humans can manually annotate
entailment labels to learn entailment-predicting models [18]. However, this is challenging in code as
it is not easy for humans to decide whether one code entails another due to its complex, un-natural
structure for obtaining entailment labels. This can be partially mitigated by constructing a few unit
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Figure 1: Overview of our proposed selective code generation. We leverage an abstaining option
to selectively generate code to control the rate of hallucination in an FDR. Our selective generator
learns a selection function by leveraging dynamic code analysis tools to automatically generate unit
tests and use them as a calibration set for the selection function and also as a test set for evaluation.
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tests [[19} 120} 21] and executing it to check discrepancies in output, while limited to a small number
of unit tests.

To address these challenges, we extend on prior programming language literature to re-define
entailment for code generation. We further exploit the executable property of code by automatically
generating unit tests through code analysis tools. In particular, we leverage fuzzing methods [22]],
one of practical code analysis tools, to automatically generate unit tests.

Given the code entailment definition and generated unit tests, we propose certified selective code
generation for code hallucination control. This includes a learning algorithm of a selective generator
for code, a post-processor of an original generator, which provides a controllability guarantee on
the rate of hallucination in a false discovery rate (FDR), i.e., a learned selective generator provides
a desired or minimum level of hallucination. The learning algorithm mainly leverages fuzzing for
checking the correctness of code in a self-supervised manner for supervised learning in selective code
generators. Finally, we leverage fuzzing for code evaluation as well as selective generator learning.
We claim that automatically generated unit tests provide rigorous evaluation, calling this evaluation
paradigm FuzzEval to distinguish from HumanEval [19].

To summarize, the main contribution of our work lies in the selective generation learning algorithm
that controls the hallucination rate. We demonstrate the efficacy of our learning algorithm over
open and closed code generators under diverse experiment setups, including four code generators,
four datasets, four programming languages, and diverse baselines. Our results demonstrate the
hallucination-controllability with reasonable efficiency, and further demonstrate the benefits of
automatically generated unit tests. We release code for our algorithm and evaluation dataset at
https://github.com/trustml-lab/selective-code-generation

1.1 Related Work
We introduce tightly related work here. See additional related work in Appendix [A]

Execution Based Code Correctness Evaluation. Popular code generation benchmarks, such as
HumanEval [[19], APPS [23], or MBPP [20] evaluate the functional correctness of a generated code
snippet by executing unit tests. However, generating unit tests for such evaluation purposes is a
costly task. Automated unit test generations has been explored in recent work. LLMs itself has been
used to improve unit tests [24]. EvalPlus [25] and SemCoder [26] adopt a type-aware input mutation
strategy based on LLM-generated seed, while Mercury [27] leverages LLMs to generate random test
case generators for evaluation split. Our work complements these work by generating unit tests via
dynamic analysis tools, e.g., fuzzing tool, that have been extensively studied and validated within the
computer security community, to explore execution paths.

Previous works that leverage unit tests for evaluation commonly use the pass@k metric to assess
functional correctness [25,126]. EvalPlus [25] reports a drop in pass @k metric with larger test suites
indicating that the metric is sensitive to the number and quality of unit tests. Furthermore, pass @k
cannot consider partially correct or incorrect programs. Our work addresses this by introducing the
FDR-CE metric with a statistical guarantee.
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Selective Generation. Selective prediction abstains from answering if a model is not confident of
the answer, from which it controls the risk at a desirable level. This method can be applicable to
various tasks. Selective classification for deep learning [[13] considers classification tasks. Selective
text generation [16] is applied to a language generation task by introducing textual entailment to
control hallucination. We extend selective generation for code by leveraging an executable property
of code, while still having hallucination controllability.

2 Problem

We consider a learning problem in code generation and see Appendix [B| for its preliminary. In
particular, we learn a code generator to control code hallucination in the perspective of functional
correctness where the generator abstains from answering if it is not certain on the correctness of the
generated code. Let W be a set of tokens, W* := U2 W?, X := W* be a set of input prompts for a
code generator, ) := W* be a set of code snippets, D be a distribution that depends on prompt and
code pairs X' x ) along with other random sources, and G : X — ) be a code generator.

To control the hallucination rate of a code generator G, we consider the following selective generator

N N G(x) ifé(x)=1

S X U{IDK} [13,[16]: S = .
— VUi H I 5(x) {IDK otherwise

know” and § : X — {0,1} is a selection function. Here, we consider a setup that the target code
generator G is given and we learn a selection function 5.

, where IDK is a short-hand for “I don’t

We mainly learn the selective generator under the independent and identically distributed (i.i.d.)
assumption by controlling a false discovery rate (FDR) for code. In particular, we consider the risk
definition of a selective generator .S via an FDR with a relation R, i.e.,

Ri($) =P {(5(x),y) ¢ R | 5(x) # 10K}, )

where the probability is taken over (x,y) ~ D. Here, we measure the ratio of failure, i.e., the ratio
that generated code G(x) does not have a relation R with correct code y, among not-abstaining cases.

Given the learning objective in the FDR, we find a learning algorithm A for S such that given a
calibration set Z with |Z| = n, the learned selective generator S := .A(Z) controls a desired risk
level € with probability at least 1 — 0, i.e., P {R(A(Z)) < e} > 1 — §, where the probability is
taken over Z ~ D". Here, the main challenges include designing a correctness relation R for code
generation and finding a learning algorithm with the above PAC-style controllability guarantee, while
maximizing selection efficiency, i.e., P{S(x) # IDK}.

3 Method: Selective Code Generation

We introduce a novel definition of code entailment in Section [3.1] followed by a risk definition in
Section[3.2] Section [3.3]and [3.4] present the bounds for the code entailment. Our FDR-controlling
algorithm is described in Section 3.5} followed by its controllability guarantee in Section[3.6] Lastly,
we highlight the importance of evaluation via fuzzing in Section

3.1 Code Entailment

Measuring the functional correctness of a generated code snippet is a challenging task. In particular,
the functionality of generated code is evaluated using only a limited set of manually chosen unit
tests [19]. We re-define the concept of code entailment that leverages dynamic code analysis tools
to define the functional correctness. To compensate for the lack of unit tests in determining code
entailment, unit tests and expected outputs are extracted from a dynamic code analysis tool.

Let ¢/ and V be a set of input and output states for all code snippets, respectively. A dynamic code
analysis tool F : Y x U — U x V returns a pair of input and output states for a given code snippet
y by executing a code snippet y with a seed input s € U/, randomly drawn from a distribution over
seed inputs Dy, i.e., (u,v) = F(y,s), where s ~ Dy and y(u) = v. Here, we assume that y is a
deterministic code snippet for notational simplicity, but our results maintain with stochastic code
by fixing the random seed of F. As mentioned above, the analysis tool F facilitates learning and



evaluation with code by providing an automatic way to generate a huge number of unit tests. We then
introduce the definition of a-code entailment by leveraging the dynamic code analysis tool F.

Definition 1 (a-code entailment). A code snippet’y € Y a-entails y € Y in F and Dy, if
Py{y(u)=v}>1-a, @

where the probability is taken over s ~ Dy, (u,v) = F(y,s), and we call Py, {y(u) = v} an
expected functional correctness of y with respect to 'y, F, and Dy,.

We formally re-define the concept of probabilistic tests originally introduced by (author?) [28].
Our definition differs from prior work, (author?) [29, 130, [31]], which focuses on identifying counter
examples for program inequivalence. Also, our definition differs slightly from program equivalence
definitions in (author?) [32} 33| 34]], as we use « to accommodate different code generator quality
and enhance practicality.

In code generation, the a-code entailment provides a foundation for measuring functional correctness.
In particular, to measure the functional correctness between two code snippets y and ¥, we need
to check whether two code snippets y and y have the same output state for all input states. To
check this bidirectional equivalence relation, we first consider the one-directional definition via code
entailment by checking whether code ¥y satisfies all input and output pairs for code y following
Definition[I] By considering entailment from y to y and vice versa, we can eventually define the
functional equivalence of code. In this paper, instead of analyzing the bidirectional equivalence, we
only consider the one-directional relaxed notation of correctness via code entailment, which suffices
for code generation, e.g., we can say that y is correct if it contains all functionalities of y along with
other functionalities. The example of a-entailment is presented in Table

3.2 False Discovery Rate via Code Entailment

We define a relation for the FDR risk in (I)) via a-code entailment. We first denote the set of
a-entailment code snippets of y by E,(y), i.e, Eo(y) = {y | Py{y(u) = v} >1—a}, which
approximately corresponds to the set of all code snippets that has the most functionalities of y. By
the definition of the code-entailment, ¥ € E, (y) implies that y a-entails ¥.

Using the same definition of E,(y), we further define the correctness relation between two code
snippets as follows: R, = {(¥,y) | ¥ € Ea(y)}. Then, from (I, we define the FDR with code

entailment relation R,, (FDR-CE). Equivalently, we use the following FDR-CE definition: R, (5’ ) =
P{S(x) ¢ E,(y) | S(x) # IDK}. Here, the probability is taken over (x,y) ~ Dxxy, where
Dy «y is a distribution over X x V.

3.3 Code Entailment Estimation

In natural languages, an entailment relation between two sentences can be easily obtained by human
annotators. However, identifying functionalities between two code snippets by humans (i.e., deciding
whether S(x) ¢ E,(y) or not) are challenging due to the un-natural form of programming languages.
We overcome this challenge with dynamic analysis tool that exploits an executable property of code.

Inspired by [16], we estimate F,, and use it as a pseudo-labeling function as the exact E, is difficult
to obtain. In particular, given a true code snippet y and a generated code snippet y, recall the
expected functional correctness Py {y(u) = v}. Considering that the input-output pairs (u, v)
are independently drawn from the seed distribution D;; by F, we estimate the lower bound of the
expected functional correctness by using the standard binomial tail bound. Specifically, let the lower

binomial tail bound L of Py{y(u) =v}be ﬁ(y, V. Ny,EE) = ﬁBinom(l%; Ny, €g), where ny is the
number of samples, Sy ~ i, and £ = %y v (a)acsy Fiy.s)—(u) LT (W) = V). Here,
Lginom is the lower standard binomial tail bound, where F'(k;n,#) be a cumulative distribution

function of a binomial distribution with n trials and success probability 6, and ﬁBmom(k; n,d) =
sup{6 €[0,1] | 1 — F(k;n,0) < &} U{0}. Then, due to its definition, the lower bound holds with

high probability [33] as follows: P{L(y,¥,ny,cr) < Py{y(u) = v}}} > 1 — ex, where the
probability is taken over Sy ~ D;/.

Importantly, we carefully choose reasonably small unit test size n, for a given y via Algorithm [T}
In particular, sample size for the binomial tail bound is usually given, but we can generate as many



samples as we wish by executing a dynamic code analysis tool F. Here, the number of samples
should depend on the difficulty in evaluating the correctness of generated code y, i.e., as the generated
code is ambiguous to check the a-code entailment, we need more samples to be certain. To this end,
we increase the unit test size n, until the lower bound L of an expected functional correctness is
larger than 1 — o (Line [3)) to achieve the expected correctness as well. If the sample size exceeds
maximum Size npm,x, the algorithm returns np,x (Line .

From this lower bound ﬁ, we define an estimated entailment set as follows:

Eocply) = {Sf

L(y,5,ny.e5) 2 1-a}. ®

Intuitively, code § € E, ., (y) likely satisfies § € E,(y), meaning y a-entails y with high

probability. Thus, the FDR-CE based on the estimated entailment set is defined as Ry, (5) ==
P{S(x) ¢ Ea.,(y)|S(x) # IDK}. Here, the probability is taken over (X, y, ny) ~ Dxxyxn and
Sy ~ D, , where we simply denote the distribution associated to (x, y,ny, Sy) by D. Itis a good

alternative for the original FDR-CE R, (.S). In the following, we connect R, and R, ¢, in learning.

3.4 False Discovery Rate Bound

We consider the upper bound of the FDR-CE R (S), which leverages the estimated entailment
set. Specifically, from Lemma we have R (S) < Pp.{e = 0,6 = 1} + Ry (S). Here,
e = G(x) € By(y), ¢ = G(x) € Fo.p(x), and Pp {-} = P{ | S(x) # IDK}, where the
probability is taken over (x,y, ny,Sy) ~ D. This intuitively suggests that the FDR-CE over the
exact entailment set can be approximated by the FDR-CE over the estimated entailment set along
with its false entailment rate (FER). Moreover, the FER is related to the correctness of the binomial
tail bound, controlled by €. This implies the following key lemma. See Appendix [H]for a proof.

Lemma 1. Forany a,ep € (0,1), and S, we have Ro(S) < e 4 Ra.cp (5).

Next, we use this bound to provide an algorithm for S, controlling this upper bound at a desired level.

3.5 FDR-CE Control Algorithm

We propose a selective generator learning algorithm for code that controls the FDR-CE. In particular,
we consider a scalar-parameterization of the selection function §, i.e., §(x) = 1 (f(x,G(x)) > 1),
where 7 € R. While the scoring function can, in general, be any function that quantifies the confidence
on generated code, we employ the standard length-normalized log-probability for generated tokens as
the default choice, i.e., f(x,G(x)) = >, Inp; / |G(x)|, where p; is the probability by G to generate
the i-th token. Then, our algorithm searches S that closely controls the upper bound in LemmalII
within €5 by solving the following optimization problem:

min7  subj. o &p + Upinon (K |2, 05/ [log, | 21]) < e, @

where Z ~ D", Z == {(x,y,_) € Z | f(x,G(x)) > 7} k = Yy ez UE(X) & Facp(y)),
and Uginom 1S the upper binomial tail bound, similarly defined as the lower bound Lgjyom. Here, the
algorithm also returns U = €p + Ugjnom(-), the upper bound of the FDR-CE for the optimal 7.

We denote the algorithm solving (@) by Ascg and see Algorithm [2]for its implementation details.
Appendix [N.T]includes guidelines on user-specified parameter selection.

At a high level, the algorithm essentially finds a selective code generator (parametrized by 7) that
minimizes 7, to maximize the selection efficiency of the selective generator, under the constraint
of controlling the FDR-CE by a desired level €g. If the minimization is not feasible, the algorithm

returns a selective generator that controls the minimum FDR-CE, indicated by U.

Dynamic Code Analysis via Fuzzing. We consider any dynamic analysis tool F : Y xU — U x V
to generate a unit test (u, v) for a given seed s by executing code y. We adopt a fuzzing method
that are popularized due to its simplicity and efficacy in finding bugs. This method is usually used
for exploiting a certain execution to trigger bugs but we rather use it for exploring wider execution
paths. In particular, we randomly sample a binary stream from distribution D,; and use it as a seed
s ~ Dy, to arbitrarily assign an input state for code, e.g., randomly initializing input parameters for
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a function call. The initial state typically fails to lead to an interesting execution path; therefore,
fuzzing method mutates the input seed to explore wider execution paths; e.g., Atheris [36] mutates
an input to increase code coverage. During this repeated execution of code, multiple input and output
state pairs are generated, and we randomly select one of them as our final pair (u, v) for each seed s.

3.6 Controllability Guarantee

Our algorithm Agcg controls an FDR-CE of a learned selective generator. This is a direct consequence
of selective prediction [13[16]]. See a proof in Appendix[I|

Theorem 1. Foranyes € (0,1), g € (0,1), a € (0,1), f, F, Dy, and D, we have P{R(5) <
U} > 1 — dg, where the probability is taken over Z ~ D™ and (S,U) = Ascg(Z).

This means that Agcg finds a selective code generator satisfying a desired FDR-CE g (if eg > (7)
or minimum level U (if U > eg), without having human-feedback on code entailment labels.

3.7 FuzzEval: Evaluation via Fuzzing

We suggest to use automatically generated unit tests in evaluation as well. Traditionally, identifying
the functional equivalence desired code and generated code in code generation have relied on
manually obtained unit tests, e.g., HumanEval [19]. But, as desired code gets complex so the number
of its execution path exponentially increases, manually getting an enough number of unit tests is
challenging. To address this bottleneck, we propose to use fuzzing, a dynamic code analysis tool, to
automatically generate unit tests of given code, calling this evaluation paradigm FuzzEval.

4 Experiments

We demonstrate the efficacy of our selective code generation on open and closed LLMs in an
algorithmic solving task. See Appendix [M]for additional experiments.

4.1 Setup

Dataset. We considered datasets with coding problems, where each problem has a correct canonical
solution. We chose APPS [23]], Mercury [27], HumanEval [19], and MBPP [20] for our task. Each
dataset consists of Python programming questions, canonical code solutions, and few unit tests. Each



Table 1: Comparison results of SCG against baseline methods on different datasets with GPT-40
(a =0.35,05 = 0.1,eg = 0.05 for all datasets). The FDR-CE satisfying the desired guarantees and
the highest efficiency among methods that comply with the FDR-CE guarantees are marked in bold.

w/o Selective Generation w/ Selective Generation
Methods
T =—00 SCG-EM SCG-MANUAL  SCG-SMALL SCG-H SCG

APPS-F (s = 0.3)
1-pPASS@I1(]) 0.436+0.012 0.020=+0.098 0.293+0.014 0.226=+0.015 0.282+0.020 0.227+0.017
FDR-CE(]) 0.431+0.011 0.020+0.099 0.291+0.014 0.226+0.015  0.280+0.020  0.224-+0.018
EFFICIENCY (1) 1.000=+0.000 0.000=£0.000 0.497+0.014 0.339+0.012  0.463+0.019 0.337+0.011

MBPP-F (¢5 = 0.4)
1-pPASS@1 0.299+0.022 0.000+0.000 0.258+0.040 - 0.301+0.028 0.304+0.032
FDR-CE 0.294+0.027 0.000+0.000  0.25440.041 - 0.296+40.029 0.300+0.032
EFFICIENCY 1.000=+0.000 0.001+0.003 0.499+0.038 - 0.997+0.004  0.996+0.006

HUMANEVAL-F (¢5 = 0.3)
1 -pPASS@1 0.185+0.058 0.000+0.000 0.142+0.080 - 0.156+0.165 0.069+0.173
FDR-CE 0.207+0.064 0.000+0.000 0.156+0.086 - 0.145+0.123 0.049+40.111
EFFICIENCY 1.000=+0.000 0.008+0.017 0.492+0.080 - 0.578+0.401 0.164+0.118

MERCURY-F (¢5 = 0.3)
1-pPAss@1 0.174+0.018 0.000+0.000 0.138+0.024 - 0.169+0.017 0.17040.020
FDR-CE 0.170+0.019 0.000+0.000 0.133+0.022 - 0.164+0.019 0.165+0.020
EFFICIENCY 1.000=+0.000 0.001+0.002 0.504+0.033 - 0.998+0.003  0.998+0.002

Table 2: Comparison results of before and after applying SCG on various code generators, including
CoDET[37]], LDB[38], and SFS[39] with GPT-3.5-Turbo. We use « = 0.4,65 = 0.1,eg = 0.01
for all datasets; we set eg = 0.35 for HumanEval-f and £g = 0.45 for MBPP-f. For HumanEval-f,
we utilized a full dataset, whereas for MBPP-f, we constructed a new dataset using the union of
subsets released by the authors of baseline methods. The FDR-CE satisfying the desired guarantees
are marked in bold.

Methods Base Model (author?) [37 (author?) [38 (author?) [39
wo/ SCG w/ SCG wo/ SCG w/ SCG wo/ SCG w/ SCG wo/ SCG w/ SCG

MBPP-F
1-pass@l1 (]) 0.488+0.039  0.081+0.184 0.488+0.037  0.214+0.190 0.441+0.033  0.000-0.000 0.464+0.038  0.021x0.101
FDR-CE ({) 0.490+0.038  0.081+to.184 0.492+0.03s  0.215+o0.191 0.447+0.032  0.140+0.344 0.466+0.040  0.021+to.101
EFFICIENCY (1) 1.000+0.000  0.010+0.023 1.000+0.000  0.076+0.077 1.000+0.000  0.002+0.004 1.000+0.000  0.007+0.034

HUMANEVAL-F
1-pass@l1 (]) 0.341+0.069  0.136+0.131 0.290+0.072  0.123+0.142 0.230+0.074  0.000-0.000 0.254+0.070  0.026+0.102
FDR-CE (]) 0.330+0.064  0.134+o0.127 0.287+0.074 0.114+0.136 0.235+0.082  0.120+0.325 0.247+0.072  0.025z+0.100
EFFICIENCY (1) 1.000+0.000  0.275+0.118 1.000+0.000  0.125+0.130 1.000+0.000  0.004+0.012 1.000+0.000  0.065+0.234

Python programming question is provided to an LLM as a prompt to generate code, and then the
generated code is measured for its functionality by running the unit tests.

We construct APPS-f, Mercury-f, HumanEval-f, and MBPP-f, where for each dataset, we replace the
built in unit tests from each problem to automatically generated unit tests via fuzzing for both learning
and evaluation. In particular, each question consists of constraints to inputs. We manually post-
processed python programming questions and their solutions of each datasets such that the solution
code can be easily callable by a fuzzing tool while satisfying the input constraints of questions.
Among the post-processed code, we conducted fuzzing and extracted at least 600 input-output pairs
as our unit tests for calibration and its evaluation. Additional details can be found on Appendix [G|

LLMs. We used three closed LLMs, i.e., GPT-40 [40], Gemini 1.5 Pro [41], GPT-4.1 [42] and two
open LLM, i.e., CodeLlama 13B-instruct [43] and Deepseek-R1 [8]. Here, we use the following
default parameters unless specified: g = 0.3, dg = 0.1, « = 0.35, e = 0.05, and nyx = 150.

Method. We consider seven baseline methods SCG-EM [13], SCG-manual, SCG-small, SCG-H,
CodeT [37]], LDB [38], and SFS [39] to compare with our method SCG.

* SCG-EM [13]: This baseline is a conventional selective predictor method that compares the
generated code and solution code, without measuring its functional correctness.

* SCG-manual: This baseline is a simple selective generator that selects the upper k% of scores for
a threshold 7 to highlight the importance of controlling the FDR-CE.

* SCG-small: This is our method but only using unit tests, provided by the APPS dataset to show
the efficacy of generated unit tests via fuzzing. We sampled 21 test cases for each problem to apply
our algorithm. See Appendix [E] for additional details.



Table 3: Comparison results of SCG against baseline methods on different programming languages
with GPT-4.1 (o« = 0.35,05 = 0.1,eg = 0.05,eg = 0.3 for all programming languages). We
selected a subset of problems (5359 instances) from the APPS-f dataset that conform to the standard
input/output format for executing unit tests. The FDR-CE satisfying the desired guarantees and the
highest efficiency among methods that comply with the FDR-CE guarantees are marked in bold.

w/o Selective Generation w/ Selective Generation
Methods
T=-00 SCG-EM SCG-MANUAL  SCG-SMALL SCG-H SCG

CPP (¢5 = 0.3)
1-pass@l1 () 0.386+0.012 0.000=0.000 0.228+0.018 0.226+0.019 0.278+0.021 0.232+0.019
FDR-CE () 0.382:+0.013 0.000+0.000  0.225+0.018  0.225+0.017  0.270+0.021  0.228+0.019
EFFICIENCY (1) 1.000=0.000 0.000+0.001 0.499+0.018 0.498+0.017 0.680+0.020  0.513+o0.019

JAVA (65 = 0.3)
1-pass@1 () 0.383+0.013 0.000+0.000 0.240+0.017 0.228+0.019 0.286+0.020 0.227+0.020
FDR-CE ({) 0.379=+0.013 0.000+0.000  0.23740.017  0.223+o0.019  0.282+0.019  0.222+0.022
EFFICIENCY (1) 1.000+0.000 0.000=+0.000 0.502+0.019 0.483+0.019 0.672+0.021 0.485+0.018

JAVASCRIPT (¢5 = 0.3)
1-pass@1 () 0.374+0.014 0.000=+0.000 0.221+0.016 0.227+0.025 0.278+0.020 0.227+0.022
FDR-CE ({) 0.368+0.014 0.000+0.000  0.215+0.016  0.223+0.025 0.274+o0.018 0.222+0.023
EFFICIENCY (1) 1.000+0.000 0.000-£0.000 0.500-£0.018 0.518+0.020  0.673+0.015  0.517+0.020

PERL (¢5 = 0.3)
1-pass@1 () 0.457+0.015 0.000-£0.000 0.305:0.017 0.205:£0.034 0.274:0.029 0.218-+0.037
FDR-CE ({) 0.453+0.015 0.000+0.000 0.302+0.016 0.207+0.033  0.270+0.027  0.207+o0.035
EFFICIENCY (1) 1.0000.000 0.000-£0.001 0.499-0.019 0.182-0.031 0.397+0.028  0.186+0.029

* SCG-H: This baseline is a heuristic of our method omitting false entailment rate (FER) as in
LemmalT] It searches for a selective generator as in (@) with e = 0.

Scoring Function. To analyze the effect of calibration on our method SCG, we consider four different
scoring functions. The detailed explanations on the scoring functions are provided in Appendix [F}

Evaluation. We evaluate our method along with baselines based on the empirical counterpart of the
FDR-CE and selection efficiency from a test set Z, ~ D™ in (8)) and (9), respectively. Interestingly,
FDR-CE and 1-PASS @1 [19] over on selected samples by SCG may be asymptotically equivalent
when o« — 0 and n, — oo for PASS@1 (See Appendixfor discussion).

4.2 Results

We demonstrate the efficacy of our method SCG on different models, datasets, and programming
languages. In addition, we highlight the benefits of fuzzing, and analyze the effect of calibration.

4.2.1 Controllability and Selection Efficiency

Figure 2| shows that SCG controls the FDR-CE. To this end, we conducted random experiments. We
ran the experiment 50 times by randomly splitting the calibration set and test set at 8:2 ratio each time.
The whisker on each box plot denotes the range between dg and 1 — §g percentile of the distributions.

SCG-manual may perform better than our method depending on the choice of k. However, manually
selecting an appropriate k for different situations is a challenging task. SCG-small bounds the
FDR-CE successfully. However, this method demonstrates lower efficiency compared to our method.
The result stems from a lack of unit tests to correctly infer expected functional correctness, illustrating
the advantage of fuzzing in learning. SCG-H shows that it is not able to bound a desired FDR-CE, as
it ignores an estimation error for inferring expected functional correctness.

Our method shows how it successfully bounds desired FDR-CEs on diverse models (Figure[2), diverse
parameters (Figure [3] Figure 5)), diverse datasets (Table|[T)), diverse methods (Table[2), and diverse
programming languages (Table[3). In Figure[2] Bl and[3] this is shown by upper whisker bar lying
below the desired FDR-CE in dotted line, while Table the results are indicated by bold text.
Table [5]shows qualitative results of our method that accepts correct code and rejects uncertain code.
Note that poorly performing model, e.g., CodeLlama in Figure[d(a)] may not find a selective generator
with a desired FDR-CE eg. This is an expected result due to an un-calibrated scoring function [[16],
as discussed in Section[d.2.4]

4.2.2 Benefit of Fuzzing in Learning and Evaluation

We empirically show the benefit of fuzzing in learning. As shown in Figure [5(b)| the FDR-CE bound
(in the top of whisker) gets tighter to a desired FDR-CE level without violating it as smaller e



requires a larger amount of unit tests, thus providing a precise estimation on expected functional
correctness. This shows that generated unit tests by fuzzing helps to provide a tighter FDR-CE
guarantee, meaning higher selection efficiency.

Additionally, we demonstrate that automatic unit test generation is beneficial in rigorous evaluation.
As shown in Figure the FDR-CE decreases as the number of unit tests for evaluation increases.
Recalling that a-entailment is determined by comparing the lower bound of expected functional
correctness with 1 — « as in Definition[I] the lower bound gets tighter as we use more unit tests to
evaluate code. The tighter lower bound results in more accurate comparison and evaluation, thus
reducing the FDR-CE. This shows that fuzzing has a benefit of reducing the evaluation error.

4.2.3 Comparison and Extension over Prior Work

We compare our method SCG, with prior code gener- Table 4: FDR-CE and efficiency for
ation baselines and demonstrate that these baselines  DeepSeek-R1 [8]
can be extended through our approach to provide

additional functionality guarantees. As further dis- cs FDR-CE Efficiency
cussed in Appendix [A] improvements in functional-

ity — inherently reducing functional hallucination — wo/ SCG

can be broadly categorized into two approaches: (1) - 0.234+0.012  1.000+0.000
enhancing the model performance during training w/ SCG

or fine-tuning [9l (8] or (2) employing post-filtering 0.15 0.043+0.048  0.076-0.085
methods [37, 38 [39]. In this work, we focus on 0.20 0.132+0.015  0.515+0.032
comparison with post-filtering methods, as SCG post- 0.25 0.183+0.016  0.77840.020

processes the generated code to control hallucinations 0.30 0.233+0.011  0.995:0.004

but training and finetuning based methods are orthog-
onal to this work.

Table[2]compares SCG with prior post-filtering methods. In particular, SCG controls the hallucination
and achieves lower FDR-CE than prior methods depending on the choice of € 5. Furthermore, Table[2]
Figure demonstrate the applicability of our method in a model- and method-agnostic manner
across diverse experiment setups, including integration with finetuning methods (e.g., DeepSeek
GRPO, OpenAl RLHF) and compatibility with post-processing methods.

4.2.4 Effect of Scoring Function and Calibration

We demonstrate the effect of calibration on our method SCG. As shown in Figure the choice of
scoring function affects whether FDR-CE can be successfully bounded to the desired €g. In particular,
fverp in Figure fails to properly bound the FDR-CE. Furthermore, CodeLlama in Figure
fails to find a selective generator with a desired g, due to an un-calibrated scoring function [16]].
Thus, the model finds a minimum FDR-CE by returning U in this case. These results underscore the
importance of selecting appropriate scoring functions for the efficacy of our method.

5 Conclusion

This paper considers the code hallucination problem. In particular, we define the concept of code
entailment based on automatically generated unit tests via fuzzing, one of dynamic code analysis tools.
Given this, we propose a learning algorithm for selective code generators to theoretically control
the hallucination in the FDR of selective generators. We further leverage fuzzing to automatically
generate unit tests for learning and evaluation purposes, enabling the large-scale collection of unit
tests. Lastly, we demonstrate the controllability of the proposed selective generator and its selection
efficiency over open and closed code generators under different experiment setups.

Limitations. The proposed method controls the rate of hallucination, but its selection efficiency
heavily depends on the quality of code generation models, requiring improvement for code generators.
Moreover, the i.i.d. assumption for the FDR controllability guarantee limits its applicability in
distribution-shifting environments.
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A Extended Related Work

Code Generation and Hallucination. Code generation is the task of generating a program that
satisfies given functional specifications. The main challenge for this task is the generation of
functionally incorrect code, often referred to as code hallucination in the previous literature [44,45].

Recent work mostly focused on improving the functionality itself. DeepSeek-R1 [8], OpenAI-IOI [9]
leverages reinforcement learning based finetuning, resulting in highly performant code generation
model. CodeT [37]], TiCoder [46], 3DGen [47], MPSC [48]], S*[49]], and CodeRL [50] rank generated
solutions during the inference or evaluation phase to determine which outputs to adopt. AlphaCode
[2]] leverages both finetuning and a ranking mechanism to improve performance. The key distinction
of our work lies in directly controlling the rate of falsely generated code (FDR-CE), making the
underlying code generator more trustworthy. Furthermore, our work is applicable on top of each
method providing an upper bound on the FDR-CE (e.g., DeepSeek result in Figure 2(c)|shows that our
method can provide additional statistical guarantee when applied on top of GRPO based finetuning

[81).

The methods mentioned above leveraged unit tests to improve performance. The ranking-based
method [37} 46l 147, 48] 49 50] leverage unit tests to rank sampled solutions and select the best
code, whereas finetuning based methods [8, 9] leverage unit tests to provide execution feedback for
reinforcement learning. Unlike prior work, our method leverages unit tests to determine a-code
entailment and applying selective generation learning algorithm.

14



B Preliminary

We introduce preliminaries on textual entailment for measuring correctness between two answers,
selective generation to control the rate of hallucination, and dynamic code analysis via fuzzing for
learning and evaluating functional correctness of code snippets.

Textual Entailment. In natural languages, textual entailment is a concept of evaluating semantic
relation between two sentences by checking an entailment relation [17]. In particular, denoting two
sentences by a premise and a hypothesis, we say that a premise entails a hypothesis if the hypothesis
is true given the premise. Otherwise, we say the premise contradicts the hypothesis.

This textual entailment has been used to measure semantic correctness between a question and an
answer in learning language models [15/[16]). If a generated answer entails a true one, we can consider
the generated answer as true in textual entailment. In evaluating correctness of generated answers in
natural language processing, introducing textual entailment is crucial as a simple, traditional exact
match, i.e., the generated answer and the true one is exactly the same, does not measure the semantic
relation between two answers. However, in code generation, there is no notion of entailment to check
the semantic correctness between two code snippets. We overcome this hurdle by introducing code
entailment for measuring functional correctness, leveraging executable properties of code.

Dynamic Code Analysis via Fuzzing. Computer programs suffer from undefined behaviors, called
bugs, e.g., crash by buffer overflow. To find the bugs, security researchers have been extensively
developed static and dynamic code analysis tools, e.g., CodeQL [51]], AFL [52], and Atheris [36].

The dynamic analysis tools exploit the executable property of code to find bugs, while the static
analysis tools inspect code without execution. We mainly focus on more informative dynamic analysis
tools. In particular, fuzzing, a representative class of methods for dynamic code analysis, generates
the input of a given program, called seed, executes the program with the input, and checks whether
undefined behaviors can be observable. Given the observation, fuzzing methods randomly mutate the
input of programs to explore wider execution paths or exploit execution paths toward targeted code.
In this paper, we re-purpose fuzzing methods for identifying functionality of code, instead of finding
bugs in code by generating the input and output pairs of code.

Selective Generation. Language models suffer from generating hallucinated facts. Recently, certified
ways to control the rate of hallucination in language models are proposed [14} 15/ [16]. Among them,
selective generation, which extends traditional selective classification [13]], provides a way to control
the rate of hallucination defined in terms of a false discovery rate with entailment (FDR-E) that
leverages textual entailment to measure the correctness of two answers. In particular, a selective
generator S (x) given a question x returns a generated answer G(x) from a language model or
abstains from answering by returning “I don’t know” (IDK). The FDR-E of this selective generator
with respect to a true answer y is defined as R(S) = P{S(x) ¢ E(y) | S(x) # IDK}. Here,
E is an entailment set that contains entailing answers, i.e., E(y) := {y | ¥ entails y} (where a
reverse relation is also valid), so $(x) € E(y) means that S(x) entails y. In semi-supervised
selective generation [16], a learning algorithm leverages an estimated entailment set E learned
from the handful of entailment labels, where E is used as a pseudo-labeling function for entailment
labels. Based on the estimated entailment set, the following surrogate of the FDR-E is considered:
R(S) :=P{S(x) ¢ E(y) | S(x) # IDK}. The algorithm leverages the relation between R(S) and

R(S) to bound R(S), as shown in the following lemma.
Lemma 2. [I6] R(S) is decomposed in R(S) = IPD {e = = 1} — Pp, {e =1,¢
0} +R(S), where P ¢{-} :=TP{- | S(x) # IDK}, e = 1(S ( ) e ( )) and é == ]1( S(x) € E(y)).

By controlling the upper bound of three decomposed terms in R(S ) at a desired level, the algorithm

learns a selective generator S. We leverage this framework to learn E via generated unit tests via
dynamic code analysis tools.
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C Qualitative Result of our Methods

Table 5: Qualitative results of our selective code generator with GPT-40 (¢ = 0.3, g = 0.1,
eg = 0.05, and o = 0.15). The accepted generated code is a-entailment with the score of —0.05,
meaning high certainty, where the code is also semantically correct. The rejected code is not a-
entailment with the score of —53.87, meaning low certainty probably due to the complexity of the
question. In particular, it returns a wrong answer, 2, for an input, [1,1,0,1,0,0,0,1,0,1,0,0,1,1,0,1],
where an expected answer is 14, due to the inequality in “count > max_count” that does not follow
the tie instruction. Note that the contents are manually truncated for presentation purposes.

. . . Selection

Question Canonical Solution Generated Code (ours)

You are given an array Accept
N def sect_sort(array, start, length=0):
to sort but you’re def sect_sort(lst, start, length=0): if length == 0:
expected to start end = start + length \ end = len(array)
. . if length else \ else:

SOTtll’lg from a SpeCIﬁC len(1lst) end = start + length
pOSitiOﬂ of the array return lst[:start] + \
. . sorted(lst[start:end]) + \ array[start:end] = \
(in asce_ndmg Ordel;) 1st[end:] sorted(array[start:end])
and optionally you’re return array
given the number of
items to sort.
Given an array Reject

.. def replace_zero(arr):
containing Only Zeros def replace_zero(arr): max_count = 0
and ones, find the m,im,i,1st = 0, -1, -1, (’’.join max_index = -1
. (map (str,arr)).split(’0’)) count = 0
index of the zero that, for a,b in zip(lst,lst[1:]): last_zero_idx = -1
if converted to one, i += len(a) + 1 consecutive_count_before_zero = 0

will make the longest
sequence of ones. ...
Return the last index
if there are multiple
results.

candidate = len(a)+len(b)+1
if m <= candidate:
im, m = i, candidate
return im

for i in range(len(arr)):
if arr[i] == 1:
count += 1
else:
count = i - last_zero_idx
last_zero_idx = i

count:
count
last_zero_idx

if count > max
max_count
max_index

return max_index

D Algorithm

Algorithm 1 Unit tests size computation.

ny <0

SNDU

break
end if
end while
return ny

TeYReRINs R N

—

while IA/(YaS’a”yﬁE) <l-ado

(u,v) < F(y,s)
Ny < Ny + 1
if ny > nmax then

procedure COMPUNITTESTSIZE(, €5, Y, Y, "max)

> break for infeasible cases

16



Algorithm 2 Selective Code Generator Learning

1: procedure LEARNSCG(f,Z,G,a,eg,ds)

2: Z' < SORT¢(Z) o> Increasing order of f(x;, G(x;))
3 (4,4) « (1,]Z])

4: for i = 1to [log, |Z|] do

5 mid £ [%—l

6: TS) — (X G(Xipa)) > Choose a candidate 7
7. 20 {(x,_) €7 | f(x,G(x)) > Téi)} > Build a selected calibration set by Téi)
8 k() Yy ez 1 (G(X) ¢ Ea,aE(Y)> > Count false discoveries.
9: U ¢ Upinom (ic“), 12|, 55/ [log, \ZH) > Bound the FDR-CE.
10:  ifep +U® < e then ‘
11: 74— imid > Keep Tél) that controls a desired FDR-CE.
12:  else
13: 74— Tmid
14:  endif
15: end for

16: return 7 cp + U

E SCG-small Detail

This is our method but only using unit tests, provided by the APPS dataset to show the efficacy of
generated unit tests via fuzzing. In particular, the APPS dataset provides an average of 21 unit tests
per problem. However, the number of unit tests varies across the APPS dataset, and some problems
lack unit tests. As it is difficult to directly apply our method to the original dataset, we sampled 21
test cases for each problem from generated unit tests via fuzzing to apply our algorithm. To support
the validity of this baseline method, we provide additional experiments on Appendix [M.3|regarding
the quality of unit tests. Lastly, it is worth noting that this baseline is only applicable to APPS dataset,
due to insufficient number of unit tests in other datasets to determine code entailment and obtain
meaningful results.

F Scoring Functions

Here, we denote p; as the probability by a code generator G to generate the i-th token.

* Length-normalized log-probability fyorm: This method collects the log-probability each token

used to generate a code then normalize by the number of tokens, i.e., from (X, G(X)) = Z‘:G(liﬁ .

We use foom as the default scoring function unless specified.

* Lowest log-probability f.;,: This method collects the log-probability of each generated tokens
then selects the lowest value, i.e., fmin(X, G(x)) = min; In p;.

* Sequence log-probability fq: This method collects the log-probability of each token to calculate
the probability of generated code, i.e., fieq(x,G(x)) =D . Inp;.

* Verbalized probability 53], [54]] fyern: The model used for code generation is prompted to produce
a confidence value, with the prompt peont(G()), i.€., fyen (2, G(x)) = G(Peont(G())).

G Datasets and Models

We use four datasets, APPS[23]], MBPP[20], HumanEval[19]], and Mercury[27], for calibration
and evaluation. We use five large language models (LLMs), GPT-40, GPT-4.1, Gemini-1.5 Pro,
CodeLlama 13B Instruct, and DeepSeek-R1 for code generation.

To determine code entailment of the generated code, we specifically selected datasets that provide a
solution to the problem. For each problem, unit tests were generated using a dynamic analysis tool.
The following Table[6] shows the result of the dynamic code analysis for each datasets.
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To enhance the efficiency of execution path exploration, we manually post-processed each solution
on the datasets for compatibility with the dynamic analysis tool. Although manual post-processing
is not a mandatory step, it results in additional computational time and overhead for dynamic code
analysis. During this step, we also excluded problems either lacking solution or containing errors.

Table 6: The result of dynamic analysis for each dataset. We excluded problems that had errors in the
original problem or with solutions that were difficult to analyze dynamically.

Dataset Original Dataset ~ Solution-problem Error ~ Dynamic Analysis Error (e.g., Atheris timeout)
APPS 10,000 1,274 307

MBPP 974 - 35

HumanEval 164 - 1

Mercury 1,889 - 279

H Proof of Lemmalll

Recall that ¢ == 1(G(x) € Eo(y)), é = 1(G(x) € Fq ., (x)), where e denotes whether y a-entails
(G (x) and and é denotes the predicted result of c-entailment.

Additionally, we have the following due to Lemma@

S(x) # IDK} —P{e =1,6 = 0] S(x) # IDK} + Rocp(5)
S(x) # IDK} + Ry e (S),

where the probability is taken over X, y, ny, and Sy.

We, then, bound the first term P{e = 0,é =1 | S(x) = IDK}. In particular, suppose that x, y, and
ny which satisfies e = 0 and S(x) # IDK are given. Here, ny is determined using Algorithmand
recall that Sy ~ Dy denoting ny input-output pairs from dynamic code analysis tool F.

Then, we have the following:

=
wn
<
— =
>
I
—

e=0,5(x) # IDK}

|
=Ps, {G(x) € Bucp(v) | G) ¢ Buly) ]
=Ps, {z(y, G(x),ny,c5) >1—a ) P, {G(x)(u) = v} <1— a}
<Ps, {i(y, G(x),ny,ep) > Py{G(x)(u) = v} ‘ Py {G(x)(u) =v} <1— a}
<eg,

where the last inequality holds due to the confidence level of the binomial tail bound L.
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From this, letting F' be e = 0 A S(x) # ID we have the following:

]P{efO ()#IDK} ]P{A e:O,S’(X)#IDK}IP{e:O‘S’(x)%IDK}
SIP{ézl‘e:O,S(x);éIDK}
:/]l{é:l}p(x,y,ny,sy\F) dx,y,ny, Sy
:/]l{ézl}p(sy|X7Yany7F)p(X7yany|F) dX,y,?’ly,Sy
:/lPsy {é:l ’ e:O,g(X)#IDK}p(x,y,ny|F) dx,y, ny
§/5E~p(x,y,ny|F) dxvyvny
=€E,

as claimed.

I A Proof of Theorem (I

We use the same proof techniques used in [[13] and [16]. Here, we add the proof for completeness.

First, from Lemma |l| and the binomial tail bound, we have the following point bound for any S,
eg € (0,1),and dg € (0,1):

Ra(S) < e + Usinom(k; |Z], 55/ [log, |Z]1) Q)

with probablhty atleast 1 — &g/ [log, |Z|], where the probablhty is taken over Z ~ D™ with a fixed
n. Here, k Z and Z are as defined in Sectlon 5| and UBm(,m is the standard binomial tail upper
bound.
Let ‘H be a data-dependent set of selective generators, parameterized by 7, with a fixed size
m, ie., = m (where m = [logyn] in our case) and He, = {S € H | Ra(S) >
e + Usinom(k; |Z|,65/m)}, which is also data-dependent. Recall that 7 and U are the output
of our Algorithm 2] Then, we have the following:

Py, {R ($) > U}

< P2 {38 € Hey Ra(8) > £p + Usinon(k: 12, 65/m) |
P

< 1 z {Ra(gj) > e + Usinom (K; |Zj\75s/m)} (6)
j=

= il nOIPZ {Ra(gj) > e+ UBinom(lgf'j; |Zj|’65/m)’ |ZJ| = ij}
Jj=li;=

= il i)]Pz {Ra(Sj) > ep + Usinom(kj3 | Z;], 65/m) ‘ 1Z,| = ij}IPZ {|Zj| = i;}
J=1i;=

Siﬁ:fj?z{@f:ij} Q)

s

where (6) holds due to a union bound and (7) satisfies due to the point bound in (5). This completes
the proof.

"Note that the probability of the event F is positive unless G is “always-correct” (i.e., y a-entails G(x) for
all x and y).
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J Empirical Evaluation Metrics

We evaluate our method along with baselines based on the empirical FDR-CE, i.e., FﬁE and

empirical selection efficiency, i.e., SelEff, where Z; ~ D™ is a test set, as follows:
S eyren 1 (SX) ¢ Eo ey (v) A S(x) # I0K)
e yez 1 (S(X) ” IDK)

— 1 ~
SelEff .= — 1(S(x IDK).
Z (x%;Z! (5(x) # IDK)

FﬁE = and

We chose 635 = 0.01 < e for estimating a true a-entailment set £,,.

K Relationship between Pass@1 and FDR-CE

®)

©))

Given an instance (x,y) in the dataset, suppose there are ny given unit tests provided. Here, ny
is result of Algorithm [I} When evaluating a dataset with PASS@ 1, a generated code snippet is

considered correct if it passes all 7y unit tests.

As a — 0, if y a-entails the generated code G (x), then ny must tend toward oco. Thus, y exhibits
expected functional correctness approaching 1. Therefore, with high probability, any finite set of n,,

unit tests will be successfully executed without a failed test.

Conversely, if a generated code snippet successfully executes n,, unit tests as n, — oo, then with

high probability, y will a-entail the generated code G(x).

Therefore, 1-PASS @1 and FDR-CE may be asymptotically equivalent as o — 0 and n,, — oo.

The empirical result is presented at Table[I]and 3]
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L alpha-Entailment Code Example

Table 7: a-entailment example with a = 0.3. The solution code accurately simulates the exact
problem scenario, while the generated code simplifies the logic and therefore misses corner cases by
missing the « fraction of unit tests generated from the solution code.

Question

n people are standing in a line to play table tennis.

At first, the first two players in the line play a game.
Then the loser goes to the end of the line, and the winne
plays with the next person from the line, and so on.

They play until someone wins k games in a row.

This player becomes the winner. For each of the
participants, you know the power to play table tennis,
and for all players these values are different. In a

game the player with greater power always wins.

Determine who will be the winner.

(a) Canonical Solution

tmp = list(map(int, input().split()))
n, k = tmp[0], tmpl[1]
a = list(map(int, input().split()))

cur = al[o0]
w =20
0K = False

for i in range(1, 10000):
op = alil
if cur > op:
a.append (op)

w o+= 1
else:
cur = op
a.append (cur)
w =1
if w >= k:
0K = True
break
if O0K:
print (cur)
else:

print (max(a))

(b) Generated Solution

def find_winner(n, k, powers):
current_player_index = 0
current_wins = 0
max_power = powers [0]

if k¥ > n:
print (max (powers))
return

for i in range(l, n):
if powers[current_player_index] > powersl[il:
current_wins += 1

else:
current_player_index = i
current_wins = 1

if current_wins == k:
print (powers[current_player_index])
return

print (max_power)
# Read input
n, k = map(int, input().split())
powers = list(map(int, input().split()))

find_winner(n, k, powers)
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M Additional Experiments

M.1 Varying Model
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(a) CodeLlama 13B Instruct

Figure 4: The box plots of the FDR-CE and selection efficiency for CodeLlama 13B Instruct. We set
0s =0.1,e5 = 0.3, eg = 0.05, and o = 0.35. SCG fails to find a selective generator with a desired
FDR-CE due to uncalibrated scoring function.

M.2 Varying Parameter

We present FDR-CE and efficiency experiments with varying dg, varying € g, and varying number of
unit tests in Figure[5]

3 FORCE
Efficiency
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o 0325 Efficiency
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(a) Varying dg

(b) Varying eg

25 110

70 150
Number of unit tests for evaluation

(c) Varying eval. unit tests

Figure 5: The FDR-CE results for GPT-40 with varying parameters (g = 0.3,ds = 0.1, = 0.35,
and e = 0.05). Each figure shows FDR-CE bound is satisfied for each settings. This is shown by
upper whisker bar lying below the desired FDR-CE in the dotted line. Figure [5(b)| shows benefit of
fuzzing in learning and Figure show benefit of fuzzing in evaluation.

M.3 Unit Test

We add an evaluation study on FuzzEval, showing benefits of added unit tests and flexibility of
a-code entailment. We measure the performance of generators with conventional pass@ 1 metric

with various . Table|M.3]
generated by a fuzzing too
of incorporating « in FuzzEval.
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demonstrates that more through evaluation is achievable with test cases
. Furthermore, pass@1 result with relaxed a-setting implies the necessity



Table 8: Pass@1 of each generator with original dataset and generated unit tests. We measured the
performance of each code generators with pass@1 on original datasets along with added unit tests in
FuzzEval. We also measured « to show flexibility. Note that we excluded problems that encountered
error during the generation process.

Code Generator Model without additional unit tests with additional unit tests

pass@1 pass@1 pass@1 (a =0.1) pass@l (o« =0.3) pass@]l (a=0.5)
GPT-40 0.515 0.483 0.526 0.577 0.589
Gemini-1.5 Pro 0.526 0.480 0.523 0.566 0.578
CodeLlama-13B-Instruct 0.051 0.048 0.059 0.073 0.075

M.4 LLM-generated unit test

Unit tests generated via other techniques also could be used in SCG. To support our claim, we
conducted experiments utilizing unit test sets generated with the assistance of LLM. We applied
SCG on HumanEval+ [25] and MBPP+([25]], which are publicly available datasets augmented with
LLM-based method. Table[8]demonstrates the result of our method.

Table 9: We used GPT-40 as the model. The parameters are set as « = 0.2, dg =0.1, 5 =0.25, e =
0.05. The FDR-CE satisfies the desired bound (¢g) which demonstrates that our method is applicable
on different datasets with test generated with the assistance of LLMs.

Dataset pass@1 FDR-CE Efficiency
MBPP+ 0.720  0.121 £0.112  0.423 £ 0.446
HumanEval+  0.848  0.056 £0.044 0.979 + 0.029

M.5 Experiment Setup

We used 4 NVIDIA A100 80GB with 128 CPUs for code generation. We used the same environment
for fuzzing and calibration.
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N Discussion

N.1 Guidelines for Parameter Selection

Our algorithm has user-specified parameters, €g, dg, @, €, and ny,. The eg and dg are the main
parameters that encode user’s desired on the performance on the selective generator, where the smaller
values are better.

The « encodes a degree of the correctness of a generator, where @ = 0 is the ideal value. But,
assuming that there is no perfect generator that exactly returns correct code, this never achieves. We
recommend to choose some small value on this on evaluating current state-of-the-art generators.

The e g and np,x are associated to the number of generated unit tests via dynamic code analysis tools,
where the ideal value of € is zero and nyax is infinity. The larger number of unit tests is definitely
preferred but it sacrifices the running time of dynamic code analysis tools and evaluation.
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