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ABSTRACT

Deep machine learning models are increasingly deployed in the wild, subject to
adversarial attacks. White-box model attacks assume to have full knowledge of
the deployed target models, whereas the black-box models need to infer the target
model via curated labeled dataset or sending abundant data queries and launch
attacks. The challenge of black-box lies in how to acquire data for querying target
models and effectively learn the substitute model using a minimum number of
query data, which can be real or synthetic. In this paper, we propose an effective
and confident data-free black-box attack, CODFE, which steals target model by
queries of synthetically generated data. The core of our attack is a model stealing
optimization consisting of two collaborating models (i) substitute model which
imitates the target model and (ii) generator which generates most representative
data to maximize the confidence of substitute model. We propose a novel training
procedure that steers the synthesizing direction based on the confidence of substitute
model and exploit a given set of synthetically generated images by multiple training
iterations. We show the theoretical convergence of the proposed model stealing
optimization and empirically evaluate its success rate on three datasets. Our results
show that the accuracy of substitute models and attack success rate can be up to
56% and 34% higher than the state of the art data-free black-box attacks.

1 INTRODUCTION

Emerging intelligent services, such as Google translate and optical character recognition (Google,
2016), are increasingly powered by trained deep models. Users can easily access those services
through public APIs by sending queries, such as getting inference results of classifying users’ images.
While such an open access to deployed models greatly ease users’ experience, it also opens up various
vulnerability issues to adversarial attacks. Malicious perturbation on the query images leads the
deployed models to the misclassification outcomes (Kurakin et al., 2017; Carlini & Wagner, 2017;
Madry et al., 2018), and further makes wrong decision, e.g., self-driving car to misjudge the stop sign
with sticks (Papernot et al., 2017).

Adversarial attacks can be either white-box (Ebrahimi et al., 2018; Fang et al., 2019; Truong et al.,
2021) or black-box (Ilyas et al., 2018), depending on whether the malicious users have the knowledge
of the parameters of deployed models, e.g., network architecture and weights. White-box attacks,
e.g., FGSM (Goodfellow et al., 2015) and PGD (Madry et al., 2018), adds perturbation noise on
query images based on their gradients of deployed models, assuming a full knowledge of such target
models1. In contrast, black-box attacks generate adversarial examples by inferring the target models
through abundant labeled dataset (Hinton et al., 2015) or data queries (Zhou et al., 2020; Krishna
et al., 2020). For each query, malicious users send in real images and retrieves their labels from the
target model. Such query-label pairs are then used to train substitute models (Wallace et al., 2020;
Krishna et al., 2020), which aim to imitate and steal the target models eventually. Though the prior
art has shed the light on stealing target models via the substitute models, it is a standing challenge
that how to effectively learn a substitute model using a minimum number of data queries. Moreover,
data from privacy- and business-sensitive domains, e.g., bank, and medical sectors, may have limited
accessibility to attackers and further exacerbate the difficulty of black-box attacks and model stealing
in data-free scenarios.

1We interchangeably use terms of target and deployed models.
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Recognizing the limited availability of real data for adversarial queries, (Zhou et al., 2020) proposed
a data-free model stealing method, DaST, to learn substitute models needed in black-box attacks.
DaST adopts the principle of generative adversarial networks (GANs) and has a structure of multiple
generators and one substitute model. The generators are trained with the substitute models in a
competition game. Although DaST shows the promising results of imitating the target model, it
suffers from (i) complex network structure that relies on large amount of query data and long training,
and (ii) unstable training due to a large random generating space of synthetic data. Further, it is no
mean feat to train GANs for generating adversarial examples even when real data is available (Farnia
& Ozdaglar, 2020). Thus open research questions regarding data-free model stealing persist. First,
what is the effective network structure that can capture the target models using a minimum number
of queries? Secondly, is it necessary to explore the entire generating space? Can one selectively
generate examples by exploiting seeds and then lead to better substitute models?

In this paper, we consider a stringent adversarial scenario, a black-box model with no access to the
real data for querying the target model. We propose a confident data-free model stealing algorithm,
CODFE, which learns a substitute model via querying the target model through the synthetic data
from the designed generator. CODFE then generates the adversarial examples by applying the state-
of-the-art gradient-based attacks (Goodfellow et al., 2015; Kurakin et al., 2017; Madry et al., 2018)
through the trained substitute models. We aim to efficiently imitate the target model through a small
number of queries and architect CODFE as two collaborating light-weight models, the generator and
substitute model. To efficiently steer the synthetic generation toward an accurate substitute model,
we minimize the cross entropy of the substitute model and maximize the confidence of the generated
examples. Moreover, to improve the convergence of CODFE, we exploits every set of generated data
by multiple iterations of training/updates on the generator and substitute model. We theoretically
show the convergence of the proposed stealing process, showing its effectiveness to learn substitute
models. Our empirical evaluation on three datasets under both untargeted and targeted attacks shows
that CODFE can efficiently steal a target model using a small number of queries and successfully
generate adversarial examples using the substitute model. Compared to the state-of-the-art data-free
black-box model using three benchmark datasets, CODFE achieves 14%–56% higher accuracy in
substitute models using a 37%–95% lower number of synthetic data queries and then leads to higher
attack success rate up to 34%.

The contribution of this paper is three fold: (i) efficient confident data-free model stealing framework
with a minimum number of queries (Section 3.1), (ii) a theoretical guarantee on the convergence of
imitation process (Section 3.3), and (iii) effective and stable black-box attacks on multiple datasets
and adversarial scenarios (Section 4).

2 RELATED WORK

Data-free black-box adversarial attacks contains two phases: stealing process to imitate the target
model and attacking process which adds adversarial perturbation so as to mislead the target model.
Thus, we organize the related studies according to these two phases.

Model stealing. The goal of model stealing is to imitate the knowledge from a deployed model
(target model) and then obtain a highly similar substitute model (Krishna et al., 2020; Jagielski et al.,
2020; Chandrasekaran et al., 2020; Zhou et al., 2020). A successful substitute model is able to obtain
the implicit mapping function (or knowledge, in high level) of the target model by different network
structures (Kariyappa et al., 2021; Orekondy et al., 2019a). There are two types of model stealing
methods depending on whether the attackers are able to access the real training data (or part of it). In
the case when real data is available, knowledge distilling (Hinton et al., 2015) extracts the knowledge
of the target model. The key idea is that the substitute model is trained by class probabilities as well
as part of the dataset. The class probabilities (so called “soft targets”) are produced by inferring
the target model. By this means, the knowledge of the big target model can be transferred to a
small substitute model in order to reduce inference cost. When real data is not available for training,
attackers can only imitates the target model through querying synthetic examples. (Krishna et al.,
2020) uses randomly generated sentences for querying NLP models, but lacks generality beyond
NLP tasks. DaST (Zhou et al., 2020) employs the GANs model to generate images by using a large
number of queries and experiences the limitation of training instability of GANs. Moreover, when
specifically considering classification as the learning task, the querying output of can either be label
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or classification probability. Label-query stealing (Jagielski et al., 2020; Chandrasekaran et al., 2020;
Zhou et al., 2020) trains the substitute model using the query-label pairs. In query-logit(probability)
stealing (Orekondy et al., 2019b), attackers can make use of some unlabelled normal examples (Juuti
et al., 2019). Here, we explicitly address the data-free model stealing by a novel generative model
that requires a low number of synthetic query examples in scenarios of query-label and query-logit.

Adversarial attacks. Adversarial attacks aim to generate visual indistinguishable adversarial
examples to fool target models. Attacks can be under white-box setting (Dong et al., 2018; Goodfellow
et al., 2015; Kurakin et al., 2017; Papernot et al., 2016; Carlini & Wagner, 2017; Szegedy et al., 2014),
or black-box attack settings (Ilyas et al., 2018). As the crucial difference among them is that white-box
attackers can access the target model, most white-box attack methods can be applied for black-box
setting using a substitute model. Thus, in the following, we assume there exists a substitute model
so that it is unnecessary to discuss white-box or black-box attacks separately. Adversarial attacks
can be summarized into two categories: optimization- and gradient-based. The optimization-based
methods (Szegedy et al., 2014; Carlini & Wagner, 2017) minimize the distance between the normal
and adversarial examples while considering the misclassification of adversarial examples (Szegedy
et al., 2014), or find perturbation which minimizes the distance of the examples (Carlini & Wagner,
2017). The gradient-based approaches (Dong et al., 2018; Goodfellow et al., 2015; Kurakin et al.,
2017; Papernot et al., 2016) are extensively explored. FGSM (Goodfellow et al., 2015) is an one-step
attack that generates the noise according to the gradient signs of the examples and adds the noise into
the normal examples to obtain the corresponding adversarial examples. BIM (Kurakin et al., 2017) is
an enhanced iterative version of FGSM while MI-FGSM (Dong et al., 2018) elaborates the momentum
on BIM for higher transferability. Till date, the strongest adversarial attack is PGD (Madry et al.,
2018; Croce & Hein, 2020), state-of-the-art iterative version of FGSM, initializes the example at
a random point and does random restarts in each iteration. The substitute model obtained through
the proposed modeling stealing optimizaiton is compatible and applicable with these gradient-based
adversarial methods.

3 METHODOLOGY

3.1 ADVERSARIAL MODELS

Here, a target model T that conducts classification tasks is deployed and accessible for data query,
e.g., inferencing class labels for query data. Given an input x ∈ X , T (x) = y, where y is the
inference output2 of model T . There are two types of data to T : benign examples and adversarial
examples, denoted by x̄ and x̂, respectively. Let ȳ be the inference label of T for x̄. Adversarial
attacks aims to generate a visual indistinguishable example x̂ = x̄ + ε to fool the target model,
where ε is the perturbation of the normal example x̄. x̂ is the corresponding adversarial example.
There are two types of attacks: untargeted and targeted, where the former misleads the target model
to misclassify the adversarial example, and the later leads the target model to a particular type of
classification. In an untargeted attack, attackers tries to misleads the target model to misclassify the
adversarial example by minimizing ‖ε‖ such that T (x̂) 6= ȳ. In the targeted attacks, adversarial
attack tries to make the target model to classify the adversarial example to a particular label l, i.e.,
yl, T (x̂) = yl. Attackers take a benign example and then adds the perturbation to the gradient of x̄
in the target model by the function ε = P (∇x̄T (x̄)), e.g., FGSM (Goodfellow et al., 2015), where
P is the perturbation function over the gradient. Thus, for both targeted and untargeted attacks,
generating ε for x̄ requires the knowledge of target model which can be either known or unknown to
attackers, corresponding to white or black-box attacks respectively. In white-box settings, attackers
can directly access T to generate adversarial examples by adding ε. However, in black-box attacks,
as the attackers can’t access the target model, a substitute model S that imitates the target model is
required to generate adversarial examples,.

Here,we particularly consider black-box attacks, where T is unknown to attackers. Moreover, we
assume that attackers do not have any real-world dataset to train the substitute model. In this black-
box setting, though attackers can’t access the target model, they can query it and get the inference
results. We consider two types of inference results: the label-only and the probability-only. In the
label-only scenario, attackers can get the corresponding inference labels of the query examples from

2T (x) is label in label-only scenario, and is probability vector for probability-only scenario. In this section
we refer it as label for simplifications.
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T . While in the probability-only scenario, the output probability of T can be obtained. The main
difference for label-only and probability-only is that the label-only feedback is less informative, and
thus more difficult to attack.
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Figure 1: CODFE framework: data-free model stealing process and attacking process.

3.2 CONFIDENT DATA FREE ATTACKS (CODFE)

Our goal is to learn a substitute model that steals the knowledge of the target model with no real data
and via a minimum number of queries. Then, we can use the substitute models to launch gradient
based attacks, e.g.,FGSM, BIM and PGD .

The architecture of CODFE is shown in Figure 1, containing a stealing stealing process and an
attacking process. For stealing process, we first generate synthetic examples X = G(Z) from noises
Z to query T and get the output T (X). Next, X associated with T (X) is feed into S for training.
The output of the substitute model S(G(Z)) is then used to update G so as to generate better synthetic
examples. When the stealing is finished, normal examples X̄ and the stolen S can be combined jointly
to generate adversarial examples X̂ using adversarial attack methods. We note that the proposed
modeling stealing approaches are compatible with existing white-box attack approaches, which rely
on the information of target models.

Notations: In this data-free approach, a set of noise vectorsZ = {z1, ..., zM}whereM is the number
of noise vectors, is generated as the input data of G. X = {xi | xi = G(zi), i ∈ [M ]} denotes the
corresponding synthetic examples generated by the generator. X is used to query the target model so
that we can obtain the query results T (X) = {T (xi) | i ∈ [M ]}. In the probability-only scenario
T (x) is the output probability vector of the input example x. While in the label-only scenario, T (x)
is the one-hot vector of the predicted labels. In this paper, we assume T is a model of common
classification task, with N number of classes. We use Tj(x) to denote the j-th (j ∈ N ) element of
the output.

The objective of the substitute model: Since S is a substitute of T , their outputs shall be as
consistent as possible. Inspired by knowledge distillation (Hinton et al., 2015), S imitates the outputs
of T through the cross entropy loss. According to the definition of T (x), the following loss function
(1) can be applied to both the probability-only scenario and the label-only scenario.

LS = CE(T (X),S(X)) = − 1

M

M∑
i=1

N∑
j=1

Tj(xi) logSj(xi), (1)

where CE denotes cross entropy. The objective is to learn the generalization ability of T . Using the
cross entropy loss, S can generalize in a similar way as T . Thus we can say S gets the knowledge
transferred from T and S can be used to represent T when generating adversarial examples in the
black-box setting.

The objective of the generator: The generator G is responsible for generating synthetic examples
to query the target model. The key challenge is to generate representative synthetic examples. If
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we use a real-world example x̄ to query T and assume that T is well trained, the confidence of
the output T (x̄) is expected to be high where the confidence is defined as the biggest element of
the output {Tk (x̄) | ∀j : Tj (x̄) ≤ Tk (x̄)}. In our attack setting, we only have synthetic examples
to query T . Our goal is to simulate the queries of using real-world examples. Given a synthetic
example x = G(z), where z is a noise vector. If the confidence of T (x) is high, x is be regarded
as a representative example (Li & Sethi, 2006; ?). Consequently, the objective of G is to gener-
ate x that maximizes the confidence of T (x). However, we can’t straightforwardly make use of
arg maxθg {Tk (G(z)) | ∀j : Tj (G(z)) ≤ Tk (G(z))} to be the optimization goal, where θg is the
model parameters of G. The reason is that the backpropagation of this optimization goal requires the
gradient information of T , but the target model is not accessible in our setting. Since S mimics the
outputs of T in the training process, we use S(x) to approximate T (x). Thus the loss function of G
can be defined as Equation (2).

LG = − 1

M

M∑
i=1

{logSk (G(zi)) | ∀j : Sj (G(zi)) ≤ Sk (G(zi))} , (2)

where Sj(G(z)) represents the j-th element of the output S(G(z)).

Stealing algorithm: In our approach, S and G are trained together in the stealing procedure shown
in Algorithm 1. We generate a set of random noise vectors Z in the beginning. Then we have
multiple rounds to iteratively train S and G. Specifically, the noise vector is sent as an input into G
for generating a fixed set of synthetic examples X at the beginning of each round. We then use the
synthetic examples to query T and obtain the query-result pairs (X, T (X)). The pairs are not just
used to update one step (e.g., one SGD step) of S . Instead, they can be applied to train S for multiple
iterations within a round. We apply mini-batch training. Then a local optima of S for (X, T (X)) can
be found, which is good for the stability of the convergence process and we also empirically evaluate
it in the experiment section. In each round, S is updated before updating G, because in the loss LG
we use S(x) to be the approximation of T (x). Thus, S should be firstly updated to imitate the output
of T . We explicitly exploit the input noise set Z for multiple rounds. In each round, the generator G
is trained to obtain new synthetic examples which are more representative to query the target model
in the next round. After the model stealing training, S is applied to produce adversarial examples and
launch attacks on T .

Algorithm 1: CODFE

1 Let θs be the model parameters of S and θg be the model parameters of G
2 Generate a noise set Z = {z}
3 for number of rounds do
4 Generate examples X = G(Z) using the generator
5 Get the query results T (X) from the target model

/* train the substitute model */
6 for number of iterations do
7 Sample a batch X̃ from X

8 Get the corresponding T (X̃)

9 Get the output of the substitute model S(X̃)
10 Update θs by minimizing LS using first order stochastic optimization

/* train the generator */
11 for number of iterations do
12 Sample a batch Z̃ from Z

13 Get the output of the substitute model S(G(Z̃))
14 Update θg by minimizing LG using first order stochastic optimization

3.3 ANALYSIS

The cross entropy loss: In order to imitate the target model, the output of the substitute model
needs to be as similar to the output of the target model as possible. The two models can be regarded
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as two distributions. The most straightforward way to enforce their similarity is to minimize the
Kullback-Leibler divergence (Kullback & Leibler, 1951) between them. Here, we make use of cross
entropy to transfer the generalization ability of the target model to the substitute model (Hinton et al.,
2015). In our black-box setting, the KL-divergence loss and the cross entropy loss can be regarded as
equivalent loss functions for stochastic optimization. But cross entropy can avoid gradient vanishing
in white-box cases (see the Appendix for more details).

Convergence: In Algorithm 1, S and G are updated iteratively in each round t. The algorithm
proceeds by coordinate descent. Updating S minimizes LS while updating G also indirectly de-
creases the value of LS because it maximizes the confidence of the outputs. Let θ(t)

s and θ(t)
g be

the model parameters of S and G after the training of round t. To analyze the convergence of
Algorithm 1, we make the following assumptions according to the optimization objectives of S
and T . In round t, given a noise vector z ∈ Z, we assume that after the training of S (line 6-10),
arg maxiSi(G(z; θ

(t−1)
g ); θ

(t)
s ) = arg maxiTi(G(z; θ

(t−1)
g )). And after the training of G (line 11-14),

the confidence of T ’s output is higher. Then, we can have Theorem 1 that shows LS can converge
in our proposed algorithm. We also verify the convergence performance of our algorithm in the
experiment part.

Theorem 1. Given a noise vector z ∈ Z. Let f
(
θ

(t)
s

)
= CE

(
T
(
G(z; θ

(t)
g )
)
,S
(
G(z; θ

(t)
g ); θ

(t)
s

))
.

Training the substitute model by Algorithm 1, we have limt→∞ f(θ
(t)
s ) = ε∗, where ε∗ ≥ 0. (Proof

in Appendix B)

4 EVALUATION

In this section, we comprehensively evaluate the attacking effectiveness and convergence performance
of CODFE under various attacking scenarios and methods. As our main contributions lie on the
model stealing, we stress the model stealing accuracy of CODFE compared to DaST (Zhou et al.,
2020), the state of the art data-free model stealing approach. Last, we demonstrate that only a small
number of queries is needed for learning substitute models and crafting adversarial examples.

4.1 EXPERIMENTAL SETUP

Dataset and Model Structure: We evaluate our proposed method on three datasets: MNIST (LeCun
et al., 1998), Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al., 2009). Note that
for each dataset we use different network structures for target and substitute models as the attackers
lack of the prior knowledge of the target structure. For MNIST, we utilize a lightweight CNN of four
and three convolutional layers for target and substitute models, respectively. Both S and T structures
of Fashion-MNIST are the same with MNIST. As for Cifar-10, the commonly adopted ResNet34 is
used for T and we select CNN of four convolutional layers for S (as DaST) in the experiments.

Attacking Scenarios and Methods: Two types of scenarios are considered: label-only, where the
attackers can access the output label only, and probability-only, where the accessible output is
classification probabilities. We denote them as CODFE-L and CODFE-P respectively. Here we also
assume that the attacks in both scenarios are free to query T unlimited times. To generate adversarial
examples, we apply three existing attacking methods including FGSM (Goodfellow et al., 2015),
BIM (Kurakin et al., 2017), and projected gradient descent (PGD) (Madry et al., 2018).

Evaluation Criteria: The goal of our confident data-free attack is to mislead T by two types of
attacks. The targeted attack aims at leading T to output specific label (In the experiments, we use
the second class as target for all three datasets.). However, the untargeted attack just aims at making
T take wrong class label. The criteria to evaluate both types of attacks are attack success rate (ASR),
denoted by nsuc/nall, where nall is the number of generated adversarial examples to fool T , and
nsuc is the number of successful attempts. For attacking efficiency, we use the number of queries to
reach the maximum accuracy of substitute model.

4.2 MODEL STEALING PERFORMANCE

Model Stealing Accuracy. Here we evaluate the accuracy of model stealing results compared
to baseline model of DaST on both label-only and probability-only scenarios in Figure (2). As
DaST and CODFE apply different updating strategies and batch sizes, it is hard to uniform them
by training iterations or rounds. For a fair comparison, we use number of the queries as the X-
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Figure 2: Accuracy of substitute models.

axis3. We further note that DaST trains the entire model via one training iteration per set of
synthetically generated data, whereas CODFE updates the entire model via multiple training iterations
per set of synthetic data. From Figure (2a) to (2d), it is clear that the substitute model accuracy
of CODFE outperforms DaST with a significant gap (89 v.s.52 for label-only and 91 v.s.30 for
probability-only on MNIST as example). Moreover, CODFE can quickly reach high accuracy
with a much smaller number of queries than DaST. It strongly demonstrates the effectiveness of
CODFE in stealing the target model in a data-free manner. Another worth mentioning observation is
that CODFE converges to the maximum accuracy steadily in both label-only and probability-only
scenarios, whereas DaST apparently vibrates in both. Similar observation can be made for datasets
of Fashion-MNIST. The only difference is that due to different task complexity, the accuracy of
stolen model of Fashion-MNIST is lower than that of MNIST using the same CNN. We also provide
the long run training process of DaST to verify our statement on its model stealing performance.
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Figure 3: Convergence of
CODFE over training rounds:
loss of the substitute model

Convergence Process. For DaST, we can see from Figure (2) that
the training accuracy fluctuates and doesn’t stop at a good local
optima along the entire training procedure of 350,000 queries
for (2a)(2b) (450,000, 500,000 for (2c)(2d) respectively). The
accuracy of substitute model does not show an increasing trend
in Figure (2a)(2c). Nevertheless DaST saves the substitute model
each iteration, and choose the one of highest accuracy to be the
final results. We argue the it is infeasible to select the best model
for DaST because attackers do not have real data to evaluate their
saved models. Another issue is that what stopping criteria shall be
used for terminating the training especially when the accuracy does
not converge stably, e.g., shown in Figure. (2c). Further, once the
model stealing process ends, it requires additional resources and
efforts to store and to select the best substitute model. This further
leads to the unstable the training process of DaST. Comparatively,
the convergence process of CODFE is almost monotonic. The
training accuracy increase smoothly during the whole training
phrase, and converge to local optima at around 200,000 queries for
MNIST and 400,000 for Fashion-MNIST. The loss of substitute
models shown in Figure 4 stays consistent with our theoretical
analysis on convergence guarantee in Section. 3.3.

3Here we limit the number of queries for plotting according to the convergence of CODFE. Actually the
training process of DaST is far longer however its modeling stealing accuracy stays fluctuating below CODFE.
The entire results is provided in Appendix.
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Table 1: Attack success rates on three datasets: CODFE v.s. DaST under adversarial scenarios of
label-only and probability-only.

Untargeted Targeted
Dataset Attack DaST-P CODFE-P DaST-L CODFE-L DaST-P CODFE-P DaST-L CODFE-L

FGSM 24.65 52.00 20.22 53.72 6.33 16.04 6.32 16.47
MNIST BIM 27.93 61.76 27.83 65.26 2.49 15.42 2.07 18.94

PGD 28.42 60.92 27.73 65.19 2.78 15.33 2.13 18.97

FGSM 87.76 89.08 88.77 86.55 2.10 30.74 9.81 17.61
Fashion-MNIST BIM 88.50 90.42 85.10 87.10 6.18 37.28 23.46 28.46

PGD 89.93 92.07 85.60 88.69 5.71 37.75 23.55 28.63

FGSM 56.06 58.60 54.62 57.99 0.20 0.22 0.16 0.22
Cifar-10 BIM 58.54 60.18 56.25 60.02 0.27 0.27 0.17 0.20

PGD 58.52 59.95 56.15 59.50 0.29 0.25 0.12 0.19

There are multiple reasons behind such differences in convergence between DaST and CODFE. First,
CODFE generates a set of synthetic data to update the generator and the substitute model via multiple
training iterations, aiming to find the local optima for each set. On the contrary, DaST generates a new
set of examples in each iteration and the substitute model and the generator are updated through this
set once. As a result, each set is used to guide only one training iteration. However, such one-iteration
update provides limited guidance to the training, even worse, the knowledge learned by one update
can be dominated by random factors of a new set of synthetic data. Second, the training process
in DaST is similar to GANs (Cha et al., 2021; Jeong & Shin, 2021) and inherit the limitations of
GANs. Under GANs, real examples are applied to guide the training. Real examples are limited in a
small region of feature space. However, for synthetic noise pictures, each new set generated from
different seeds can be totally different from the others, which brings instability especially in the case
of synthetic examples from a large random generating space. Thus, in CODFE, we only use a fixed
set of random seeds and fully exploit them in multiple rounds. Thirdly, the objective function of the
generator of DaST are trained in a competition game with S , but for our confidence-based objective,
the training procedure is a collaborative game among them. The optimization objectives of S and G
are complimentary rather than contradictory, and thus enhances stability.

4.3 ATTACK SUCCESS RATES

Table 2: MNIST: ASR using unlabeled
real data to steal model.

Untargeted Targeted
Attack Real-P Real-L Real-P Real-L

FGSM 63.95 61.80 16.38 15.68
BIM 79.02 80.24 29.95 30.06
PGD 78.77 80.46 29.48 30.20

In this part, we evaluate the attack success rate in both
targeted and untargetd adversarial under label-only and
probability-only scenarios on three datasets. The experi-
mental results by ASR are summarized in Table 1. Cifar-10
dataset is chosen here to show the results of the data-free
attack among more complex network and task. Prior to
discussing the ASR of CODFE, we first show the ASR
achieved by real data to steal the target model for MNIST
dataset in Table 2. Here we use real data to query the target
model so as to train the substitute model. Then we apply the same attack methods for generating
adversarial examples. It can be regarded as the upper-bound of ASR for our data-free settings.
Overall, the attack success rate of CODFE reaches around 85% of the real data case for untargeted
attacks and worse results for targeted attacks depending on the attack methods. From Table 1, it
is clear to see that ASR of CODFE significantly outperforms DaST from two to fifteen times high.
Comparing untargeted or targeted attacks, both CODFE and DaST show higher ASR for untargeted
attack. This can be explained by that untargeted attacks only need classification to shift out of the
correct label while the targeted attack requires an elaborate ε to lead to the specific misclassification
outcome. As a result, more significant ASR improvement resulted from CODFE can be observed for
the challenge targeted cases than the untargeted ones. Also, the result that CODFE achieves about
55% high of real data scenario is as expected, because more elaborate ε is required but too demanding
for synthetic data.
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When it comes to difference between label-only and probability-only, higher attack success rates
are achieved under the probability-only scenarios. This can be explained by that in label-only
scenarios, attackers train the substitute model by pairs of synthetic data X and querying output labels.
Specifically, the learning of the substitute model is to imitate the output label of T by cross entropy
loss. Thus, when outputting the same label (class element of maximum probability), it does not
provide information for training. On the contrary, the feedback the probability vector of all classes
provides much more supervision to the substitute model. When S and T output the same label
of maximum probability, S continues to learn until all of the probabilities become similar. It is in
line with our previous statement that probability-only scenarios are more informative, and achieve
stronger attacks.

Let us zoom into the difference among datasets. In general, CODFE greatly outperforms DaST in all
three datasets. Compared to MNIST, the attack success rate of Fashion-MNIST is higher although the
accuracy of S in Figure. 2 is lower. It is because that the classification task of MNIST is very easy,
adding perturbation helps more for attacking when the task is not that easy. However, despite the
fact that Cifar-10 task is more challenging than Fashion-MNIST, the attack success rate on Cifar-10
appears to be lower. The reason of such results lies on the fact of low accuracy of the substitute
model. Training on Cifar-10 even with real data and deep networks can be difficult (Çalik & Demirci,
2018; Thakkar et al., 2018). Without surprise, shallow substitute models trained from synthetic data
thus reach even lower accuracy. This observation unfortunately implies the limitation of data-free
adversarial attacks in complex learning tasks that need deeper network structures.

4.4 ATTACKING EFFICIENCY

Table 3: Number of queries to achieve the maxi-
mum substitute model accuracy.

Dataset DaST-P CODFE-P DaST-L CODFE-L

MNIST 5900000 352452 21500000 344414

Fashion-MNIST 900000 445488 750000 475487

Cifar-10 1000000 166410 300000 195466

Another performance advantage of CODFE is
attacking efficiency, compared to the other data-
free black-box attacks. We zoom into the met-
rics to show efficiency of the proposed model
stealing process: the number of queries needed
to achieve the maximum accuracy for substi-
tute model accuracy. The results of number
of queries and training time of two version of
CODFE are summarized in Table 3. One can see
that CODFE requires 37%–95% fewer queries
to train the substitute models. As CODFE has light-weight networks, a smaller number of query pairs
is needed and the required training time is thus lower. Another reason lies on the convergence speed.
As the training of substitute model of DaST fluctuates a lot, it is hard to find the terminating point of
training process so that more iterations are needed to obtain better S. Moreover, as the generator of
DaST contains several different components, e.g., one generator per class, it requires a large number
of query pairs to train such complex networks and faces the difficulty of slow convergence or even
non-convergence. In contrast, CODFE converges steadily and fast. In a nutshell, CODFE not only
requires a lower number of synthetic query examples but also training time than DaST.

5 CONCLUSION

It’s challenging to design adversarial attacks without the knowledge of the target model and the access
to real data. In this paper, we proposed a confident data-free model stealing framework, CODFE,
which learns a substitute model through querying the target model via synthetically generated data.
CODFE is composed of two collaborating models, a generator and a substitute model, aiming to
maximize the confidence of generating synthetic images and minimizing the cross entropy loss of
substitute model. We design a training procedure to explicitly exploit every set of synthetic images
and theoretically prove its convergence. We empirically demonstrate that CODFE effectively steals
the target model using a low number of queries for three data sets. Under various of adversarial
scenarios we show that the substitute model achieves 14%–56% higher accuracy and up to 34%
higher attack success rate than the state of the art data-free model stealing adversarial attacks.
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A CROSS ENTROPY AND KL-DIVERGENCE

Let S(x) and T (x) to be the softmax outputs of the substitute model and the target model. The
expressions of the KL-divergence loss and the cross entropy loss are shown in the following.

LKL(x) =

N∑
i=1

Ti(x) log

(
Ti(x)

Si(x)

)

LCE(x) = −
N∑
i=1

Ti(x) logSi(x)

In the black-box setting of this paper, T ’s model parameters are unavailable. Therefore T (x) is a
constant vector. In this case, we have

∇xLKL(x) = ∇xLCE(x) = −
N∑
i=1

Ti(x)∇ [logSi(x)]

But an interesting observation is that in white-box settings (T is derivable) cross entropy won’t suffer
from vanishing gradients but KL-divergence can suffer from vanishing gradients. The justification is
in the following. Taking the gradient over LKL(x), we have

∇xLKL(x) =

N∑
i=1

∂Ti
∂x

log
Ti
Si

+
∂Ti
∂x
− ∂Si

∂x

Ti
Si

=

N∑
i=1

∂Ti
∂x

log
Ti
Si
− ∂Si

∂x

Ti
Si
,

where
∑N
i=1

∂Ti
∂x = 0 because

∑N
i=1 Ti = 1. When S converges to T we have Ti(x) =

Si(x) (1 + εi(x)) where εi(x) tends to 0 during the convergence process. When εi(x) tends to
0, log (1 + εi(x)) ≈ εi(x). Then we have

∇xLKL(x) ≈
N∑
i=1

∂Ti
∂x

εi −
∂Si
∂x

(1 + εi)

≈
N∑
i=1

εi

(
∂Ti
∂x
− ∂Si

∂x

)
,

(3)

where we have applied
∑N
i=1

∂Si
∂x = 0 because

∑N
i=1 Si = 1. According to Equation (3), the gradient

of LKL(x) will gradually vanish after many iterations. Then taking the gradient over LCE(x), we
have

∇xLCE(x) = −
N∑
i=1

∂Ti
∂x

logSi +
∂Si
∂x

Ti
Si

≈ −
N∑
i=1

∂Ti
∂x

logSi −
N∑
i=1

∂Si
∂x
−

N∑
i=1

εi
∂Si
∂x

= −
N∑
i=1

∂Ti
∂x

logSi −
N∑
i=1

εi
∂Si
∂x

where the first term won’t vanish during the iterations. Therefore the cross entropy loss won’t suffer
from vanishing gradients. Note that we have applied

∑N
i=1

∂Si
∂x = 0.

13



Under review as a conference paper at ICLR 2022

B PROOF OF THEOREM 1

B.1 NOTATIONS AND LEMMAS

For simplicity, we use T
(
z; θ

(t)
g

)
to denote T

(
G(z; θ

(t)
g )
)

and S
(
z; θ

(t)
g , θ

(t)
s

)
to denote

S
(
G(z; θ

(t)
g ); θ

(t)
s

)
. In order to prove Theorem 1, we firstly derive Lemma 1 according to the

assumptions in Section 3.3.

Lemma 1. After the training of G (line 11-14, Algorithm 1) in round t, given z ∈ Z, we have
CE(T (z; θ

(t)
g ),S(z; θ

(t)
g , θ

(t)
s )) ≤ CE(T (z; θ

(t−1)
g ),S(z; θ

(t−1)
g , θ

(t)
s )).

Proof. After training G we have

Si∗(z, θ(t)
g , θ(t)

s ) ≥ Si∗(z, θ(t−1)
g , θ(t)

s ),

Ti∗(z, θ(t)
g , θ(t)

s ) ≥ Ti∗(z, θ(t−1)
g , θ(t)

s ),

where i∗ = arg maxiSi(G(z; θ
(t−1)
g ); θ

(t)
s ) = arg maxiTi(G(z; θ

(t−1)
g )). Then we have

CE(T (z; θ(t)
g ),S(z; θ(t)

g , θ(t)
s )) = −

N∑
i=1

Ti(z; θ(t)
g ) logSi(z; θ(t)

g , θ(t)
s )

≤ −
N∑
i=1

Ti(z; θ(t−1)
g ) logSi(z; θ(t)

g , θ(t)
s )

≤ −
N∑
i=1

Ti(z; θ(t−1)
g ) logSi(z; θ(t−1)

g , θ(t)
s )

= CE(T (z; θ(t−1)
g ),S(z; θ(t−1)

g , θ(t)
s ))

B.2 COMPLETING THE PROOF

Theorem 1. Given z ∈ Z. Let f
(
θ

(t)
s

)
= CE

(
T
(
G(z; θ

(t)
g )
)
,S
(
G(z; θ

(t)
g ); θ

(t)
s

))
. Training the

substitute model by Algorithm 1, we have limt→∞ f(θ
(t)
s ) = ε∗, where ε∗ ≥ 0.

Proof. We can simplify f
(
θ

(t)
s

)
as

f
(
θ(t)
s

)
= CE

(
T
(
z; θ(t)

)
,S
(
z; θ(t)

g , θ(t)
s

))
,

where t is used to index the training rounds. Using Lemma 1, We have

f
(
θ(t+1)
s

)
≤ CE

(
T
(
z; θg(t)

)
, S
(
z; θ(t)

g , θ(t+1)
s

))
.

Since the cross entropy loss is the loss function of S, we have

f
(
θ(t+1)
s

)
≤ CE

(
T
(
z, θg(t)

)
,S
(
z, θ(t)

g , θ(t+1)
s

))
≤ CE

(
T
(
z, θg(t)

)
, S
(
z, θ(t)

g , θ(t)
s

))
= f

(
θ(t)
s

)
Therefore, we know that f (θs) is monotone decreasing during the training. f (θs) = 0 if and only if
T
(
z; θ(t)

)
= S

(
z; θ

(t)
g , θ

(t)
s

)
. Otherwise f (θs) > 0. Since f (θs) ≥ 0, it will converge. However

the outputs of S and T usually won’t be exactly the same. Then the convergence can be formally
represented as limt→∞ f(θ

(t)
s ) = ε∗, where ε∗ ≥ 0.
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C ADDITIONAL EXPERIMENTAL RESULTS
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(a) Probability-only:MNIST
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(b) Label-only:MNIST
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(c) Probability-only:Fashion-MNIST
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(d) Label-only:Fashion-MNIST

Figure 4: Substitute model accuracy.
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