
Reinforcement Learning Conference (August 2024)

Opponent Transformer: Modeling Opponent Poli-
cies as a Sequence Problem

Conor Wallace
conor.wallace@my.utsa.edu
Department of Electrical and
Computer Engineering
The University of Texas at San Antonio

Umer Siddique
muhammadumer.siddique@my.utsa.edu
Department of Electrical and
Computer Engineering
The University of Texas at San Antonio

Yongcan Cao
yongcan.cao@utsa.edu
Department of Electrical and Computer Engineering
The University of Texas at San Antonio

Abstract

The ability of an agent to understand the intentions of others in a multi-agent
system, also called opponent modeling, is critical for the design of effective local
control policies. One main challenge is the unavailability of other agents’ episodic
trajectories at execution. To address the challenge, we propose a new approach
that explicitly models the episodic trajectories of others. In particular, the proposed
approach is to cast the opponent modeling problem as a sequence modeling problem
via conditioning a transformer model on the sequence of the agent’s local trajectory
and predicting each opponent agent’s trajectory. To evaluate the effectiveness of the
proposed approach, we conduct experiments using a set of multi-agent environments
that capture both cooperative and competitive payoff structures. The results show
that the proposed method can provide better opponent modeling capabilities while
achieving competitive or superior episodic returns.

1 Introduction

Multi-agent systems have seen remarkable progress in recent years in applications such as games
(Han et al., 2019), traffic control (Chen et al., 2020), autonomous driving (Pal et al., 2021), etc. One
of the core challenges in such systems is that the actions of all agents contribute to the transition
of the system. Hence, it becomes crucial to model the actions of the other agents to reason about
the optimal action to take in response. Opponent modeling (Albrecht & Stone, 2018) is the study
of modeling concealed opponent information such that it can be used for conditioning the controlled
agent’s policy.

In opponent modeling, the primary challenge is to develop an agent capable of adapting to various
opponent policies, relying solely on the available information during execution. This can become par-
ticularly challenging in settings where there is no direct information available about the opponents.
In this case, the agent must learn to infer opponent behaviors as a function of its local information.
Additionally, opponent policies may appear similar given a single transition. This ambiguity can
be difficult to address without taking into account the temporal context. Therefore, an appropriate
opponent modeling approach should learn a good representation of the opponent policy while taking
into account the effect of the opponent policy over time.

There have been many recently proposed approaches for learning opponent models using deep learn-
ing (He & Boyd-Graber, 2016; Grover et al., 2018; Papoudakis et al., 2021). However, these ap-

1

Reinforcement Learning Conference (August 2024)

proaches suffer some key drawbacks, namely, (1) access to opponent trajectories and (2) lack of
considering the sequence of the controlled agent as a meaningful source of information. Motivated
by the recent success of decision transformer (Chen et al., 2021) and its multi-agent variant (Wen
et al., 2022), we propose to pose opponent modeling as a sequence modeling problem using a trans-
former model. Transformers have been incorporated in many ways in RL architectures in recent
years, from feature extraction models to end-to-end policies (Agarwal et al., 2023; Ni et al., 2023;
Gallici et al., 2023). In particular, we propose a transformer model that encodes the controlled
agent’s local trajectory into an embedding space that represents the effect of opponent policies. We
train this model to reconstruct opponent trajectories conditioned on the local trajectory embedding.
By doing so, we can train the model using opponent trajectories as supervised targets without the
need for these targets at execution time. Consequently, an RL policy can condition on the em-
bedding space purely as a function of the controlled agent’s local trajectory. Our contributions are
summarized as follows:

• Opponent Modeling from Local Information: To alleviate the requirement for access
to opponent information at inference time, we only use local information to learn a latent
representation as a proxy for the true opponent policy.

• Local Trajectory as a Sequence Modeling Task: Representing the controlled agent’s
local trajectory as a sequence yields more useful features over a fixed time horizon. Using
a self-attention mechanism allows the opponent model to learn precisely which parts of the
local trajectory correlate to the current opponent policy.

• Online Joint Opponent Model and Policy Training: We train the opponent model
and the agent policy jointly in an online fashion. Because transformers notoriously require
large amounts of data to converge properly, we believe online training provides a diverse
enough dataset to achieve superior opponent modeling performance.

We also evaluate the proposed approach on a set of two multi-agent RL tasks from the Multi-agent
Particle Environments (MPE) (Mordatch & Abbeel, 2017) representing cooperative and competitive
payoff structures. We provide a comparison between the proposed approach and some baseline
methods based on agent’s episodic returns as well as the accuracy of the opponent model on the
reconstruction of opponent trajectories. The comparison shows that the proposed method yields
better opponent modeling capabilities while achieving comparable or better episodic returns.

2 Related Work

2.1 Opponent Modeling

When operating in a decentralized multi-agent system, it is important to incorporate information
about other agents to determine a best response to a given state. In traditional centralized training
with decentralized execution (CTDE) approaches such as MADDPG (Lowe et al., 2017) and MAPPO
(Yu et al., 2022), this information is used by training a centralized critic that conditions on the joint
observations of all agents which is then implicitly distilled into the actor policy. Opponent modeling
is an alternative approach that explicitly learns to model opponent information. There is a large body
of work on opponent modeling in multi-agent settings (Albrecht & Stone, 2018). He & Boyd-Graber
(2016) learned to predict opponent Q values and opponent actions given opponent observations.
Raileanu et al. (2018) introduced a model that learns to infer the opponent’s goal using itself.
Grover et al. (2018) implemented an encoder-decoder architecture using imitation learning and a
contrastive triplet loss to both learn to accurately reconstruct opponent policies and correctly identify
the opponent policy within the embedding space. Building off of the work of Grover et al. (2018),
Papoudakis et al. (2021) also used an encoder-decoder architecture for reconstructing opponent
policies. However, they model this reconstruction using the controlled agent’s local trajectory only.
In this sense, the work in Papoudakis et al. (2021) serves as the most direct inspiration for this work.

2

Reinforcement Learning Conference (August 2024)

Zhang et al. (2023) introduced an approach that adapts to changing policies, similar to our problem
setting, however the opponents in this work can switch policies within an episode, so the model must
learn to quickly adapt. Xing et al. (2023) studied ad hoc teamwork wherein an agent must learn
to cooperate with other agents who may switch to different goal-oriented policies. In this work, the
agent learns both to identify the type of policy of it’s teammates as well as the distribution of policy
types to generalize to unseen teammate sets. Finally, Ma et al. (2024) learned an opponent policy
representation directly from the controlled agent’s local observations using contrastive learning.

2.2 Transformers in RL

Transformers were originally intended as replacements for RNNs in machine-translation language
modeling tasks (Vaswani et al., 2017). However, they have been applied to seemingly every sub-
field of machine learning including computer vision Dosovitskiy et al. (2021) and more recently
for reinforcement learning (Agarwal et al., 2023) since inception. The original transformer model
consists of an encoder that maps an input sequence to a latent space and a decoder that generates
an output sequence conditioned on the input sequence as well as the latent embeddings of the input
sequence. Reinforcement learning problems have incorporated both parts of the transformer model
to pose the problem in different terms. Parisotto et al. (2020) used a modified encoder architecture
as a replacement for RNNs in RL policies. Alternatively, Chen et al. (2021) posed offline RL as a
generative sequence modeling task using a GPT-style decoder architecture (Radford et al., 2018).
More recently, multi-agent reinforcement learning has been re-imagined as a sequence-to-sequence
task (Wen et al., 2022) where the model maps input sequences of observations to output sequences
of actions. Similar to our problem setting, Jing et al. (2024) introduced a transformer architecture
for learning opponent policy representations from offline datasets. In this paper, we are interested
in learning latent representations of the controlled agent’s local trajectory as a function of opponent
policies.

3 Background

3.1 Partially Observable Stochastic Games

Partially observable stochastic games (POSGs) (Hansen et al., 2004) are a common formulation for
multi-agent settings. They are described by a set of agents i ∈ {0, . . . , N} and a finite set of states
s ∈ S. For each agent i, there is a finite action space Ai where A = A0 × . . . × AN representing the
joint action space of all agents. Similarly, for each agent i, there is a finite observation space Oi,
where O = O0 × . . . × ON is the joint observation space of all agents. In addition to the observation
space, an agent has an observation function Oi: A × S × Oi → [0, 1] given by

∀a ∈ A, ∀s ∈ S :
∑

oi∈Oi

O(a, s, oi) = 1. (1)

In addition to action and observation spaces, each agent has a reward function Ri : S × A × S → R.
Finally, similar to the observation function, the game has a state transition probability function
P : S × A × S → [0, 1] given by

∀a ∈ A, ∀s ∈ S :
∑
s′∈S

P (s, a, s′) = 1, (2)

where s′ is the next state as a result of taking the joint action a in the previous state s.

Agent i uses a policy πi(ai|oi), which is a probability distribution over the set of actions Ai to select
an action ai ∈ Ai given an observation oi ∈ Oi. The goal of an agent is to learn a policy π such
that the expected cumulative reward, or the agent’s return, is maximized:

max
π

E

[
L∑

t=1
γtrt+1 | π

]
(3)

3

Reinforcement Learning Conference (August 2024)

where L is the length of the episode and γ ∈ [0, 1) is the discount factor. The action value function
Qπi(s, ai) for agent i defines the expectation of the return given the state s when taking action ai

following policy πi. Similarly, the value function V πi(s) describes the value of being in state s for
agent i following policy πi. In actor-critic methods, such as A2C (Mnih et al., 2016), the actor πi

and the critic V πi(s) are used to compute the advantage function Aπi(s, ai) = Qπi(s, ai) − V πi(s).

3.2 Transformers

Transformers consist of an encoder and a decoder and can use either the encoder, the decoder, or
both depending on the applications. Generalizing, encoder-decoder models are used for machine
translation tasks (Raffel et al., 2020). Decoder-only models are useful for generative sequence tasks
(Radford et al., 2018). Encoder-only models are good for sequence understanding tasks (Devlin
et al., 2019). We make use of an encoder-only model for our problem and hence will focus on this
portion of the model. The encoder takes as input a sequence of embedding tokens {Tt, . . . , Tt+K}
with context length K and transforms them into representation embedding vectors {Et, . . . , Et+K}.
The model is composed of several layers of transformer blocks. Each block contains a multi-head self-
attention layer and a feed-forward layer, connected by a residual connection with layer normalization
at the output of the block. The self-attention function below uses three linear layers to map the
input sequence of the ith block into query Qi, key Ki, and value Vi matrices which are used to create
the output as follows

Zi = softmax
(

QiKT
i√

dk

)
Vi, (4)

where dk is the dimension of the input token vectors. By combining the input tokens into sequence
matrices Q, K, and V the self-attention function attends to the whole sequence, allowing the model
to extract relevant information throughout the sequence.

3.3 Problem Formulation

We consider a modified POSG with one learning agent under our control and an opposing set of
agents which can utilize one of several fixed policies. To be specific, we assume that each individual
opponent agent i adopts a policy πi,m, the collection of which forms the joint opponent policy π−1,m.
These policies can be heuristic or can be learned using RL. In this work, we consider the set of M
joint opponent policies Π = {π−1,m|m = 1, . . . , M} that can be either heuristic or pretrained using
RL. For simplicity, from here on we refer to the controlled agent with no superscript and all of the
opponents with superscript −1. Thus the agent has an action space A and an observation space
O. Similarly, the opponents have a joint action space A−1 and a joint observation space O−1. Our
objective is to learn a policy πθ parameterized by θ such that the average return is maximized across
the set of opponent policies Π. The objective in Equation (3) is thus modified as

arg max
θ

Eπθ,π−1,m∼U(Π)

[
L∑

t=1
γtrt+1

]
, (5)

where π−1,m is uniformly sampled from Π at the beginning of each episode. The opponent policy
type m is concealed from the agent throughout the episode. This occluded information can either be
incorporated into the policy implicitly by simply attempting to maximize the average return for all
opponent policies, or it can be modeled explicitly and used to condition the policy on which policy
m is currently being modeled. In this work, we focus on the later and introduce a transformer-based
approach to modeling such opponent policies.

4

Reinforcement Learning Conference (August 2024)

Encoder

Decoder

Figure 1: Opponent Transformer Architecture. We embed the controlled agent’s previous reward,
previous action, and current observation into embedding tokens, T

(r,a,o)
t , and transform them into an

output sequence of embedding vectors, E
(r,a,o)
t . The embedding vectors are used to both condition

the controlled agent’s policy and reconstruct the opponent trajectory as a function of the local
trajectory only.

4 Method

4.1 Opponent Transformer

We format opponent modeling as a sequence modeling task through the lens of episodic trajectories.
Consider the tuple (rt−1, at−1, ot) where rt−1 ∼ R is the agent’s previous reward, at−1 ∼ A is the
agent’s previous action, and ot ∼ O is the agent’s current observation. The agent’s local episodic
trajectory can be viewed as a sequence of these tuples T = (r0, a0, o1, . . . , rL−1, aL−1, oL). Similarly,
individual opponent trajectories are represented as T i,m = (ri,m

0 , ai,m
0 , oi,m

1 , . . . , ri,m
L−1, ai,m

L−1, oi,m
L).

Our goal in opponent modeling is to learn a representation of the joint opponent policy π−1,m such
that this representation can be included as an inductive bias for the agent policy. Inspired by the
recent success of transformers in such problems, we build a transformer encoder model, which we
refer to as the Opponent Transformer, to encode these sequences into a compact representation.
Our proposed architecture can be seen in Figure 1.

We learn a linear mapping from rt, at, ot+1 to token embeddings T r
t , T a

t , and T o
t+1, respec-

tively. Considering the three modalities, we use a context window of 3K tokens as a sub-
set of the local agent’s trajectory Tt+K = (T r

t−1, T a
t−1, T o

t , . . . , T r
t+K−1, T a

t+K−1, T o
t+K). Using

the encoder, we encode this token sequence into a representation embedding sequence Et+K =
(Er

t−1, Ea
t−1, Eo

t , . . . , Er
t+K−1, Ea

t+K−1, Eo
t+K). Empirically, we find that the reward and action out-

put embeddings do not provide much benefit. Therefore, we only use the observation embeddings
Eo

t+K for downstream tasks. This embedding vector Eo
t+K in addition to the observation ot+K is

used to condition the policy πθ(at+K |ot+K , Eo
t+K). We posit that this incorporation of information

is necessary for the agent policy to accurately determine the best response to the current opponent
policy.

5

Reinforcement Learning Conference (August 2024)

To learn a good representation of the joint opponent policy, we introduce an opponent reconstruc-
tion head. It decodes the embedding vector Eo

t into the joint opponent observation o−1,m
t =

(o0,m
t , . . . , oN−1,m

t) and the joint opponent action (a0,m
t , . . . , aN−1,m

t). We use the mean-squared
error loss, LMSE , for learning the opponent observations and the mean cross-entropy loss LCE for
all N − 1 opponent actions. In total, the opponent modeling loss is given by

LOM = LMSE(ô−1,m
t , o−1,m

t) + 1
N − 1

N−1∑
i=0

LCE(âi,m
t , ai,m

t), (6)

where ô−1,m
t is the predicted joint opponent observation and âi,m

t is the predicted opponent action for
opponent i. The reconstruction head is only used during training to learn a good representation for
Eo

t . During execution, we only use the encoder, which does not need access to opponent information.

4.2 Policy Training

The goal of the controlled agent is to learn a policy that adapts to different joint opponent policies
π−1,m. We train the Opponent Transformer such that the embedding vector Eo

t is a good proxy
for the true opponent information. By incorporating this vector into the agent policy, it allows the
policy to better adapt to varying opponent policies. From here, any RL algorithm can be used to
learn an optimal policy π conditioned on ot and Eo

t . In this paper, we use the advantage actor-critic
(A2C) algorithm (Mnih et al., 2016). Thus, the RL objective is given by

LA2C = E(ot,at,ot+1,rt+1)∼B [12
(
rt+1 + Vϕ(ot+1, Eo

t+1) − Vϕ(ot, Eo
t)

)2

− Aπ(ot, at) log πθ(at|ot, Eo
t) − βH(πθ(at|ot, Eo

t))],
(7)

where B is a batch of transitions, πθ is the policy parameterized by θ, Vϕ is the value function
parameterized by ϕ, Aπ is the advantage function under policy π, and H is the entropy function
weighted by the entropy coefficient β. We optimize (6) and (7) jointly, sampling the set of opponent
policies per episode.

5 Experiments

5.1 Experimental Setup

To validate our approach, we performed experiments in two Multi-Agent Particle Environments
(MPEs). Specifically, we utilized a cooperative MPE scenario from (Mordatch & Abbeel, 2017)
and an adapted competitive MPE scenario (Boehmer et al., 2020). Each experiment showcases a
unique scenario where cooperativeness or competitiveness plays a vital role and must be modeled
appropriately. Through rigorous analysis, we assessed the performance of our approach, both in
terms of modeling opponent behavior and solving the final task. In all our experiments, we relied
on the Advantage Actor-Critic (A2C) algorithm (Mnih et al., 2016) and used one LSTM layer
(Hochreiter & Schmidhuber, 1997) and one linear layer, both with a hidden dimension of 128.
Additionally, we utilized a transformer encoder that is comprised of four transformer blocks with
four attention heads and a hidden dimension of 128. We trained policies for 10 million time steps
and evaluated every 100 episodes. To ensure the reproducibility of the results, we run ten different
training runs with different random seeds and plot the average of the results to provide reliable
evidence of our approach’s performance.

We compare our proposed method against several key baselines that showcase an array of solutions
in this space. Some baselines employ an explicit opponent model, while others are implicit. These
baselines can be categorized based on the amount of information available to the controlled agent
about the opponents: (i) No Agent Modelling (NAM): This baseline only has access to the
controlled agent’s current observation and last action. With no information of the opponent agents,
this baseline serves as the lower baseline of performance. (ii) Local Information Agent Modelling

6

Reinforcement Learning Conference (August 2024)

0 50000 100000 150000 200000 250000 300000 350000 400000
Number of Episodes

−65

−60

−55

−50

−45

A
ve

ra
ge

R
et

u
rn

Nam Liam OT Oracle

(a) Spread returns.

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of Episodes

−10

0

10

20

A
ve

ra
ge

R
et

u
rn

Nam Liam OT Oracle

(b) Tag returns.

Figure 2: Average episodic returns and 95% confidence intervals for the two experimental scenarios
across ten random seeds with a zoom-in view of the last 20,000 episodes.

(LIAM): This baseline from Papoudakis et al. (2021) uses an encoder-decoder architecture to
encode the controlled agent’s local information into an embedding space, similar to our approach,
and then decode the embedding vector to reconstruct the set of opponent observations and actions.
Only the encoder is used during inference thus only giving direct access to the controlled agent’s
information. (iii) Oracle: This baseline assumes knowledge of the opponent trajectories at all
times, including opponent observations and actions. The controlled agent conditions on the joint
vector of its local observation, its last action, and the set of observations and actions from the
opponents. Since there is no ambiguity about the intents and strategies of the opponent agents, we
expect this baseline to serve as the upper baseline of performance.

5.2 Experimental Environments

5.2.1 Cooperative Navigation (Spread)

We adopt the original implementation of the cooperative navigation scenario from Mordatch &
Abbeel (2017). The scenario involves three agents and three landmarks, all initialized in random
starting positions. Agents are tasked to cooperate to navigate and cover all landmarks while avoiding
any collisions with each other. All agents are rewarded collectively based on the sum of the distances
between each landmark and the closest agent. Agents are penalized if they collide with each other.

To generate the set of opponent policies, we pretrain three sets of opponent policies using MAPPO
and IPPO, each with different random seeds. This results in eight total pretrained opponent poli-
cies. Additionally, we use five heuristic policies: three policies to cover the first, second, and third
landmarks, respectively, and two policies to cover the farthest and closest landmarks. These 17
policies can be sampled to generate new joint opponent policies.

We report the average evaluation returns across the ten training runs with the 95% confidence interval
in Figure 2(a). As expected, the NAM and Oracle baselines serve as the lower and upper bounds
of performance, respectively. LIAM performs well, nearly matching the upper level of performance
set by the Oracle agent. Notably, our proposed Opponent Transformer (OT) achieves the highest
return, with the exception of the Oracle agent. Moreover, OT tends to converge to an optimal
average return more quickly than other models, including the Oracle baseline.

The opponent modeling results are listed in Table 1. OT achieves higher action reconstruction
accuracy and lower observation reconstruction error during training and testing.

7

Reinforcement Learning Conference (August 2024)

Table 1: Joint opponent reconstruction performance on spread scenario. We report the
accuracy of the opponent action reconstruction, as well as the MSE of the joint opponent observation
reconstruction, averaged across ten randomly seeded runs. The best results are shown in bold.

Opponent Model Train Action Accuracy Train Obs. MSE Test Action Accuracy Test Obs. MSE
LIAM 63.0 ± 2.61 0.0450 ± 0.00923 65.6 ± 2.50 0.0404 ± 0.00427
Ours 85.3 ± 0.59 0.00492 ± 0.00085 69.4 ± 0.63 0.00312 ± 0.00014

5.2.2 Predator-Prey (Tag)

We use a modified predator-prey environment proposed in Boehmer et al. (2020) which was addi-
tionally used in the evaluation for Papoudakis et al. (2021). The scenario has two large landmarks,
three adversarial agents, and one good agent which we control. The good agent is faster than the
adversaries. In this modified version of the classic predator-prey task, the good agent is given a
reward of +1 if it collides with just one of the adversaries and then all of the adversaries are re-
warded with −1. However, if the agent collides with more than one adversary, it is rewarded with
−1 and the adversaries are rewarded with +1. Additionally, if the agent travels to the boundary of
the environment it is penalized with −10.

For this task, we use the ten heuristic and pretrained policies from Papoudakis et al. (2021). This
includes four heuristic policies: (i) going after the prey, (ii) going after one of the predators, (iii)
going after the agent (predator or prey) that is closest, (iv) going after the predator that is closest.
The remaining six policies were trained using MADDPG and IA2C.

The average evaluation returns are shown in Figure 2(b). Again we see that NAM and Oracle
perform as expected. LIAM performs closer to the upper baseline than the lower. OT achieves an
average return matching or exceeding the Oracle agent and once again converges quicker.

The opponent modeling results, listed in Table 2, show that OT again outperforms LIAM during
training for both opponent action and observation reconstruction. However, OT underperforms in
opponent action reconstruction during evaluation.

Table 2: Joint opponent reconstruction performance on tag scenario. We report the accu-
racy of the opponent action reconstruction, as well as the MSE of the joint opponent observation
reconstruction, averaged across ten randomly seeded runs. The best results are shown in bold.

Opponent Model Train Action Accuracy Train Obs. MSE Test Action Accuracy Test Obs. MSE
LIAM 72.2 ± 2.91 0.716 ± 0.371 71.3 ± 0.43 1.74 ± 0.075
Ours 78.3 ± 1.16 0.0793 ± 0.00193 66.9 ± 0.63 0.109 ± 0.0080

6 Conclusion and Future Work

In this paper, we proposed a new opponent modeling architecture called Opponent Transformer. This
approach does not require access to opponent information at execution time, making the controlled
agent fully decentralized. This architecture makes use of a transformer which allows the model to
exploit and extract features present in the sequence of the controlled agent’s episodic trajectory.
We presented evidence of the model’s efficacy using the Predator-Prey and Cooperative Navigation
scenarios from the multi-agent particle environments.

One future research direction is to explore regularization techniques for balancing the opponent
modeling and policy optimization tasks. Another direction is to explore the limitations of current
opponent modeling techniques for larger multi-agent systems.

Acknowledgments

This research was supported in part by the Office of Naval Research under grant N000142412405.

8

Reinforcement Learning Conference (August 2024)

References
Pranav Agarwal, Aamer Abdul Rahman, Pierre-Luc St-Charles, Simon J. D. Prince, and

Samira Ebrahimi Kahou. Transformers in reinforcement learning: A survey. CoRR,
abs/2307.05979, 2023. doi: 10.48550/ARXIV.2307.05979. URL https://doi.org/10.48550/
arXiv.2307.05979.

Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artif. Intell., 258:66–95, 2018. doi: 10.1016/J.ARTINT.2018.01.002.
URL https://doi.org/10.1016/j.artint.2018.01.002.

Wendelin Boehmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pp. 980–991. PMLR, 2020. URL
http://proceedings.mlr.press/v119/boehmer20a.html.

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui
Li. Toward A thousand lights: Decentralized deep reinforcement learning for large-scale traffic
signal control. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pp. 3414–3421. AAAI Press, 2020. doi: 10.1609/AAAI.V34I04.5744.
URL https://doi.org/10.1609/aaai.v34i04.5744.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 15084–15097, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
4171–4186. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkor-
eit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Matteo Gallici, Mario Martin, and Ivan Masmitja. Transfqmix: Transformers for leveraging the
graph structure of multi-agent reinforcement learning problems. In Noa Agmon, Bo An, Alessandro
Ricci, and William Yeoh (eds.), Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June
2023, pp. 1679–1687. ACM, 2023. doi: 10.5555/3545946.3598825. URL https://dl.acm.org/
doi/10.5555/3545946.3598825.

Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In Jennifer G. Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Re-

9

https://doi.org/10.48550/arXiv.2307.05979
https://doi.org/10.48550/arXiv.2307.05979
https://doi.org/10.1016/j.artint.2018.01.002
http://proceedings.mlr.press/v119/boehmer20a.html
https://doi.org/10.1609/aaai.v34i04.5744
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://dl.acm.org/doi/10.5555/3545946.3598825
https://dl.acm.org/doi/10.5555/3545946.3598825

Reinforcement Learning Conference (August 2024)

search, pp. 1797–1806. PMLR, 2018. URL http://proceedings.mlr.press/v80/grover18a.
html.

Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu, and Tong Zhang.
Grid-wise control for multi-agent reinforcement learning in video game AI. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 2576–2585. PMLR, 2019. URL http://proceedings.mlr.
press/v97/han19a.html.

Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In Deborah L. McGuinness and George Ferguson (eds.), Proceed-
ings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on
Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA,
pp. 709–715. AAAI Press / The MIT Press, 2004. URL http://www.aaai.org/Library/AAAI/
2004/aaai04-112.php.

He He and Jordan L. Boyd-Graber. Opponent modeling in deep reinforcement learning. In Maria-
Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48
of JMLR Workshop and Conference Proceedings, pp. 1804–1813. JMLR.org, 2016. URL http:
//proceedings.mlr.press/v48/he16.html.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, 1997. doi: 10.1162/NECO.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.
8.1735.

Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
Cheng. Towards offline opponent modeling with in-context learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=2SwHngthig.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 6379–6390, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
68a9750337a418a86fe06c1991a1d64c-Abstract.html.

Wenhao Ma, Yu-Cheng Chang, Jie Yang, Yu-Kai Wang, and Chin-Teng Lin. Contrastive learning-
based agent modeling for deep reinforcement learning. CoRR, abs/2401.00132, 2024. doi: 10.
48550/ARXIV.2401.00132. URL https://doi.org/10.48550/arXiv.2401.00132.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/mniha16.html.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine in
rl? decoupling memory from credit assignment. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,

10

http://proceedings.mlr.press/v80/grover18a.html
http://proceedings.mlr.press/v80/grover18a.html
http://proceedings.mlr.press/v97/han19a.html
http://proceedings.mlr.press/v97/han19a.html
http://www.aaai.org/Library/AAAI/2004/aaai04-112.php
http://www.aaai.org/Library/AAAI/2004/aaai04-112.php
http://proceedings.mlr.press/v48/he16.html
http://proceedings.mlr.press/v48/he16.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=2SwHngthig
https://openreview.net/forum?id=2SwHngthig
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://doi.org/10.48550/arXiv.2401.00132
http://proceedings.mlr.press/v48/mniha16.html

Reinforcement Learning Conference (August 2024)

New Orleans, LA, USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_
files/paper/2023/hash/9dc5accb1e4f4a9798eae145f2e4869b-Abstract-Conference.html.

Avik Pal, Jonah Philion, Yuan-Hong Liao, and Sanja Fidler. Emergent road rules in multi-agent
driving environments. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=d8Q1mt2Ghw.

Georgios Papoudakis, Filippos Christianos, and Stefano V. Albrecht. Agent modelling
under partial observability for deep reinforcement learning. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 19210–19222, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a03caec56cd82478bf197475b48c05f9-Abstract.html.

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 7487–
7498. PMLR, 2020. URL http://proceedings.mlr.press/v119/parisotto20a.html.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAI, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.
4254–4263. PMLR, 2018. URL http://proceedings.mlr.press/v80/raileanu18a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and
Yaodong Yang. Multi-agent reinforcement learning is a sequence modeling problem. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
69413f87e5a34897cd010ca698097d0a-Abstract-Conference.html.

Dong Xing, Pengjie Gu, Qian Zheng, Xinrun Wang, Shanqi Liu, Longtao Zheng, Bo An, and Gang
Pan. Controlling type confounding in ad hoc teamwork with instance-wise teammate feedback
rectification. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,

11

http://papers.nips.cc/paper_files/paper/2023/hash/9dc5accb1e4f4a9798eae145f2e4869b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9dc5accb1e4f4a9798eae145f2e4869b-Abstract-Conference.html
https://openreview.net/forum?id=d8Q1mt2Ghw
https://openreview.net/forum?id=d8Q1mt2Ghw
https://proceedings.neurips.cc/paper/2021/hash/a03caec56cd82478bf197475b48c05f9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a03caec56cd82478bf197475b48c05f9-Abstract.html
http://proceedings.mlr.press/v119/parisotto20a.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://proceedings.mlr.press/v80/raileanu18a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/69413f87e5a34897cd010ca698097d0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/69413f87e5a34897cd010ca698097d0a-Abstract-Conference.html

Reinforcement Learning Conference (August 2024)

23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Re-
search, pp. 38272–38285. PMLR, 2023. URL https://proceedings.mlr.press/v202/xing23a.
html.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre M. Bayen, and
Yi Wu. The surprising effectiveness of PPO in cooperative multi-agent games. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html.

Ziqian Zhang, Lei Yuan, Lihe Li, Ke Xue, Chengxing Jia, Cong Guan, Chao Qian, and Yang Yu. Fast
teammate adaptation in the presence of sudden policy change. In Robin J. Evans and Ilya Shpitser
(eds.), Uncertainty in Artificial Intelligence, UAI 2023, July 31 - 4 August 2023, Pittsburgh, PA,
USA, volume 216 of Proceedings of Machine Learning Research, pp. 2465–2476. PMLR, 2023.
URL https://proceedings.mlr.press/v216/zhang23a.html.

12

https://proceedings.mlr.press/v202/xing23a.html
https://proceedings.mlr.press/v202/xing23a.html
http://papers.nips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
https://proceedings.mlr.press/v216/zhang23a.html

