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Figure 1. Dataset overview: PALM is a large-scale dataset comprising calibrated multi-view high-resolution RGB images and 3dMD hand
scans (a). It features 263 subjects spanning a wide range of skin tones and hand sizes, 90k RGB images, and 13k high-quality hand scans
with corresponding MANO registrations (b). This diversity and precision provide a foundation for learning a universal prior over human
hand shape and appearance.

Abstract

The ability to grasp objects, signal with gestures, and
share emotion through touch all stem from the unique ca-
pabilities of human hands. Yet creating high-quality per-
sonalized hand avatars from images remains challenging
due to complex geometry, appearance, and articulation, par-
ticularly under unconstrained lighting and limited views.
Progress has also been limited by the lack of datasets that
jointly provide accurate 3D geometry, high-resolution multi-
view imagery, and a diverse population of subjects. To ad-
dress this, we present PALM, a large-scale dataset com-
prising 13k high-quality hand scans from 263 subjects and
90k multi-view images, capturing rich variation in skin tone,
age, and geometry. To show its utility, we present a base-
line PALM-Net, a multi-subject prior over hand geometry
and material properties learned via physically based inverse
rendering, enabling realistic, relightable single-image hand
avatar personalization. PALM’s scale and diversity make
it a valuable real-world resource for hand modeling and
related research.

1. Introduction
Human hands are central to how we interact with the physical
and social world: we manipulate objects [13, 14, 19, 47, 52],
express intent through gestures [11, 44, 49], and communi-
cate affective cues via touch. Realistic and drivable hand
avatars have the potential to transform virtual interaction,
gaming, and telepresence. However, building such avatars
from images remains a fundamentally challenging problem
due to the complexity of hand geometry, appearance, and
articulation, particularly under unconstrained lighting and
from limited visual observations.

A critical missing component in the hand community is
a large-scale, high-quality dataset that enables learning gen-
eralizable and physically grounded models of human hands.
Existing datasets suffer from significant limitations: they
often include only a small number of subjects [27, 30], lack
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accurate 3D hand geometry from real-world scans [30, 37],
or are derived from hand-crafted synthetic data [15], limit-
ing their utility for learning models that generalize across
identity and illumination.

To fill this gap, we introduce PALM, a large-scale dataset
of human hands containing publicly available-ready accu-
rate hand scans, diverse in quantity and subject diversity.
PALM includes 13k high-quality 3D hand scans and 90k
high-resolution multi-view RGB images from 263 subjects,
each performing a diverse set of predefined hand poses de-
signed to span a wide range of natural hand articulations.
The subjects cover a broad range of skin tones and age
groups. All data is captured using a commercial 3dMD scan-
ner [43], providing precise, sub-millimeter geometry. Each
scan is paired with synchronized multi-view images and a
MANO registration (pose and shape), obtained via multi-
view–consistent alignment to the 3D scans. Importantly, the
capture environment, including lighting and scanner con-
figuration, remained fixed throughout the entire collection
process, enabling consistent illumination conditions across
subjects. While prior datasets have included either limited
subjects or unreleased scan data, PALM will be made pub-
licly available for research use upon publication, making it
the most comprehensive and accessible dataset for studying
generalizable hand models.

To highlight a practical use case for our data, we present
a baseline model PALM-Net, an implicit neural prior over
human hands that jointly models appearances, geometry and
material properties using our dataset. PALM-Net is trained
via physically based inverse rendering, decomposing each
subject hand into geometry, albedo, specularity, roughness,
and environment lights. The model conditions on pose and
subject-specific latent codes, enabling it to capture pose-
dependent effects. A key insight in PALM-Net is a shared
environment lighting constraint across the subjects, which
disentangles illumination from intrinsic hand appearance,
allowing the model to generalize to novel lighting.

We apply our prior to the highly under-constrained task
of single-image hand avatar personalization under unknown
lighting. This monocular setting presents several challenges:
depth ambiguity, occlusions (e.g., self-occlusion of the palm
or dorsum), and ambiguous lighting. Our central insight
is that, despite the fine-scale complexity of hands (e.g.,
wrinkles, creases, texture), many fundamental properties
– skin tone, material reflectance, and deformation behavior
– are shared across individuals and can be captured by a
learned prior. By optimizing the subject-specific latent code
and scene illumination, our model reconstructs realistic, re-
lightable, and articulated hand avatars from a single input
image, even in uncontrolled conditions.

To perform extensive evaluation of the single-image per-
sonalization setting, we evaluate our method in both syn-
thetic and real-world datasets. Our results show that our

method consistently outperforms other prior-based and non-
prior-based methods for relightable hand personalization.

To summarize our contributions: 1) We introduce PALM,
a large-scale dataset containing high-resolution RGB multi-
view images of diverse subjects with detailed hand scans
and accurate MANO registrations; 2) We present a baseline,
PALM-Net, a multi-subject implicit hand prior model that
leverages PALM to learn physical hand properties such as
geometry, albedo, specularity, and roughness; 3) We demon-
strate the effectiveness of our prior model by using it to
personalize and relight hand avatars from a single image
under challenging and diverse environmental conditions.

2. Related Work
Hand datasets: Recent years have seen an explosion of
hand datasets, that can be categorized into hand-only [15,
27, 29, 35, 59], interacting hand [30, 31, 45], and hand-
object [2, 4, 12, 16, 18, 19, 23, 26, 39, 51] datasets. Early
research on hand-only capture primarily focused on datasets
collected using depth cameras [50]. Soon after, RGB-based
datasets gained traction, with notable examples including
STB [53] and FreiHAND [59]. Following this, interest ex-
panded toward hand-object interaction datasets. Hampali et
al. [18] released a dataset of single hands manipulating rigid
YCB objects, while Fan et al. [12] used a marker-based Mo-
Cap setup to capture full-body interactions with articulated
objects. More recently, Banerjee et al. [1] contributed a large-
scale dataset featuring multi-object interactions. Interacting-
hand datasets have also grown in popularity. Tzionas et
al. [45] pioneered capturing two-hand interactions using an
RGB-D setup. Building on this, Moon et al. [30] leveraged
a large-scale multi-view RGB system to recover 3D hand
poses under strong self-contact, which significantly boosted
interest in modeling two interacting hands from RGB data.
Moon et al. [31] released a synthetic dataset using 3D anno-
tations derived from [30]. Handy [35] provides 3dMD data
but it is not publicly available. Despite the rapid emergence
of various hand datasets, most approaches for learning hand
avatars still rely primarily on InterHand2.6M [7, 34] or on
custom video recordings [22]. This is largely due to the ab-
sence of a high-quality dataset that simultaneously provides
accurate 3D hand scans, high-resolution multi-view RGB
imagery, and a diverse set of subjects.
Hand representations: Learning articulated hand represen-
tations is a long-standing research problem. Some methods
solely focus on modelling hand joints [11, 41, 57] or ge-
ometries [10, 20, 29, 37, 56]. For example, MANO [37]
pioneered parametric mesh-based hand geometry modeling,
parameterizing shape with a PCA latent space. Moon et
al. [29, 32] propose a non-linear approach for high-fidelity
hand mesh modeling. HALO [21] is an implicit articu-
lated hand geometry representation using occupancy net-
work via a differentiable canonicalization layer. There are



also methods that model both geometry and appearances
of hands [7–9, 14, 24, 34–36, 55]. HTML [36] extends
MANO with a PCA-based texture model. Handy [35] is a
parametric hand model of shape and texture learned from
proprietary hand scans. Both Handy and HTML preprocess
texture maps to minimize baked-in shadows and specular-
ities. LISA and OHTA [9] model shape and appearance
fields, with lighting effects baked into the network and con-
trolled by latent codes. NIMBLE [24] models hands with
bone, muscle, and skin deformation, using a light stage to
capture pose-independent albedo and specular maps mod-
eled with PCA bases. HARP [22] optimizes the normal
and albedo maps for the MANO hand mesh with a point
light source to model shadow effects, demonstrating slight
generalizability to novel illuminations. URHand[8] models
pose-dependent hand material properties and is trained on
large-scale light stage data. Capturing such pose-dependent
material characteristics and lighting effects requires accurate
environment map information, typically enabled by a so-
phisticated light stage setup with hundreds of synchronized
cameras, as used in Nimble and URHand. In contrast to
these methods [8, 9, 55], our baseline method can jointly
learn appearances, geometries and relight the hand avatar
and does not rely on expensive light stage setup.

3. PALM Dataset
Overview: To study hand priors, we introduce PALM (see
Figure 1), a high-quality dataset with accurate 3D hand anno-
tations, high-resolution multi-view RGB images, and 3dMD
hand scans. It contains 90k RGB images and 13k hand scans
from 263 subjects (131 male, 132 female) with diverse skin
tones and hand shapes. Data was captured using a 3dMD
hand scanner [43] with 7 RGB and 14 monochrome machine
vision cameras calibrated; the RGB images have a resolution
of 2448× 2048; and the 3D hand scans were reconstructed
using 3dMD’s software-driven triangulation technique based
on Active Stereo Photogrammetry. Participants performed
approximately 50 predefined right-hand gestures. See Sup-
Mat for more examples in PALM.

3.1. Data Characteristics

Dataset comparison: Table 1 compares publicly avail-
able hand-only datasets. Early datasets [33, 45, 50] fo-
cus on depth cameras and often have limited subjects and
scale [33, 45]. Recent larger datasets focus on RGB im-
ages: InterHand2.6M [30] has 50 subjects with multi-view
calibrated RGB, Re:InterHand [31] offers synthetically relit
interacting-hand images of 10 subjects, and MANO [37]
provides hand scans of 31 subjects. Handy [35] includes
3dMD scans, but these are unavailable. While MANO, Inter-
Hand2.6M, and our dataset are all suitable for learning priors
for hands, most other datasets are suboptimal due to missing
modalities, limited subject diversity, synthetic data, or low

Figure 2. Capture setup. Our 3dMD setup with 7 RGB cameras.

dataset # real sub. # scans image size real RGB annotation prior learning
ICVL [42] 10 0 320× 240 - track ×

BigHand2.2M [50] 10 0 640× 480 - marker ×
Tzionas et al. [45] - 0 640× 480 ✓ track ×
Simon et al. [40] - 0 1920× 1080 ✓ semi-auto ×
EgoDexter [33] 4 0 640× 480 ✓ manual ×

STB [53] 1 0 640× 480 ✓ manual ×
FreiHAND [58] 32 0 224× 224 ✓ semi-auto ×

InterHand2.6M [30] 50 0 512× 334 ✓ semi-auto ✓
Re:InterHand [31] 10 0 4096× 2668 × - ×

DART [15] - 0 512× 512 × - ×
MANO [37] 31 1K N/A ✓ manual ✓

PALM (Ours) 263 13K 2448× 2048 ✓ semi-auto + scan ✓

Table 1. Publicly available datasets. Existing public datasets
lack subject diversity, accurate hand scans, and high-quality multi-
view RGB images that are important for training a strong hand
appearance and geometry prior model. Our dataset contains a large
number of subjects with high-resolution images and scans suitable
for learning a universal hand prior.

Figure 3. PALM demographics. (a) Age; (b) Height; (c) Skin tone
distributions. Our dataset provides a wide distribution of skin tones
and age groups representing a large variety of hand textures.

image quality, leading most methods [7, 22, 32, 34] to rely on
InterHand2.6M despite lacking scans. Our dataset is substan-
tially larger in scale, with 263 subjects, real high-resolution
calibrated RGB images, and 13k high-quality scans, making
it ideally suited for learning robust hand priors; it will be
released publicly to advance future research.
Demographics: Figure 3 provides a detailed breakdown of



the demographic distribution in PALM. The dataset includes
participants aged 21–70 years, with the majority in the 31–
40 (33%), 41–50 (26%), and 21–30 (24%) age brackets. In
terms of height, subjects range from 145 to 200 cm, with 48%
in the 145–170 cm range and 35% in the 171–180 cm range.
Only a small portion (4%) are taller than 190 cm. Skin tone
distribution is also diverse, comprising 38% medium, 27%
dark, 20% tan, and 15% light tones. This diversity supports
robust analysis across demographic variations.

3.2. Data Acquisition

Capture setup: We use a 3dMD [43] hand scanner to cap-
ture high-resolution multi-view RGB images and 3D scans
of the subjects. In particular, the 7-viewpoint setup consists
of an array of 21 synchronized and calibrated machine vision
cameras, including both RGB and monochrome sensors, ar-
ranged to provide full 360-degree coverage of the hand. The
system captures images at a high resolution of 2448× 2048.
Random light projectors are integrated to enhance surface
detail and geometry accuracy. The 3D hand scans were
reconstructed using 3dMD’s software-driven triangulation
technique based on Active Stereo Photogrammetry. All cam-
eras are calibrated, ensuring consistent alignment across
views. This setup enables the acquisition of dense, accurate
3D hand meshes in various poses, suitable for studying both
static poses and dynamic hand articulations.
Capture protocol: Each participant is asked to stand still
with their right hand placed inside the 3dMD capture vol-
ume. Participants are instructed to perform approximately 50
predefined right-hand gestures, covering a wide range of ar-
ticulations including open-hand poses, pinches, fist closures,
and fine-grained finger movements. To ensure consistency
across subjects, a standardized gesture list is followed, and
participants are guided through the sequence during the cap-
ture. We capture each gesture as an independent hand scan.
This protocol ensures diverse and repeatable motion data
across the entire subject pool. All subjects are captured in
the same lighting and camera setup.
3D keypoint annotation: A semi-automatic pipeline is used
to generate accurate 3D hand pose labels. The 2D keypoints
are first manually annotated on a subset of images to train
a 2D keypoint detector tailored to our capture setup. The
detector, implemented as a U-Net [38] pre-trained on In-
terHand2.6M and fine-tuned on 10K manually annotated
PALM images, is then used to estimate 2D keypoints for
all camera views, which are subsequently triangulated to
obtain 3D poses using multi-view geometry. Specifically,
we follow the approach used in InterHand2.6M and apply
RANSAC-based triangulation to robustly solve for the 3D
keypoint locations. This semi-automatic approach signifi-
cantly reduces the manual labeling burden while ensuring
reliable 3D pose annotations.
MANO registration: The 3D MANO poses for each pose

and subject are obtained by registering the MANO hand
model to the hand scans. To register MANO to each hand
gesture, we optimize the MANO hand model using a combi-
nation of 2D/3D keypoints, segmentation mask, and 3D hand
scan supervision. Specifically, we minimize the closest-point
distance from each MANO vertex to the corresponding hand
scan surface. Ground-truth masks are derived from the hand
scans, and we employ Soft Rasterizer [25] for differentiable
rendering to align the MANO silhouette with these masks.

The registration is independently performed for each sub-
ject in two stages. The first stage optimizes the per-subject
hand shape parameters and per-frame pose parameters on
a set of simple hand poses (e.g., flat hand), and the second
stage only optimizes the per-frame pose parameters while
freezing the shape parameters. Our final 3D keypoints have
a recall rate of 95% at 10mm threshold. Our MANO regis-
trations show a mean fitting error of 5.3 mm with respect to
the 3D keypoints (similar to that of InterHand2.6M [30]).

4. Method
PALM-Net, illustrated in Figure 4, utilizes PALM, our large-
scale collection of human hand data containing detailed hand
scans and high-resolution RGB images, to train a personal-
izable and relightable hand prior. In this section, we first
introduce preliminary concepts on NeRF [28], the Neural
Radiance Field technique at the core of our approach, and
MANO [37], the parametric hand model that we leverage
within our pipeline to map 3D points across different sub-
jects and hand poses into a shared canonical representa-
tion. Next, we present PALM-Net, our novel framework
for learning a multi-subject hand prior through physically
based inverse rendering (PBR), and describe how to train
our representation over multiple subjects. Finally, we detail
how PALM-Net can be used to recover a personalized and
relightable hand avatar from a single image. This is a highly
under-constrained problem, and we show that a prior model
such as PALM-Net helps in recovering realistic, personal-
ized hand avatars even in extreme illumination settings.

4.1. Preliminaries

NeRF: Given a ray r = (o,d) defined by its camera center
o and viewing direction d, NeRF [28] computes the output
radiance (i.e., pixel color) of the ray via:

Crf (r) =

∫ tf

tn

T (tn, t)σt(r(t))L(r(t),d)dt (1)

s.t r(t) = o+ td

T (tn, t) = exp

(
−
∫ t

tn

σt(r(s))ds

)
where tn, tf denote the near/far point for the ray integral;
σt(x) : R3 → R is a neural network that models surface



density at 3D point x ; L(x,d) : R3 × R3 → R is a neural
network that parametrizes radiance color at 3D point x when
observed from direction d. In practice, the integrals above
are approximated via quadrature, yielding:

Crf (r) ≈
N∑
i=1

w(i)L(r(t(i)),d) (2)

s.t r(t) = o+ td

w(i) = T (i)
(
1− exp(−σt(r(t(i)))δ(i)

)
T (i) = exp

−
∑
j<i

σt(r(t
(j)))δ(j)


δ(i) = t(i+1) − t(i),

where {t(1), · · · , t(N)} are a set of sampled points on the
ray that are obtained through importance sampling and δ(i)

is the length of the ith sampling interval.

MANO and canonical representation. The MANO [37]
hand model is parametrized by Θ = {θ, β,p}, where
θ ∈ IR45 denotes hand skeletal pose (joint angles), β ∈ IR10

hand shape (parameterized by PCA coefficients) and p ∈ IR6

global transformation. The MANO model then maps Θ to
a posed 3D mesh M(Θ) ∈ IR778×3. PALM-Net leverages
MANO to perform inverse LBS using SNARF [5] that map
points in 3D to a common canonical representation, i.e.,
given a 3D point in deformed coordinates xd, hand parame-
ters Θ, we find the corresponding 3D point xc in canonical
space as,

xd = argmin
x

∣∣∣∣∣∣ nb∑
i=1

wi(x) ·Bi · x− xd

∣∣∣∣∣∣2
2
, (3)

where, wi(x) is the skinning weight associated with point x
for bone i, and Bi represents the ith bone transformation.

4.2. PALM-Net

Physically based representations: Inspired by [6, 46],
PALM-Net (Figure 4c) decomposes the hand representation
into a shape network fg(·), a radiance field network frf (·),
and a material network fm(·). We model the canonical hand
geometry with an implicit function:

fg : xc, θ, β, ϕ 7→ σt(xc), z(xc), (4)

where xc ∈ IR3 denotes a 3D point in the canonical space,
θ, β are MANO parameter, and ϕ ∈ IRds captures subject-
specific geometry latent code of dimension ds. fg(·) outputs
the opacity value, σt(xc) ∈ IR, as well as geometry features
z(xc) ∈ IRds for the point xc. Following [48], the opacity is
obtained by converting the Signed Distance Function (SDF)

values via the cumulative distribution function of the scaled
Laplace distribution, Γα1,α2(s), where α1, α2 > 0 are opti-
mizable parameters. For details, we refer the reader to [48].

The outgoing radiance, L(xc,d) at canonical point xc
viewed by the direction d ∈ IR3 is obtained as,

frf : xc, z, ref(d,n),n, θ, ψ 7→ L(xc,d), (5)

where, n is the surface normal obtained analytically from
the SDF field, ref(d,n) reflects the view direction d around
the normal n, and ψ ∈ IRds is the appearance latent code.

Lastly, the spatially varying material field, fm is used to
model the physically based rendering parameters, the albedo
α ∈ IR3, roughness r ∈ IR, and metallicity m ∈ IR as,

fm : xc, z, θ, ψ 7→ α(xc), r(xc),m(xc) (6)

The canonical point xc is encoded with hash grid en-
coding for all three networks, f{g, rf, m} to model high fre-
quency details efficiently.
Physically based rendering: For physically based render-
ing, we follow closely [46] and compute the radiance scat-
tered by the volume along a certain camera ray (o,d) using
the quadrature approximation as,

Cpbr(r) ≈
M∑
i=1

w(i)BRDF
(
d, d̄(i), α

(
r(t̄(i))

)
, r
(
r(t̄(i))

)
,

m
(
r(t̄(i))

)
,n
)
· Li(r(t̄(i)), d̄(i)) · 1

pdf(d̄(i)
(7)

s.t r(t) = o+ td

w(i) = T (i)
(
1− exp(−σt(r(t̄(i))δ(i))

)
T (i) = exp

−
∑
j<i

σt(r(t̄
(j)))δ(j)


δ(i) = t̄(i+1) − t̄(i)

where (t̄(1), t̄(2), ..., t̄(M)) are the importance sampling off-
sets from the PDF estimated by radiance field samples in
Equation 2; M denotes the number of samples used to ap-
proximate the integrals along the ray; d̄(i) is the incom-
ing light direction at sampling offset t̄(i) sampled from
the distribution, pdf(·) (uniform distribution over the unit
sphere); BRDF (·) denotes the simplified version of Dis-
ney BRDF [3]. The term Li(x, d̄) is the incoming radiance
towards point x along direction d̄ and can be computed as
the weighted sum of output radiance Crf (x, d̄) (Equation 2)
and radiance emitted from an environment map Env(d̄):

Li(x, d̄) =Crf (x, d̄) (8)

+exp

(
−
∫ t′f

t′n

σt(x+ sd̄)ds

)
Env(d̄), (9)



Figure 4. PALM-Net overview. Given (a) PALM, our multi-subject RGB dataset with 263 subjects, PALM-Net explains each subject by
optimizing subject-specific shape and appearance codes (b). (c) PALM-Net is an implicit physically-based network that is conditioned on
the subject codes and renders to radiance, normal, and physically-based RGB images.

where t′n, t
′
f are near and far points of integration for sec-

ondary rays. The environment map is approximated by a set
of Spherical Gaussians denoted by SG1,SG2, ...,SGG. We
refer the reader to [46] for derivation of the above equations.
Training losses: Since reconstructing geometries and ma-
terial properties from RGB images is a highly under-
constrained problem, we devise a loss L that consists of
several terms. In particular, we first encourage RGB values
to be consistent with an input image via

Lrf =
∑

r

∥∥∥Crf (r)− Ĉ(r)
∥∥∥ , (10)

where r is a ray casted from a sampled pixel on an image,
and Crf (r) and Ĉ(r) are the rendered radiance value and
ground-truth color. The PBR rendered pixels Cpbr are di-
rectly supervised with RGB values in a loss Lpbr similar
to Lrf. Since our scans provide detailed geometries, we
supervise the model with the rendered scan normals:

Lnormal =
∑

r

∥∥∥N (r)− N̂ (r)
∥∥∥ . (11)

Note that the geometry information is shared by PBR and
radiance field. We encourage valid SDFs with the eikonal
loss Leikonal [17], which enforces the gradient at each point
to have a unit norm. To encourage smooth hand surfaces, we
apply a Laplacian loss LLAP on sampled points around the
hand (see SupMat). To encourage latent codes to be close
to zeros, we penalize a MSE loss Llatent on both appearance
and shape code. To avoid foreground model explaining
background pixels, we also supervise the networks with a
segmentation loss

Lsegm =
∑

r

BCE(S(r), Ŝ(r)) (12)

where S(r) ∈ IR represents the probability of a pixel being
the foreground and BCE(·, ·) is the binary cross entropy loss
to the ground-truth hand segmentation mask Ŝ(r) rendered
from the hand scans. Finally, to capture high-frequency
details, we render image patches and compare them with the
ground-truth using the perceptual similarity loss LLPIPS [54].
The total loss L is defined as

L = Lrf + λpbrLpbr + λsegmLsegm + λnormalLnormal

+ λeikonalLeikonal + λLPIPSLLPIPS (13)
+ λLAPLLAP + λlatentLlatent (14)

where λ∗ are the weights for the loss terms (see SupMat).
We gradually decrease λsegm over time.
Multi-subject PBR prior: When training PALM-Net across
multiple subjects, we model the detailed hand shape and ap-
pearance of each subject by conditioning PALM-Net on a
shape code ϕ and an appearance code ψ. That is, we model
subject identities by disentangling shapes from appearances.
Empirically, we found that when training on multiple sub-
jects, having separate latent codes for geometries and ap-
pearances yields better reconstructions than having a shared
latent code for both.

Given a set of images of hands {I} from N subjects, and
randomly initialized latent codes {ϕ1..N , ψ1..N}, PALM-Net
explains the images of multiple subjects by optimizing on
the network weights Φ, the subject codebook {ϕ1..N , ψ1..N},
and Spherical Gaussian parameters for the environment
lights. Note that we optimize for a single environment across
all subjects as the subjects are captured in the same setup. In
particular, our objective function is,

min
Φ,{ϕi}N

i=1,{ψi}N
i=1,{SGi}G

i=1

L (15)



Figure 5. In-the-wild image personalization. (a) The first column
shows the images used for personalization, followed by the render-
ings of the geometry and materials of the hand avatar obtained using
our prior model. The PBR rendering refers to the physically-based
rendering with estimated environment map. The last column shows
the relighting results of personalized hand avatar in a novel pose.
Our method retrieves realistic hand avatars even when the input
personalization image has complex lighting effects. (b) Additional
relighting results with in-the-wild images.

Personalization: A strong prior model on the hand appear-
ance and geometry allows us to personalize our model to
images of hands captured in extreme environment settings.
This is mainly because the prior model constrains the albedo
and material properties of the hand during personalization
and all the environment effects could be explained separately.
This is achieved by solving an optimization problem where
the shape code ϕ and the appearance code ψ for a given
input image are optimized along with the environment map
while keeping the network weights Φ of the PBR prior model
frozen. In particular, at each iteration, we sample a random
batch of rays from the input image and optimize for the
following objective:

min
ϕ,ψ,{SG}G

i=1

Lrf + λpbrLpbr + λsegmLsegm

+ λLPIPSLLPIPS (16)

5. Experiments
We evaluate our baseline on the task of hand avatar personal-
ization and relighting from a single RGB image using three
different datasets. Metric and baseline details are in SupMat.

5.1. Datasets

InterHand2.6M: To evaluate the performance on real im-
ages, we use images from InterHand2.6M [30] for personal-
ization. The dataset consists of accurate 3D hand poses of
subjects in predefined poses as well as high-resolution RGB
images. We evaluate on right-hand only sequences using the

Method PSNR↑ SSIM↑ LPIPS↓
Handy [35] 7.50 0.69 0.24
HARP [22] 9.89 0.78 0.16
UHM [32] 10.08 0.76 0.19
Ours 12.01 0.84 0.15

Table 2. InterHand2.6M dataset evaluation. Comparison of
methods on single-image personalization task using PSNR, SSIM,
and LPIPS metrics. Our method outperforms previous methods in
the novel pose setting where the training and evaluation environ-
ment maps are the same.

Method PSNR↑ SSIM↑ LPIPS↓
Handy [35] 12.48 0.76 0.32
HARP [22] 11.93 0.69 0.37
UHM [32] 12.30 0.74 0.31
Ours 13.39 0.78 0.35

Table 3. Synthetic dataset evaluation. Comparison of methods
based on PSNR, SSIM, and LPIPS. Our method outperforms previ-
ous methods in the novel environment, novel pose setting showing
that the appearance reconstructions of our model is more accurate.

test split of the dataset. To reliably measure performance,
we randomly select two views for each sequence, resulting
in 12 sequences. We uniformly sample 20 images for each
sequence for the evaluation and use the first frame of each
sequence for training a personalized model.
HARP relit: Since there is no real dataset to evaluate hand
avatar under novel environment and poses, following [22],
we render a synthetic dataset using Blender. In particular,
to create synthetic hand template, for each sequence, we
sample new MANO shape parameters and apply a new skin
tone using UV textures from DART [15]. To animate the
hand, we use the hand pose parameters from HARP data
release [22]. We use the first frame of each sequence for
training a personalized model and use the remaining frames
for evaluation. We render the training and evaluation images
using different environment maps to evaluate relighting.
In-the-wild images: To show the generalization of our
method under real world scenarios, we select in-the-wild
images from the internet with diverse lighting conditions
and poses. After personalization on these images, we ren-
der them with novel environment maps using novel poses
from [22] and show qualitative results.

5.2. Comparison and Analysis

Baseline comparison: Table 2 compares the performance
of our method with the baselines on InterHand2.6M. Our
method outperforms baseline methods on all metrics show-
ing high quality rendering in novel poses and viewpoints.
Figure 6 shows the qualitative images on InterHand2.6M
dataset for both the training and novel environments. The
images from PALM-Net are more realistic than that of the



Input image Handy UHM HARP Ours Handy UHM HARP Ours

(a) Novel poses in training environment (b) Novel poses in novel environment

Figure 6. Personalization results on InterHand2.6M. The first column shows the image used for personalization. (a) Personalized hand
avatars rendered in novel poses in the training environment. (b) Personalized hand avatars rendered in novel poses in the novel environment.
The hand avatars from our method are more realistic than other baselines.

PSNR SSIM LPIPS
w/o normal 11.97 0.84 0.18
w/ normal 12.01 0.84 0.15

Table 4. Effects of 3dMD normals.

Figure 7. Effects of 3dMD scans for hand personalization.

baselines. Table 3 compares ours with the baselines on the
synthetic dataset, where the evaluations are performed in
novel environment settings. Our PALM-Net prior model
outperforms the baselines by showing more realistic relight-
ing results in novel environments (more results in SupMat).
Figure 5 shows qualitative results of personalization on in-
the-wild images with diverse lighting condition and poses.
Despite these challenges, our method produces realistic
avatars and plausible relit images. For example, even in ex-
treme setting where the input image is grayscale, our method
can still recover plausible albedo thanks to our prior on hand
appearance and the optimization over the environment map.
Supervision with 3dMD normals: Traditional multi-view
techniques require a massive amount of RGB views for high-
fidelity 3D reconstruction [28]. In our capture setup, we use
a hybrid approach, combining 3dMD scans and sparse multi-
view RGB images for training our prior models. Figure 7
shows a qualitative comparison with and without 3dMD
normals. In particular, we train two multi-subject PBR prior
models on PALM, one with 3dMD normal supervision and
one without. Then we take these two prior models and

PSNR SSIM LPIPS
w/o env 16.14 0.79 0.229
w/ env 16.74 0.81 0.222

Table 5. Effects of modelling environment lightings.

Input image PBR (w/ env) PBR (w/o env)

Figure 8. The effect of modelling environment.

personalize on an InterHand2.6M image. Figure 7 shows
that, 3dMD normals from hand scans are crucial in reducing
pepper-like artifacts and it helps to reduce floaters. Table 4
quantitatively compares in this novel pose evaluation.
Environment map optimization: During personalization,
PALM-Net explains the image with geometry, material prop-
erties and environment lightings. Table 5 shows that mod-
elling environment lightings enables the model to be more
expressive in fitting the input image. An example of phys-
ically based rendered RGB images are show in Figure 8.
When allowed optimizing the environment in PALM-Net,
the fitting results are closer to that of the input image.

6. Conclusion
PALM is a large-scale dataset combining accurate 3D hand
geometry, high-resolution multi-view imagery, and a diverse
subject pool, addressing key limitations in existing datasets.
Through PALM-Net, we demonstrate that physically based
inverse rendering with a multi-subject prior enables realis-
tic, relightable single-image personalization. The dataset’s
scale, diversity, and accompanying baseline make it a solid
resource for future work.
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Yaser Sheikh, Ziwei Liu, and Shunsuke Saito. URhand: Uni-
versal relightable hands. In CVPR, 2024. 3

[9] Enric Corona, Tomas Hodan, Minh Vo, Francesc Moreno-
Noguer, Chris Sweeney, Richard Newcombe, and Lingni Ma.
LISA: Learning implicit shape and appearance of hands. In
CVPR, pages 20533–20543, 2022. 3

[10] Enes Duran, Muhammed Kocabas, Vasileios Choutas, Zicong
Fan, and Michael J. Black. HMP: Hand motion priors for
pose and shape estimation from video. 2024. 2

[11] Zicong Fan, Adrian Spurr, Muhammed Kocabas, Siyu Tang,
Michael J Black, and Otmar Hilliges. Learning to disam-
biguate strongly interacting hands via probabilistic per-pixel
part segmentation. pages 1–10. IEEE, 2021. 1, 2

[12] Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed
Kocabas, Manuel Kaufmann, Michael J. Black, and Otmar
Hilliges. ARCTIC: A dataset for dexterous bimanual hand-
object manipulation. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 2

[13] Zicong Fan, Takehiko Ohkawa, Linlin Yang, Nie Lin, Zhishan
Zhou, Shihao Zhou, Jiajun Liang, Zhong Gao, Xuanyang
Zhang, Xue Zhang, et al. Benchmarks and challenges in pose
estimation for egocentric hand interactions with objects. In
ECCV, pages 428–448. Springer, 2024. 1

[14] Zicong Fan, Maria Parelli, Maria Eleni Kadoglou,
Muhammed Kocabas, Xu Chen, Michael J Black, and Ot-
mar Hilliges. HOLD: Category-agnostic 3d reconstruction
of interacting hands and objects from video. In CVPR, pages
494–504, 2024. 1, 3

[15] Daiheng Gao, Yuliang Xiu, Kailin Li, Lixin Yang, Feng Wang,
Peng Zhang, Bang Zhang, Cewu Lu, and Ping Tan. DART:
Articulated Hand Model with Diverse Accessories and Rich
Textures. In NeurIPS, 2022. 2, 3, 7

[16] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek,
and Tae-Kyun Kim. First-person hand action benchmark with
RGB-D videos and 3D hand pose annotations. In CVPR,
pages 409–419, 2018. 2

[17] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. 2020. 6

[18] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A method for 3D annotation of
hand and object poses. In CVPR, pages 3193–3203, 2020. 2

[19] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kalevatykh,
Michael J. Black, Ivan Laptev, and Cordelia Schmid. Learning
joint reconstruction of hands and manipulated objects. In
CVPR, pages 11807–11816, 2019. 1, 2

[20] Zhisheng Huang, Yujin Chen, Di Kang, Jinlu Zhang, and Zhi-
gang Tu. Phrit: Parametric hand representation with implicit
template. In 2023 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 14928–14938, 2023. 2

[21] Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar
Hilliges, and Siyu Tang. A skeleton-driven neural occupancy
representation for articulated hands. pages 11–21, 2021. 2

[22] Korrawe Karunratanakul, Sergey Prokudin, Otmar Hilliges,
and Siyu Tang. HARP: Personalized hand reconstruction
from a monocular rgb video. In CVPR, 2023. 2, 3, 7

[23] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and
Marc Pollefeys. H2O: Two hands manipulating objects for
first person interaction recognition. In ICCV, pages 10138–
10148, 2021. 2

[24] Yuwei Li, Longwen Zhang, Zesong Qiu, Yingwenqi Jiang,
Nianyi Li, Yuexin Ma, Yuyao Zhang, Lan Xu, and Jingyi Yu.
Nimble: A non-rigid hand model with bones and muscles.
ACM Trans. Graph., 41(4), 2022. 3

[25] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft raster-
izer: A differentiable renderer for image-based 3d reasoning.
In ICCV, pages 7708–7717, 2019. 4

[26] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan,
Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang, and Li Yi.
HOI4D: A 4D egocentric dataset for category-level human-
object interaction. In CVPR, pages 21013–21022, 2022. 2

[27] Julieta Martinez, Emily Kim, Javier Romero, Timur Bagautdi-
nov, Shunsuke Saito, Shoou-I Yu, Stuart Anderson, Michael
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