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Abstract— This paper proposes a method for detecting
drivable regions in challenging terrains using RGB-D data.
By integrating depth information with semantic segmentation,
our approach significantly improves detection accuracy across
diverse landscapes. Leveraging the SegFormer architecture,
we effectively distinguish drivable from non-drivable areas.
Additionally, we introduce a depth-based refinement mechanism
to ensure reliable performance in real-world scenarios. Extensive
evaluation in both off-road and on-road environments confirms
the effectiveness of our approach. Using the SA-1B dataset
with grounded SAM, our method achieves precise delineation
of road classes during training. Overall, this work advances
autonomous navigation systems by providing a comprehensive
solution for drivable region detection in complex terrains in
real time, even on edge computing devices.

I. INTRODUCTION

Understanding drivable region in uneven terrain is a
challenging problem which is essential for all terrain mobile
robots which are deployed in rough terrain environments.
During this phase, critical road features such as road boundary
lines play a vital role. However, road signs may not always
be present on such environments. To deal with off-road
environments, we should consider extra factors. One such
factor is traversability, which refers to the ability of the vehicle
to access an area physically. This factor takes into account
the maximum gradient and height that the mobile robot can
traverse. By estimating the variation of surface elevation, it
is possible to identify and exclude regions that are physically
inaccessible to the Mobile robot.

Determining a drivable area based solely on traversability
is not a comprehensive criterion. While a region may be
physically traversable, there may only be a limited number
of directions suitable for driving to optimize traffic flow and
ensure safety. This attribute is referred to as “drivability.”
In off-road environments, explicit road boundaries are not
available. However, areas frequently used for transportation
display distinctive textures compared to their surroundings.
By analyzing the texture variation of the ground surface,
vehicles can effectively identify drivable regions of off-road
environments.

Our primary objective is to ascertain the drivable area
in front of the vehicle by employing two onboard cameras.
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Given the absence of sufficient traffic information in off-
road environments, estimating ground geometry and texture
information through image analysis is critical. To achieve this
goal, we intend to robustly combine the depth information
obtained from the stereo camera setup as a post-processing
to the segmentation results generated by deep learning model
that will be trained on public datasets.
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Fig. 1: Performance in unstructured outdoor terrains

II. RELATED WORK

Drivable region recognition in off-road environment de-
pends on the road traversability as well as on the capability of
the mobile robot. Many traditional approaches, as summarized
in [1], have been extensively explored over time. LiDAR
based methods that either only use only PointCloud data [2]
or fuse it with RGB image data [3, 4] are also garnering a lot
of interest from the field. Despite the depth advantage that
LiDAR offers, these approaches are less robust with changes
in sensor capabilities.

Semantic segmentation methods to obtain traversable region
in off-road environment has been explored in various works
such as [5-8]. However, these methods typically rely on
monocular image data (RGB), which limits their ability
to capture 3D spatial intuition necessary for real-world
applications.

A. Using stereo depth data as a model input

Previous works such as [9-12] focus on directly using multi-
camera RGB or RGB-D data as input to an encoder-decoder
model architectures in order to exploit the depth information
for better drivable region detection. Based on the results
published they do have a notable performance improvements
in the respective data domain. These methods especially rely
on the assumption that deep neural networks being used will
be able to capture the relevant features given enough labeled
examples rather than exploring the physical importance of
depth itself. Conventional image processing methods have
also been surveyed in [1], but they also use domain specific
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knowledge to perform performance improvements. Due to
this limiting requirements of large domain specific data we
look into more first principles approach described in the next
subsection.

B. Using stereo depth data for post-processing

The focus of our research is also to develop a model for
embedded devices with real time inference. Traditional RGB-
D data-based models as explained above are inherently slower
due to their multi-encoder based designs. Thus, incorporating
depth based rejection of the segmentation area to improve
the segmentation output can help maintain the real time
inference. Using depth data as a means of correction has had
been explored in the past [13]. But in contrast to existing
approaches our method is invariant to roughness and can also
handle vehicles according to their traversing capability.

III. DATASET GENERATION

Several open-source datasets, including Yamaha-CMU
Off Road [14], CAVS-CaSSed [15], CAVS-CAT [16] and
OFFSED [7] are available for off-road environments. Ad-
ditionally, RELLIS-3D [17] and RUGD [18] are other two
popular datasets for off-road robotics. However, in our study,
we exclusively utilize the first four datasets: Yamaha, CAVS-
CaSSed, CAVS-CAT, and OFFSED. The rationale for this
selection is elaborated in Appendix I-A. Table I provides an
overview of these public off-road datasets used in our study.

Dataset Images | Classes | Modality
Yamaha-CMU Off Road [14] 1076 8 RGB
CAVS-CaSSed [15] 1679 6 RGB
CAVS-CAT [16] 12,300 - RGB
OFFSED [7] 1018 19 RGB

TABLE I: Open-Source datasets for off-road environments

These datasets are not diverse enough to be used directly
in our research. Hence, to augment both size and diversity,
we employed a vision language foundation model, Grounded-
SAM [19] for creating segmentation masks.

Grounded-SAM combines two key foundation models,
SAM (Segment Anything Model) [20], general-purpose seg-
mentation model trained on large-scale dataset and Grounding
DINO [21], text-prompt based object detection model. This
integration enables Grounded-SAM to detect and segment
any regions based on arbitrary text-prompt inputs.

Our dataset generation pipeline (see Fig.2) comprises a
pre-trained Grounded-SAM model and a Road-Classifier.
Grounded-SAM model takes images and text-prompts (ex:
“dirt road”,“puddle”, etc.) and outputs a segmented mask,
which we refer as region candidates. These region candidates
need further tuning as Grounded-SAM is likely to generate
false positives on such loosely worded text prompts like
“off-road”. Hence, we train a Road Classifier from the public
off-road dataset (I) and use this as a validator for this language-
based segmentation model. This finally classifies the pixels
within the segmented masks into three different classes,
namely ‘road’, ‘semi-road’ and ’background’. A semi-road
includes an additional safety area adjacent to the drivable

region. It serves as a fallback when the drivable area is
unavailable or when extra space is needed for maneuvering.

It is worth noting that the input data for Grounded-SAM
is sourced from the publicly available SA-1B dataset [20].
SA-1B consists of 11M images and 1.1B mask annotations.
Leveraging this extensive dataset as input for our data
generation pipeline, we successfully curated a new dataset
consisting of 2.7 million images tailored specifically for oft-
road environments.
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Fig. 2: Dataset Generation Pipeline

IV. OUR PIPELINE

A. Image-based Drivable Area Segmentation

1) Methodology: Vision Transformers (ViT) have emerged
as a leading approach for semantic segmentation tasks,
achieving state-of-the-art results. Several notable ViT models,
including SETR [22], Swin [23], Segmenter [24], SegFormer
[25], and Mask2Former [26], have gained significant attention
from the research community. However, ViT models often
come with a downside of large numbers of parameters, making
them bulky and resource-intensive.

SegFormer employs hierarchical encoder layers with a
“light-weight” MLP decoder and introduces a “positional-
encoding-free”. This reduces the overall parameters compared
to other models [25] and more robust making it appropriate
for safety-critical applications [27].

I. Implementation We used the MiT-B3 pre-trained model
as the backbone for retraining the SegFormer. MiT-B3 is
trained on ImageNet-1K dataset. The SegFormer model was
trained on the entire 2.7M image dataset with a total of 7
epochs and 30 batch size. The total parameters retrained were
64 million.

II. Training We retrained the backbone SegFormer model
on the generated dataset (2.7M images) with the following
computational resources:

« GPU: NVIDIA RTX 4090 (24GB) x 4

« CPU: Intel i9-10900X

« RAM: 192 GB

2) Class imbalance: The generated dataset has a class
imbalance problem with 80% background, 15% road, and
5% semi-road classes. This class imbalance makes predicting
the specific region as semi-road class difficult. To address
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Fig. 3: System Architecture

this issue, the loss function is modified from original cross-
entropy to a weighted cross-entropy. The loss function is then
defined as follows:

loss = Yw;y; log(x;) )

1 n;
i = sPi = 2
T log(102 4 pi) T S @

Here, n; is the number of pixels belonging to class .

B. Depth Map-based Non-Drivable Area Rejection

To assess the traversability of a given terrain, it is necessary
to gather geometric data such as elevation and slope. This can
be achieved by estimating pixel depth, which facilitates 3D
reconstruction. Depth estimation methods employing multi-
camera stereo setup or an integrated depth sensor can be used
to obtain depth information. We reject the non-drivable area
based on geometric understanding obtained from the depth
information to ensure safe driving for the mobile robot.

The model discerns drivable regions from a semantic
perspective so that it may include semantically drivable but
physically non-drivable areas such as high slopes or bumps.
To consider geometric constraints related to the specification
of the UGV, we decided to fuse the depth information from
stereo camera systems.

1) Methodology: As a pre-processing step, the image is
undistored and cropped before using for depth prediction.
Using the final depth map image, we build the corresponding
point cloud. Each point in the point cloud has the segmen-
tation result obtained from the SegFormer. The regions of
interest are points segmented as a road. The strategy of
depth map-based non-drivable area rejection (see Fig.4) we
remove non-drivable points in the point cloud for reducing
the computational cost.
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Fig. 4: Depth based rejection pipeline

Using the remaining points, we extract a dominant plane
using RANSAC [28]. After estimating the dominant plane, we
reject the points that are far more than the height thresholds
from the plane. See Algorithm 1 for the pseudo-code of the
above algorithm.

Algorithm 1 Non-Drivable Area Rejection

Require: Point cloud P, distance threshold direshoid, Minimum
points for plane 7poins, maximum iterations ¢max, height threshold
h»threshold

Ensure: Filtered point cloud Piiered

1: Parivavie < ExtractDrivablePoint(P)
{Remove non-drivable points}

2: inliers + ExtractDominantPlane( Pirivabie , dinreshold s Topoints ; max )
{Using RANSAC to extract the dominant plane}

3: Piiered ¢ RejectPoints( Pyrivaple, dominant plane, Areshold)
{Reject points far from the dominant plane}

C. Drivable Contour Extraction

The motivation to extract drivable contour arises from the
fact that they are a simpler and more intuitive representation
of the road boundary and can assist the driver with a better
visual drivable area in ADAS system. This also facilitates
smooth trajectory planning.

Firstly all possible contours are extracted inside the road
area in the segmentation map output. A polygon fitting using
the Douglas-Peucker algorithm [29] is then performed over
all these contours. Inside the polygon, obstacles are identified
and using the Convex Hull algorithm [30] a convex polygon is
identified. Finally, the boundary of the region and the obstacle
is identified by finding exterior most points of the polygon
and then converting into Cartesian coordinates. Finally, a
spline is fitted through these final polygon points.

Given a set of polygon boundary points {b1,bo, ..., b, }
obtained after the above processing, a curve C is fitted using
spline interpolation. The spline curve is defined as:

C(u)=>_ Ni(u)-b;
=0

where N;(u) are the basis functions, typically cubic B-splines,
and v is the parameter ranging from O to 1. The spline
interpolation ensures a smooth and continuous trajectory that
adheres to the drivable region’s shape.



Dataset mloU (road) mPrecision | mRecall mF1
cnns-fen dark-fcn dark-fcn-448 our our our our
YOCR 42.49 43.79 46.03 71.25 95.82 65.11 73.71
ResNet34+PSP | ResNet54+PSP | ResNet101+PSP our our our our
CaT 80.12 79.36 80.57 76.28 88.92 85.97 85.42
TABLE II: Quantitative Results on seen Dataset
V. RESULTS promising results. Thus, we believe this can be very useful

We compare our model’s mloU performance on YOCR
[14] and CaT [16] dataset reported in Table II. In case
of YOCR dataset, we group smooth traversable region and
rough traversable region to represent road class and report
the performance comparison with the benchmark models as
cited in [14]. In case of CaT dataset, three classes (pickup,
sedan and off-road) are grouped together to represent the road
class and the benchmark models as cited in [31] are used
for comparison. Additionally, we report the mean precision,
mean recall and mean F1 scores.

VI. EXPERIMENTS
A. ROS2 Compatibility

We deployed the entire pipeline over ROS2 for testing
in real-world. The system has two main nodes: Image Pre-
Processing node for image acquisition, depth generation and
rectifying image and Drivable Region Recognition node that
generates both drivable segmented map and contour. The
details of the implementation are explained in Appendix III

B. Testing on Edge Computing device

The NVIDIA Jetson AGX Orin is a new-gen edge com-
puting platform. We deployed the segmentation pipeline on
NVIDIA Jetson AGX Orin (Developer Kit). In the following
subsections, we present the results of our experiments,

1) Time Analysis: The pipeline is divided into two main
nodes: Image Pre-Processing node and Drivable Region
Recognition node. Table III summarises the performance
of the pipeline on Jetson Orin.

Image Pre-Processing Drivable Region Recognition

Sub-process Time Sub-process Time
Image acquisition 8ms Semantic Segmentation 61ms

Rectification 10ms Depth rejection 28ms
Depth estimation 32ms

Total Time 50ms / 20 FPS Total Time 89ms / 11 FPS

TABLE III: FPS Analysis of the pipeline on Jetson Orin

2) Memory Usage: The memory capacity of Jetson orin is
64GB, and its memory architecture is shared memory (CPU
and GPU). Hence, we analyzed memory consumption to check
the stability of our methods. The image node consumes 825
MB, and the estimation node consumes 4GB; therefore, the
total memory consumption is lower than 5GB.

C. Testing in the wild

To evaluate the performance of the end-to-end pipeline we
tested it on on-road and off-road scenarios as presented in
Table IV. The pipeline runs in real time at 11 FPS on Jetson
Orin. The zero shot results on the this real world data show

in understanding the traversable terrain.

Scenario Drivable Area Drivable Contour
=T
| &2
on-road
off-road ' AR S S

TABLE IV: On-road and Off-road results

The test setup employed to evaluate the model is depicted
in Fig.5. A video demonstrating the off-road performance can
be found at [Off-Road Video] and the on-road performance
can be found at [On-Road Video]. Please refer to Appendix
II for detailed results of the study.
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Fig. 5: Test setup

VII. CONCLUSION

Through our research, we have achieved state-of-the-
art real-time performance in embedded systems for robust
detection of drivable regions. Our results demonstrate that
training the model with the SA-1B dataset has endowed
it with the capability to operate effectively across diverse
geographical contexts, as evidenced by its performance in real-
world scenarios. However, we observed that shadows present
challenges across different surface types, which represent an
area for future investigation. Based on qualitative results we
anticipate higher performance of the pipeline based on the
vehicle’s traversability. Moving forward, we plan to enhance
the model’s performance and establish an online learning
framework to iteratively improve its functionality, ensuring
adaptability to varying weather conditions.
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APPENDIX I
DATASET GENERATION

A. Open-source Dataset Details

The publicly available datasets used in our study to generate the synthetic dataset include the Yamaha-CMU Off-Road dataset [14],
CAVS-CaSSeD dataset [15], CAVS-CAT dataset [16], and OFFSED dataset [7]. The Yamaha-CMU Off-Road dataset comprises six class
labels: sky, rough trail, smooth trail, traversable grass, high vegetation, non-traversable low vegetation, and obstacles. CAVS-CAT includes
four traversability classes: sedan, pickup, off-road, and background. CAVS-CASSED consists of simulated data with four classes: sky,
trees, vegetation, and ground. The OFFSED dataset contains construction site data and includes five environments: meadows, woods,
construction sites, farmland, and paddocks. This enriched the training dataset with a broader range of traversability labels (i.e., off-road
labels). On the other hand, RELLIS-3D [17] has 20 class labels, and RUGB [18] has 24 class labels, resulting in a lower percentage of
traversability labels. Hence, we only including first 4 dataset in our study for training.

(i) Yamaha-CMU (i) CaVS-CaSSeD (iii) CaVS-CAT (iv) Offsed

Fig. 6: Samples from Open-Source Off-Road Dataset

B. SA-1B Dataset

SA-1B consists of 11M diverse, high-resolution, privacy protecting images and 1.1B high-quality segmentation masks that were collected
with our data engine. It is intended to be used for computer vision research for the purposes permitted under our Data License. The
images are licensed from a large photo company. The 1.1B masks were produced using our data engine, all of which were generated fully
automatically by the Segment Anything Model (SAM). Please refer to the paper for more details on the mask generation process.

o Total number of images: 11M

« Total number of masks: 1.1B

o Average masks per image: 100

o Average image resolution: 1500 x 2250 pixels
NOTE: There are no class labels for the images or mask annotations.

APPENDIX IT
RESULTS

A. Improvement with depth module

For the current evaluation, we do not provide quantitative comparison of performance with and without depth module since the dataset
(train and test) did not have depth information augmented in the ground truth. Figure 7 presents the visual improvement in depth as
observed by the model in off-road real-world testing. As can be observed in the figure, our base SegFormer model predicts road and
semi-road without considering their elevation. Such areas are not traversable given the robot constraints. Therefore, the depth rejection
module removes such outlier areas from the final prediction.

depth rejection

® (ii)
Fig. 7: Outlier Rejection with depth module

B. Qualitative Results on Sample Off-Road images
Figure 10 includes various samples of off-road images sourced from different datasets with the performance of our model.

C. Performance in Unseen Environment

1) Motivation: In the exciting world of robotics, we often encounter situations where our machines need to navigate through new and
confidential environments, ex: secret facilities or remote areas where data collection isn’t feasible beforehand. In these cases, having a
robot that can quickly adapt and perform well without prior training data is essential. We report our models performance on unseen dataset
during training and claim that since our model has seen diverse off-road data during training (2.7M+ images), it performs reasonably well
in unseen environment.



2) Setup: We test over two famous off-road datasets unseen during training in our pipeline - RELLIS-3D[17] and RUGD [138]. Since,
both datasets have 20+ labels in its ground truth we had to transform them into road, semi-road and background for comparing the
performance of our model against the benchmark results. For this, we consider [32] as a reference to design our experiment. The classes
defined in [32] are presented in Table V along with the modified labels that we use in our experiments.

Hierarchy Level in [32] Classes in [32] Re-defined labels
Navigable Smooth Region Concrete, Asphalt road
Navigable Rough Region Gravel, Grass, Dust, Sand road
Navigable Bumpy Region Rock, Rock bed semi-road
Forbidden Water, Bushes, Tall Vegetation background
Obstacles Trees, Poles, Logs, etc. background
Background Void, Sky, Sign background

TABLE V: Texture based terrain classification as seen in [32]

Figure 8 presents a sample from from RELLIS-3D dataset with original labels, modified labels and output from our pipeline.

7 1
(i1) Original Ground Truth (iii) Transformed GT (iv) SegFormer Output
Fig. 8: Comparison from RELLIS-3D Dataset

3) Results: We pick GA-NAV-18, the best performing model from [32], DeepLabv3+ [33], famous encoder-decoder based semantic
segmentation model and Segmenter [24], another Transformer based semantic segmentation model. We report mean IoU scores, mean
Precision, mean Recall and mean F1 scores of our model and the benchmarks on both the datasets in Table VI. Note: RELLIS-3D and
RUGD were not used in training the model.

Dataset mloU (road) mPrecision | mRecall mF1
DeepLabv3+ | Segmenter | GA-Nav-r8 our our our our

RUGD 45.425 90.78 93.21 48.24 59.19 55.94 55.71

RELLIS-3D 7278 65.03 83.375 53.95 98.06 54.87 64.36

TABLE VI: Quantitative Results on Unseen Dataset

APPENDIX III
ROS2 COMPATIBLITY

The Robot Operating System 2 (ROS2), is an open-source software framework primarily designed for building robotic systems, with
applications like Autonomous Driving (AD) and Advanced Driver-Assistance Systems (ADAS). We leverage the compatibility of our
pipeline with ROS2, enabling seamless integration into existing robotic systems. Specifically, we deployed the segmentation pipeline with
in ROS2 node. The ROS2 node subscribes to ROS2 topics including left_camera_image, left_camera_info, disparity_image topics. The
disparity_image topic is outputed by the Image Processing node which takes both left and right camera images as input to calculate the
disparity. Utilizing these input topics, our model pipeline processes all these inputs and computes the segmented map using our proposed
model, which is then published over another ROS topic. The functionality is explained in the Fig 9.

left_camera_info

right_camera_image
right_camera_info

left_camera_image_rect
disparity_image

Fig. 9: ROS2 Framework

drivable_mask
drivable_contour

Drivable Region

Image Processing Node Recognition Node




v) (vi) (vii) (viii)

(ix) - x) (xi) (xii)

(xiii) (xiv) (xv) ‘ (xvi)

(XxV) (xxvi) (xxvii) (xxVviii)

Fig. 10: Qualitative results on various off-road datasets. A mask obtained by our model is added to various samples from
different datasets. (i) - (viii): OFFSED dataset [7]. (ix) - (xvi): CaVS-CaT dataset [16]. (xvii) - (xx): Yamaha-CMU dataset
[14]. (xxi) - (xxiv): RUGD dataset [18] and (xxv) - (xxviii): RELLIS-3D dataset [17]
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