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Harnessing Multi-role Capabilities of Large Language Models for
Open-domainQuestion Answering

Anonymous Author(s)∗

ABSTRACT
Open-domain question answering (ODQA) stands as a pivotal re-
search spotlight in web mining. Existing ODQA methods follows
two main paradigms to collect evidence: 1) The retrieve-then-read
retrieves pertinent documents from an external corpus; and 2) the
generate-then-read paradigm, which employs large language mod-
els (LLMs) to generate relevant documents. Despite both paradigms
have their own advantages, a single paradigm cannot take into ac-
count multifaceted requirements for evidence. To this end, we pro-
pose LLMQA, a generalized framework that formulates the ODQA
process into three basic steps: query expansion, document selec-
tion, and answer generation, which is a novel paradigm combining
the superiority of retrieval-based and generation-based evidence.
Existing research has verified that LLMs can exhibit their excellent
capabilities to accomplish various types of tasks. Therefore, in con-
trast to previously utilizing specialized models to complete each
individual module of ODQA,we instruct LLMs to playmultiple roles
as generators, rerankers, and evaluators in our unified framework,
and integrate them to collaborate each other to jointly enhance the
performance of ODQA task. Furthermore, we introduce a novel
prompt optimization algorithm to refine the role-play prompts and
steer LLMs towards producing higher-quality evidence andmore ac-
curate answers. We conduct extensive experiments on three widely
used benchmarks: NQ, WebQ, and TriviaQA. Experimental results
demonstrate that our LLMQA can achieve the best performance in
terms of both answer accuracy and evidence quality, showcasing
its potential for advancing ODQA research and applications.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Natural language generation; Natural language
processing;
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Question answering, Large language models, Prompt optimization
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1 INTRODUCTION
In the interdisciplinary fields of information retrieval and web min-
ing, open-domain question answering (ODQA) stands as a pivotal
research spotlight. It is intrinsically a knowledge-intensive task,
which predominantly focuses on answering factoid questions, es-
chewing the limitations of a pre-specified domain, thus enhancing
its applicability in a diverse range of web scenarios [5, 26, 28].

Current ODQAmethods commonly follows two main paradigms
to collect evidence in preparation for answering questions: 1) The
retrieve-then-read paradigm retrieves a set of pertinent evidence
documents from an external corpus, and then generates the answer
based on them [13, 15]. Since retrieval models often rely on exist-
ing documents in well-curated corpora like Wikipedia, they can
provide highly factual and accurate information for answering the
factual question; 2) The generate-then-read paradigm directly em-
ploys language models to generate evidence for producing the final
answer [45]. These generated virtual documents may diversify the
sources of evidence, enhancing answer coverage for the question.

Despite both paradigms have their own advantages, a single
paradigm cannot take into account multifaceted requirements for
evidence. An intuitive idea is to reasonably integrate the advan-
tages of these two paradigms so that the collected evidence obtained
contains both factual reliability and diversity. To this end, we pro-
pose LLMQA, a novel generalized framework that combines the
strengths of retrieval-based and evidence-based evidence for ODQA.
Specifically, we formulate the generation process of ODQA into
three fundamental steps: 1) Query expansion involves expanding
the given question and generating background passages or expla-
nations, serving as generated-based evidence to enrich the context;
2) Document selection integrates retrieval-based evidence by
reranking the retrieved documents, increasing their relevance to
the answer and the likelihood of covering the answer; 3) Answer
generation proceed to generate the final answer based on compre-
hension of the question and evidence.

In order to implement each step of ODQA, previous methods
carefully train specialized models on each individual module to
obtain various paradigms of evidences and final answers. Limited
by the inherent capabilities of these models, jointly optimizing each
module to improve overall performance remains challenging. Exist-
ing works have demonstrated that large language models (LLMs)
can exhibit their excellent capabilities to accomplish various types
of tasks [4]. Specific to the ODQA task, it mainly needs to integrate
text generation [9, 30, 41, 45], document ranking [9, 22, 23], and
candidate evaluation [2, 47], the three aspects of capabilities of
LLMs into each module. Therefore, we aim to instruct LLMs to play
the three roles of generators, rerankers, and evaluators respectively
under our proposed unified framework. To fully explore the po-
tential of these roles and improve model performance, we closely
coordinate individual roles and make them collaborate each other
to complete each module of ODQA. As shown in Figure 1: 1) The
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generator is responsible for employing LLMs to expand the query
for more informative description, which can provide comprehen-
sive and pertinent information for the answer generation; 2) The
reranker plays an important role in document selection by rerank-
ing and prioritizing the retrieved documents to distill more valid
and relevant documents as evidence; 3) The evaluator engages in
interacting with the generator and the reranker through evaluative
feedback by scoring their candidates, instructing them to generate
more refined correspondences.

Furthermore, the distinct roles played by LLMs rely on unique
prompts that describe task definitions and guide their behaviors.
Therefore, the performance of different role-play LLMs is highly
dependent on the quality of the prompts. The precision of evidence
generated or reranked by LLMs is also sensitive to the prompts
used. To better automatically design prompts, we present a novel
prompt optimization algorithm to enhance the effectiveness of
LLMs playing different roles in our unified framework. During
the generation process of ODQA, we consider the evidences (i.e.,
query expansion and selected documents) as latent variables, and
creatively leverage variational inference to learn their distributions,
and then optimize crucial role-play prompts to steer LLMs towards
producing higher-quality evidence and more precise answers.

We conduct comprehensive experiments on three widely used
ODQA benchmarks: NQ,WebQ, and TriviaQA. Experimental results
show that our LLMQA advances the state-of-the-art performance on
both answer accuracy and evidence quality. Compared with previ-
ous baseline models, our LLMQA achieve remarkable improvement
on EM scores (4.0@TriviaQA, 2.7@WebQ, 3.1@NQ), demonstrating
the effectiveness of multi role-play LLMs for ODQA. Our proposed
role of generator for query expansion can achieve up to 73%,76%
and 87% recall for the target answer in generated expansions. The
role of reranker increased answer coverage about 8.1% averaged
on three datasets. Our ablation results not only suggest that each
role-play LLMs and prompt optimization can contribute to the im-
provement, but also verifies that multi-roles of LLMs can cooperate
with each other.

Overall, our main contributions can be summarized as follows:
•We propose LLMQA, a generalized framework model to for-

mulate the generation process of ODQA, which is a novel paradigm
to combine the strengths of retrieval-based and generation-based
evidence.
•We effectively instruct LLMs to play three roles of generators,

rerankers, and evaluators respectively and integrate their collabo-
rative interactions under our proposed unified framework,
•We present a novel prompt optimization algorithm to guide

LLMs in producing higher-quality evidence and more precise an-
swers. Extensive experimental results verifies LLMQA advances
state-of-the-art performance in terms of both answer accuracy and
evidence quality.

2 RELATEDWORK
2.1 Open-Domain Question Answering
ODQA requires external knowledge to generate answers, thus it has
become a common and effective benchmark to measure abilities of
natural language comprehension and generation inwebmining [26].
For collecting the related documents as evidence, existing methods

can be categorized into two main paradigms: retrieve-then-read and
generate-then-read.

Retrieve-then-read paradigm. Pioneered by [5], most recent ap-
proaches consist of two main modules: retriever and reader. The
retriever module firstly retrieves a small set of documents relevant
to the given question from an external knowledge base. The reader
module then comprehends on both question and retrieved docu-
ments and generates the corresponding answer. One branch of the
recent approaches focus on improving the retriever. Sparse retrieval
with inverted indexes (e.g., TF-IDF or BM25) is generally used in
traditional approaches [36]. Dense retrieval using language models
such as ORQA [17], DPR [15], RocketQA [31], ColBertQA [16] and
ART [37] is the dominant method nowadays. The other branch fo-
cuses on enhancing the comprehension ability of reader to generate
more appropriate and accurate answers [6, 13]. Especially with the
development of LLMs, most readers are adopted from fine-tuned
T5 [33] or InstructGPT [27].

Generate-then-read paradigm. Previous works have demon-
strated that the knowledge preserved in LLMs can serve as a “gen-
erative retriever” [29, 32, 35]. Although many existing approaches
adopt LLMs in ODQA, they cannot fully harness the generation
capability of LLMs [14, 30, 41, 42]. Unlike conventional methods
that retrieve documents from external sources, GenRead is the first
to explore the potential of generate-then-read pipeline in ODQA,
which instructs an LLM to generate a set of documents base on
clusters of question-document pairs and the given question [45].
Then these generated documents and the question are fed into LLM
together to produce the final answer.

Considering the limitations of a single paradigm, we propose
to seamlessly integrate retrieval- and generation-based evidence
in the ODQA generation process, by effectively harnessing the
capabilities of LLMs.

2.2 Capabilities of LLMs
With recent notable enhancements in model scales [8, 27], LLMs
have showcased impressive capabilities in text generation, ranking
and evaluation.

Generation capability of LLMs. Recent studies have highlighted
the superior text generation capability of LLMs in few-shot and
zero-shot scenarios [3, 4, 8, 48]. Previous works have demonstrated
that the knowledge stored in LLMs could be retrieved during infer-
ence [29, 35]. Building upon this, some studies directly prompt LLMs
to generate answers conditioned on the question in ODQA [14, 30,
41, 42]. Other approaches utilize the generation capability of LLMs
to expand the query or enrich the context [9, 25, 45].

Ranking capability of LLMs. Previousworks show that compared
to few-shot information extraction, LLMs are better at reranking
for hard examples. Ma et al. propose a filter-then-rerank paradigm,
which utilize LLMs to rerank the candidates filtered by smaller
language models to generate the final response. Chuang et al. apply
LLMs to rerank a diverse set of expanded queries and select those
leading to better results. Ma et al. replace pointwise reranking with
listwise reranking to reorder the list of documents base on the
relevance to the query.

2
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Evaluation capability of LLMs. LLMs are chosen as evaluators
due to their robust comprehension and reasoning capabilities. [4, 7].
Weng et al. leverage the self-verification capability of LLMs for bet-
ter reasoning. Shinn et al. use self-reflective feedback as a semantic
gradient providing with a concrete direction to learn from prior
mistakes. Madaan et al. present an iterative self-refinement algo-
rithm that alternates between feedback and refinement. Addition-
ally, LLMs are also used to evaluate attribution between generated
answer and references [2, 47].

In this paper, we aim to effectively integrate multi-role capabili-
ties of LLMs to enhance the overall performance on ODQA.

2.3 Prompt Optimization
Previous works have emphasized that subtle differences in prompts
could lead to tremendous performance degradation in generated re-
sults [11, 19, 49]. Consequently, prompt optimization has attracted
great attention in recent years, with two primary approaches: man-
ual design [34] or automatic generation [38]. Gradient-based prompt
tuning can optimize prompts embedding in a continuous space
[20, 21]. In contrast, discrete prompt optimization has been ex-
tensively studied including prompt scoring [10], prompt genera-
tion [11] and prompt paraphrasing [46]. Recently, Zhou et al. pro-
pose APE for automatic prompt optimization by iteratively select-
ing prompt candidates to maximize the potential score functions.
DLN [40] steps further by viewing LLMs as language layers and
prompts as learnable parameters.

Inspired by these methods, we present a novel prompt optimiza-
tion algorithm to refine essential prompts for query expansion,
document reranking, and answer generation, enabling LLMs to
produce better evidences and answers.

3 METHOD
3.1 Task Formulation
ODQA places a central emphasis on acquiring pertinent evidence to
enhance the reliability and precision of answers to a given question.
Previous methods collect evidences by retrieving or generating
relevance background passages or explanations to facilitate accu-
rate answer identification [5, 15, 27]. Expanding upon this concept,
we formulate the generation process of ODQA as the following
three fundamental steps: 1)Query expansion: We commence with
the input question, designated as query 𝑞. To enrich the context
and improve document selection and answer generation, we utilize
knowledge stored in language models to generate additional back-
ground information, denoted as query expansion 𝑒; 2) Document
selection: Leveraging both the query 𝑞 and its expansion 𝑒 , we
initially retrieve the top-𝑛 documents that are relevant to answering
the question as candidates. Subsequently, we compare within these
candidates to prioritize those documents most likely to contain
the answer. Based on this criterion, we rerank these 𝑛 candidates
and retain top-𝑘 documents, represented as 𝑑 , which collectively
constitute the evidence in conjunction with query expansion (𝑒, 𝑑);
3) Answer generation: Based on the query 𝑞 and the derived evi-
dence (𝑒, 𝑑), we proceed to generate the final answer 𝑎 in response
to the question with a reader model.

Furthermore, this generation process can be effectively formu-
lated using a Bayesian graphical model that aligns closely with

RerankerGenerator

Evaluator

Query Expansion

Doc Selection

Expansion 
Evaluation

Reranking 
Evaluation

Figure 1: Collaborative interactions of multiple LLM roles.

the three aforementioned steps, parameterized by the following
probability distribution:

𝑃 (𝑎 |𝑞) =
∑︁
𝑒

∑︁
𝑑

𝑃 (𝑒 |𝑞)𝑃 (𝑑 |𝑞, 𝑒)𝑃 (𝑎 |𝑞, 𝑒, 𝑑), (1)

where we consider the evidence (𝑒, 𝑑) as latent variables, which
require to be optimized by maximizing this marginal likelihood.
Consequently, the acquisition of the most appropriate evidence for
question answering becomes a critical aspect of this task. Consider-
ing the prominent performance of LLMs on various tasks including
text generation, ranking, and evaluation, we propose to harness
LLMs in multiple roles that cooperate with each other and seam-
lessly integrate into the ODQA generation process. The framework
overview of our LLMQA is shown in Figure 2. In the subsequent
sections, we will introduce in detail how to leverage the multi-role
capabilities of LLMs to enhance the ODQA task.

3.2 Query Expansion
Generally, the questions posed in ODQA datasets are brief and con-
cise, indicating that relying solely on the question itself as query
can lead to a substantial challenge: inadequate query context makes
it difficult to support accurate document selection and answer gen-
eration. To address this challenge, we add a pivotal step known
as query expansion that aims to enrich the original question with
a broader context. The generated expansions are mainly used to
analyze the key points required to answer a given question and pro-
vide more sufficient background information for subsequent steps.
In this process, we instruct an LLM to play the role of generator
leveraging its powerful context understanding and text generation
capabilities. Specifically, we employ an LLM-based expansion gen-
erator𝐺𝑒 to facilitate the query expansion step. Given a question 𝑞,
its query expansion 𝑒 can be generated by

𝑒 = 𝐺𝑒 (𝑞;𝜃𝑒 ), (2)

where 𝜃𝑒 represents the prompt to instruct the query expansion.

3.3 Document Selection
In addition to the query expansion, relevant documents are more
commonly used as evidences to include accurate answers of the
question. To identify the most appropriate documents, we divide
this document selection process into two distinct stages:

1) Coarse-grained retrieval of top-𝑛 documents: we first
retrieve a set of top-𝑛 documents that are potentially relevant to

3
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(b) Expansion Evaluation  (a) Query Expansion

(c) Document Selection

(e) Answer Generation (d) Reranking Evaluation

Score 
0.54

Selected 
Expansion

Doc3 Doc1 Doc5 Doc2 Doc4 Reranking Candidates

Score
0.32

Score 
0.72

Score 
0.35

Score 
0.94

Expansion
Candidates

I am now serving 
as an Expansoin

Generator…

I am now serving 
as an Answer Generator…

①

②

③

④

I am now serving 
as a Reranking Evaluator…

Selected 
Documents

Score
0.74

Score
0.96

Oak 
Island

Doc1 Doc3 Doc5 Doc2 Doc4

Doc1 Doc2 Doc3 Doc5 Doc4

Doc1 Doc2 Doc3 Doc4 Doc5

Where is the TV 
show the Curse 
of Oak Island 

filmed?

Reranker

Generator

Evaluator

PromptE

PromptD

I am now serving 
as a Reranker…

PromptA

I am now serving as an 
Expansion Evaluator…

Retrieved
Docs

Retriever

Figure 2: The overview of our LLMQA. Three different role-play LLMs execute five main steps: (a) generate query expansion
according to the question by generator; (b) select the best query expansion by evaluator; (c) rerank the top-𝑘 documents
according to the question and generated expansion by reranker; (d) select the best rerank documents by evaluator; (e) generate
answer according to the question, generated expansion and reranked documents by generator. A more detailed insight into
sliding window reranking: select top 2 documents from top 5 retrieved candidates with window size𝑤 = 3, step 𝑙 = 1.

the given question by employing established information retrieval
techniques such as DPR [15] or BM25 [5]. These retrieval methods
provide an initial score for each candidate to describe the relevance
between documents and questions. However, suchmethodsmay not
always capture nuanced semantic relationships between the query
and documents, leading to false positives or irrelevant documents
in the initial set.

2) Fine-grained reranking of top-𝑘 documents from 𝑛 can-
didates:we proceedwith the reranking of documents to ensure that
those more likely to contain the answer are prioritized. This stage
involves comparing the documents to determine which ones exhibit
higher quality and relevance to the query. Inspired by LLM-based
ranking approaches [9, 22, 23], We instruct LLM to play the role
of document reranker 𝑅𝑑 for further screening out top-𝑘 (𝑘 < 𝑛)
documents from the initial pool of 𝑛 candidates. Considering the
limitation on input tokens for LLMs, we iteratively rerank a subset
of documents each time and complete the reranking of all candi-
dates through a sliding window. Specifically, we set the window
size to 𝑤 and the step size to 𝑙 . We start from the last position
of the initially sorted documents. In each iteration, we focus on
comparing 𝑤 documents within the sliding window, and reorder
the documents based on their likelihood of containing the answer.
With the sliding window moving forward by 𝑙 steps, thus the top
𝑤 − 𝑙 reranked documents in the original window are reserved and
𝑙 new documents are added, then the next 𝑤 documents can be
reordered. This iterative process continues until the sliding window
reaches the front, and we consider the first 𝑘 = 𝑤 − 𝑙 documents as
the final evidence documents 𝑑 . Overall, this document selection
process can be simplified as:

𝑑 = 𝑅𝑑 (𝑞, 𝑒;𝜃𝑑 ), (3)

where 𝜃𝑑 denotes the prompt for 𝑅𝑑 to ensure that documents are
ranked in alignment with the desired relevance and quality.

3.4 Answer Generation
Based on the query 𝑞, and the evidence (𝑒, 𝑑), the final step in
ODQA is to generate the final answer with the integration and
comprehension of pertinent information within the evidence. The
evidence can encompass essential information that directly provides
the answer to the question, or it may comprise an analysis and
explanation necessary for formulating the answer. Consequently,
the central objective of answer generation is to employ a reader
model for the systematic extraction and comprehension of valuable
insights from the evidence context. We utilize an LLM-based reader
𝐺𝑎 to generate a precise and dependable response as the predicted
answer to the question, and formulate this process as:

𝑎 = 𝐺𝑎 (𝑞, 𝑒, 𝑑 ;𝜃𝑎), (4)

where 𝜃𝑎 indicates the prompt for answer generation to ensure that
the generated answer can align with the context and requirements
of the original question and its evidence.

3.5 Evaluators for Generation and Reranking
As shown in Figure 1, evaluators also play a crucial role in query
expansion and document reranking, engaging in a dynamic interac-
tion with both the generator and reranker. Leveraging the advanced
capabilities of LLMs to evaluate text quality under specific stan-
dards, we can instruct LLMs to play the role of evaluators to assess
the performance of the generator and the reranker. The primary
objective of evaluators is to assign quality scores to multiple candi-
dates generated by the generator and reranker. These scores reflect
the likelihood that each candidate is appropriate and accurate for

4
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Algorithm 1 Training Process for Prompt Optimization.
Input: Training data: 𝑋𝑡𝑟𝑎 , LLM-based roles: 𝐺𝑒 , 𝑅𝑑 , 𝐺𝑎 , 𝑆𝑒 , 𝑆𝑟 , 𝑆𝑎 ,

backward updating functions:𝑈𝑒 ,𝑈𝑑 ,𝑈𝑎 .
Parameters: 𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎 .

1: for (𝑞, 𝑎) in 𝑋𝑡𝑟𝑎 do
2: Generate the prior 𝑒̃ = 𝐺𝑒 (𝑞;𝜃𝑒 ) by Expansion Generator
3: Generate the prior 𝑑 = 𝑅𝑑 (𝑞, 𝑒̃;𝜃𝑑 ) by Document Reranker
4: Generate the prior 𝑎 = 𝐺𝑎 (𝑞, 𝑒̃, 𝑑 ;𝜃𝑎) by Answer Generator
5: Sample 𝑛 posterior 𝑑1, 𝑑2, · · · , 𝑑𝑛 from 𝑅𝑑 (𝑞, 𝑒̃, 𝑑, 𝑎;𝜙𝑑 )
6: Score 𝑠𝑑𝑖 = 𝑆𝑟 (𝑅𝑑 (𝑞, 𝑒̃), 𝑑𝑖 ) and 𝑆𝑎 (𝐺𝑎 (𝑞, 𝑒̃, 𝑑𝑖 ), 𝑎) for each 𝑑𝑖
7: Calculate posterior score 𝑣𝑑𝑖 = 𝑠𝑑𝑖 ∗ 𝑠𝑎𝑖
8: Select the best posterior 𝑑∗ = argmax𝑖 {𝑣𝑑𝑖 }
9: Sample𝑚 posterior 𝑒̂1, 𝑒̂2, · · · , 𝑒̂𝑚 from 𝐺𝑒 (𝑞, 𝑒̃, 𝑑∗, 𝑎;𝜙𝑒 )
10: Score 𝑠𝑒 𝑗 = 𝑆𝑒 (𝐺𝑒 (𝑞), 𝑒̂ 𝑗 ), 𝑠𝑑 𝑗

= 𝑆𝑟 (𝑅𝑑 (𝑞, 𝑒̂ 𝑗 ), 𝑑∗), and 𝑠𝑎 𝑗
=

𝑆𝑟 (𝐺𝑎 (𝑞, 𝑒̂ 𝑗 , 𝑑∗), 𝑎) for each 𝑒̂ 𝑗
11: Calculate posterior score 𝑣𝑒 𝑗 = 𝑠𝑒 𝑗 ∗ 𝑠𝑑 𝑗

∗ 𝑠𝑎 𝑗

12: Select the best posterior 𝑒̂∗ = argmax𝑗 {𝑣𝑒 𝑗 }
13: Sample 𝐾 candidates 𝜃𝑎𝑘 = 𝑈𝑎 (𝑞, 𝑒̃, 𝑑, 𝑎, 𝑎) for 𝜃𝑎
14: Select 𝜃𝑎∗ = argmax

𝑘

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑣𝑒 𝑗 𝑣𝑑𝑖 log 𝑆𝑒 (𝐺𝑎 (𝑞, 𝑒̂ 𝑗 , 𝑑𝑖 ;𝜃𝑎𝑘 ), 𝑎)

15: Sample 𝐾 candidates 𝜃𝑑𝑘 = 𝑈𝑑 (𝑞, 𝑒̃, 𝑑, 𝑑∗) for 𝜃𝑑
16: Select 𝜃𝑑∗ = argmax

𝑘

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑣𝑒 𝑗 𝑣𝑑𝑖 log 𝑆𝑟 (𝑅𝑑 (𝑞, 𝑒̂ 𝑗 ;𝜃𝑑𝑘 ), 𝑑𝑖 )

17: Sample 𝐾 candidates 𝜃𝑒𝑘 = 𝑈𝑒 (𝑞, 𝑒̃, 𝑒̂∗) for 𝜃𝑒
18: Select 𝜃𝑒∗ = argmax

𝑘

𝑚∑
𝑗=1

𝑣𝑒 𝑗 log 𝑆𝑒 (𝐺𝑒 (𝑞;𝜃𝑒𝑘 ), 𝑒̂ 𝑗 )

19: Update parameters: 𝜃𝑎 ← 𝜃𝑎∗ , 𝜃𝑑 ← 𝜃𝑑∗ , 𝜃𝑒 ← 𝜃𝑒∗
20: end for
21: return 𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎 .

specific conditions or requirements. For a given question, we em-
ploy the expansion evaluator 𝑆𝑒 to individually score each candidate
expansion ranging from 0 to 1, which is used to assess the degree
of their relevance and logical consistency. Similarly, we use the
reranking evaluator 𝑆𝑟 to score different top-𝑘 reranking candi-
dates generated by the reranker 𝑅𝑑 , assessing the contribution of
each ranking result to answering the question. The scoring process
of evaluators 𝑆𝑒 and 𝑆𝑟 can be formulated as:

𝑠𝑒 𝑗 = 𝑆𝑒 (𝐺𝑒 (𝑞), 𝑒 𝑗 ), (5)
𝑠𝑑 𝑗

= 𝑆𝑟 (𝑅𝑑 (𝑞, 𝑒), 𝑑 𝑗 ), (6)

where 𝑠𝑒 𝑗 and 𝑠𝑑 𝑗
represent the scores assigned to the 𝑗-th candi-

date of generated query expansion and reranked documents. These
scores serve as critical metrics for evaluating the performance of the
generator and reranker and further promoting overall generation
and ranking capabilities of LLMs.

3.6 Prompt Optimization
The role-play performance of generator and reranker still heav-
ily relies on the prompt design in each ODQA generation process.
Therefore, we explore how to design better role-play prompts or
expansion generation 𝜃𝑒 , document reranking 𝜃𝑑 , and answer gen-
eration 𝜃𝑎 to fully exploit the potential of LLMs. We propose a novel

algorithm to enable prompt optimization under the unique graphi-
cal model structure of ODQA. Throughout the ODQA generation
process, we do not require the LLM parameters, but instead treat
three natural language prompts as learnable parameters. In Equa-
tion (1), the distributions of latent variables 𝑒 and 𝑑 are determined
by these prompts and need to be approximated by probabilistic
inference techniques. To ensure consistency with the graphical
model, we propose to use variational inference to learn the hidden
distributions and optimize prompts. We denote the prior distribu-
tion as 𝑃𝜃 and the posterior distribution as 𝑃𝜙 , and the original
log-likelihood could be bounded by the following ELBO:

log𝑃 (𝑎 |𝑞)

≥
∑︁
𝑒

∑︁
𝑑

𝑃𝜙𝑒
(𝑒 |𝑞, 𝑎)𝑃𝜙𝑑

(𝑑 |𝑞, 𝑒, 𝑎) log
𝑃𝜃𝑒
(𝑒 |𝑞)𝑃𝜃𝑑 (𝑑 |𝑞, 𝑒 )𝑃𝜃𝑎

(𝑎 |𝑞, 𝑒,𝑑 )
𝑃𝜙𝑒
(𝑒 |𝑞, 𝑎)𝑃𝜙𝑑

(𝑑 |𝑞, 𝑒, 𝑎) . (7)

As shown in Algorithm 1, for the question 𝑞, we use predefined𝐺𝑒 ,
𝑅𝑑 and𝐺𝑎 to sequentially simulate the priors 𝑃𝜙𝑒

, 𝑃𝜙𝑑 , and 𝑃𝜙𝑎
, and

generate the query expansion 𝑒̃ , the reranked documents 𝑑 and the
predicted answer 𝑎 during forward inference. Next, to approximate
the posteriors 𝑃𝜙𝑒

and 𝑃𝜙𝑑 , we consider the following two aspects:
1) We add the ground-truth target as an additional condition to
estimate the posteriors; 2) We sample several posterior candidates
near the prior to ensure low Kullback–Leibler (KL) divergence
between them in the space of discrete texts. Specifically, we sample𝑛
posterior candidates 𝑑1, 𝑑2, . . . , 𝑑𝑛 by replacing the last document in
𝑑 with the (𝑘+1)-th, (𝑘+2)-th, . . ., (𝑘+𝑛)-th document, respectively.
Then we use evaluators 𝑆𝑟 and 𝑆𝑒 to score each posterior candidate
for estimating 𝑃𝜙𝑑 . The best posterior 𝑑∗ among these candidates is
selected as the current "ground-truth" reranking documents. This
process can be repeated similarly for the query expansion to obtain
the best posterior 𝑒̂∗.

Subsequently, we define a backward process to update prompts.
For the answer generation prompt 𝜃𝑎 , we sample 𝐾 candidates near
it using a updating function 𝑈𝑎 (𝑞, 𝑒̃, 𝑑, 𝑎, 𝑎), to guide prompts to
update in a direction that brings the predicted answer 𝑎 closer to
the actual answer 𝑎. Then all the previous posterior candidates are
used to estimate ELBO, and the best 𝜃𝑎∗ to maximize ELBO can
be selected as the refined prompt for answer generation. Similar
processes are introduced to refine prompts 𝜃𝑑 and 𝜃𝑒 , while updat-
ing functions𝑈𝑑 and𝑈𝑒 are used to guide the directions to refine
document reranking and query expansion.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets.We select three widely used ODQA benchmarks to evalu-
ate the model performance of baselines and our LLMQA: 1) WebQ
(WebQuestions) is a dataset that consists of questions obtained us-
ing the Google Suggest API, with the answers being entities from
Freebase. 2)NQ (Natural Questions) is a dataset generated from real
Google search queries, and the answers are spans within Wikipedia
articles. 3) TriviaQA is a collection of trivia questions sourced from
trivia and quiz-league websites.

Baselines. To verify the effectiveness of our method, we compare
LLMQAwith the following twomain types of baselines: 1) Baselines
without LLMs: BM25+Bert [17] combines sparse retrieval methods
with BERT for text representations. REALM [12] retrieves relevant
documents from a knowledge corpus and incorporate them into
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Table 1: Comparison results on TriviaQA, WebQ, and NQ datasets. Our EM scores are given by the mean of 10 rounds of
bootstrapping sampling, with bold numbers indicating 𝑝-values below 0.01 under a significance test.

Method #Reader
parameters #Documents TriviaQA WebQ NQ

baselines without LLMs; † was reported by paper, ∗ was reproduced by our
BM25+Bert† 220M 5 47.1 21.3 26.5
REALM† 330M 5 - 40.7 40.4
DPR† 110M 100 56.8 41.1 41.5
RAG† 400M 10 56.1 45.2 44.5
FiD-l† 770M 10 61.9 48.1 46.7
FiD-xl† 3B 10 66.3 50.8 50.1
Baselines employing LLMs as generators; † was reported by paper, ∗ was reproduced by ours.
GenRead (FiD-l) (sampling)† 770M 10 67.8 51.5 40.3
GenRead (FiD-l) (clustering)† 770M 10 70.2 53.5 43.5
GenRead (FiD-xl)) (sampling)† 3B 10 69.6 52.6 42.6
GenRead (FiD-l) (clustering)† 3B 10 71.6 54.4 45.6
EAR+FiD-l† 770M 100 71.2 - 51.4
EAR+FiD-xl∗ 3B 100 72.9 - 53.8
LLMQA 3B 5 76.9 56.2 56.9
LLMQA 3B 10 76.6 57.1 57.5

the training process of the language model. DPR [15] utilizes a
dense encoder to encode text passages and questions and retrieves
relevant passages based on vector similarity. RAG [18] utilizes
retrieval to augment generation techniques to enhance the ODQA
tasks. FiD [43] follows the classic retrieve-then-read paradigm
with reader sizes of 770M and 3B. 2) Baselines employing LLMs
as generators: GenRead [45] propose a clustering-based method
to use LLMs to generate diverse documents. EAR [9] improves
evidence quality through query re-ranking for enhanced expansion.

Evaluation Metrics.Mainstream ODQAmethods evaluate answer
accuracy using the Exact Match (EM) score [50], which compares
the predicted answer 𝑎 to each ground-truth answer 𝑎 in the answer
list, to determine if they match. Additionally, the recall score serves
as an important metric for assessing the quality of evidence. These
two metrics are given by:

𝐸𝑀 =

∑
𝑎,𝑎∈𝐷 𝑒𝑥𝑎𝑐𝑡_𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑎)

|𝐷 | (8)

𝑟𝑒𝑐𝑎𝑙𝑙 =

∑
𝑑𝑜𝑐𝑠,𝑎∈𝐷 𝑎𝑛𝑠𝑤𝑒𝑟_ℎ𝑖𝑡 (𝑑𝑜𝑐𝑠, 𝑎)

|𝐷 | (9)

where 𝐷 is the dataset, 𝑎 is the predict answer, 𝑎 is the ground truth
answer, 𝑑𝑜𝑐𝑠 is the reference documents.

Implementation Details. In our proposed approach, we take
advantage of the multi-role capability of LLMs. As for the query
expansion, we use gpt-3.5-turbo-16k as generator by directly access-
ing to API (temperature=0.7,n=10). As for documents selection, we
first retrieved top 100 documents using DPR [15]. To select top 10
reranked documents, we implemented sliding window reranking
and set the window size𝑤 = 20, step 𝑙 = 10.We get the rerank result
in the window by accessing to gpt-3.5-turbo-16k (temperature=0.7)
as well. As for answer generation, we followed GenRead [45] adapt-
ing FiD-xl (3B) as reader model and finetune it for 10000 steps with
𝑙𝑟 set to 3e-5. As for prompt optimization, we refer to P3 [1] along

with carefully designed role-play instructions to initialize crucial
prompts. As for evaluator used in prompt optimization, we use text-
embedding-ada-002 from OpenAI by requesting for embeddings to
estimate the posterior probability.

4.2 Overall Performance
The overall performance of the experiment is shown in Table 1.
Compared with the baselines without LLMs, our proposed LLMQA
exhibited a notable improvement over three datasets (10.3@Trivi-
aQA, 6.3@WebQ, 7.4@NQ), which strongly demonstrated the ef-
fectiveness of the LLM on the ODQA, indicating that the effect of
model scale on the final results is remarkable. Our LLMQA sur-
passed FiD-xl by 8 on average of three datasets, even though the
documents we used are less than it. Thus, different role-play LLMs
can be competent with previously specifically designed models.

Compared with the baselines employing LLMs as generators,
our LLMQA also achieved considerable performance improvement.
Both GenRead and EAR+FiD utilize the generation capability of
LLMs to generate documents or query expansions. The enhance-
ment of our approach primarily leverages the collaboration between
multiple role-playing LLMs. In addition to the query expansion used
in our approach, we also adapted LLMs to rerank the retrieved docu-
ments. The remarkable improvement fully demonstrated that LLMs
playing different roles can interact and cooperate with each other
and fulfill the tasks well under specific instruction.

4.3 Ablation Study
In this section, we eliminate generator, reranker, and evaluator,
respectively, and explore to what extent the three aspects of LLMs’
capabilities have an impact on the ODQA performance. In addition,
we validate the effectiveness of the proposed prompt optimization.

It can be confirmed from Table 2 that the generator role of LLMs
has the most significant impact among the three different roles
played by LLMs, which indicates that the query expansion can serve
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Table 2: Ablation results onTriviaQA,WebQ, andNQdatasets.

Method TriviaQA WebQ NQ
Ours w/o expansions generator 68.70 52.61 53.66
Ours w/o documents reranker 73.06 52.71 54.68
Ours w/o candidates evaluator 73.91 55.56 57.12
Ours w/o prompt optimization 73.60 54.82 56.68
Ours 76.62 57.15 57.56

You are serving as a reranker, you should 

rank the given documents according to the 

following rules: 1. The more relevant the 

document is to the question and expansion, 

the higher the score is. 2. The more 

informative the document is, the higher the 

score is. 3. The more possible the document 

may contain the answer to the question, the 

higher the score is. Please make sure you 

have make comprehensive understanding of 

the above rules and documents. You should 

think step by step and rank the documents 

above carefully according to the rules.

Initial Document Reranking Prompt

You are serving as a reranker, you should 

rank the given documents according to the 

following rules: 1. The more relevant the 

document is to the question and expansion, 

the higher the score is.  2. The more 

informative the document is, the higher the 

score is.  3. The more likely the document 

may contain the answer to the question, the 

higher the score is. Please carefully consider 

the relevance, informativeness, and 

likelihood of containing the answer when 

ranking the documents. You should think 

step by step and rank the documents above 

carefully according to the rules.

Optimized Document Reranking Prompt

You are serving as a generator to generate 

query expansion. To answer the given 

question more precisely, provide background 

information from Wikipedia or give the 

analysis of the question as the query 

expansion to enrich the context.

Optimized Query Expansion Prompt

You are serving as a generator. To answer the 

given question more precisely, provide 

background information from Wikipedia as 

the query expansion to enrich the context.

Initial Query Expansion Prompt

Figure 3: Case study for prompt optimization. EM score for
initial prompt is 54.82; EM score for optimized prompt is
57.15. The result is reported on WebQ dataset.

as an auxiliary document. The reranker contributes to the ODQA as
well because the reranked the documents are more relevant to the
question. The feasibility of evaluator has also been demonstrated
as it can estimate the evidence quality and select the most suitable
one. Our experiment on prompt optimization shows that the quality
of the prompt design directly affects the performance of role-play
LLMs for the final result and that the prompts on discrete space
could be optimized as well.

4.4 Case Study and Error Analysis
Case study of prompt optimization. We analyse the differences
of the prompts for query expansion and document reranking after
optimization. From Figure 3 we can see that compared to the initial
prompts, optimized prompts can include more details and insights
for describing the instruction. As for the expansion prompt, a more
detailed role-play description and an alternative instruction to solve
the task were added. As for the reranking prompt, some of the
ambiguous content in the prompt got refined after optimization. As
a consequence, our proposed prompt optimization method is able
to achieve more detailed, instructive and explicit prompts.

Case study of evidence and answer. In addition to prompt op-
timization, we also focus on the specific performance of evidence
quality and answer generation during the inference process. We
choose GenRead as a strong baseline for comparison. As shown in
Table 3, the top-10 evidence documents of LLMQA all contains an-
swers, which are highly relevant to the given question resulting in
accurate answer prediction. However, the virtual documents gener-
ated by GenRead introduces an inaccurate year 1951 and misses the

Table 3: Case study of more pertinent evidence than baseline.

Question: when did little polveir win the grand national
Golden Answer: [1989]
LLMQA
Selected Doc. Hit: 10 / 10
Top-3 docs:
"...He won the 1989 Grand National steeplechase..."
"...on 8 April 1989. The race was won in a time..."
"...He is best known...for his performance in the 1989 Derby ..."
Generated answer: 1989 (True)
GenRead
Selected Doc. Hit: 1 / 10
Top-3 docs:
"On 6 April 2019, Little Polveir won the Grand ..."
"... Little Polveir won the Grand National in 1951."
"... last time Little Polveir won the Grand National was 1869."
Generated answer: 1951 (False)

Table 4: Case study of imprecise evidence for hard example.

Question: who wrote the first declaration of human rights
Golden Answer: [Cyrus]
LLMQA
Selected Doc. Hit: 2 / 10
Top-3 docs:
"...Cyrus the Great... the first human rights document..."
"...first recording of human rights ... by Cyrus the Great..."
"...is a human civil rights document ... the French Revolution."
Generated answer: Cyrus the Great (False)
GenRead
Selected Doc. Hit: 1/ 10
Top-3 docs:
"The first declaration of human...written by George Mason"
"...first declaration of human...Virginia Declaration..."
"...first declaration of human rights... Virginia Declaration..."
Generated answer: George Mason (False)

golden answer. This indicates that reranking of retrieved documents
can help improve the evidence quality and answer accuracy.

ErrorAnalysis.Althoughwe achieve advanced results on evidence
quality and answer accuracy, some questions remain challenging.
These questions may contain contradictions with facts and world
knowledge, and it may have led to incorrect predictions or reason-
ing results. For instance, Table 4 displays a typical failure case that
both LLMQA and GenRead struggle to capture precise evidence,
leading to low evidence quality and incorrect answer predictions.
Despite these ongoing challenges, our LLMQA is still the best choice
in terms of overall performance on the ODQA task.

4.5 Experimental Analysis
Analysis of Evidence Quality. We estimate the evidence quality
using answer recall on the top@K selected documents. We com-
pare our proposed LLMQA with GenRead [45] on three datasets.
Table 5 shows that our LLMQA achieved highest recall on all of
top@K settings over three datasets. The results show that relying
solely on LLM-generated documents is insufficient. While hybrid
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Table 5: Answer recall for evidence quality.
Dataset Method Top@2 Top@4 Top@8

NQ
GenRead-sampling 55.12 62.58 69.64
GenRead-clustering 55.12 62.58 69.64
LLMQA 61.99 78.59 82.94

TriviaQA
GenRead-sampling 73.55 77.99 81.55
GenRead-clustering 76.09 79.65 82.96
LLMQA 80.67 86.21 87.22

WebQ
GenRead-sampling 58.02 64.67 69.59
GenRead-clustering 61.17 67.47 72.00
LLMQA 67.57 77.81 80.07
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Figure 4: Analysis of query expansion.

utilization of both generated expansion and retrieved documents
can gain tremendous answer recall increase, contributing to the
final performance improvement.

Quality of Query Expansions. We first evaluate the quality of
query expansions generated by LLMs. In the query expansion pro-
cedure, we generate 10 candidates and instruct LLMs to estimate
the candidates according to the specified rules. The left in Figure 4
shows the recall for the highest score K expansions. Most of the
generated query expansions have already contained the answer,
because the large amount of knowledge that may cover the answer
has been stored in the parameters of LLMs during pre-training.

We also analyse the number of expansions in our proposed ap-
proach. The right in Figure 4 shows the EM score for different
numbers of expansions, the approach without expansion encoun-
ters massive performance drop and the approach with expansions
can benefit from the increment of the expansions number. The
result indicates that when the retrieved documents are of poor qual-
ity, the query expansions generated by the LLMs can be used as
auxiliary documents to assist in selecting the relevant documents
and answering the question.

As we treat the expansions as auxiliary documents, the location
to insert the expansions may also have an impact. Constrained by
the context length, expansions inserted to the beginning of the
documents gain the best EM score, indicating that reader model
may be much more sensitive to the beginning of the context.

Strategies in Documents Reranking. In order to demonstrate the
reranking capability of LLMs, we implemented different strategies
in reranking stage for document selection. As Table 6 shows, LLM-
based sliding window reranking achieved the best result. Compared
to using DPR score directly, sliding window reranking can have
more comprehensive understanding of the retrieved documents and
obtain the coarse-grain relevance between the question, expansion

Table 6: Analysis of strategies in document selection.

Strategies LLM Sliding DPR Score Random
NQ 57.56 54.68 49.19
TriviaQA 76.62 73.04 69.42
WebQ 57.15 52.71 46.82
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Figure 5: Impact of document number.

and documents, however the high-level embedding similarity used
in DPR may include much noisy information.

Impact of Document Number. Intuitively, the question is more
likely to be answered correctly when the number of retrieved doc-
uments is larger. We conducted an experiment on the number of
documents input to the reader model, and Figure 5 shows that
within a certain range, the EM score rises along with the number of
documents, while when the number exceeds 30, the accuracy drops
to some extend. This is because simply increasing the number of
documents may lead to a decrease in the percentage of valid infor-
mation as shown in Figure 5, making it difficult for the reader model
to mine the correct answer from a large number of documents.

Complexity Analysis. Regarding the number of model parame-
ters to be learned, we compare them from two aspects: evidence
collection and answer generation. Some previous methods require
specifying specialized models to collect evidence (e.g., document
retrieval and extension generation), which introduces the training
cost for specialized models in evidence collection. Our framework is
instead based on guiding LLMs to play different roles, with evidence
collection only involving inference process. Since the inherent capa-
bilities of the reader (answer generator) have an important impact
on the performance of the ODQA task, state-of-the-art ODQA per-
formance comes from fine-tuning the reader. Following [45], we
employ T5-xl (3B) as the backbone of answer generator, whose
training cost is comparable to the baseline.

5 CONCLUSION
In this paper, we propose LLMQA that formulate the ODQA genera-
tion process as three fundamental steps: query expansion, document
selection, and answer generation, which combines the superiority
of both retrieval-based and generation-based evidence. Since LLMs
have showcased remarkable performance on generation, ranking
and evaluation, we use a generalized framework to integrate multi
role-play LLMs: generator, reranker and evaluator, which collabora-
tively contribute to each key step in the ODQA generation process.
Furthermore, we design a novel prompt optimization algorithm,
to address the limitation of prompt sensitivity, guiding LLMs in
producing higher-quality evidence and more accurate answers.
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