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Abstract

Zipf (1935) posited that wordforms are opti-
mized to minimize utterances’ communicative
costs. Under the assumption that cost is given
by an utterance’s length, he supported this
claim by showing that words’ lengths are in-
versely correlated with their frequencies. Com-
municative cost, however, can be operational-
ized in different ways. Piantadosi et al. (2011)
claim that cost should be measured as the dis-
tance between an utterance’s information rate
and channel capacity, which we dub the chan-
nel capacity hypothesis (CCH) here. Following
this logic, they then proposed that a word’s
length should be proportional to the expected
value of its surprisal (negative log-probability
in context). In this work, we show that Pianta-
dosi et al.’s derivation does not minimize CCH’s
cost, but rather a lower bound, which we term
CCH_ . We propose a novel derivation, suggest-
ing an improved way to minimize CCH’S cost.
Under this method, we find that a language’s
word lengths should instead be proportional to
the surprisal’s expectation plus its variance-to-
mean ratio. Experimentally, we compare these
three communicative cost functions: Zipf’s,
CCH_, and CCH. Across 13 languages and sev-
eral experimental settings, we find that length is
better predicted by frequency than either of the
other hypotheses. In fact, when surprisal’s ex-
pectation, or expectation plus variance-to-mean
ratio, is estimated using better language mod-
els, it leads to worse word length predictions.
We take these results as evidence that Zipf’s
longstanding hypothesis holds.

https://github.com/tpimentelms/
optimality-of-word-lengths

1 Introduction

Zipf proposed the idea that languages are optimized
to minimize their expected utterance length (Zipf,
1935).! Under this hypothesis, a word’s length
should be inversely proportional to its frequency.
Indeed, this relationship has been attested across
a wide variety of the world’s languages (Grzybek,

2015; Bentz and Ferrer-i-Cancho, 2016, inter alia).

'We will refer to this hypothesis as ZIPF.
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Figure 1: Mean squared error achieved by a linear
model predicting real word lengths under the three
hypotheses (lower is better).

In subsequent work, Piantadosi et al. (2011)
offered a complementary account of commu-
nicative cost. Starting from the hypothesis that
information rate should be roughly constant during
communication (UID; Fenk and Fenk, 1980; Levy
and Jaeger, 2007), they argue that word lengths
should make information rates as close as possible
to a hypothetical channel capacity, where the
channel refers to the means by which information
is transferred from one person to another. We term
this the channel capacity hypothesis (CCH).2
They conclude that lengths should be proportional
to a word’s expected surprisal instead.’

As the communicative efficiency of language
provides important insights into human cognition
(Gibson et al., 2019), Piantadosi et al.’s finding
that word lengths are better explained by average
surprisal than frequency has been influential. How-
ever, there are shortcomings: First, the manner in
which Piantadosi et al. finds a solution which mini-
mizes the cost associated with CCH is not formally

2CCH is one of the many instantiations of the uniform infor-
mation density (UID) hypothesis. We introduce this new ter-
minology here to make the hypothesis’ name more descriptive.
3Surprisal is defined as negative log-probability in context.
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specified. And second, Piantadosi et al.’s empirical
results have been shown to be sensitive to a number
of methodological decisions, such as the choice
of text-encoding (e.g., ascii vs. unicode), the
inclusion of non-conventional wordforms and other
orthographic conventions of a language (Meylan
and Griffiths, 2021; Levshina, 2022). Thus, there
remain fundamental open questions about the
relationship between communicative efficiency
and word length. Here, we aim to clarify both the-
oretical and empirical aspects of this relationship.

Theoretically, we offer a novel, formal deriva-
tion of Piantadosi et al.’s claim. We find that
Piantadosi et al. (2011) optimize not for the
objective under the CCH, but for a lower bound
on it instead; we call this the CCH objective.
We then provide a closed-form expression for
the function that determines word lengths under
CCH: Word lengths should be proportional to the
expected surprisal plus its variance-to-mean
ratio. Importantly, we derive the solution above by
framing the problem of assigning wordforms as the
optimization of a cost function.* By instantiating
this optimization problem with the objectives
posited by each hypothesis (ZIPF, CCH, and CCH_)),
we can compute their word length predictions
within a single, unified framework.

Empirically, we offer a large-scale comparison
of ZIPF’s, CCH’s, and CCH’s word length predic-
tions across 13 typologically diverse languages.
Notably, we use neural language models to
estimate words’ surprisals, which provides more
accurate estimates than the n-gram models relied
on by prior work on this topic (Piantadosi et al.,
2011; Meylan and Griffiths, 2021; Levshina, 2022).
We find strong evidence (see Fig. 1) that languages
are optimized to minimize their utterance lengths:
A word’s frequency (ZIPF’s prediction) offers
stronger predictive power over word lengths than
either the surprisal’s expected value (CCHy’s
prediction) or expected surprisal plus variance-to-
mean ratio (CCH’s prediction). We conclude that
Zipf’s longstanding theory stands strong.

2 The Lexicalization Problem

Zipf (1935, 1949) posited that the lexicon is
optimized for communication, taking the needs of
both speakers and listeners into account. In this
section, we formalize a slice of this optimization

*As we will make explicit, we relax some optimization

constraints to be able to derive closed-form solutions. These
solutions will thus lead to lower bounds on the total cost.

problem. First, we assume a fixed (but potentially
infinite) vocabulary )V of words, each of which we
denote as w € YV, and a fixed alphabet >. Given
a vocabulary and alphabet, we define a lexicon
as a function that outputs a wordform for each
word; we denote a lexicon as ¢ : V) — X" and a
wordform as ¢(w) € >*. Note that we distinguish
between a word, which is an abstract notion or
concept, and its wordform, which is its ortho-
phonological realization. Further, let p(w, ¢) be a
language’s joint probability distribution over these
words and their prior linguistic context ¢ € W*
Finally, let cost[¢](w, ¢) be a cost function that,
given a lexicon, outputs the communicative cost
of a word in context. It is often suggested that
the only attribute of a wordform ¢(w) that the
function cost[¢] is concerned with is its length
|o(w)|, where | - | : X% — Z,. We now define the
optimization problem proposed by Zipf as follows.

Definition 1. The lexicalization problem is the
task of finding an optimal lexicon ¢*, which
minimizes cost|[¢]. This lexicon can be described
formally as the solution to

¢* =argmin E cost[¢](w, )
@ p(w,0) (1)
subjectto ¢ € Oy

where Oy is the set of valid ¢ for language (.

There are many assumptions that one could make
about ®,’s characteristics. We make a few explicit
in the following remark.

Remark 1. We take the set y to include all lexi-
cons which: (1) only produce phonotactically valid
wordforms,® (2) respect morphological composi-
tion,” and (3) are uniquely decodable.’

Another implicit constraint (4) regarding valid ¢—
which comes from our specification of the output

>We define this distribution formally in App. A.

®Phonotactics tells us how phones can be combined to
create wordforms in a language. If we denote the set of all
possible phonotactically valid wordforms in language ¢ as
Ly C X7, this means that the image of ¢ is contained in L,.

"Roughly, if the concepts represented by w and w’ overlap
in a dimension that is captured by ¢’s morphology (e.g.,
plurality in English) then their wordforms ¢(w) and ¢(w")
are likely to also partially overlap.

8This condition is perhaps too strict. Homophony, for
instance, is when ¢(w) = ¢(w’) for w # w’ and will, in gen-
eral, make natural languages not uniquely decodable. How-
ever, if two words never appear in the same context, natural
languages may still be uniquely decodable even in the presence
of homophony. We note that whether or not natural languages
are optimized for being unambiguous is contentions (Chom-
sky, 2002; Piantadosi et al., 2012; Pimentel et al., 2020, 2021b;
Trott and Bergen, 2020, 2022).



space of ¢p—is that these mappings only produce
integer-length wordforms.

In the subsequent sections, we consider re-
laxations of eq. (1) to arrive at simple solutions
regarding the lengths provided by optimal lexica.
Specifically, we partially relax constraint (1) and
fully relax constraint (2) when deriving a lexicon
with minimal utterance length. Further, when deriv-
ing optimal results for both CCH and CCH_, we also
fully relax constraints (1), (3), and (4).” Note that, as
in all optimization problems, removing constraints
always yields a lower bound on the expected cost
we obtain under an optimal lexicon.'”

3 Revisiting Zipf’s Law of Abbreviation

Zipf (1935, 1949) posited a specific form that the
cost function in eq. (1) should take. Concretely, he
posited that lexica were optimized with the goal
of minimizing speakers’ utterance lengths, which
can be written as cost[¢](w, ) = |¢(w)| in our
notation. In an attempt to formalize his position,
he proposed his eponymous law of abbreviation:

‘@zipf(w” S logp(w) (2)

Over the years, Zipf’s law of abbreviation has
been empirically investigated numerous times
(Wimmer et al., 1994; Sigurd et al., 2004; Kanwal
et al., 2017; Koplenig et al., 2022; Levshina, 2022;
Petrini et al., 2022, 2023). We now present a formal
derivation of Zipf’s law of abbreviation by viewing
it as an instantiation of the lexicalization problem.
Hypothesis 1. Zipf’s hypothesis predicts that com-
munication is made optimal by the mapping ¢
that satisfies:

zipf

Ggipt =argmin - E [¢(w)]
¢ plwo) 3)
subjectto @ € Dy

If we relax constraints (1) and (2) in Remark 1,
then the optimal solution to eq. (3) can be achieved
by Huffman coding (Huffman, 1952).!! We know
that this optimal solution’s word lengths respect:

< —logy p(w) +1 “4)

[Gaip ()

9Explicitly, by relaxing (4), we allow |¢(-)] to take on
continuous values. Such a relaxation destroys ¢’s interpre-
tation as assigning wordforms that live in >*. However, it
turns a combinatorial optimization problem into a continuous
one and allows us to apply tools from calculus.

Pimentel et al. (2021c¢) estimate eq. (1) while respecting
all four constraints, but restricted to cost[¢](w, ¢) = |p(w)].

By Kraft-McMillan’s inequality, constraining our solu-
tion to not only be uniquely decodable, but to be prefix free,
adds nothing in terms of length (Cover and Thomas, 2005).

which can be roughly approximated as
|$ips(w)] & —logs; p(w). Unfortunately, empiri-
cal evidence suggests that this solution, which sug-
gests the proportionality constant in eq. (2) equals
1, is not representative of how natural languages be-
have (Pimentel et al., 2021c). It thus gives us little
insight into how actual wordforms should behave.
Fortunately, we can derive a more interesting
result where the proportionality in eq. (2) still holds
by only partially relaxing (1) from Remark 1. We
first assume a very simplistic model of phonotactics.
Given an alphabet > of phones, let L, C >* be the
set of phonotactically valid wordforms in language
£. Note that this assumes deterministic phonotac-
tics (Gorman, 2013; Dai and Futrell, 2021).!? Fur-
ther, define PREFIXES (Ly) = {aey | o € Ly, t <
||} to be the set of all prefixes in this language.

Assumption 1. The constant phonotactic assump-
tion assumes there exists a K € Z~q such that
K < |Y| and, for every string o € PREFIXES(Ly),
there exist exactly K symbols {0 }I_| for which
o}, € PREFIXES(Ly).

In words, Assumption 1 says that there are ex-

actly K valid symbols with which every phono-
tactically valid prefix can be extended. Given this
assumption, we can now find a solution to eq. (3),
which only partially relaxes the phonotactic con-
straint in Remark 1.
Theorem 1. The minimization problem given in
Hypothesis 1 with constraint (2) relaxed can be
solved by Huffman coding" with K symbols. The
optimal solution is given by

|Dript (W) = |Dhufr . ()] (5a)

< ———1 )+1 (5b

= Tlogy K ogy p(w) +1 (5b)

Proof. The proof is available in App. C. ]

Theorem 1 makes precise the sense in which we
claim to have derived Zipf’s law of abbreviation.
Under the rough approximation [¢,;,¢(w)| =~

_ logjs p(w)
loglzl K >

realized through the unknown constant !/log,, k.

the proportionality in eq. (2) is

2Non-deterministic models of phonotactics are also popu-
lar; see (Hayes and Wilson, 2008) for a classic study.

PHuffman coding is an efficient O ()W|log|W)|)-
algorithm that returns the exact solution to this problem. Huff-
man coding, however, requires a finite ¥V, which may not
always be the case in theory. Linder et al. (1997) proved the
existence of an optimal code which respects eq. (4) for distri-
butions with infinite support but finite entropy. See Pimentel
et al. (2021c) for more discussion.



4 Revisiting Piantadosi et al. (2011)

What’s wrong with Zipf’s law of abbreviation? The
solution in eq. (5) is only optimal if one believes
that cost[¢](w, ) = |¢(w)]| is the true objective
underlying the lexicalization problem. However,
more recent work on communicative efficiency
(e.g., Piantadosi et al., 2009, 2011) has proposed
that speakers may intend to optimize another objec-
tive instead. Specifically, one can take the perspec-
tive that language is an exchange of information
via a noisy communication channel, where infor-
mation is operationalized as a word’s surprisal
H(w | ¢) = —logp(w | ). This channel has an
inherent capacity € € R+ at which information
can be transmitted while the receiver is still able to
effectively decode the underlying message. Under
this perspective, optimal communication happens
when a word’s information rate (Iﬁ)((ﬂ)‘) in bits
per character) is kept as close as possible to €. A
word’s channel deviation is then the difference
between its information rate and channel capac-
ity. This hypothesis can thus be stated within the
framework of the lexicalization problem by defin-
ing the cost[¢](w, ) of a lexicon as a function of
the channel deviation.

Hypothesis 2. The channel capacity hypothesis
predicts that communication is made optimal by

the mapping ¢, that satisfies:
)
(6)

(H(w | )
where dist(z,y) is a function that quantifies how

Oeep, =argmin  E dist :
Joch = A1E [o(w)]
far x is from y.'*

10) p(w, )

subjectto ¢ € Oy

Intuitively, eq. (6) penalizes lexica where the
length of a word causes its information rate to de-
viate from the channel capacity. Thus, ¢4, will
generate word lengths which produce information
rates that are as uniform as possible. It follows that
it can be categorized under the larger umbrella of
the uniform information density hypothesis (UID;
Fenk and Fenk, 1980; Levy and Jaeger, 2007). As
discussed by Meister et al. (2021), however, UID
has several potential interpretations, only one of
which involves maximizing the use of a communi-
cation channel. Here, we will only discuss it under

'“We consider dist(-) functions which satisfy the first
two axioms required by true distance metrics: dist(z,y) =
0 <= z = y (identity of indiscernibles) and dist(z,y) > 0

(non-negativity), but which are not necessarily symmetric and
do not necessarily satisty the triangle inequality.

this perspective, and assume that its operationaliza-
tion is given by eq. (6).

4.1 Optimal Word Lengths

The exact solution to eq. (6) depends on the choice
of dist. In this section, we assume a quadratic
distance function, i.e., dist(z,€) = (z — €)%
Efficient lexica should thus minimize the expected
value of the square of the channel deviation under
p(w, ) (i.e., its mean squared error). We now
derive a closed-form expression for CCH-optimal
word lengths under this cost function. As in The-
orem 1, we relax the morphological (2) constraint.
Beyond this, we also relax the phonotactic (D),
unique-decodability (3), and the integer-length (4)
constraints. Note that, unlike in Theorem 1, we
need to relax (4) here because we have no efficient
combinatorial algorithm to solve eq. (6).

Theorem 2. Under Hypothesis 2, if we relax (1), (2),
(3) and (4), the optimal word lengths are given by

E [H(w]| )]
|() (”LU)’ — l p( ‘71,’) (7)
“ech ¢ E [H(w]|)]
p(c|w)
Proof. The proof is available in App. D. ]

We note that Eq. (7) is equivalent to the expected
surprisal plus a variance-to-mean ratio.'>

4.2 Choices of Distance

In the above section, we assumed a quadratic
penalty for a word’s channel deviation. There
is, however, no inherent reason why dist should
be quadratic. We thus examine alternative ways
to quantify the deviation between a word’s infor-
mation rate and the channel capacity. Different
choices of dist will then each define a cost function
through cost[¢](w, ) = dlbt(}ﬁf(“w‘)l) ,C).

Any specific utterance should fall in one of three
cases: First, a word’s information rate may be at
capacity, i.e., when Iﬁf(ul ‘|)‘) = ¢. In this case, there
are no CCH-based costs. As the capacity is a real
number, however, this is virtually impossible in
practice. Second, information rate may be below
capacity. This will imply an opportunity cost on
communication: speakers will need more time to
produce their utterances than desired, which is
not ideal from the perspective of communicative
efficiency (Levy and Jaeger, 2007; Kanwal, 2018).

This can be seen via the following manipulations:
E[xﬂ [a:ﬂfE

B [x]Q Vi
w7 = Blel+ ——g— =Elz] + E[[ac]]




Third, information rate may be above capacity.
This again implies a cost on communication; since
communicating above a channel’s capacity is
provably noisy (Shannon, 1948), there may be
communication faults which will either lead to the
wrong meaning being conveyed, or will require a
potential retransmission of the message.

The quadratic distance function that we have
proposed above assumes a symmetric cost, where
communication above or below capacity are
equally harmful. It is, however, reasonable to as-
sume that the cost associated with communicating
above capacity may be higher than the opportunity
cost of communicating below it. This leads us to
propose costs based on the following generalized
distance function:

A(x — @)2

dist(z,€) = { (— )2

where A € R~ (. Under this generalized distance
function, any value A > 1 will imply a larger
penalty for communicating above than below
capacity. Further, when A = 1 we recover the sym-
metric quadratic distance function proposed earlier.

Notably, when assuming this generalized dis-
tance function, there is no capacity-agnostic closed-
form value to which word lengths should be propor-
tional. Here, we find CCH-optimal lengths with a
two step process: (i) given a large set of surprisal
values paired with their word lengths, we find what
the optimal capacity is for a language; (ii) we then
use a gradient descent-based optimizer to find the
optimal lengths under that capacity.

ifz>¢
else

®)

4.3 Piantadosi et al.’s (2011) Lower Bound

In their paper, Piantadosi et al. offer a similar argu-
ment to the one proposed in this section. They state,
however, that the optimal word lengths follow:

|chch¢((u’a )’ X H(w | ) (9)

where H(w | (') is the surprisal of word w,
marginalized over all contexts. While Piantadosi
et al. intended to find a solution which minimizes
the cost associated with CCH, they actually do
something else. We find that Piantadosi et al.’s pro-
posal optimizes a different instantiation of the lexi-
calization problem, one that does not use the objec-
tive that formally corresponds to the CCH hypothe-
sis.!® We give the objective Piantadosi et al.’s pro-
posal is the solution to below as its own hypothesis.

16See Cohen Priva (2015), however, for a discussion on how

average surprisal could still predict a word’s duration beyond
individual surprisal effects.

Hypothesis 3. Piantadosi et al. predict that com-
munication is made optimal by the mapping ¢, .
that satisfies:

‘ _ . (H(w | )
Oeen, =argmin E  dist <, €)
h¢ 5 p(we) |o(w) (10)

We now give the connection between Hypothe-
sis 3 and eq. (9) in the following theorem.

subjectto ¢ € Oy

Theorem 3. Under Hypothesis 3, if we further
relax (1), ), 3) and (4), the optimal word lengths
are given by

‘ 1
Gean, ()] = G Hw [C) (D
Proof. Using ¢ = Dech, aS given by eq. (11), we
get dist(-,€) = 0 for all words when evaluating
the objective in eq. (10). By definition, this is the
minimum for any dist. |

Note that dist (I‘{(()((IJN) , (’:) is constant with re-

spect to individual contexts c. Thus, the expec-
tation in eq. (10) can simply be taken over the
unigram distribution, p(w). Moreover, if dist is a
convex function, then, we can use Jensen’s inequal-
ity to show that eq. (10) lower-bounds eq. (6)."7
We therefore denote Piantadosi et al.’s hypothesis
and solution CCH,.

Proposition 1. Given a convex dist function and
any ¢ € ©y, the cost optimized by CCH_ in Hypoth-
esis 3 lower-bounds CCH’s cost in Hypothesis 2

E dist <H(“|) c)
p(w,c) |p(w)

> E dist<H(w),€>
p(w,c) |p(w)]

Proof. The proof is available in App. E. ]

(12)

We now provide an example to show
how CCH}’s solution does not minimize

dist (H(“"‘ ) C) under the distribution p(w, ¢).

Bk

Example 1. Let there be a word with a surprisal of
2 bits in ten distinct contexts, and a surprisal of 24
bits in a single context; assume all eleven contexts
are equiprobable. The word’s average surprisal
is thus 4 bits (i.e., %{M). Further, assume we

"Note that this lower bound is with respect to the function
being minimized in our optimization problem. It is therefore
in addition to the lower bound that comes from relaxing this
optimization problem’s constraints.



have a channel with capacity € = 2. According
to Theorem 3, we have |dcq, (w)] = H(qg )
which under the CCH objective (eq. (6)) gives us an
expected cost of 10 (i.e., ¥ (3—2)2+ L (31 —2)2).
If we choose word lengths according to Theo-
rem 2 instead, we get that the length should be
|Geen(w)| = 7. This results in a cost under the

CCH objective of roughly 2.86.

5 Experimental Setup
5.1 Estimating Word Length Predictions

To evaluate the different hypotheses, we test how
well their predictions about word lengths align
with the lengths of real languages’ wordforms.
These predictions require computing surprisals
(either unigram or contextual), which are defined
according to the true probability distribution p
(either as a function of p(w), or p(w | ¢); the
distribution p is defined more precisely in App. A).
While we do not have access to the true probability
distribution p, we do have samples from it. We use
the following estimators of egs. (5), (7) and (11):

|Paipt(w)] = —log g(w) (132)
— 1
| Gec, ()] = 150 > logg(w | ') (13b)
w /GDu
2
Z<1ogq(w| ')>
‘/\ /e’D“,
= 13
|Qcch(u)| Z log (](71'v ‘ /) (%9
IGD!H

where D, = {' | (¢, w') € D,w" = w}, and D
is our corpus, which we assume to be sampled from
the distribution p. In practice, our corpus D is com-
posed of data from one out of 13 languages from
5 language families in Wiki40B (Guo et al., 2020).

Distribution ¢ is our estimate of p, which
we implement using language models. We use:
normalized count statistics to estimate the unigram
distribution p(w), and transformer models for
p(w | ¢). Our data and models are described in
detail in App. B.!® Note that we omit unknown
constants from eqs. (13a) to (13c) because we only
consider scale-invariant evaluation metrics.

"®In our main set of experiments, we filter the set of words
we analyze to only include the top 25k most frequent words
in a language which have wordforms composed of charac-
ters in the language’s alphabet; we use alphabet’s as defined
in homoglyph: https://pypi.org/project/homoglyphs/.
We also pre-tokenize data with language-specific UnigramLM

tokenizers, and sum subword surprisals when necessary to get
per-word values.

5.2 Evaluation Metrics

Even with access to the true p, comparing the
word length predictions of the different theories
above would be non-trivial. Language evolution
is a dynamic and noisy process: Even if one of
the above optimization pressures has acted during
the creation of languages’ lexica, it is unlikely
that they are perfectly optimal with respect to
that pressure. We thus cannot simply evaluate
whether languages match our predictions exactly.
Rather, we can instead measure if the general
trends predicted by the different hypotheses match
the trends observed in natural language. We will
rely on a number of metrics to evaluate our results.
Taken together these metrics should allow us to
draw conclusions on which theory (if any) best
correlates with observed word lengths.

Spearman Correlation. First, we follow prior
work (Piantadosi et al., 2011; Meylan and Griffiths,
2021; Levshina, 2022) and use the Spearman cor-
relation to assess the quality of each word-length
hypothesis. A positive attribute of this correlation
is that it can account for nonlinear relationships,
potentially accounting for non-linear optimization
obstacles. This metric, however, has a significant
drawback: Namely, all wordforms contribute
equally to its computation. If we evaluate large
enough corpora using Spearman correlations, we
will therefore consider vocabularies V' mostly
dominated by low-frequency and uncommon
wordforms, such as typos, specialized terms,
and names. Yet arguably, when evaluating the
different hypotheses, a given word should be
weighted according to its usage (i.e, frequency) in
a given language, as this is the case in our various
optimization problems; a word’s impact on the
lexicalization problem’s objective is a function of
its frequency. This is perhaps one of the reasons
why prior work has limited their analyses to only
consider a subset of the most common words per
language (Piantadosi et al., 2011), a design choice
that we likewise employ in our main experiments.

Pearson Correlation. As a second metric, we
evaluate the Pearson correlation between our
predictions and actual word lengths. Pearson’s
correlation has similar drawbacks to Spearman’s,
differing from it only in that its value reflects the
strength of linear relationships.

Weighted Mean Squared Error (MSE). As
a third metric, we use weighted MSE, which


https://pypi.org/project/homoglyphs/

avoids the main drawbacks of the previous metrics.

We fit linear regression models (without a bias
term) to predict a language’s word lengths using
our ZIPF, CCH, or CCH estimators as the sole
predictor. Importantly, we weight each squared
error term by that words’ frequency (both during
this model’s training and evaluation).  This
design choice makes our method more robust
to the set of words being evaluated, since the
inclusion of exponentially many low-frequency
words should not substantially affect weighted
MSE. Note that this procedure is equivalent to
measuring the predictive power of each hypothesis,
while assuming eqs. (5), (7) and (11) predict
an expected length, and that word lengths are
normally distributed around these expected values.

6 Results

Our main results are presented in Fig. 1 and 2.
In short, Fig. 1 shows that words’ frequencies
offer stronger predictive power of word lengths
(as evinced by smaller MSE) than either of the
surprisal-dependent metrics. This result provides
evidence for ZIPF’s hypothesis over either CCH
or CCHy. This result is particularly surprising
since we improve on CCH’s optimal word length
predictions, but ZIPF’s hypothesis still provides
the best predictions.'® A similar result can be seen
in Fig. 2, where frequency offers the strongest
correlation with lengths (in terms of both Pearson
and Spearman), in all languages but English.
Notably, in our results, some languages even
have a negative correlation between the two
surprisal-based measures and actual word lengths.
We now turn to analyzing different methodological
choices that could impact our results.

6.1 Sensitivity to Tokenization

The first design choice that we analyze here is
the choice of tokenizer that we use to preprocess
our data. As cross-entropies are necessarily larger
or equal to entropies,?” it is reasonable to expect
that our language model surprisal estimates may
be, on average, larger than true surprisals. While
we do not know the exact per-token nature of this
difference, it is conceivable that using UnigramLM
tokenization could compound it: On average,

We improve CCH’s optimal word length predictions over
prior work both theoretically, by optimizing CCH as opposed
to CCH, and empirically, by using stronger language models.

2 Cross-entropy is the (probability-weighted) average of
the surprisal estimates from our language model.
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Figure 2: Pearson and Spearman correlation of the three
hypotheses in the analyzed languages (higher is better).

longer words will naturally decompose into more
subword units, and so when adding subword sur-
prisals, the total error of a word’s surprisal estimate
may correlate with its number of subword units.

To assess the impact of this potential systematic
error in our estimates, we thus re-train our models
using a vocabulary of 32k full words, replacing any
word not in this set with an unk symbol, which is
necessary when working with finite vocabularies.
Under this model, all analyzed words are encoded
using a single “subword” unit. We then re-analyze
the three hypotheses as before. In Fig. 3 (top), we
see that a word’s frequency is still a better predictor
of its length than the quantities put forth by other
hypotheses. Further, in the only case in which
CCH_ offers better predictions than ZIPF (English,
as evinced by higher Spearman correlations), their
performance difference is now lower than before.?!

We also estimate ZIPF’s unigram surprisals
using tokenized counts, i.e., where we count
subword tokens to estimate frequencies instead of
directly counting the full words in our training set.
We then estimate the suprisal of a word as the sum
of the surprisals of its subwords, thus assuming
independence between them. We display these
new results in Fig. 3 (bottom) under the name Zipf
(subwords). We see here that this tokenization
scheme increases our measured correlations, and
Zipf (subwords) presents the strongest correlations
in all languages. Perhaps surprisingly, tokenization
seems to not influence MSE as much.

6.2 Sensitivity to Word Filtering Protocol

Next, we analyze our results’ sensitivity with re-
spect to how we select the set of words we analyze.
Specifically, for our analyses so far we have only
considered words whose wordform is composed

2IThese correlations are, respectively, 0.09 vs. 0.21 with
ZIPF and CCH when using Unigraml.M. After switching to
full words they are 0.09 vs. 0.14.
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Figure 3: MSE and Spearman correlation when surprisals are estimated using either: full words directly (top), or
adding subword surprisals (bottom). Note that when using full words, Zipf and Zipf (subword) are the same.

4
ZIPF CCH CCH
3 | |
. | I
E 24 | | | | |
1
O T T T
P(w) e * B(w) € BF d(w) € B¢,

Figure 4: Average MSE across languages when hypothe-
ses are evaluated using different word filtering protocols.

exclusively of characters in its language’s alphabet.
We now run similar analyses, but including either:
All white-space-separated words in a language’s
test set, or all white-space-separated words with
no punctuation symbols.”> We denote these
conditions as: X} when selecting alphabet-only
words, 337 when selecting no-punctuation words,
and ©* when selecting all words. We display
results under each condition in Fig. 4. We see that
across these various protocols, ZIPF’s hypothesis
remains the most predictive.?

Additionally, we consider the impact of includ-
ing only the top 25k most frequent words in our
analysis. In Fig. 5, we present MSE values com-
puted when using sets composed from the top 10k
most frequent words, to entire test sets. Notably,
we again see that frequency remains the best pre-

2We consider punctuation to be any of: !"#$%&’ ()*+,-
Li<=>2@[\]"_*{I}".

Z1n App. G’s Fig. 9, we also see that Spearman correlation
is considerably more sensitive to filtering protocols than MSE.
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Figure 5: Average MSE across languages when hypothe-
ses are evaluated on different number of word types.

dictor of word length. In App. G’s Fig. 10, we
display results per language for MSE and Spear-
man correlation. There, we see that MSE rates
frequency best on all languages and across all eval-
uated setups. Spearman correlation evaluated on
few word types similarly rates frequency over CCH
or CCHy predictions (again, except on English).
When evaluated on full test-sets, Spearman cor-
relation shows a less straightforward conclusion:
While ZIPF still achieves the highest correlation in
most languages, CCH achieves stronger correla-
tions in Italian, Spanish and Russian. At this stage,
however, the evaluated sets are dominated by low-
frequency words, which may not be representative
of the evaluated languages.

6.3 Sensitivity to Model Quality

Finally, we investigate how our model quality
influences our results. We train new models on
subsets of our training sets to get language models
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Figure 6: MSE correlation as a function of the cross-
entropy of models used to get surprisal estimates.

of different qualities. We then use these models
to assess whether there is a relationship between
model quality and a hypothesis’ predictive power.
In addition to the models estimated using the full
training sets, we thus train 7 new transformer
and unigram models per language, each using
from 1 million to 1 billion training tokens in
log-uniform intervals. We plot the predictive power
of each hypothesis (ZIPF’s, CCH}’s and CCH) vs.
the language model’s cross-entropy in Fig. 6.24
Unintuitively, surprisal estimates of better models
(i.e., with lower cross-entropies) provide worse
predictors of word length. An additional analysis
suggests that the surprisal estimates of worse
language models are more strongly correlated
with frequency (see Fig. 7 in App. G), which may
justify this unituitive result since frequencies are
most predictive of word lengths in our experiments.
ZIPF’s hypothesis, on the other hand, is robust to
the quality of the used unigram model.

6.4 Sensitivity to Cost Function

In our last set of experiments, we analyze the im-
pact of our choice of quadratic cost function in
our results. Using the generalized cost function in
eq. (8), we derive optimal word length predictions
using values of A from 1 to 5 in 0.25 intervals. We
present their MSE and Spearman correlations in
App. G’s Fig. 13. While there seems to be a slight
tendency for CCH to be more predictive for larger
values of A, ZIPF still has the most predictive power
of the different hypotheses.

**We show per-language plots evaluated with both MSE
and Spearman correlation in App. G’s Fig. 11. We do not
quantify our unigram models’ quality, but assume that they
increase monotonically with the size of the corpus on which
they were estimated. We show a similar plot, but with the
number of training tokens on the z-axis, in App. G’s Fig. 12.

7 Discussion

The answer to what drives the distribution of word
lengths in lexica has long been considered impor-
tant for understanding the evolution and function
of language (see Gibson et al., 2019 for a review).
Across multiple languages and various methodolog-
ical choices, our results support Zipf’s law of ab-
breviation over other potential explanations as a
driving factor in the development of lexica.

These findings deviate from Piantadosi et al.,
who found average surprisal to be a stronger pre-
dictor of word lengths. We hypothesize that this
is because of methodological choices. Specifically,
Piantadosi et al. derive surprisal estimates from
language models that are now outdated (in terms of
their quality), and we found that, when CCH’s pre-
dictions were computed using worse surprisal esti-
mates, they had stronger correlations with length
than when using better estimates. Like prior work
on this topic (Meylan and Griffiths, 2021; Levshina,
2022), our analyses suggest the sensitivity of Pi-
antadosi et al.’s results to methodological choices.

What do these results tell us about the commu-
nicative optimization of natural language lexica?
In short, our results suggest lexica are optimized
to minimize expected utterance lengths. Notably,
other linguistic properties may be optimized to-
wards other notions of communicative efficiency.
While a word’s duration is mainly determined by its
wordform, speakers can still modulate this duration
to a certain extent; such a modulation could target
CCH. In fact, prior work has shown a correlation
between surprisal and duration (Bell et al., 2003;
Aylett and Turk, 2004; Pimentel et al., 2021a).

8 Conclusion

In this paper, we formalize the problem of
assigning wordforms based on different notions of
communicative efficiency, which we term the lexi-
calization problem. Under this framework, we de-
scribe the optimization problem related to the chan-
nel capacity hypothesis, and, in doing so, we show
that Piantadosi et al.’s predictions optimized for
only a lower bound on CCH, rather than on the true
objective. Further, while considering relaxed ver-
sions of the lexicalization problem, we derive op-
timal word length values for Zipf’s hypothesis and
CCH. We then empirically evaluate CCH’s, CCH_ s
and ZIPF’s predictions in 13 languages. Our results
strongly support ZIPF’s hypothesis: Word lengths
are optimized to minimize utterance lengths.



Limitations

A limitation of our work is that, when deriving op-
timal word lengths under CCH and CCH, we relax:
the phonotactic (1), morphological composition (2),
unique decodability (3) and the integer-length (4)
requirements. In the case of (3), if a language’s
channel capacity is large, this might lead to poorer
predictions under both these theories. Deriving
optimal word lengths while considering this con-
straint is left as an open problem for future work. In
the case of (4), it is arguably unrealistic to consider
continuous-length wordforms. This issue could be
addressed by using a linear program to solve prob-
lems of the form eq. (1). This, as well as consider-
ing the role of phonotactics (1) and morphological
composition (2) in CCH, is likewise left for future
work. Further, we note that while we relax all four
constraints to derive CCH- and CCH_-optimal word
lengths, we only relax (2) (and partially (1) to de-
rive ZIPF-optimal lengths. This could realistically
impact the fact that Zipf’s hypothesis seems to have
more predictive power over word lengths.

Another limitation is that our analyses focus
solely on written data from Wikipedia. We
recommend future work investigates how these
findings generalize to spoken or signed languages,
and to other text genres. Finally, while we use
a typologically diverse sample of languages,
it is still skewed towards Eurasian languages.
This is because the large amount of text needed
for training state-of-the-art language models—
necessary to estimate entropy—are not available in
many languages. Expanding the set of languages
analyzed here would be necessary to confirm the
generality of our results.
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A Defining p(w, )

In this section, we explicitly define p(w, ). We
do this in terms of a more standard notation in
language modeling. We define a sequence of words
as s € S where S = W* o {eos}. We then assume
a distribution over such sequences p(s). We can
now define p(w, ¢) as:

T

p(w, ) Zp(s) Z H{w = st =5} (14)

seS t=1

In words, a word—context pair is as frequent as
it would be in natural language, where once a se-
quence is uttered, all its word—context pairs are
observed jointly. This is not the only possible defi-
nition of p(w, ¢), but it is the one we opt for here.
Note that the distribution p(w, ) might thus
not be well defined for all distributions p(s), as
the normalizing constant in this definition might
diverge. For instance, this distribution will not be
well-defined for a language model over alphabet
W = {a}, where p(a") = JW for n > 1 and
p(e) = 0, as its sequences’ average length diverges.

B Data and Models

Data. The corpora used throughout our analyses
come from Wiki40B (Guo et al., 2020). This
dataset is composed of cleaned text from Wikipedia
articles in more than 40 languages, out of which we
select a subset of 13 for our analysis. Our selection
includes: German, Greek, English, Spanish,
Estonian, Finnish, Hebrew, Italian, Korean, Dutch,

Norwegian, Russian, and Turkish. These span five
language families: Afro-Asiatic, Indo-European,
Koreanic, Turkic, and Uralic. The data for each
language comes pre-split into a training, validation
and test set. We fit our models using the first two
sets, while performing our analyses exclusively
on the test-sets. As discussed above, the set of
analyzed words may make a large difference in
the measured correlations. In our main set of
experiments, we filter the set of words we analyze
to only include wordforms composed of characters
in the language’s alphabet.” Table 1 (in App. F)
includes the number of word types and tokens used
per language in our analyses.

Models. To estimate the unigram distribution
p(w), we use a simple MLE estimator: the
(normalized) count statistics from our training
set. To estimate contextual probabilities p(w | ),
we use an autoregressive language model py.
Specifically, we train monolingual transformers in
each language using fairseq (Ott et al., 2019) with
its default language modeling hyper-parameters.
Our transformers (Vaswani et al., 2017) have 6
layers, a hidden size of 512, and 8 attention heads
per layer. Further, they can attend to a context size
of at most 512 tokens, and we train them with a
dropout of 0.1, and a batch size of 64. We optimize
our models using Adam (Kingma and Ba, 2015)
with a learning rate of 5 x 10~%, weight decay of
0.01, and 4k warmup steps. In our main set of ex-
periments, we further pre-tokenize each language’s
text using language-specific tokenizers fit (using
the UnigramLLM algorithm; Kudo, 2018) on their
respective training sets, with a vocabulary of 32k
subword units. We then compute per-word sur-
prisals by adding the surprisals of all the subwords
that the word is composed of. (We also consider
other tokenization schemes, as described in §6.1.)

C Proof of Theorem 1

Before proving Theorem 1, we provide a lemma
which will be useful for it. In words, we prove a
length-preserving bijection between L, and A* for
an alphabet K such that |A| = K.

Lemma 1. Under the constant phonotactic
assumption, there exists an alphabet A with
cardinality K such that, for every N > 0, AN

is isomorphic to LEN), where LEN) is the set of

»We use alphabet’s as defined in homoglyph: https://
pypi.org/project/homoglyphs/.
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phonotactically valid wordforms with length N.

Proof. First, it is clear that |[AN| = |A|N = KV,

We now prove the same for LEN) by induction.

Base case (N = 0). The set of 0-length phonotac-
tically valid strings includes only the empty string
{e}. Tt follows that: \L§0)| =1=K"

Inductive step (N > 0). By the inductive hy-
pothesis, we have that |LEN_1)] = KN-1 By
Assumption 1, each element in L§N_1) has K

possible continuations in LgN). It follows that

L= 1LY = K

Since AN and LéN) have the same number of el-

ements for every N > 0, there exists an isomor-
phism between them. |

Given the lemma above, we are now in a position
to prove Theorem 1.

Theorem 1. The minimization problem given in
Hypothesis 1 with constraint 2) relaxed can be
solved by Huffman coding with K symbols. The
optimal solution is given by

6215t (t0)] = |nuttye () (52)

logjy; p(w) +1  (Sb)

< 1
— logy K
Proof. Since LEN) is isomorphic to AY for every
N > 0, there exists a length-preserving bijection 1)
between Ly and A (by Lemma 1). By Huffman’s
(1952) algorithm, we can construct an encoding
that satisfies

|9 (Daipt(w))] < —logia  p(w) +1

However, because v is length-preserving,
’¢(G>zipf(w))’ = ‘021pf(w)| As an upper bound,
we thus have

15)

|Daipt (w)] < —logja p(w) + 1 (16a)

1
= ———logyp(w)+1 (16b)
Tog oy K 08 (w)

D Proof of Theorem 2

Theorem 2. Under Hypothesis 2, if we relax (1), (2),
(3) and (4), the optimal word lengths are given by

E [H2(w | )]
p(c|w)

B ()]

(7

Gl =

|®cch(w)| =

Proof. We can easily derive these optimal word
lengths from eq. (6) by taking its derivative with
respect to a specific word’s length, and setting
it to zero. First, we rewrite it for mathematical
convenience as:

) 2
E E <H<w\>_¢>
p(w) p(clw) \ |o(w)]

where we make the quadratic cost function explicit.
We note this function is convex, and so if we find
a point where its derivative is zero, we also find its
global minimum. We now take its derivative with
respect to a specific word’s length |¢(w)| and set
this derivative to zero:

(17)

H H(w
p(w) E [2 ( (w] )—¢) (w] 2)] —0
p(clw) |¢(w)] |¢(w)|

(18)
where we note that all terms involving other words
will have derivative zero (with respect to this
specific word w’s length). As the expectation is
a linear operation, we can rewrite this equation as:

H2 (1 | )} [
E |—————|= E |€
p(clw) |: |G)(’IU)|3 p(clw)

Note that both the length and capacity are constant
with respect to the expectation over contexts.
Isolating the length term, thus, we get:

H(w | )
|o(w)|?

] 19)

E [H2(w | )]
o(w)] = 3 22 0)
“ ¢ E [H(w|)]
p(clw)
This completes the proof. |

E Proof of Proposition 1

Proposition 1. Given a convex dist function and
any ¢ € ©y, the cost optimized by CCH_ in Hypoth-
esis 3 lower-bounds CCH’s cost in Hypothesis 2

LY

p(w,c) |p(w)

E dist<
p(’LL‘, )

(12)

Proof. It can be easily shown by Jensen’s inequal-



ity that for any choice of ¢:

(Hw ][ )
E dist| ——=,¢ (21a)
p(w,c) ( |p(w)
— E E (1ist<I{(w),€> 21b)
p(w) p(clw) |p(w)]
B, B[]
> E dist ‘ , & (21¢)
p(w) o (w)]
- (Hw]O) )
= E dist| ——=,¢ (21d)
p(w) ( |[o(w)]
which completes the proof. |

F Data Statistics

We provide dataset statistics in Table 1.

G Further Results

For a more detailed reading, we provide MSE and
Spearman correlation plots similar to Fig. 1 and 2’s
but as bar plots in Fig. 8. We also provide per-
language results:

e as a function of the word filtering protocol
used in our analysis in Fig. 9;

* as a function of the number of word types
included in our analysis in Fig. 10;

* as a function of our language model’s cross-
entropy in Fig. 11; and

* as a function of the number of tokens used
to train our language models and to get word
count statistics in Fig. 12.

We also provide results when CCH is defined using
generalized distfunctions, i.e., for several values
of A, in Fig. 13. Finally, we show the Spearman
correlation between CCH and CCH_, and unigram
surprisal as a function of the used language model’s
quality in Fig. 7.

1.0 7
CCH| CCH
g
Z 0.8
s
(i 0.6
=
£ 0.4+
7}
0.2 T T T T T T T
6 8 10 12 14 16 18 20

Language Model’s Cross-entropy

Figure 7: Spearman correlation with unigram surprisal
as a function of the cross-entropy of models used to get
surprisal estimates



None No Punctuation Only in Alphabet
Language  Family ISO code BPC # Types # Tokens  # Types # Tokens # Types  # Tokens
German Indo-European de 0.99 2,093,524 32,142917 1,027,594 27,565,045 896,752 26,301,145
Greek Indo-European el 1.06 267,625 2,244964 145,073 1,954,950 120,361 1,862,380
English Indo-European en 1.09 2,419,694 78,392,487 748,109 66,881,077 609,839 65,261,138
Spanish Indo-European es 1.04 993,894 21,472,091 380,407 18,852,688 332,668 18,458,823
Estonian Uralic et 1.23 250,860 999,296 145,003 797,817 123,863 736,860
Finnish Uralic fi 1.03 566,755 2,741,783 333,229 2,249,003 318,514 2,156,132
Hebrew Afro-Asiatic he 1.41 497,550 4,153,846 230,867 3,394,959 208,077 3,299,727
Italian Indo-European it 1.04 823,397 14,500,421 297,153 12,371,701 269,005 12,056,925
Korean Koreanic ko 2.40 538,093 1,953,812 385,948 1,622,552 331,060 1,460,230
Dutch Indo-European nl 1.00 534,101 6,811,124 246,458 5,989,335 227,466 5,768,607
Norwegian Indo-European no 1.14 325983 2,672,869 176,089 2,318,082 164,401 2,253,985
Russian Indo-European ru 1.06 1,474,777 15,824,324 707,806 13,073,143 546,179 11,922,147
Turkish Turkic tr 1.14 285,988 1,705,030 163,352 1,371,183 148,522 1,306,751
Table 1: Wiki40B data statistics.
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Figure 9: MSE and Spearman correlation when hypotheses are evaluated while filtering test set words based on
different protocols.

de el en es et
44 44 44 44 4
gl=— = =
T T LEmELuL e | Lpmaau eemauy ¥ Ummaanmmaauy ¥ LEmmauui memsy 8
fi he it ko nl
44 = 44 44 44 4
= 2-% e 4= 1 1=
w2 — —
2 LN m W T Ty W"G T"'Tn“‘-ﬁ
10 10° 1010* 105 10
no r tr
44 44 4q —— ZIPF
2_4 | == —— CCH,
T Ty T LALL seaaty 8 LEnRaL euainy 8
10* 105 1010 10° 10910* 105 106 T CCcH

Spearman Correlation

de el en es et
02549— 0254 0.25 1 5 0.254—
000~— — 1 _wz """
Lammaiy ey Lpmmaauy pmann U pmaa pemany T T T T T
fi he it ko nl
O.ZU'j.Zo'—/O.Zu' 0.25-_—-/9.25- ~
0.00 4 4 / _Ej 4 i —
LRl mmi L iy sman LB LLL ey Ty LBNERLL e
10 10° 10°10* 10° 10°
no ru tr
0254— ~0.25 0.25 A
a0 T P40 B ) —
O.OO—EJ |[— J—_ — CCH,
LEREAUL BuELLL LBEaaL peaniy 8 W T T T
10* 10° 10°10% 10° 10810 10° 109 T CCH
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Figure 11: MSE and Spearman correlation

estimates.
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as a function of the cross-entropy of models used to get surprisal
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Figure 13: MSE and Spearman correlation as a function of the generalized dist’s parameter A (in the x-axis).



