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ABSTRACT

The combination of Spiking Neural Networks (SNNs) and Vision Transform-
ers (ViTs) holds potential for achieving both energy efficiency and high perfor-
mance, particularly suitable for edge vision applications. However, a significant
performance gap still exists between SNN-based ViTs and their ANN counter-
parts. Here, we first analyze why SNN-based ViTs suffer from limited perfor-
mance and identify a mismatch between the vanilla self-attention mechanism and
spatio-temporal spike trains. This mismatch results in degraded spatial relevance
and limited temporal interactions. To address these issues, we draw inspiration
from biological saccadic attention mechanisms and introduce an innovative Sac-
cadic Spike Self-Attention (SSSA) method. Specifically, in the spatial domain,
SSSA employs a novel spike distribution-based method to effectively assess the
relevance between Query and Key pairs in SNN-based ViTs. Temporally, SSSA
employs a saccadic interaction module that dynamically focuses on selected vi-
sual areas at each timestep and significantly enhances whole scene understanding
through temporal interactions. Building on the SSSA mechanism, we develop a
SNN-based Vision Transformer (SNN-ViT). Extensive experiments across various
visual tasks demonstrate that SNN-ViT achieves state-of-the-art performance with
linear computational complexity. The effectiveness and efficiency of the SNN-ViT
highlight its potential for power-critical edge vision applications.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy, 2020) revolutionize the traditional computer vision field,
achieving higher performance in many vision tasks such as image classification (Chen et al., 2021;
Han et al., 2023) and object detection (Fang et al., 2021c; Touvron et al., 2021). However, ViTs
always demand significant computational and memory resources, which greatly restricts their de-
ployment in resource-constrained edge vision environments (Wu et al., 2022; Graham et al., 2021).
Consequently, the development of energy-efficient and high-performance solutions remains a sig-
nificant area of research that necessitates further investigation (Cai et al., 2019; Han et al., 2020b).

Spiking Neural Networks (SNNs), as the third generation of neural networks (Maass, 1997; Ger-
stner & Kistler, 2002; Izhikevich, 2003; Masquelier et al., 2008), mimics biological information
transmission mechanisms using discrete spikes as the medium for information exchange. Spiking
neurons fire spikes only upon activation and remain silent at other times. This event-driven mech-
anism (Caviglia et al., 2014) promotes sparse synapse operations and avoids multiply-accumulate
(MAC) operations, which significantly boost the energy efficiency of these models (Zhang et al.,
2023). However, the architectures of most SNN-based models still revolve around traditional struc-
tures such as CNNs (Fang et al., 2021b; Xing et al., 2019) and ResNets (Fang et al., 2021a; Hu et al.,
2024), which exhibit a significant performance gap compared to ViTs.

In recent years, numerous researchers have dedicated efforts to develop SNN-based ViT models.
However, most studies (Zhou et al., 2023b; Wang et al., 2023b) retain energy-intensive MAC op-
erations in self-attention computational paradigm and not fully take advantage of SNNs’ energy
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efficiency. Furthermore, these approaches still rely on the Dot-Product operation to measure the
spatial relevance between Query (Q) and Key (K) pairs. However, they fail to account for whether
the Dot-Product is well-suited to the binary spike characteristics of SNNs. Subsequently, inspired by
Metaformer (Yu et al., 2023), Spike-driven V2 (Yao et al., 2024b) introduces a MAC-free method,
and SpikingResformer (Shi et al., 2024) combines ResNet-based architecture and self-attention com-
putation paradigm to further reduce parameters. These methods ensure the high performance of
SNN-based ViTs while achieving a full spike-driven manner, offering significant energy savings.
Nevertheless, these studies treat self-attention computational paradigm merely as an efficient token
mixer (Yu et al., 2022), without exploring an effective paradigm suited to spike trains. Furthermore,
these methods primarily focus on spatial feature extraction, overlooking the temporal dynamics of
SNNs. Consequently, exploring spiking self-attention paradigms tailored to the spatio-temporal
characteristic of SNNs represents a potential area for improvement.

Biological vision dynamically captures and understands visual scenes through saccadic mecha-
nisms (Melcher & Morrone, 2003; Binda & Morrone, 2018; Guadron et al., 2022). It focuses on
specific visual areas at each moment and utilizes dynamic saccadic movements across the temporal
domain to achieve a contextual understanding of the entire visual scene (Hanning et al., 2023). Com-
pared to vanilla self-attention mechanisms (Liu et al., 2021b), it offers higher energy and computa-
tional efficiency. Additionally, the saccadic process involves intense temporal interactions (Idrees
et al., 2020), which closely align with the unique temporal characteristics of SNNs. Therefore, we
draw inspiration from the saccadic mechanisms to design a Saccadic Spike Self-Attention (SSSA)
method. The SSSA method adapts to the spatio-temporal characteristics of SNNs, enabling an effi-
cient and effective comprehensive understanding of visual scenes. Based on this, we further develop
a SNN-based Saccadic Vision Transformer. The summary contributions are as follows:

• We thoroughly analyze the reasons for the mismatch between the vanilla self-attention
mechanism and SNNs. In the spatial domain, the binary and sparse nature of spikes creates
significant magnitude differences between Q and K in SNN-based ViTs, making it difficult
for vanilla self-attention to assess spatial relevance. Additionally, vanilla self-attention
is designed for ANNs and neglects the temporal interactions among timesteps in SNNs,
limiting its ability to explore information in the temporal domain.

• We propose a Saccadic Spike Self-Attention (SSSA) mechanism specifically designed for
SNNs’ spatio-temporal characteristics. In the spatial domain, SSSA introduces a novel
spike distribution-based method to measure relevance between Q and K pairs effectively.
Temporally, SSSA introduces a saccadic interaction module that dynamically focuses on
selected visual areas and achieves a comprehensive understanding of the whole scene.

• To further enhance the computational efficiency of SSSA, we introduce a linear complexity
version called SSSA-V2. It is mathematically linear scaling mapping to SSSA, preserv-
ing all performance benefits. Additionally, SSSA-V2 successfully reduces computational
complexity to a linear level and works in a fully event-driven manner.

• Building on the proposed SSSA mechanisms, we develop a SNN-based Vision Trans-
former (SNN-ViT) architecture. Extensive experiments are conducted on various visual
tasks demonstrating that SNN-ViT achieves SOTA performance with linear computational
complexity. It presents a promising approach for achieving both high-performance and
energy-efficient visual solutions.

2 RELATED WORK

Vision Transformers: ViTs segment images into patches and apply self-attention (Vaswani, 2017;
Kenton & Toutanova, 2019) to learn inter-patch relationships, outperforming CNNs across multiple
vision tasks (Mei et al., 2021; Bertasius et al., 2021; Guo et al., 2021). Nevertheless, ViTs face chal-
lenges like high parameter counts (Liu et al., 2021b), and increased computational complexity pro-
portional to token length (Pan et al., 2020; Liu et al., 2022). To enhance the computational efficiency
of ViTs, many researchers (Jie & Deng, 2023; Li et al., 2023) are focused on exploring lightweight
improvement methods. For example, LeViT (Graham et al., 2021) incorporates convolutional el-
ements to expedite processing, and MobileViT (Mehta & Rastegari, 2021) combines lightweight
MobileNet blocks with MHSA, achieving lightweight ViTs successfully. However, these enhance-
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ments still rely on expensive MAC computations which are not suitable for resource-limited devices.
This highlights the need for investigating more energy-efficient ViT solutions.

Spiking Neural Networks: The event-driven mechanism enhances the energy efficiency of SNNs,
offering a significant advantage for compute-constrained edge devices. With the introduction of
ANN-SNN (Cao et al., 2015; Han et al., 2020a; Wu et al., 2021) and direct training (Wu et al.,
2018; Fang et al., 2021b; Zhang et al., 2021; Wei et al., 2023) algorithm, the difficult associated
with training high-performance SNNs is significantly reduced. Based on these advanced learning
algorithms, some research (Hu et al., 2021; Zheng et al., 2021; Hu et al., 2024) propose deep residual
SNNs (Wang et al., 2024; Shan et al., 2024) and others (Yao et al., 2023; Zhu et al., 2024; Shan et al.,
2024) contribute multi-dimensional spike attention mechanisms, achieving competitive performance
on many tasks (Zhang et al., 2024). These improvements further enhance the application of SNNs in
various visual tasks. However, despite rapid advancements, a significant performance gap remains
between these traditional deep SNN architectures and the latest ViTs.

Vision Transformers Meet Spiking Neural Networks: To explore high-performance and energy-
efficient visual solutions, SNN-based ViTs (Zhou et al., 2023b; Wang et al., 2023a) have emerged.
Spikformer (Zhou et al., 2023b;a) pioneers a spike-based self-attention computation, establishing the
first spiking ViT. However, they still utilize expensive MAC operations and matrix multiplication in
self-attention computation, which are inefficient for binary spikes. Recently, Spike-driven Trans-
former (Yao et al., 2024b) implements Hadamard product in the self-attention module for a fully
spike-driven ViT. Additionally, SpikingResformer (Shi et al., 2024) integrates a Dual Spike self-
attention module for improved performance and energy efficiency. However, these models primarily
treat self-attention as a token mixer (Yu et al., 2022), without exploring an effective relevance com-
putation suited to spike trains. Moreover, they also overlook the temporal dynamics of SNNs. (Zhang
et al., 2021; Bohte et al., 2000). Therefore, developing spike self-attention mechanisms tailored to
the spatio-temporal characteristics of SNNs is essential for further advancements.

3 PROBLEM ANALYSIS IN SPIKING SELF-ATTENTION

In this section, we analyze the mismatches between vanilla self-attention mechanisms and SNNs in
both the spatial and temporal domains. The detailed discussion is provided in the following sections.

3.1 DEGRADED SPATIAL RELEVANCE

Figure 1: Distribution of magnitudes for Q and K in ViTs within ANNs and SNNs on CIRAF100. In
ANNs, Q and K exhibit similar magnitude distributions, whereas in SNNs, the magnitude differences
between Q and K are pronounced.

The vanilla self-attention measures the spatial relevance between Q and K through Dot-Product
operation. For a given query Qi and key Ki vector, the relevance between them are as follows:

Dot-Product (Qi,Ki) =

D∑
j=1

QijKij , (1)

D is the dimension of both vectors, Qij and Kij refer to the j-th elements of these vectors, respec-
tively. Notably, the relevance based on Dot-Product takes into account both the angle and magnitude
of the vectors (Kim et al., 2021). When there is a significant difference in magnitude between vec-
tors, the Dot-Product may not accurately measure their spatial relevance.
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In ANNs, continuous input X is first normalized using layer normalization (Dosovitskiy, 2020) and
then be processed through linear transformations WQ and WK to derive the matrices Q and K.
This ensures that the magnitudes of Q and K are closely matched (Xu et al., 2019), preventing
large variations between vectors. As shown in the left part of Fig.1, the distribution between Q
and K across various datasets remains nearly identical, allowing effective measuring of the spatial
relevance for attention score in ANNs.

Due to the discrete activation characteristics of spiking neurons, the continuous distribution of the
normalized membrane potentials in Q and K is disrupted. As shown in the right part of Fig. 1, the
magnitude of Q and K in SNNs shows significant variability, which leads to the failure of the Dot-
Product in measuring spatial relevance. Moreover, despite Q and K following identical distributions,
the sparsity of binary spikes significantly reduces their stability compared to ANNs. We provide a
detailed analysis of this assertion in Appendix. A. Therefore, developing more effective methods
to measure the spatial relevance between spike trains could be a viable approach to enhancing the
performance of SNN-based ViTs.

Figure 2: Comparison of three self-attention computation paradigms. (a) VSA employs floating-
point matrix multiplication to assess the spatial correlation between Q and K, resulting in a computa-
tional complexity of O(N2D). (b) SSA lacks a dedicated temporal interaction module, maintaining
the same complexity as VSA. (c) In contrast, STSA introduces global spatial-temporal interactions,
increasing the complexity to O(T 2N2D).

3.2 LIMITED TEMPORAL INTERACTION

As shown in Fig. 2(a), vanilla self-attention in ViTs operates independently of timesteps, thereby
preventing the need for temporal interaction in self-attention designs. Conversely, SNNs rely on
multiple timesteps to enrich their information representation capabilities (Fang et al., 2021b). How-
ever, as shown in Fig. 2(b), most spike self-attention mechanisms (Yao et al., 2024b; Zhou et al.,
2023b; Shi et al., 2024) lack dedicated modules for the temporal domain. The only temporal in-
teraction in those methods is the accumulation of historical information by spiking neurons (LIF
neurons), whose dynamics can be described as:

U [t+ 1] = H[t] +X[t+ 1], (2)
S[t+ 1] = Θ(U [t+ 1]− Vth), (3)
H[t+ 1] = VresetS[t+ 1] + τU [t+ 1](1− S[t+ 1]). (4)

X[t+ 1] denotes the spatial input current, while H[t] and U [t] represent the pre-synaptic and post-
synaptic membrane potentials, respectively. The Heaviside function Θ(·) is employed for spike
generation. If a spike occurs (S[t + 1] = 1), H[t] resets to Vreset; otherwise, U [t + 1] decays with
a time constant τ and feeds into H[t + 1]. However, due to the reset and decay mechanism, the
residual membrane potential cannot sustain long-range dependencies, resulting in a significant loss
of historical information. To solve this problem, (Wang et al., 2023b) proposes a spatio-temporal
spike self-attention method as shown in Fig. 2(c). But this method has O(T 2N2D) computational
complexity, significantly restricting the training efficiency of SNNs and increasing the complexity
of deployment. Therefore, achieving more effective spatio-temporal interactions without increasing
computational overhead remains a pressing challenge.
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4 SACCADIC SPIKING SELF-ATTENTION MECHANISM

We introduce a Saccadic Spiking Self-Attention (SSSA) method tailored for the spatio-temporal
characteristic of SNNs. Spatially, SSSA enhances relevance measurement between spike vectors Q
and K based on their distribution forms. Temporally, it incorporates a dedicated saccadic interaction
module for dynamic contextual comprehension of the visual scene. Additionally, we advance SSSA
to version V2, which retains the high performance of SSSA and reduces computational complexity
from O(N2) to O(D).

Figure 3: Overview of SSSA method. (a) SSSA consisting of two key components: cross-entropy
relevance computation and saccadic spiking neurons. The latter outputs spike-driven decisions that
mask V in N-dimensional space. (b) training and inference process for saccadic spiking neurons.
(c) the structure of the spatial relevance computation based on spike distribution. (d) the structure of
SSSA-V2 on spatial relevance computation, significantly reducing computational complexity.

4.1 SPATIAL RELEVANCE COMPUTATION FROM SPIKE DISTRIBUTION

To mitigate the issue of degraded spatial relevance caused by Dot-Product operations, we introduce
a novel distribution-based approach. It directly measures the relevance between two vectors using
cross-entropy, unaffected by their magnitudes. Further details can be found in Appendix B.

For a patch x ∈ RD in either Q or K, it can be treated as a D-dimensional {0, 1} random spike
train, where p represents the spike firing rate. The cross-entropy between patches q ∈ Q and k ∈ K
is given by:

H (q, k) = − [pq log pk + (1− pq) log (1− pk)] , (5)

where pq and pk denote the firing rates for vectors q and k, respectively. Since both q and k are
spike trains, our focus shifts to the distribution of spikes rather than silent states. Consequently,
we primarily consider the first term of Eq. 5, allowing us to simplify H (q, k) to −pq log pk. Given
that both log(x) and x maintain the same monotonicity, substituting log(x) with x is a feasible
simplification that preserves the effectiveness of H(q, k), while avoiding nonlinear computations.
Detailed analysis is provided in Appendix B.

Since cross-entropy H(q, k) measures negative relevance, we take its negative as our attention result.
As a result, the cross-attention between Q and K, denoted as CroAtt (Q,K) = −H(Q,K), can be
further expressed as:

CroAtt (Q,K) = Q′K′T , Q′ =

D∑
Q, K′ =

D∑
K, Q,K ∈ RT×N×D. (6)
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As illustrated in Fig. 2(c), Q′ and K′ represent the sum of spikes across the dimension D. This
approximation allows for more efficient parallel computation of spatial relevance between Q and
K. By employing this distribution-based method, we more accurately assess the relevance between
vectors with non-standard distributions, thereby addressing the issue of degraded spatial relevance.

4.2 SACCADIC TEMPORAL INTERACTION FOR ATTENTION

Biological saccadic mechanisms do not process all visual information at once. Instead, they progres-
sively focus on key visual areas within a scene Guadron et al. (2022). This ensures that biological
systems can efficiently achieve contextual understanding of the entire visual scene. Inspired by this
mechanism, we have designed an effective temporal interaction module that incorporates two critical
processes: salient patch selection and saccadic context comprehension. The first process selectively
computes only a subset of patches at each timestep, while ignoring the others. It can significantly
reduce the computational complexity of the SSSA method. This process can be described as:

Patch =

n∑
j=1

CroAtt (Q,K) , CroAtt (Q,K) ∈ RT×N×N , (7)

CroAtt(Q,K) represents the spatial relevance between patches in Q and K. By summing the rows
of the CroAtt(Q,K) matrix, the Patch represents the spatial salience of patches. Subsequently, the
saccadic interaction module makes contextual understanding based on Patch. To ensure the asyn-
chronous characteristics of SNNs, we aim to integrate the interaction process into spiking neurons.
However, the significant historical forgetting caused by the resetting and decay mechanism of LIF
neurons prevents efficient interaction. Therefore, we introduce a plug-and-play saccadic spiking
neuron, whose dynamic during training and inference phases can be described as follows:

Training
{
H = MwPatch

S = Θ(H−Vth)
Inference

{
H[t] = Patch[t]

S[t] = Θ
(
H[t]−M−1

w Vth[t]
) (8)

Here, H,S,Patch ∈ RT×N represents the data format for parallel training, encompassing the
entire temporal dimension. Mw is a learnable lower triangular matrix that precisely regulates con-
tributions from each timestep, facilitating efficient temporal interactions. Utilizing Mw to compute
membrane potentials, saccadic spiking neurons avoid decay or resetting disruptions. As shown in
Fig.3, we depict the dynamic process of saccadic spiking neurons. During training, the membrane
potential of saccadic spiking neurons is represented as

∑t
0 witPatch[t], wit ∈ Mw. However, all

timesteps are processed simultaneously via matrix multiplication, which requires substantial com-
putational resources. To maintain SNNs’ energy efficiency, we propose an asynchronous inference
decoupling method. By incorporating the inverse of Mw into the threshold levels of the saccadic
spiking neurons, we ensure temporal decoupling between H and S. The spike firing process depends
solely on the current values of H[t] and VthM

−1
w [t], eliminating the need for historical information.

Thus, saccadic spiking neurons ensure the capability for asynchronous inference. Notably, the tem-
poral complexity of saccadic spiking neurons is only O (T ), significantly superior to the O

(
T 2

)
.

The dynamics of saccadic spiking neurons are detailed in Appendix.C.

4.3 LINEAR COMPLEXITY AND SPIKE-DRIVEN COMPUTATION

Building on the aforementioned components, SSSA is specifically designed for the spatio-temporal
characteristics of SNNs. It enables a more effective comprehensive understanding of the entire
visual scene with lower time complexity. Its formulation is described as follows:

SSSA (Q,K,V) = Θ (MwPatch[0, · · · , t]− Vth) · V = Θ
(
Mw

(
Q′ ×K′T )L−Vth

)
· V, (9)

where L represents a column vector [1, 1, . . . , 1] with dimension N , facilitating the summation of
row elements. However, as depicted in Fig. 2(c), SSSA includes integer multiplication operations
within Q′ × K′, compromising the energy efficiency of the SNNs. Moreover, the quadratic com-
plexity of Q′ × K′ still indicates potential for optimization. Given that the matrix multiplications
in Eq.9 do not involve nonlinear operations, they allow for free association of matrices without al-
tering the computational sequence. Consequently, to avoid the need for integer multiplication and
further reduce computational complexity, we conduct an linear scaling mapping of Eq.9, which can
be described as follows:

SSSA (Q,K,V) = Θ
(
(Mw ×Q′)

(
K′T × L

)
− Vth

)
· V (10)
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In SSSA-V2, computations begin with the calculation of Q′ and K ′ based on Q and K, each with a
complexity of O(D). Then, instead of calculating Q′×K ′, SSSA-V2 treats (K′T ×L) as a learnable
scaling factor α, applied to the threshold Vth of the saccadic neuron. Subsequently, Mw × Q′ as
Patch[i] input into the saccadic neurons. During the inference process, Mw can be integrated into
the thresholds of saccadic neurons to maintain a fully spike-driven system.

Inference
{

H[t] = Q′[t],
S[t] = Θ

(
H[t]− 1

α

(
M−1

w Vth

)
[t]
)
.

(11)

Mathematically, SSSA-V2 is linear scaling mapping to SSSA, preserving all the advantages of SSSA
while significantly reducing the need for integer multiplication operations. Additionally, SSSA-V2
achieves a linear spike self-attention mechanism with total computational complexity of O(2D+N),
offering significant benefits in resource-constrained environments.

5 SNN-BASED SACCADIC VISION TRANSFORMER

As illustrated in Fig.4, we introduce a novel SNN-ViT based on the proposed SSSA method. It
primarily consists of GL-SPS blocks and SSSA-based transformer blocks. The following section
will provide detailed descriptions of these components.

Figure 4: The overall structure of SNN-ViT, mainly consisting of GL-SPS blocks and SSSA-based
transformer blocks. GL-SPS block combines dilated convolution and standard convolution at differ-
ent scales to facilitate multi-scale feature extraction from images. The SSSA-based block, composed
of SSSA methods and Linear layers, achieves lower computational complexity.

5.1 GL-SPS: GLOBAL-LOCAL SPIKING PATCH SPLITTING MODULE

Currently, existing SPS methods primarily rely on shallow spiking convolution modules to capture
local information, which prevents the effective extraction of multi-scale features. This limitation
leads to degraded performance in processing wide-field image features. To address this issue, we
design the Global-Local convolutional SPS block, described as follows:

GL-SPS (X[t]) = BN (Conv(X[t]) + BN (DConv (X[t])) , (12)

where X[t] is the result of a convolution operation with a stride of 2. Conv2d and D-Conv2d rep-
resents standard and dilated convolution operations. BN(·) is Batch Normalization. The GL-SPS
utilizes both Conv2d and D-Conv2d to extract features. Combining layers with different dilation
rates effectively gathers context from various visual scales. Consequently, SNN-ViT employs the
GL-SPS method as its embedding module, enhancing efficiency and scalability in feature extraction.
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5.2 OVERALL ARCHITECTURE

Building upon the pyramid structure (Liu et al., 2021b; Yu et al., 2023), we propose a novel SNN-
ViT that incorporates the GL-SPS block and the SSSA method. GL-SPS part encodes the input
image through downsampling operation and various convolutions operation. Specifically, the down-
sampling operation is defined as a convolution operation with a kernel size of 7 and a stride of 2.
The GL-SPS method follows the previous section. The whole block is defined as follows:

U0 = GL-SPS (I) I ∈ RT×C×H×W (13)

Subsequently, U0 is inputted into the SSSA-based block, which consists of SSSA method and MLP
Layer. To further reduce the computational complexity of the model, we adopt the SSSA-V2 version
as the paradigm for self-attention computation in the architecture. Subsequently, the output from the
SSSA-based Transformer blocks is fed into the Global Average Pooling (GAP) module, followed
by a Classification Head (FCH) that generates the prediction Y. These parts can be defined as:

U1 = U0 + BN(Conv([SSSA(SN (U0))])), U0 ∈ RT×N×D (14)

U2 = U1 + BN(Linear[SN (U1)]), U1 ∈ RT×N×D (15)
Y = FCH(GAP(SN (U2))), (16)

where Y denotes the predicted outcome. For different types of datasets, we can integrate the GL-SPS
component with varying numbers of SSSA decoding blocks. The details of the network architecture
and the parameter count are presented in Appendix.F.

6 EXPERIMENTS

6.1 IMAGE CLASSIFICATION

SNN-ViT is evaluated on both static and neuromorphic datasets, including CIFAR10, CI-
FAR100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009) and CIFAR10-DVS (Li et al.,
2017). Specifically, for ImageNet, the input image size is 3 × 224 × 224, with batch sizes of 128,
and training epoch is conducted over 310. Our experimental results are summarized in Table.1 and 2.

Table 1: Summary of Network Architectures and Parameters across Vary Datasets

Method CIFAR10 CIFAR100 CIFAR10-DVS

Param. Acc. Param. Acc. Param. Acc.

PLIF (Fang et al., 2021b) - 93.50 - - - 74.8
tdBN (Zheng et al., 2021) - 93.2 - - - 67.8
DSpike (Li et al., 2021) - 94.25 - 74.24 - 75.4
TET (Deng et al., 2022) 12.63 94.44 12.63 74.47 - 77.33

Spikformer (Zhou et al., 2023b) 9.32 95.51 9.32 78.21 2.57 80.9
Spikingformer (Zhou et al., 2023a) 9.32 95.81 9.32 78.21 2.57 81.3

Spike-driven (Yao et al., 2024b) 10.28 95.60 10.28 78.40 2.57 80.0
STSA (Wang et al., 2023b) - - - - 1.99 79.9

SNN-ViT (Ours) 5.57 96.1 5.57 80.1 1.52 82.3

To facilitate a comprehensive comparison with similar works, we meticulously documented the per-
formance of our SNN-ViT across varying model sizes. In the CIFAR100 dataset, the direct training
performance of SNN-ViT significantly surpasses the Spike-driven Transformer (Yao et al., 2024b)
with fewer parameters. This underscores the high robustness and sensitivity of the SSSA strategy
in smaller-scale tasks, closely mirroring biological cognitive processes. Notably, for neuromorphic
datasets, the computational complexity of SNN-ViT is O(TD), while STSA (Wang et al., 2023b)
has a complexity of O(T 2N2D). Despite reducing computational complexity by three orders, SNN-
ViT maintains SOTA performance. Furthermore, on the ImageNet-1K dataset, we conduct a detailed
comparison of SNN-ViT with other similar works. The comparison focuses on computational com-
plexity, parameter count, energy consumption, and accuracy. Experimental results demonstrate that
SNN-ViT achieves SOTA performance under linear computational complexity.
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Table 2: Detailed comparison with other similar methods on ImageNet-1K

Method Architecture Complexity Time
Step

Param.
(M)

Energy
(mJ)

Acc.
(%)

ViT
(Dosovitskiy, 2020)

ViT-12-768 O(N2D) - 86M 80.86 77.90
ViT-24-1024 O(N2D) - 307M 283.36 76.51

Swin Transformer
(Liu et al., 2021b)

Swin-T O(ND2) - 29M 20.72 81.35
Swin-S O(ND2) - 51M 40.24 83.03

Flatten Transformer
(Han et al., 2023)

FLatten-Swin-T O(N2D) - 29M 20.72 82.14
FLatten-Swin-S O(N2D) - 51M 40.24 83.52

Spikformer
(Zhou et al., 2023b)

Spikformer-8-384 O
(
N2D

)
4 16.8M 7.73 70.24

Spikformer-8-512 O
(
N2D

)
4 29.7M 11.6 73.38

Spikformer-8-768 O
(
N2D

)
4 66.3M 21.5 74.81

SpikingResformer
(Shi et al., 2024)

SpikingResformer-S O
(
N2D

)
4 17.8M 3.37 75.95

SpikingResformer-M O
(
N2D

)
4 35.5M 5.46 77.24

SpikingResformer-L O
(
N2D

)
4 60.4M 8.76 78.77

Spike-driven
(Yao et al., 2024b)

Spike-driven-8-384 O (ND) 4 16.8M 3.90 72.28
Spike-driven-8-512 O (ND) 4 29.7M 4.50 74.57

Meta-SpikeFormer
(Yao et al., 2024a)

Meta-SpikeFormer-384 O
(
ND2

)
4 33.1M 32.8 74.10

Meta-SpikeFormer-512 O
(
ND2

)
4 55.4M 52.4 79.70

SNN-ViT(Ours)
SNN-ViT-8-256 O (D) 4 13.7M 14.28 74.66
SNN-ViT-8-384 O (D) 4 30.4M 20.83 76.87
SNN-ViT-8-512 O (D) 4 53.7M 35.75 80.23

6.2 REMOTE OBJECT DETECTION

Given the high adaptability of biological saccadic mechanisms to dynamic visual tasks, we aim to
apply SNN-ViT to object detection tasks to demonstrate its advantages. As SNNs are often em-
ployed in resource-constrained edge computing scenarios, we select two remote sensing datasets:
NWPU VHR-10 Cheng et al. (2017) and SSDD (Wang et al., 2019). The NWPU VHR-10 dataset
comprises very high-resolution (VHR) images across ten categories, including airplanes, ships, stor-
age tanks, baseball diamonds, tennis courts, basketball courts, ground track fields, harbors, bridges,
and vehicles. The SSDD dataset focuses on ship detection using Synthetic Aperture Radar (SAR)

Figure 5: The detection results of SNN-ViT-YOLO on the NWPU-10 dataset are displayed in the
first rows. SSSA attention heatmaps are showcased in the second rows.

images. We build a SNN-ViT-YOLO framework by incorporating the SNN-ViT as the backbone of
the YOLO-v3 architecture. The structure details are shown in Appendix.G. As shown in Table.3,
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to validate the superior performance of SSSA in dynamic visual tasks, we present a comparison
with various deep ANN-based object detection methods, including YOLO-v3 (Liu et al., 2021a),
RICNN (Cheng et al., 2016), and Faster RCNN (Fu et al., 2020). Additionally, we also compare
our approach with EMS-YOLO (Su et al., 2023), the current SOTA results in the SNN fields. The
results indicate that SNN-ViT-YOLO outperforms other methods on the two datasets. This demon-
strates that SNN-ViT offers a viable approach for aviation and satellite image analysis in extreme
environments.

Table 3: Performance comparison with ANNs and SNNs on NWPU VHR-10 and SSDD.

Dataset Method Spike-driven Timestep mAP@0.5(%)

NWPU VHR-10

YOLO-V3 (Liu et al., 2021a) % - 87.3%
CSnNet (Chen et al., 2023) % - 90.4%

EMS-YOLO (Su et al., 2023)
! 4 86.5%
! 8 87.9%

SNN-ViT-YOLO (Ours) ! 4 88.2%
! 8 89.4%

SSDD

Faster R-CNN Fu et al. (2020) % - 85.3%

EMS-YOLO Su et al. (2023)
! 4 94.8%
! 8 95.1%

SNN-ViT-YOLO (Ours) ! 4 96.7%
! 8 97.0%

6.3 ABLATION STUDY

Table 4: Ablation Study

Model Param.
(M)

Compl
exity

Acc.
(%)

Baseline 5.76 O(N2D) 76.95

+SSSA 5.52 O(D) 79.60 + (2.65)
+GL-SPS 5.81 O(N2D) 77.88 + (0.93)
+both 5.57 O(D) 80.1 + (3.15)

To verify the effectiveness of each component
in the SNN-ViT, we perform a comprehensive
ablation study in the CIFAR100 dataset. The
Spikformer (Zhou et al., 2023b) is selected as
the baseline for comparison. Subsequently, we
replace the corresponding modules in the base-
line with SSSA blocks and GL-SPS blocks to
assess their impact on performance. As shown
in Table 4, replacing our SSSA method im-
proves performance by approximately 2.65%, while reducing computational complexity to O(N2).
Then we also verify the effectiveness of the GL-SPS blocks. As shown in Table.4, GL-SPS blocks
achieve a performance improvement of about 0.93% compared to baseline. This further demon-
strates the enhanced compatibility of multi-scale feature maps with the saccadic process. Finally,
we replace both SSSA and GL-SPS, achieving an approximately 3.15% performance improvement.
Ablation studies validate that the SSSA indeed can significantly enhance performance, confirming
its compatibility with spatio-temporal spike trains.

7 CONCLUSION

This work provides a detailed analysis of the mismatch between the vanilla ViT and spatio-temporal
spike trains. This mismatch results in degraded spatial relevance and limited temporal interactions.
Inspired by the biological saccadic attention mechanism, this work proposes a SSSA method tailored
to the SNNs. In the spatial dimension, SSSA employs a more efficient distribution-based approach
to compute the spatial relevance between Query and Key in SNNs. In the temporal domain, SSSA
utilizes a dedicated saccadic interaction module, calculating only a subset of patches at each timestep
to dynamically understand the context of the entire visual scene. Building on SSSA method, we de-
velop a SNN-ViT structure, which achieves state-of-the-art performance across various visual tasks
with linear computational complexity. SNN-ViT effectively integrates advanced biological cogni-
tive mechanisms with artificial intelligence techniques, providing a promising avenue for exploring
high-performance, energy-efficient edge visual tasks.
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A LIMITATIONS OF DOT-PRODUCT FOR SPIKE TRAINS

The Dot-Product is the operation to measure relevance between two vectors u and v in an n-
dimensional space, which is defined as:

u · v =

n∑
i=1

uivi = ∥u∥∥v∥ cos θ (17)

where ui and vi are the components of vectors u and v respectively, ∥u∥ and ∥v∥ denote the mag-
nitudes (norms) of the vectors, and θ is the angle between them. This expression clearly illustrates
that the Dot-Product is influenced by both the magnitudes of the vectors and the cosine of the angle
between them. Variations in either magnitude or angle will affect the result of the Dot-Product, thus
affecting the measure of relevance between the vectors.

Problem: If the Q and K are controlled to be similar distributions in SNNs, would the effec-
tiveness of the Dot-Product still be influenced by magnitude differences?

Analysis: To deepen our investigation, we present the following mathematical assumptions: assum-
ing query Q and the key vector K in SNNs are independent and share the same firing rate. Then
we examine the ∥q∥

∥k∥ . Let x = (x1, x2, . . . , xD) ∈ {0, 1}D represent q or k, where each element xi

takes the value 1 with probability p. The square of the magnitude follows a binomial distribution:

∥x∥2 =

D∑
i=1

x2
i =

D∑
i=1

xi ∼ B(D,P ), (18)

Its probability is given by:

P (∥x∥2 = k) =

(
D

k

)
pk(1− p)D−k, k = 0, 1, 2, . . . , D. (19)

We randomly select a q and a k from this distribution and calculate their magnitude ratio R = ∥q∥
∥k∥ .

Without considering the case when ∥k∥ = 0, the calculation proceeds as follows:

P (R = r) = P (R2 = r2)

=

n∑
k=0

n∑
l=1

1

(
k

l
= r2

)
P (X = k)P (Y = l)

=

n∑
k=0

n∑
l=1

1

(
k

l
= r2

)(
n

k

)(
n

l

)
pk+l(1− p)2n−k−l

(20)

where 1

(
k

l
= r2

)
is the indicator function, which equals 1 when

k

l
= r2 and 0 otherwise.

Given the complexity of this distribution, we employ experimental simulation for approximation.
Referencing the data shown in Fig. 1, we set p = 0.15 and D = 128. As the Dot-Product opera-
tion is symmetric, we adjust our calculation to ensure that the numerator is always greater than or
equal to the denominator, enhancing the clarity of our visualization. Specifically, we compute ∥q∥

∥k∥

when ∥q∥ > ∥k∥, and ∥k∥
∥q∥ otherwise. The simulation results are shown in Fig.6(b). Clearly, the

distribution of ∥q∥
∥k∥ is notably disordered. For comparison, we conduct the same assumptions and

simulations in the self-attention module of ANN. Let x = (x1,x2, . . . ,xD) ∈ RD represent q or k.

Then its magnitude is given by ∥x∥ =
√∑D

i=1 x
2
i . Similarly, we randomly select a q and a k and

simulate the distribution of their magnitude ratio R′. Based on the data in Fig. 1, we approximate
each element xi as independently normally distributed with xi ∼ N(35, 10). The results are shown
in Fig.6(c). By calculating the variance of ∥q∥

∥k∥ , it is found to be approximately 0.2322 in SNNs
and only around 0.00844 in ANNs. This indicates significant magnitude fluctuations in SNNs, re-
vealing a high degree of instability. As a result, the efficiency and effectiveness of the Dot-Product
computation are negatively impacted.
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(a) (b) (c)

Figure 6: (a) The impact of varying magnitudes on the results of Dot-Products. (b) and (c) The
distribution of magnitude entropy for ∥q∥

∥k∥ in ANNs and SNNs.

B CROSS-ENTROPY FOR BETTER RELEVANCE COMPUTATION

We calculate the relevance in spatial dimensions separately for the Q and K vectors at different
moments. The vectors q ∈ Q and k ∈ K, and pq and pK represents the spike firing rate for them.
Here, we introduce a cross-entropy method to more effectively compute the relevance between q
and k vectors:

H (q, k) = − [pq log pk + (1− pq) log (1− pk)] . (21)
The former term quantifies the degree of relevance when predictions are positive, while the latter
reflects the relevance of negative predictions. When using cross-entropy as a measure of relevance,
spike trains are first normalized and then transformed into probability distributions. Spike trains
typically comprise only two states: spike and silence. Therefore, the probability distribution primar-
ily reflects the spike firing rate. This measurement approach focuses on comparing the differences
between two probability distributions, disregarding their magnitudes. In summary, cross-entropy
is an effective distribution-based tool for assessing the relevance of spike trains, allowing for more
precise comparisons and evaluations of similarities and differences between Q and K.

Approximation Methodology: Although cross-entropy is an effective method for measuring rele-
vance, a comprehensive analysis of spike states and silent periods may reduce the system’s sensitiv-
ity. This is primarily because excessive focus on inactive silent periods can obscure critical informa-
tion present during active spike periods when dealing with sparse spike trains. Given our focus on the
spike states rather than silent periods in subsequent analyses, we can neglect the (1−pq) log(1−pk)
component. Therefore, H (q, k) can be simplified as follows:

H (a, b) ≈ −pq log pk, (22)

where pa and pb respectively represent the spike firing rates. However, the log(·) function introduces
non-linear operations that compromise the energy efficiency of SNNs. To address this, we propose
a further approximation and simplification.

As described in the previous section, within the Transformer blocks of the SNNs, the spike firing
rate of the Q vector and K vector primarily range from 10% to 20%. Consequently, we perform a
Taylor expansion of log(x) at x = 0.15. This can be expressed as:

log(x) ≈ log(0)(0.15) + . . .+
log(n)(0.15)

n!
· (x− 0.15)n (23)

Here, log(n) function denotes the result of the n-th order derivative of the log(·) function. Given that
x is essentially between 0.1 and 0.2, The terms (PQ− 0.15)2 and higher-order terms are very small,
which can be neglected. Consequently, H(A,B) can consider only the first term of the expansion:

log(x) ≈ log(0)(0.15) +
log(1)(0.15)

1!
(x− 0.15) ≈ kx+ b (24)

In the training process of SNNs, since k and b can be learned as weights and biases, we use x
to replace log(x) to simplify computations. Although this may introduce slight errors, it avoids
nonlinear operations and significantly enhances the network’s energy efficiency.
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C SACCADIC TEMPORAL INTERACTION

Saccadic mechanism in biologic Vision: Numerous neuroscience findings(Melcher & Morrone,
2003; Binda & Morrone, 2018; Guadron et al., 2022) confirm that the eyes do not acquire all details
of a scene simultaneously. Instead, attention is focused on specific regions of interest (ROIs) through
a series of rapid saccadic called saccades. Each saccade lasts for a very brief period—typically only
tens of milliseconds—allowing the retina’s high-resolution area to sequentially align with different
visual targets. This dynamic saccadic mechanism enables the visual system to process information
efficiently by avoiding redundant processing of the entire visual scene.

Other similar works inspired by visual mechanisms: Zhao et al. (2021) introduces a model uti-
lizing a retina-inspired spiking camera to enhance image clarity in high-speed motion scenarios.
McIntosh et al. (2016) explores how deep convolutional neural networks can model the retina’s
response to natural scenes. Tanaka et al. (2019) discusses the use of deep learning models to un-
derstand the computational mechanisms of the retina. These advanced features of biological vision
effectively inform the rational design of deep neural networks, promoting the efficient integration of
biological and machine intelligence.

Leaky Integrate-and-Fire (LIF) neuron model: In the LIF models, resetting and decay mech-
anisms significantly impair the neuron’s ability to retain long-term historical information. The
model’s dynamics are described by the differential equation:

τm
dV
dt

= −(V (t)− Vrest) +RI(t), (25)

where V (t) is the membrane potential, Vrest is the resting potential, τm is the membrane time con-
stant which influences decay rate, R is the membrane resistance, and I(t) is the input current. This
equation illustrates how the membrane potential responds to input currents and decays towards Vrest.
When the membrane potential V (t) reaches the threshold Vth, the neuron fires and resets the poten-
tial to Vreset. This resetting process can be mathematically described as:

V (t+) = Vreset if V (t) ≥ Vth, (26)

where t+ is the time immediately following the spikes. This resetting not only disrupts the continuity
of V (t) but also eliminates all accumulated potential exceeding the threshold. Moreover, in the
absence of input (I(t) = 0), the decay mechanism mercilessly forces the membrane potential to
exponentially converge to the resting potential Vrest, following the equation:

V (t) = Vrest + (V0 − Vrest)e
− t

τm , (27)

where V0 is the initial potential. This decay process gradually diminishes the stored information in
the neuron, causing the accumulated potential to disappear quickly over time. It severely limits the
neuron’s ability to maintain historical information. To address this issue, we specifically designed
saccadic spiking neurons without decay and reset mechanisms. The training and inference processes
are described as follows.

D SACCADIC NEURONS

Training Phase: In the training process of SNN-ViT, the information from all timesteps is inputted
in parallel. During this phase, the dynamics of the saccadic spiking neuron can be described as
follows: 

H = MwS

S = Θ(H−Vth)

, Mw

w11 · · · 0
...

. . .
...

wn1 · · · wnn

 , (28)

These neurons utilize a learnable lower triangular matrix M to integrate information across all
timesteps without any loss of historical data, enhancing long-term memory and processing capa-
bilities. As M is a lower triangular matrix, it naturally associates earlier inputs with current states,
facilitating a comprehensive understanding of the whole visual scene over time. This method ensures
that contributions from each timestep are precisely modulated and accumulated through matrix M.
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This approach not only prevents information loss due to decay and resets but also allows neurons to
utilize all historical data more effectively for decision-making. Such capability markedly improves
their capacity to understand the context of entire image scenes.

Inference Phase: During the training phase, all information is inputted into the network simul-
taneously, enabling efficient interaction through direct matrix multiplication. However, this paral-
lel processing approach incurs significant resource expenditure, which is unfriendly to resource-
constrained edge devices. Therefore, to maintain the energy efficiency and asynchronous processing
advantages of SNNs, we propose an asynchronous decouple method that only computes the input at
the current timestep. The dynamics of the inference process can be described as follows:{

H[t] = S[t]
S[t] = Θ

(
H[t]−M−1

w Vth[t]
) (29)

During the inference process, the threshold Vth varies at each moment, thus Vth ∈ RT . To ensure
the existence of the inverse M−1

w for the matrix Mw, certain constraints must be imposed on Mw.
It can be described as follows:

det(Mw) = m11 ×m22 × . . .×mnn ̸= 0 (30)

By incorporating the inverse of M into the threshold of the saccadic spiking neurons, we ensure
temporal decoupling between H and S. Specifically, H[t] only requires input from S[t], facilitating
asynchronous inference. Additionally, dynamic thresholds at each moment enrich the dynamical
properties of the spiking neurons. This approach effectively highlights the spatio-temporal attributes
of SNNs and ensures efficient performance of vision tasks on resource-constrained edge devices.

E ABLATION STUDIES ON SSSA

We add ablation studies on the two key components of the SSSA module: (1) Replacing Distribution-
Based Spatial Similarity Computation with traditional Dot Product (DP) similarity; (2) Replacing
saccadic neurons with LIF neurons. Finally, we also compare the performance of versions V1 and
V2. Experiments are performed on the CIFAR100 dataset, and the results are presented in the
following Table.5.

Table 5: Ablation Studies on SSSA.
Model Param (M) Complexity Acc (%)

SSA 5.76M O(N2D) 76.95
SSSA+DP 5.52M O(N2D) 77.12
SSSA+LIF 5.52M O(D) 78.84
SSSA-V1 5.52M O(N2) 79.71
SSSA-V2 5.52M O(D) 79.60

The SSSA+DP shows almost no performance improvement compared to the baseline (Zhou et al.,
2023b). This outcome underscores that effective spatial similarity computation is the foundation for
subsequent saccadic interactions. Then, substituting saccadic neurons with LIF neurons led to an
approximate 0.8% decrease in performance relative to SSSA. This demonstrates that saccadic inter-
actions can indeed enhance performance. Finally, while there is virtually no performance disparity
between V1 and V2, the computational complexity of V2 is only O (D). In summary, our SSSA-V2
module achieves an optimal trade-off between computational complexity and performance.

F EXPERIMENT SETTING FOR IMAGE CLASSIFICATION

On the ImageNet-1K classification benchmark, we propose an architecture according to Spike-
driven V2 (Yao et al., 2024a). As illustrated in Table 6, our model introduces the GL-SPS part
and SSSA block, which respectively replace the Patch Embedding block and self-attention compu-
tation blocks. The architecture of SNN-ViTs primarily consists of four stages. Each stage includes
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GL-SPS encoding operations and SSSA module, facilitating efficient and precise visual information
processing. Specifically, in the initial stage, the input sequence I ∈ R3×H×W is processed through
a GL-SPS layer, which encodes it into X ∈ RC×H

2 ×W
2 . Then, the encoded images are input into

a spiking saccadic self-attention block to enhance feature extraction. This block comprises a SSSA
module and an MLP layer in the channel dimension. Moreover, the output will be input to the GL-
SPS layer of the next stage which has a similar operation to the previous stage. Additionally, residual
connections are applied to membrane potentials in both SSSA module and MLP layer. Finally, the
model is processed through a fully connected layer (FCH) to obtain the final classification output.

Figure 7: The detection performance and heatmaps of SNN-ViT-YOLO on the SSDD and NWPU
VHR-10 datasets.

G EXPERIMENT DETAILS FOR REMOTE TARGET DETECTION

To further validate the capabilities of SNN-ViT across diverse task environments, this study con-
ducts extensive experiments in remote sensing object detection. Specifically, the SNN-ViT is inte-
grated into the widely utilized YOLO-v3 detection framework. Experiments are carried out on a
high-performance computing platform equipped with an NVIDIA RTX4090 GPU, using Stochastic
Gradient Descent (SGD) as the optimization algorithm. The initial learning rate is set at 1 × 10−2,
adjusted according to a polynomial decay strategy. The entire training process spans 300 epochs on
the NWPU-VHR-10 and SSDD datasets, ensuring comprehensive learning and adaptation to data
characteristics.

As illustrated in Fig.7, the SNN-ViT-YOLO model exhibits significant performance advantages on
the NWPU test set, effectively pinpointing critical target points. This confirms its viability and effi-
ciency in practical applications. The specific configurations of the network are meticulously detailed
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Table 6: The details of experiment setting for ImageNet-1K
Stage # Tokens Layer Specification 14M 30M 53M

1

H
2 × W

2

Downsampling GL-SPS
Conv 7× 7 stride 2

DConv 3× 3 stride 2 dilation 2

Dim 32 48 64

Attention-based

SNN block

SSSA Conv 3× 3 stride 1

Channel Conv
Conv 1× 1 stride 1

Conv ratio 4

H
2 × W

2

Downsampling GL-SPS
Conv 3× 3 stride 1

DConv 3× 3 stride 2 dilation 2

Dim 64 96 128

Attention-based

SNN block

SSSA Conv 3× 3 stride 1

Channel Conv
Conv 1× 1 stride 1

Conv ratio 4

2 H
4 × W

4

Downsampling GL-SPS
Conv 3× 3 stride 2

DConv 3× 3 stride 2 dilation 2

Dim 128 192 256

Attention-based

SNN block

SSSA Conv 3× 3 stride 1

Channel Conv
Conv 1× 1 stride 1

Conv ratio 4

3 H
8 × W

8

Downsampling GL-SPS
Conv 3× 3 stride 2

DConv 3× 3 stride 2 dilation 2

Dim 256 384 512

Attention-based

SNN block

SSSA Conv 3× 3 stride 1

Channel Conv
Conv 1× 1 stride 1

Conv ratio 4

4 H
16 × W

16

Downsampling GL-SPS
Conv 3× 3 stride 2

DConv 3× 3 stride 2 dilation 2

Dim 256 384 512

Attention-based

SNN block

SSSA Conv 3× 3 stride 1

Channel Conv
Conv 1× 1 stride 1

Conv ratio 4

in Table G. In this configuration, the expansion ratio of the Multi-Layer Perceptron (MLP) is fixed
at 4 to achieve an optimal balance between computational efficiency and model performance. This
network architecture involves feeding the P3, P4, and P5 feature maps—derived from intermediate
layers of the network—into the detection heads of the YOLO-v3 framework.
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Table 7: Configurations of SNN-ViT on object detection.
Stage # Tokens Layer Specification Model

P1 H
2 × W

2

Downsampling GL-SPS
Conv 3× 3 stride 2 dilation 2

DConv 7× 7 stride 2

Dim 64

Conv-based

SNN block

Conv Layer
Conv 3× 3 stride 2 dilation 1

Dim 64

Channnel Conv
Conv 1× 1 stride 1

Conv ratio 4

P2 H
4 × W

4

Downsampling GL-SPS
Conv 3× 3 stride 2 dilation 2

DConv 7× 7 stride 2

Dim 128

Conv-based

SNN block

Conv Layer
Conv 3× 3 stride 2 dilation 1

Dim 128

Channnel Conv
Conv 1× 1 stride 1

Conv ratio 4

P3 H
8 × W

8

Downsampling GL-SPS
Conv 3× 3 stride 2 dilation 2

DConv 7× 7 stride 2

Dim 256

Attention-based

SNN block

Conv Layer
Conv 3× 3 stride 2 dilation 1

Dim 256

Channnel Conv
Conv 1× 1 stride 1

Conv ratio 4

P4 H
16 × W

16

Downsampling GL-SPS
Conv 3× 3 stride 2 dilation 2

DConv 7× 7 stride 2

Dim 256

Attention-based

SNN block

Conv Layer
Conv 3× 3 stride 2 dilation 1

Dim 256

Channnel Conv
Conv 1× 1 stride 1

Conv ratio 4

P5 H
32 × W

32

Downsampling GL-SPS
Conv 3× 3 stride 2 dilation 2

DConv 7× 7 stride 2

Dim 512

Attention-based

SNN block

Conv Layer
Conv 3× 3 stride 2 dilation 1

Dim 512

Channnel Conv
Conv 1× 1 stride 1

Conv ratio 4
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