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Abstract001

Recent studies have highlighted the potential002
of exploiting parallel corpora to enhance multi-003
lingual large language models, improving per-004
formance in both bilingual tasks, e.g., machine005
translation, and general-purpose tasks, e.g., text006
classification. Building upon these findings,007
our comprehensive study aims to identify the008
most effective strategies for leveraging parallel009
corpora. We investigate the impact of parallel010
corpora quality and quantity, training objec-011
tives, and model size on the performance of012
multilingual large language models enhanced013
with parallel corpora across diverse languages014
and tasks. Our analysis reveals several key015
insights: (i) filtering noisy translations is es-016
sential for effectively exploiting parallel cor-017
pora, while language identification and short018
sentence filtering have little effect; (ii) even a019
corpus containing just 10K parallel sentences020
can yield results comparable to those obtained021
from much larger datasets; (iii) employing only022
the machine translation objective yields the best023
results among various training objectives and024
their combinations; (iv) larger multilingual lan-025
guage models benefit more from parallel cor-026
pora than smaller models due to their stronger027
capacity for cross-task transfer. Our study of-028
fers valuable insights into the optimal utiliza-029
tion of parallel corpora to enhance multilingual030
large language models, extending the gener-031
alizability of previous findings from limited032
languages and tasks to a broader range of sce-033
narios.034

1 Introduction035

Recent multilingual large language models036

(mLLMs), represented by BLOOM (Scao et al.,037

2022), MaLA500 (Lin et al., 2024b), and Aya038

(Üstün et al., 2024), have shown impressive ca-039

pacity on diverse tasks across languages. Paral-040

lel corpora have emerged as crucial resources for041

enhancing mLLMs, both for specific tasks, e.g.,042

machine translation (Xu et al., 2023; Alves et al.,043
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Figure 1: Average performance improvements achieved
by mLLMs enhanced with parallel corpora compared
to their base models. Best: Continued pre-training
of BLOOM-7B1 with the machine translation ob-
jective (MT) using 10K high-quality parallel sen-
tences yields the best results. Main variations ex-
plored include: Filter (No) (using the original data);
OBJ (TLM) (translation language modeling objective);
OBJ (XSS) (cross-lingual semantic similarity objec-
tive); |Data| (50K) (a larger 50K-sentence dataset);
|Model| (1B7) (BLOOM-1B7 model).

2024), and for general-purpose tasks (Cahyawijaya 044

et al., 2023; Zhu et al., 2023; Li et al., 2023). 045

However, existing studies often overlook a com- 046

prehensive exploration of methodologies for har- 047

nessing parallel corpora. The quality and quan- 048

tity of parallel corpora remain inadequately ex- 049

plored, inhibiting the full potential of such re- 050

sources. Moreover, the influence of different train- 051

ing objectives and mLLM sizes across diverse lan- 052

guages and tasks remains under-investigated. This 053

limitation impedes the generalization of parallel 054

corpora exploitation methods across varied linguis- 055

tic landscapes and task domains. Therefore, this 056

paper aims to address these gaps by presenting a 057

comprehensive recipe for exploiting parallel cor- 058

pora for mLLMs. We focus on four key factors, 059
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with some main results shown in Figure 1.060

Quality: Kreutzer et al. (2022) highlight large061

portions of low-quality data within current mas-062

sive parallel corpora. We explore three dimensions063

of quality: translation accuracy, sentence length,064

and language identification. Our findings empha-065

size the critical role of translation quality in exploit-066

ing parallel corpora, while showing that sentence067

length filtering and language identification have068

minimal impact.069

Quantity: Acquiring substantial amounts of070

high-quality parallel corpora presents a signifi-071

cant challenge, especially for low-resource lan-072

guages. Our study examines the minimum corpus073

size necessary to achieve performance improve-074

ments across diverse tasks. Remarkably, we find075

that even a corpus of just 10K sentences can yield076

results comparable to those obtained from much077

larger datasets.078

Objective: Previous studies (Cahyawijaya et al.,079

2023) have investigated the effectiveness of differ-080

ent training objectives and their combinations on081

classification tasks of Indonesian local languages,082

using smaller-sized mLLMs up to 1B7. We ex-083

tend this investigation by examining the impact of084

various training objectives and their combinations085

on larger mLLMs across a range of languages and086

tasks. Our experiments demonstrate that employ-087

ing the machine translation objective produces the088

most promising results.089

Model Size: The size of mLLMs can greatly090

impact their ability to comprehend instructions de-091

rived from parallel corpora. Our findings indicate092

that larger mLLMs exhibit superior comprehension093

and cross-task transferability compared to their094

smaller counterparts. Consequently, they achieve095

more substantial improvements across a broader096

spectrum of tasks.097

In light of the critical role parallel corpora play098

in mLLMs, our study provides a comprehensive099

recipe for effectively exploiting parallel corpora.100

We have identified four primary factors: quality101

(§4), quantity (§5), objective (§6), and model size102

(§7). Our detailed analysis of these factors reveals103

their great impact on mLLM performance across104

diverse languages and tasks. By delving into these105

aspects, we offer actionable insights that can in-106

form the development and optimization of strate-107

gies for parallel corpora exploitation, ultimately108

contributing to the advancement of mLLMs in both109

bilingual and general-purpose tasks.110

2 Related Work 111

2.1 Parallel Data for Multilingual Language 112

Models 113

Over the years, multilingual language models have 114

evolved from earlier, smaller models, such as XLM 115

(Conneau and Lample, 2019), XLM-R (Conneau 116

et al., 2020), and Glot500 (Imani et al., 2023), to 117

more recent, larger models, including BLOOM 118

(Scao et al., 2022), MaLA500 (Lin et al., 2024b), 119

and Aya (Üstün et al., 2024). These models con- 120

sistently demonstrate strong performance across 121

various downstream tasks (Ahuja et al., 2023; Lin 122

et al., 2024c). 123

Parallel corpora have played a pivotal role in 124

both the analysis (Piqueras and Søgaard, 2022; Lin 125

et al., 2024a) and enhancement (Conneau and Lam- 126

ple, 2019; Ouyang et al., 2020; Yang et al., 2020; 127

Huang et al., 2019; Chi et al., 2021a; Wei et al., 128

2021; Hu et al., 2021; Chi et al., 2021b; Reid and 129

Artetxe, 2022b; Liu et al., 2023) of small multilin- 130

gual language models. 131

In the era of mLLMs, parallel corpora are con- 132

structed as instruction data and used to enhance 133

mLLMs through supervised fine-tuning (Cahyawi- 134

jaya et al., 2023; Zhu et al., 2023; Li et al., 2023). 135

Specifically, Cahyawijaya et al. (2023) propose 136

three methods of incorporating parallel corpora as 137

instruction tuning data: Machine Translation (MT), 138

Translation Language Modeling (TLM), Cross- 139

Lingual Semantic Similarity (XSS) (see §3.3). 140

However, their evaluation is limited to small mod- 141

els with up to 1.7 billion parameters and focuses 142

solely on classification tasks within Indonesian lo- 143

cal languages. Both Zhu et al. (2023) and Li et al. 144

(2023) propose using machine-translation-style in- 145

struction data to improve mLLMs but do not ex- 146

plore different training objectives. While these 147

studies yield promising results, their scope is lim- 148

ited. Firstly, they fail to explore critical factors 149

such as the quality and quantity of parallel corpora, 150

considering the high cost of collecting high-quality 151

and massive parallel corpora, especially for low- 152

resource languages. Secondly, their investigations 153

do not encompass an in-depth analysis of training 154

objectives and mLLMs with varied model sizes 155

across diverse languages and tasks. 156

2.2 Key Elements for Language Modeling 157

Previous research has extensively examined critical 158

factors essential for the pretraining and enhance- 159

ment of language models. 160
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Quality: Kreutzer et al. (2022) conducted man-161

ual audits of prevalent monolingual and parallel cor-162

pora, revealing significant portions of low-quality163

data, particularly in corpora for low-resource lan-164

guages. Follow-up studies have investigated the im-165

pact of data quality on model performance. Artetxe166

et al. (2022) observed that similar results on down-167

stream tasks can be achieved regardless of the168

degree of quality of the corpus used for pretrain-169

ing, while other studies found that the quality of170

parallel corpora matters for machine translation171

(Ranathunga et al., 2024) and general-purpose tasks172

(Reid and Artetxe, 2022a).173

Quantity: Recent works (Chen et al., 2023;174

Zhou et al., 2023; Gupta et al., 2023) have focused175

on the impact of fine-tuning with small amounts176

of high-quality instruction data, such as one or a177

few thousand instances, showing promising perfor-178

mance gains in evaluation tasks. Xu et al. (2023)179

demonstrate that as few as 10K high-quality par-180

allel sentences can significantly enhance machine181

translation performance.182

Objective: Different training objectives based183

on parallel corpora for enhancing mLLMs can be184

viewed as distinct instructions. Wang et al. (2023)185

explore the impact of various types of instruction186

tuning data and find that their combination can be187

optimal in certain scenarios.188

Model Size: Recent studies indicate that scaling189

up language models enhances their capability to190

excel in diverse and complex reasoning tasks (Wei191

et al., 2022, 2023; Lu et al., 2023). Follow-up192

studies (Shu et al., 2023; Wei et al., 2023) further193

illustrate distinct behavioral differences between194

larger and smaller models.195

However, these factors have not yet been com-196

prehensively explored in the context of leveraging197

parallel corpora to enhance mLLMs across diverse198

languages and tasks.199

3 Setup200

3.1 Language201

We use two criteria for language selection. Firstly,202

we select languages well covered by mLLMs and203

evaluation benchmarks, allowing for robust evalua-204

tion across diverse downstream tasks. Secondly, we205

select typologically diverse languages, enabling our206

investigation to generalize to a wide range of low-207

resource languages. Thus, we select five languages:208

Arabic (ar), Spanish (es), Hindi (hi), Vietnamese209

(vi) and Chinese (zh).210

3.2 Data 211

We utilize the OPUS100 dataset (Zhang et al., 212

2020), an English-centric multilingual corpus, to 213

gather parallel sentences between English (en) and 214

each target language. The quality of OPUS100 is 215

assessed across three dimensions: 216

Translation Quality Manual quality assessment 217

of the vast amount of parallel corpora is impracti- 218

cal. Instead, we employ COMETKIWI (Rei et al., 219

2022)1, a tool for estimating the quality of machine 220

translation outputs across multiple languages. We 221

set a COMETKIWI score threshold τc, retaining 222

parallel corpora with scores not lower than τc. 223

Sentence Length Given the variation in character 224

length across languages, we avoid using it as a met- 225

ric for consistency. Instead, we measure sentence 226

length by the number of tokens, as determined by 227

the tokenizer of our chosen mLLM, BLOOM-7B1. 228

We establish a length threshold τl, retaining paral- 229

lel corpora where both source and target sentences 230

contain no fewer than τl tokens. 231

Language Identification To identify sentences 232

potentially not in the correct language, we employ 233

GlotLID (Kargaran et al., 2023), an open-source 234

language identification model. This language iden- 235

tification filter is applied to both the source and 236

target sentences. 237

3.3 Training 238

We select the BLOOM series (Scao et al., 2022) 239

for our investigation due to its offering of different 240

sizes of mLLMs pretrained for the five target lan- 241

guages under consideration. We explore BLOOM 242

models of various sizes, including 7B1, 3B, and 243

1B7. Due to limited computational resources, we 244

continue pretraining BLOOM using LoRA (Hu 245

et al., 2022), which is known for its competitive 246

performance compared to full-parameter training. 247

We configure the learning rate to 1e − 4, weight 248

decay to 0.1, and set the rank of LoRA to 16. The 249

maximum sequence length for both source and tar- 250

get sentences is set to 128. To maintain consis- 251

tency across experiments with different quantities 252

of parallel corpora, we ensure a uniform training 253

budget of 50K parallel sentences. Specifically, we 254

calculate the number of epochs as 50K divided 255

by the number of sentences considered from the 256

1https://huggingface.co/Unbabel/wmt23
-cometkiwi-da-xxl
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Objective Template

MT Translate the following text from [SOURCE_LANG] to
[TARGET_LANG].\nText: [SOURCE_TEXT]\nTranslation: [TARGET_TEXT]

TLM [INPUT_TEXT]. Denoise the previous [TARGET_LANG] text to its
equivalent sentence in [SOURCE_LANG]: [SOURCE_TEXT]\n[TARGET_TEXT]

XSS [SOURCE_LANG] sentence: [SOURCE_TEXT]\n[TARGET_LANG] sentence:
[TARGET_TEXT]\nDo the two sentences have the same meaning? [LABEL]

Table 1: Templates of MT, TLM, and XSS for instruction data construction based on parallel corpora.

OPUS100 dataset. The batch size is 128, and we257

save the checkpoints every 20 steps.258

Following Cahyawijaya et al. (2023), we con-259

struct the data for instruction tuning based on the260

parallel corpora by three distinct patterns: Machine261

Translation (MT), Translation Language Model-262

ing (TLM), and Cross-Lingual Semantic Similarity263

(XSS). Table 6 presents the templates for these264

three objectives. Here, [SOURCE_LANG] and265

[TARGET_LANG] represent the language names266

of the source and target languages, respectively.267

In our study, we consider both English-to-target-268

language and target-language-to-English directions,269

where [SOURCE_LANG] represents English or270

[TARGET_LANG] represents English. For MT,271

[SOURCE_TEXT] and [TARGET_TEXT] refer272

to the parallel sentences in the source and target273

languages, respectively. For TLM, a portion of to-274

kens in [TARGET_TEXT] are masked to generate275

[INPUT_TEXT]. For XSS, our objective is to pre-276

dict whether parallel sentences [SOURCE_TEXT]277

and [TARGET_TEXT] are semantically similar,278

with [LABEL] being “Yes” or “No”. Specifically,279

we utilize the parallel corpora as positive examples280

and introduce perturbations to [TARGET_TEXT]281

to construct negative examples. We consider apply-282

ing the objectives both individually and in combi-283

nation.284

3.4 Evaluation285

We conduct evaluation across five diverse bench-286

marks: FLORES (Costa-jussà et al., 2022), MUSE287

(Lample et al., 2018), MLQA (Lewis et al., 2020),288

XQUAD (Artetxe et al., 2020), and SIB (Adelani289

et al., 2023). A comprehensive overview of these290

benchmarks is available in Table 2. Our eval-291

uation spans both classification tasks (SIB) and292

generation tasks (FLORES, MUSE, MLQA, and293

XQuAD), covering a spectrum of cross-language294

(FLORES, MUSE, and MLQA) and in-language295

tasks (XQuAD and SIB).296

Dataset Task |Data| Metric I/C C/G

FLORES Machine Translation 1012 COMETKIWI C G
MUSE Word Translation 1500 F1 C G
MLQA Question Answering 4918 - 5495 F1 C G
XQuAD Question Answering 1190 F1 I G

SIB Text Classification 204 Acc I C

Table 2: Details of evaluation benchmarks. |Data|: Num-
ber of samples for evaluation. I/C: In-language/Cross-
language. C/G: Classification/Generation.
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Figure 2: Translation quality measured by
COMETWIKI of 500K parallel sentences from
OPUS100 for our five language pairs. The
COMETWIKI scores are segmented into four
ranges: 0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1. Higher
scores represent better translation quality.

For translation tasks within FLORES and MUSE, 297

we explore bidirectional translation: from En- 298

glish to other languages (en-xx) and from other 299

languages to English (xx-en). Additionally, for 300

MLQA, we evaluate scenarios where questions are 301

in English and the passages and answers are in 302

other languages (en-xx), as well as situations where 303

questions are in other languages and the passages 304

and answers are in English (xx-en). 305

To provide a thorough understanding of our eval- 306

uation procedures, we offer detailed prompts for 307

each task in §A. In all experiments, we employ 308

a 2-shot in-context learning approach, where the 309

model is given two examples appended to the input 310

query to aid in making predictions. 311
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Figure 3: Sentence length of 500K parallel sentences
from OPUS100 for our five language pairs. The three
categories are 0-5, 5-10, greater than 10 tokens.
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Figure 4: Percentage of sentences retained after lan-
guage identification filtering of 500K parallel sentences
from OPUS100 for our five language pairs.

4 Quality312

4.1 Quality of OPUS100313

We measure the quality of 500K parallel sentences314

from OPUS100 for our five language pairs using315

three key metrics: translation quality, sentence316

length, and language identification accuracy, as317

illustrated in Figures 2–4.318

A considerable portion of OPUS100 is of low-319

quality. All quality measures indicate that a large320

portion of OPUS100 contains low-quality data. Ap-321

proximately 10% of the data has COMETKIWI322

scores below 0.25, indicating very poor translation323

quality. Additionally, between 10% to 30% of the324

data falls within the 0.25-0.5 score range, which is325

still considered sub-optimal. Regarding sentence326

length, we find that over 20% of the OPUS100 data327

consists of very short sentences, with a length of no328

more than five tokens. For language identification,329

13% to 25% of the data is removed due to incorrect330

language identification results in one of the two331

parallel sentences.332

Low-resource languages suffer more from 333

low-quality issues. For low-resource languages 334

like Hindi, there are fewer high-quality parallel 335

sentences compared to high-resource languages 336

such as Spanish. Analysis of translation quality 337

indicates that the English-Hindi pair has less than 338

20% of parallel sentences with high COMETWIKI 339

scores (0.75-1), whereas the English-Spanish pair 340

has around 45%. For sentence length, the English- 341

Hindi pair contains 10% more short sentences (0-5 342

tokens) compared to high-resource language pairs. 343

Moreover, both the English-Arabic and English- 344

Hindi pairs exhibit about 10% more parallel sen- 345

tences that may be in the wrong languages. 346

These comprehensive findings underscore the 347

critical importance of data quality when exploiting 348

parallel corpora for mLLM training. 349

4.2 Effect of Quality 350

Table 3 presents the performance of BLOOM-7B1 351

after continued pretraining with the machine trans- 352

lation objective, using 10K parallel corpora with 353

various quality filtering strategies. 354

Parallel corpora containing noisy translations 355

still improve results. Comparing the results of 356

the experiment with τc = 0 (ID 1) to the original 357

model (ID 0), there’s an average improvement of 358

0.4% for all tasks. The most notable improvements 359

are observed in both bilingual tasks (en-xx) and 360

in-language tasks. However, generating English 361

for bilingual tasks yields degraded or marginally 362

improved results. Experiment 0 exhibits 0.7% and 363

1.1% decrements in FLORES and MUSE respec- 364

tively, with only a 0.3% improvement in MLQA. 365

Filtering out noisy translations leads to no- 366

table improvements. When τc = 0.5, the average 367

performance rises from 53.2% to 53.7%. Further 368

refinement to τc = 0.75 achieves an additional 369

0.3% improvement. These improvements are con- 370

sistently observed across all evaluated tasks. In the 371

optimal setting (ID 5), there’s a 1.2% improvement 372

compared to BLOOM-7B1 (ID 0). The improve- 373

ments corroborate the reliability of COMETKIWI 374

as a metric for filtering low-quality translations. 375

Filtering short sentences yields slightly worse 376

results than using unfiltered data. The experi- 377

ment with filtering short sentences (ID 3) achieves 378

comparable or slightly worse results compared 379

to that without filtering short sentences (ID 5). 380

This suggests that short sentences, whether at the 381

word or phrase level, may offer some benefits for 382

sentence-level tasks. 383
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ID MODEL
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

0 BLOOM-7B1 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8

τc τl LID

1 0 0 ✓ 69.7 71.7 44.4 52.6 37.8 43.0 47.7 58.8 53.2
2 0.5 0 ✓ 69.9 72.1 45.0 53.0 38.1 43.7 48.1 59.8 53.7
3 0.75 5 ✓ 70.3 72.1 45.7 53.6 38.1 43.5 47.8 59.2 53.8
4 0.75 0 ✗ 70.5 72.1 44.9 53.7 37.7 44.0 48.3 59.6 53.9
5 0.75 0 ✓ 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0

Table 3: Performance (%) of BLOOM-7B1 after continued pretraining with the machine translation objective
using 10K parallel corpora with various quality filtering strategies. Parameters include τc for COMETWIKI score
threshold, τl for sentence length threshold, and LID indicating the adoption of language identification filtering.

Using data with language identification filter-384

ing results in only a 0.1% improvement on aver-385

age. A comparison of experimental outcomes with386

and without language identification filtering (ID 4387

and 5) reveals that using data with language iden-388

tification filtering yields merely a 0.1% improve-389

ment on average. The most notable performance390

difference is observed in the MUSE task, where us-391

ing data with language identification filtering leads392

to improvements of 0.6% (en-xx) and 0.2% (xx-393

en). This marginal enhancement may be attributed394

to the presence of sentences in similar languages395

within OPUS100, which exhibit minor linguistic396

variations compared to the true language. These397

variations could potentially have a slight negative398

impact on word-level translations while having lit-399

tle impact on sentence-level tasks.400

5 Quantity401

5.1 Effect of Quantity Across Tasks402

Based on Table 4, which shows the performance403

of BLOOM-7B1 after continued pretraining with404

the machine translation objective using different405

amounts of parallel sentences, we can derive the406

following key findings:407

Adding merely 1K parallel sentences helps.408

Exploiting 1K parallel sentences for continued pre-409

training improves the overall average score by 1%.410

This increase is observed across most tasks, with411

notable improvements in FLORES (en-xx), MUSE412

(en-xx), and SIB.413

Using 10K parallel sentences leads to the opti-414

mal performance. The best overall performance415

is achieved with 10K parallel sentences, resulting416

in an average score of 54.0%. This setting yields417

the highest scores in MUSE and SIB.418

More data achieves comparable results. In- 419

creasing the number of parallel sentences beyond 420

10K results in comparable performance. Specifi- 421

cally, using 25K or 50K parallel sentences yields 422

average scores of 53.9%, which are very close to 423

the score obtained with 10K sentences. 424

The analysis suggests that continued pretrain- 425

ing with a moderate amount of parallel sentences 426

(around 10K) yields the best overall improvement 427

in performance for the BLOOM-7B1 model across 428

various tasks. 429

5.2 Effect of Quantity Across Languages 430

We delve deeper into the influence of parallel cor- 431

pora quantity across various languages, as depicted 432

in Table 5. 433

Using 10K parallel sentences achieves opti- 434

mal performance across most languages. For the 435

majority of languages, except Vietnamese (vi) and 436

Chinese (zh), the highest performance is obtained 437

with 10K parallel sentences. Even for Vietnamese 438

and Chinese, leveraging 10K parallel sentences can 439

yield comparable results. These observations align 440

with the findings in §5.1. 441

Different languages exhibit varying appetites 442

for parallel corpora. Across most languages, in- 443

creasing the number of parallel sentences used 444

for continued pretraining generally leads to in- 445

cremental improvements in performance. How- 446

ever, for Hindi (hi) and Chinese (zh), transition- 447

ing from 1K to 10K parallel sentences does not 448

yield improvement. This phenomenon may be at- 449

tributed to BLOOM-7B1’s limited proficiency in 450

these languages compared to others, as reflected 451

in the results of the original BLOOM-7B1 model 452

(|SENT|=0). 453
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|SENT|
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

0 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8
1K 70.0 72.2 45.3 53.6 38.2 43.6 47.9 59.2 53.8
5K 70.3 72.2 45.4 53.5 38.2 43.8 48.2 59.5 53.9
10K 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0
25K 70.3 72.2 45.1 53.8 38.0 44.0 48.4 59.5 53.9
50K 70.4 72.2 45.1 53.8 38.1 43.7 48.3 59.5 53.9

Table 4: Performance (%) of BLOOM-7B1 after continued pretraining with the machine translation objective using
varying amounts of parallel sentences, obtained with the best filtering strategy (ID 5) as shown in Table 3. |SENT|
indicates the number of parallel sentences used for continued pretraining, with |SENT|=0 representing the original
BLOOM-7B1 model.

ar es hi vi zh

0 49.5 57.7 46.5 63.8 46.7
1K 50.8 58.1 47.7 64.3 47.8
5K 51.2 58.2 47.6 64.6 47.9

10K 51.3 58.4 47.7 64.6 47.8
25K 51.2 58.2 47.7 64.7 47.7
50K 51.2 58.2 47.7 64.7 47.6

Table 5: Performance (%) of BLOOM-7B1 after contin-
ued pretraining with the machine translation objective
using varying amounts of parallel sentences, obtained
with the best filtering strategy (ID 5) as shown in Table 3.
|SENT| indicates the number of parallel sentences used
for continued pretraining, with |SENT|=0 representing
the original BLOOM-7B1 model.

6 Objective454

We explore the effectiveness of different objectives455

and their combinations, with results presented in456

Table 6.457

BLOOM-7B1 performs well on English gen-458

eration tasks. The baseline BLOOM-7B1 model459

exhibits robust performance across a spectrum of460

evaluation tasks, notably excelling in English gen-461

eration tasks such as FLORES (xx-en) and MUSE462

(xx-en). Further exploitation of parallel corpora463

fails to yield any discernible improvement.464

MT emerges as the top performer. The MT465

objective consistently outperforms the baseline466

BLOOM-7B1 model, showcasing an average im-467

provement of 1.2%. Moreover, MT achieves the468

highest performance in 5 out of 8 evaluated tasks.469

TLM exhibits limited effectiveness. While470

TLM shows slight improvements on average471

(0.2%), primarily driven by enhancements in tasks472

like MUSE (en-xx), MLQA (xx-en), XQuAD, and473

SIB, it also leads to degradation in tasks including 474

FLORES and MUSE (xx-en). 475

XSS achieves strong performance for clas- 476

sification. Using the XSS objective improves 477

BLOOM-7B1 by 0.7%, though it performs 0.5% 478

worse than MT. The major decrease is observed in 479

translation tasks, especially from English to other 480

languages. However, XSS can still slightly improve 481

translation tasks compared to BLOOM-7B1. No- 482

tably, XSS achieves 0.3% better performance on 483

SIB, highlighting its effectiveness for classification. 484

Combining training objectives does not pro- 485

vide large benefits. While combinations of differ- 486

ent objectives can improve BLOOM-7B1 by 0.2% 487

to 1.0%, none surpass the performance of using the 488

MT objective alone. The combination of MT and 489

XSS is the best among the combinations, slightly 490

worse than MT by 0.2%, but better than all other 491

objectives. Notably, MT +XSS achieves the best re- 492

sults on SIB, and TLM +XSS yields the best results 493

on MLQA (xx-en). These observations indicate 494

that no single objective excels across all tasks. 495

7 Model Size 496

We explore the impact of parallel corpora on vari- 497

ous sizes of BLOOM models, detailed in Table 7. 498

Smaller models exhibit more pronounced im- 499

provements in FLORES. Notably, BLOOM-1B7 500

demonstrates larger improvements compared to its 501

larger counterparts in the FLORES task, where the 502

prompt is the same as the one used during instruc- 503

tion tuning with the MT objective. This is attributed 504

to the smaller models’ less developed in-context 505

learning capabilities before instruction tuning, al- 506

lowing for more substantial improvements when 507

supplemented with parallel corpora. 508
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MODEL
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

BLOOM-7B1 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8

MT 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0
TLM 67.2 72.2 44.3 53.0 36.3 44.4 47.6 58.7 53.0
XSS 69.4 72.2 43.7 53.5 37.0 44.2 48.3 60.0 53.5

MT +TLM 69.3 72.1 44.1 53.2 36.8 43.8 47.2 59.5 53.2
MT +XSS 70.3 72.1 44.9 53.3 37.4 44.5 47.9 60.4 53.8

TLM +XSS 67.7 72.2 43.0 52.5 34.9 45.6 48.2 60.0 53.0
MT +TLM +XSS 69.5 72.1 44.2 53.2 36.1 45.1 47.7 59.0 53.4

Table 6: Performance (%) of BLOOM-7B1 after continued pretraining with different objectives and their combina-
tions using 10K parallel corpora, obtained with the best filtering strategy (ID 5) as shown in Table 3.

MODEL
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

BLOOM-7B1 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8
+ Parallel Data 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0

∆ 01.2 -00.1 02.4 00.2 01.6 01.2 01.0 01.4 01.2

BLOOM-3B 64.0 68.9 39.7 50.9 29.4 26.2 32.7 54.5 45.8
+ Parallel Data 65.0 69.1 41.4 51.6 30.9 26.7 34.5 56.9 47.0

∆ 01.0 00.2 01.8 00.7 01.5 00.5 01.8 02.4 01.2

BLOOM-1B7 59.0 65.8 37.2 48.5 20.0 22.2 24.8 53.0 41.3
+ Parallel Data 61.1 65.7 38.9 48.0 20.8 20.9 24.4 53.0 41.6

∆ 02.0 -00.1 01.6 -00.6 00.8 -01.3 -00.3 00.0 00.3

Table 7: Effect of parallel corpora on BLOOM models of different sizes across various tasks. ‘+ Parallel Data’
indicates continued pretraining of the given mLLM with the MT objective, using 10K parallel corpora obtained
with the best filtering strategy (ID 5) as shown in Table 3.

Larger models excel in diverse tasks. Con-509

versely, larger models generally demonstrate510

greater enhancements in tasks beyond machine511

translation. Both BLOOM-7B1 and BLOOM-3B512

exhibit a 1.2% improvement compared to their orig-513

inal mLLMs, while BLOOM-1B7 shows a slight514

0.3% improvement. Specifically, BLOOM-7B1515

and BLOOM-3B display notable improvements516

in tasks except for FLORES, while BLOOM-1B7517

achieves comparable or even worse results.518

These findings demonstrate that when leveraging519

parallel corpora to enhance mLLMs, larger mod-520

els not only exhibit improvements in direct tasks,521

such as machine translation, but also demonstrate a522

more substantial overall enhancement across a vari-523

ety of tasks. In contrast, smaller models primarily524

show benefits in direct tasks. This difference can525

be attributed to the superior cross-task transferabil-526

ity of larger mLLMs, where insights gained from527

parallel corpora in one task contribute to improved528

performance in others.529

8 Conclusion 530

This paper investigates the impact of four criti- 531

cal factors – data quality, data quantity, objectives, 532

and mLLM sizes – on leveraging parallel corpora 533

to enhance mLLMs across diverse languages and 534

tasks. Our findings underscore the crucial impor- 535

tance of filtering out noisy translations to procure 536

high-quality training data for improving mLLMs. 537

Surprisingly, even a relatively modest dataset of 538

10K samples can yield promising results. Further- 539

more, our analysis shows that employing the ma- 540

chine translation objective leads to optimal out- 541

comes. Importantly, larger models exhibit a greater 542

capacity to benefit from parallel corpora, achieving 543

more substantial improvements. This study pro- 544

vides a comprehensive recipe for effectively lever- 545

aging parallel corpora to enhance mLLMs. These 546

insights significantly contribute to advancing the 547

understanding and optimization of mLLMs across 548

different languages and tasks. 549
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Limitations550

Due to limited computational resources, we opted551

not to explore full-parameter continued pretraining552

for leveraging parallel corpora. Instead, we focused553

on LoRA, drawing on insights from previous stud-554

ies. Additionally, our investigation is restricted to555

the BLOOM series, and we did not extend our anal-556

ysis to other mLLMs. Furthermore, we did not also557

explore mLLMs larger than 7B1.558
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A Prompt891

The prompts of FLORES, MUSE, MLQA,892

XQuAD, and SIB are shown as follows:893

FLORES/MUSE894

Translate the following895

text from [SOURCE_LANG]896

to [TARGET_LANG].\nText:897

[SOURCE_TEXT]\nTranslation:898

[TARGET_TEXT]899

MLQA/XQuAD900

[Passage] \nQ:901

[Question]\nA: [Answer]902

SIB903

The topic of the news904

[Passage] is [Label]905
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