© © N O o A W N =

Hyperflux:
Pruning Reveals the Importance of Weights

Anonymous Author(s)
Affiliation
Address

email

Abstract

Network pruning is used to reduce inference latency and power consumption in
large neural networks. However, most existing methods use ad-hoc heuristics,
lacking much insight and justified mainly by empirical results. We introduce
Hyperflux, a conceptually-grounded Ly pruning approach that estimates each
weight’s importance through its flux, the gradient’s response to the weight’s removal.
A global pressure term continuously drives all weights toward pruning, with those
critical for accuracy being automatically regrown based on their flux. We postulate
several properties that naturally follow from our framework and experimentally
validate each of them. One such property is the relationship between final sparsity
and pressure, for which we derive a generalized scaling-law equation that is used
to design our sparsity-controlling scheduler. Empirically, we demonstrate state-of-
the-art results with ResNet-50 and VGG-19 on CIFAR-10 and CIFAR-100.

1 Introduction

Overparameterization has become the norm in modern deep learning to achieve state-of-the-art
performance [35 [2,[25]]. Despite clear benefits for training, this practice also increases computational
and memory costs, complicating deployment on resource-constrained devices such as edge hardware,
IoT platforms, and autonomous robots [42] 26]]. Recent theoretical and empirical findings suggest
that sparse subnetworks extracted from large dense models can match or exceed the accuracy of
their dense counterparts [7, 58}, 133} 24} 5, 14,155} (8 I51]] and even outperform smaller dense models of
equal size [37,127,159]]. These results have created interest in network pruning as a strategy to identify
minimal, high-performing subnetworks.

Pruning has a rich history [22} 34, 47]] and continues to prove valuable for real-time applications
[L3, [19, 50]. Recent methods have significantly advanced the field by resorting to a variety of
strategies and heuristics, from magnitude pruning, gradient methods, and Hessian-based criteria
[1201131123}143}13,[7] to dynamic pruning approaches [29,4,/40,211152]] or combinations thereof |30} [6].
However, the strong interdependence between weights remains a challenge [18, 146l 24 |5 31]], as it
complicates the task of determining each weight’s importance. Optimal pruning has been explored
[[L6l 23], but such formulations are typically computationally intractable in practice. In contrast,
most current state-of-the-art strategies prioritize empirical results and speed through heuristics, at the
expense of theoretical grounding.

Given this gap, we ask: Can we create a pruning method that is both empirically strong and
conceptually grounded?

Inspired by the principle that the value of something is not truly known until it is lost, which has
shaped major discoveries in fields such as functional genomics [10, |41]], neuroscience [38]], and
network science [[1]], we introduce Hyperflux, an Ly pruning method that determines a weight’s

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37

38
39
40
41
42
43
44

45
46
47
48
49
50
51
52

53

54
55

56
57

58
59

60

61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88

importance by first removing it. Unlike most works, Hyperflux puts a large emphasis on conceptual
grounding and explainability.

The main idea of our method is that each weight has a flux, which appears when the weight is pruned
through the network’s gradients. A global L regularization term called pressure pushes all weights
towards pruning, aiming to uncover each of their fluxes. Those weights whose flux is greater than
the pressure will be regrown, while the rest will remain pruned. This process is repeated until the
end of training. A useful side effect of pruning and regrowth happening concurrently on all weights
multiple times is that the network’s topology implicitly becomes noisy, disentangling the overall
weight evaluation from a specific topology.

We postulate several properties that emerge from our framework: sparsity convergence, a sparsity-
pressure relationship, and large flux for important weights. We empirically confirm each of these
properties and, for the sparsity-pressure relationship, we obtain dependencies similar to those of
known scaling laws in neural networks [[15} 20, 48, [39, 11} [14, 156, [17]. Based on the postulated
properties, we propose a pressure scheduler, as well as a stabilization stage after pruning, further
differentiating Hyperflux from recent Ly methods [32} 40,154} [29]]. The scheduler is used to achieve
the desired sparsity, after which the stabilization stage recovers accuracy lost to noise induced by
pruning.

Summarizing, our key contributions are:

* We introduce Hyperflux, a conceptually grounded pruning method which develops the
notions of flux and pressure, before empirically studying their emergent properties.

* Based on these properties, we introduce a pressure-controlling scheduler to achieve a desired
sparsity, as well as a stabilization stage after pruning.

* We obtain state-of-the-art results, achieving better or comparable accuracy to existing
methods in empirical validation across several networks and datasets.

2 Related work

Research on neural network pruning has a relatively old history, with some methods going back
decades and laying the groundwork for modern approaches. Early approaches, such as [22] and
[23]], utilized Hessian-based techniques and Taylor expansions to identify and remove unimportant
specific weights, while [34] employed derivatives to remove whole units, an early form of structured
pruning. These initial studies demonstrated the feasibility of reducing network complexity without
significantly compromising performance. An influential overview [47] concluded that magnitude
pruning was particularly effective, a paradigm that since then has been widely adopted [[13}[7} 58l |6}
211, (12,1441 136} 9.

The existence of highly effective subnetworks builds upon these foundational studies, with the
Lottery Ticket Hypothesis [7] being a good example. This work uses magnitude pruning to demon-
strate that there exists a mask which, if applied at the start of training, produces a sparse subnetwork
capable of matching the performance of the original dense network after training, if the initialization
is kept unmodified. Subsequent research has further validated this concept by showing that these
subnetworks produced by masks, even without any training, achieve significantly higher accuracy
than random chance [58]], reaching up to 80% accuracy on MNIST. Moreover, training these masks
instead of the actual weight values can result in performance comparable to the original network
[37,158]], suggesting that neural network training can occur through mechanisms different from weight
updates, including the masking of randomly initialized weights. Other studies have attempted to
identify the most trainable subnetworks at initialization. SNIP [24] use gradient magnitudes as a way
to identify trainable weights, while [40]] employ L regularization along with a sigmoid function that
gradually transitions into a step function during training, enabling continuous sparsification. These
findings indicate that the specific values and even the existence of certain weights may be less critical
than previously believed.

Dynamic pruning differs from classical heuristics by allowing the model to make pruning decisions
while processing the input, without a fixed pattern. Some methods use learnable parameters, e.g.
[21] train magnitude thresholds for each layer in the network to determine which weights will be
pruned. Other works, like that of [4], do not have any learnable parameters, learning instead a weight
distribution whose shape will determine which and how many weights are pruned. Yet another class

89
90
91
92
93

94
95
96
97
98
99
100
101
102
103
104
105
106

107

109
110
111
112
113
114
115

116

117
118

119

120
121
122

123
124
125

126
127
128

of L regularization techniques [40, [32] try to maximize the number of removed weights. Hyperflux
aligns with the dynamic pruning paradigm by enabling continuous pruning of weights based on
learnable parameters. However, unlike such methods, Hyperflux does not treat the regularization as
a fixed value, but as an adjustable input of the training procedure, which can be used to control its
behavior.

Pruning based on gradient values is another prominent approach, often overlapping with dynamic
methods, which assesses weight properties in relation to the loss function. Works [24] and [5] assess
the trainability of subnetworks by analyzing initial gradient magnitudes relative to the loss function.
AutoPrune [53] introduces handcrafted gradients that influence training, while Dynamic Pruning
with Feedback [28] uses gradients during backpropagation to recover pruned weights with high
trainability, preserving accuracy. RigL [6] use gradient and weight magnitudes to determine which
weights to prune and to regrow. GraNet [30] employs a neuroregeneration scheme, which prunes
and regrows the same number of weights, effectively keeping the sparsity constant while growing
accuracy. Hyperflux distinguishes itself from all these methods by evaluating the importance of
weights after the moment of their pruning. Instead of deciding which weights are (un)important
based solely on instantaneous gradients or single-stage evaluations, Hyperflux identifies a weight’s
significance based on the aggregated impact across topologies its removal has on the network’s
performance.

3 Hyperflux method

We associate each weight w; to a learnable parameter ¢;, which determines whether the weight is
present (t; > 0) or pruned (¢; < 0). We define a weight’s importance to be the increase in loss caused
by its pruning. We assess the importance of a weight w; through its flux, the gradient of ¢; with
respect to the loss function when ¢; < 0. The connection between flux and weight importance is
detailed in Section The pressure term, denoted by L_ ., will push all ¢ values towards —oo,
pruning the weights and revealing their fluxes. No manual selection or analysis of gradients is needed,
since the interaction between pressure and flux during backpropagation will naturally only keep
important weights whose flux is large.

3.1 Preliminaries

Consider a neural network defined as a function f : X x R? —) where X is the input space,) is
the output space, and R is the space of weights. Given a training set {(z,y;)}7_;, learning the

j=1>
weights w amounts to minimizing a loss function so that f(z;,w) aligns with y;:

J

Llw) =Y 0(f(xj,w),y5),

j=1

We define the topology of the neural network as a binary vector 7 € {0, 1}¢ where 7; represents
whether weight w; is pruned or not. We denote a family of topologies as 7%, with K its cardinality
and T a specific topology from the family. Thus, the loss of a network with topology 7 is:

J

L, T)=Y {(f(zj,wOT)y),

Jj=1

where © is the Hadamard product. For each weight w;, we introduce a learnable presence parameter
t; with ¢ € R? denoting the vector collecting all ¢;. The vector ¢ is used to generate the topology 7~
with 7; = H(t;), where:

1 ift; >0,
H(t:) = {0 if t; < 0.

Thus, if ¢; > 0 then w; is active, otherwise (when ¢; < 0), w; is pruned. We use a global penalty term
L_ to push all ¢; values towards —oo, which we discuss in detail in Section Our goal is to find
a topology 7* and set of weights w* such that the following loss is minimized:

J(w,T)=L(w,T)+ L_oo(t).

129

130
131
132
133

134
135

136
137
138
139
140

141
142

143
144
145
146
147

148
149
150
151

152
153
154
155
156
157
158
159

3.2 Weight flux

We begin by introducing the notion of flux, evaluated on one topology 7, and develop its connection
to weight importance. Since the optimal topology 7 * is initially unknown, any metric measured on
some topology 7 might not be relevant for 7*. For this reason, we then extend flux to aggregated
flux, a more informative evaluation based on a family of topologies 77X

We start by defining G;(w, T'), representing the direction in which ¢; needs to change to minimize the
loss for topology 7 and weights w:

gi(wa T) = -

2T, gy o

ot;

To allow computing despite the non-differentiable step function H (¢;), we employ a straight-
through estimator for the gradient of H with respect to ¢;, which we denote by STEy. Several
choices for STEy will create the behavior we desire in G (e.g., STEg (¢;) = o(t;) - (1 — o(t;)),
STEy(t;) = 1 — tanh?(t;)), but none perform significantly better than the others in experiments.
Therefore, for the sake of simplicity, we choose STE (¢;) = 1.

To fully understand the implications of G; on updating ¢;, we study the gradients composing it. We
define 6; = w; - H(t;), and refer to 6; as effective weight. By rewriting G; we get:

0;
gi(w,T) == *% .gt‘ = .A7 Wyt STEH(ti) = AZ Wy

A; represents the direction in which the effective weight 6; should change to minimize the loss. If A;
has the same sign as the weight w;, then ¢; will increase, reinforcing presence. Otherwise, if they
have different signs, t; will decrease towards pruning. This behavior takes two meanings depending
on whether t; < 0 or ¢; > 0, which we analyze below. For this purpose, we define W; = _c‘%’ the
direction in which w; should change to reduce the loss.

Fort; > 0, W; = A; - H(t;) = A;. Therefore, G;(w, T) can be rewritten as W; - w;, meaning that
t; increases when W; and w; have the same sign and decreases otherwise. Note that W, and w;
having the same sign also means that |w;| increases, while opposite signs imply that |w;| decreases.
Therefore, ¢; follows the direction of change in |w;].

To assess the importance of §; = w;, the method allows ¢; < 0, causing 6; = 0, and checks whether
as a result .4; points towards w;, i.e. whether sign(.A;) = sign(w;). If this is true, moving 6; from 0
towards w; would reduce the new loss (obtained after §; became 0) and consequently, G, increases
t; until regrowth, 6; = w;. In this way, Hyperflux implements the key insight that one never knows
the value of something (6;) until one loses it (sets it to 0). Otherwise, if sign(A;) # sign(w;), t;
decreases, keeping the weight pruned, #; = 0. All four combinations of signs are presented in Fig.
For this t; < 0 setting, G; takes the meaning of flux, and its relation to weight importance is further
discussed in Appendix [A.T]

0 regrows 0; prunes 0; prunes 0, regrows

Loss Loss Loss Loss |

Ai0) A0

(a) (b) (©) (@

Figure 1: Scenarios for §; when H (t;) = 0. If A; points towards w; the flux G; regrows the weight
as in (a) and (d). Otherwise, it keeps the weight pruned as in (b) and (c). Numerical values are only
illustrative.

160

161

162
163
164

165
166
167
168

169
170
171
172
173
174
175

176
177
178

179
180
181
182
183
184
185

187
188
189

190

191

192
193
194

Given the fact that G;(w, T') takes two different meanings, we introduce two different notations:

. . gi_(w77-)a t; < Oa
Gi(w, T) =: {gj(w,T), t; > 0. 2

G, (w, T) refers to flux, whereas G;" (w, T) is the tendency of |w;|.

Despite having flux as a metric of importance, we have not presented so far a criterion to prune the
weights, that would lead us to uncover their flux. To drive ¢ values towards —oo, we employ an
“L_s"" loss called pressure, formulated as:

QU=

L_(t) =

d
Yt 3)
=1

where -y is a scalar used to control sparsity and d the total number of weights in the network. Any
reference about an increase, decrease, value or scheduler of pressure will refer to . The pressure
term yields a constant gradient J with respect to each ¢; parameter, independent of their current
value.

We let G;(w, T) and the gradient of L_(¢) interact during backpropagation without direct inter-
vention. As a result, a family of topologies 7' 7% emerges implicitly during training by concurrent
pruning (determined by L _) and regrowth (determined by G, increasing ¢;). Furthermore, a¢; < 0
may be increased for several iterations until it reaches ¢; > 0, being evaluated at each iteration over a
potentially different topology 7% € 717X This behavior is desirable, given that evaluating flux on
a single topology provides a limited estimate of importance. To get a better picture of the underlying
interactions, we begin by extending equation (2)) to a family of topologies:

K

gi—/+(ijHK) _ % ng”(w,T’“) @)

This leads to an aggregated flux G; (w, T'7K) and an average tendency of change in weight
magnitude G;"(w, 7 7X) respectively. In Hyperflux, the updates over H iterations write:

H h w H
5 aL(T", ;tf Looo(t)) _ S (Gilw, T+ 1), ()
h=1

d
h=1 g

where 7" is the topology at iteration h. We examine the “life
cycle” of a presence parameter ¢; over the H training iterations. In
figure [2] we show how the gradients of ¢;, represented by arrows,
interact. During these H steps, t; alternates between active phases
during which it follows tendency of |w;|, and pruned phases during
which flux accumulates. We refer to the transition from a pruned Figure 2: Depiction of gradients
phase back to a present phase as implicit regrowth. To illustrate (as arrows) influencing ¢;, red,
the interactions between flux and pressure in our method, consider yellow and blue denote pressure,
a pruned phase beginning at iteration P and ending at iteration G~ and respectively G; .

Pr (1 < P; < Py < H). If Py marks the final step of that pruned

phase, the total change in t; over [P, Py] is positive, which gives:

Py
S G, T =2 50 = (=P [0 (0, TP) = 1] 0. ©
h=P,

Thus, a weight will be regrown if the aggregated flux is greater than the pressure. Conversely, after
an active interval, the weight becomes pruned i.e. [Q:‘ (w, TPa—Py) — %] < 0. This mechanism

influences all weights: pressure pushes them toward pruning, but they regrow whenever the aggregated
flux exceeds that pressure. Consequently, since our method relies on weights that already encode
meaningful information, we begin pruning by initializing the network with pretrained weights.

195

196
197
198

199

201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232

239
240
241
242
243
244
245
246
247

248
249

3.3 Pressure & Flux Properties

Following from the theoretical insights about flux and pressure described so far, we postulate a series
of properties that naturally emerge from these concepts. We experimentally validate each one of the
properties, confirming our expectations, and laying the foundation for our ~ scheduler.

Property 1: Sparsity Convergence for a Fixed . As sparsity increases and the number of
weights decreases, fewer weights are used to represent the same information contained within the
dataset, so the overall importance and flux of the remaining weights should be larger. Once the
flux of the remaining weights surpasses the pressure, sparsity should converge. Therefore, we
ask the following question: Given a fixed -, will the network converge to a final sparsity S? In
Figure we test this by running LeNet-300 on MNIST and ResNet-50 on Cifar-10. We allow
each network to train for 300 to 1000 epochs with a constant pressure v and observe the results.

We test two different optimizers for ¢ values,
SGD and Adam, while for weights we use the
same Adam optimizer everywhere (more on train-
ing setup and its notation in Appendix [F). Our
findings suggest that there is no one curve that fits
the decrease in parameters for both optimizers,
but S is the same regardless of the optimizer used.
An important observation is that S is influenced
by the weights learning rate n,,. If n,, is high, con-
vergence happens in a larger number of epochs
(1000 in our experiments), at a higher sparsity.
If n,, is low, convergence happens sooner (300
epochs), at a lower sparsity. One way to ensure
smooth convergence is to decrease 7,, during
training. Otherwise, the network tends to con-
verge more slowly, as seen in the green curve
experiment. Further ablation studies are found in

Appendix

Property 2: Relationship Between and Final
Sparsity. Assuming as illustrated above that all
networks have a sparsity they converge to for a
fixed v, we ask: Can we find the relationship
between v and S? We modify the previous exper-
iment to run the networks for 300 epochs with the
same training setup for several values of . Our
empirical results suggest a generalized scaling
law:

2

In(s) = In(c) — ap In(vy) — a; (In())” (7)
where constants, ¢, o, o1 depend on dataset, net-
work architecture and training setup. Figure [3b|
showcases different convergence points for dif-

100% —— LeNet300 + Adam + High LR
‘ —— LeNet300 + Adam + Low LR
X — LeNet300 + SGD + Low LR

'y — ResNet18 + Adam + Low LR

ResNet18 + SGD + Low LR

Sparsity (%)

e
el
** reesecet

Tteee,
ha ¥ Tt eretenss

100% = e e LeNet300 Adam
= LeNet300 SGD
—— LeNet300 Fit
ResNet50 Adam
= ResNet50 SGD

ResNet50 Fit

-
R

Final Sparsity (%)

o
i
B

0.01%

0.001%

(b)

Figure 3: Convergence for fixed v = 2 is show-
cased in (a), while in (b) we present the relation-
ship between y and final sparsity.

ferent optimizers and ~ values. The curves bend more sharply toward the end as the network
loses accuracy (and feature representations), yielding a lower convergence point, until the net-
work collapses, pruning all weights. We call this property by the name Neural Pruning Law.

Property 3: Important weights developing large flux is probably the

most important idea in Hyperflux. Therefore we ask: How large is the flux
of critical weights compared to other weights? To obtain a set of critical
weights, we create a bottleneck in a LeNet-300 network by pruning only
the last weight matrix, until an identity remains between the hidden layer
and each unit of the output layer (in our case 10 weights). We measure their
flux by reporting the largest pressure that still does not prune the weights,
since we know that weights carrying greater flux demand higher pressure

to prune, see equation ().

As a baseline of comparison, we use the original network without the
bottleneck, and report several v and the corresponding S they produce. The

Table 1: Pressure
needed to prune the
bottleneck

Sparsity (%) Pressure

99.75 Vg - 23
99.95 g 27

Bottleneck g - 213

250
251

252

253
254
255

257

258

260
261
262
263
264
265

267
268
269
270
271
272
273
274
275
276
277
278

279
280
281
282
283

results are reported in Table |1} The bottleneck weights have 213 more flux than the weights of a 99%
sparsified network.

3.4 Pressure Scheduler & Stabilization Stage

Our findings from Section [3.3] suggest that a -y exists for any desired S. However, in practical
applications, ~y is not known at the start and tuning it would require hyperparameter search. Instead,
we propose a dynamic scheduler that adjusts y after each epoch automatically, driving the network
towards a desired sparsity. Furthermore, to ensure convergence of weights after pruning, we introduce
a stabilization stage at the end.

Pressure Scheduler: The goal of our scheduler
is to adjust ~ such that the network converges to
S with minimal accuracy decrease. We denote .
by 7. and s,, the pressure and network spar- 1 Input: Current sparsity se and epoch e)
sity at epoch e. Because the frequency of up- 2: geqmres: Pru;lhmg 1E:[pochs E,, desired final sparsity
dates is constant, occurring after each epoch, any » pressure policy 11, step u, exponent a.

. 5 . 3: Internals: Positive and negative inertia p1, p—,
non-linear change in pressure required to affect L

. X base scalar p. for epoch 1, p; (all initialized to 0).
sparsity (see Eq.[/) must arise from the update > Runs after each epoch
rule. To get this nonlinearity we set 7. = (Pe)®s 4: i 1I(E,,S, s, ¢) then
with p., a scalar base, updated according to Al- 5: Pe < Pe—1 +u + py
gorithm [T} Inertia terms p, and p_ account 6: prpr+ 3
7.
8
9

Algorithm 1 Pressure scheduler - SCHED(s, €)

for suboptimal « or u. Apart from non-linear : p- <0
updates, our scheduler requires a binary pres- 8: else
sure policy II to determine when those updates Pe € Pe—1 = U =P
are applied such that S is reached. We explore 103 p-p-+7
two choices for II. In the first, s, follows a 1: P+ 0
. . 12: end if

user-defined curve f(e), trading precise conver- : . . o

. - 13: Return: pressure ve = (pe)
gence to S for trajectory control. In this case
II(E,,S, s, e) is true if and only if s, < f(e).
In the second policy, s. stays between a dynamic upper bound and the target S, achieving precise
convergence to S at the cost of poorer trajectory control. Both policies are discussed in Appendix [E]

Stabilization Stage: One side effect of Hyperflux is the noise created by pruning and reactivation of
weights, which while helpful for pruning, is harmful for convergence. For this reason, to allow the
weights and network topology to converge, we introduce a stabilization stage. Specifically, we set the
pressure to zero to encourage regrowth while simultaneously decaying the learning rate 7, to prevent
excessive reactivation.

Algorithm 2 Hyperflux Pruning Algorithm

1: Input: Pretrained weights w'™®, pruning epochs E,, stabilization epochs E, (leading to total epochs
By = E, + E;), pressure scheduler SCHED(Se, €).

2: Output: Weights w*, final topology T *.

3: Initialize: o

4: Weights w + w™? .

5 Presence parameters ¢; <— positive values, Vi € {1,2, ..., d}.

6: Topology 7; < 1,Vi € {1,2,...,d}.

7: for epoche = 1to F; do

8: Calculate total loss J(w,T) = L(w,T) + L-oo(?).

9: W w—nuVul.

10: t<—t—17tth.

11: if e < E, then

12: ~ <— SCHED(current sparsity s, €)
13: else

14: N = 0.9 -

15: N0

16: end if

17: end for

284

285
286
287
288

290
291

292
293
294

295
296
297
298
299

300

301
302
303
304
305
306
307

308
309
310
311
312

314
315

4 Performance Comparison

To validate Hyperflux, we conduct comprehensive pruning experiments on a diverse set of architectures
and datasets: ResNet-50 and VGG-19 on CIFAR-10/100, and ResNet-50 on ImageNet-1K. We pit
Hyperflux against state-of-the-art pruning approaches such as GraNet [30], GMP [59], Spartan [44]],
and AC/DC [36]. To ensure a fair comparison, we run ourselves all other methods, initializing
them with the pretrained weights used in Hyperflux, while maintaining the same training budget and
augmentations. We test several training setups for each method and report the best results, to ensure
no unfair degradation occurs due to suboptimal hyperparameters.

Additionally, to better position Hyperflux within the broader literature, we choose to include one-shot
methods [24} 49| 145] commonly used as benchmarks in other works, even though our post-training
setup is not applicable to them. These benchmarks will be marked with .

None of our comparison methods incorporate learnable masks as Hyperflux does. Although we
identified some mask-based methods [40} 32} 571, their differences in benchmarks, methodology
or missing code prevent a direct comparison to our work. Each configuration but ResNet-50 on
ImageNet is run three times and we report the results as mean + standard deviation, all experiments
are run on three NVIDIA GeForce RTX 4090 GPUs. Full details on training recipe are in Appendix [F|

4.1 CIFAR-10/100

We evaluate the performance of Hyperflux on CIFAR-10 and CIFAR-100 using ResNet-50 and
VGG-19 architectures. Results are presented in Table[2] On CIFAR-10, Hyperflux outperforms the
baseline at 90%, 95%, and 98% sparsity for both VGG-19 and ResNet-50, with accuracy gains under
1% over the next best. Specifically, for VGG-19, it beats GraNet by 0.18% and GMP by 0.23% at
90% sparsity (rising to 1.61% over GMP at 98%), while on ResNet-50 it maintains a 0.7% lead over
GralNet across all levels. We also analyze ResNet-50’s layer-wise sparsity at extreme rates (99.74%,
99.01%, 98.13%) and illustrate weight distribution changes in Appendix [C.1}

On CIFAR-100, Hyperflux leads in 4 of 6 benchmarks, being behind GraNet by only 0.1% and
0.3% in the other two. Notably, GraNet gains nearly 2% on ResNet-50 when initialized with our
pretrained weights. Conversely, RigL gains 1.5% points of accuracy on ResNet-50 for CIFAR-100,
yet experiences drops of up to 0.3% on ResNet-50 for CIFAR-10. On the remaining two benchmarks,
its gains are only moderate. At 90% and 95% sparsity, Hyperflux outperforms all methods, including
GraNet, by 0.5%. Furthermore, GMP finds itself at a difference of 0.2% at 98% sparsity on VGG-19,
increasing to 1.2% points of accuracy at 90% sparsity, while RigL is behind by 2.9% at 98% and
1.3% at 90% sparsity.

Table 2: Comparison on CIFAR-10 and CIFAR-100 datasets at different pruning ratios (90.0%,
95.0%, 98.0%). Bold values represent the best performance for each setting.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90.0% 95.0% 98.0% 90.0% 95.0% 98.0%
VGG-19 (Dense) 93.85 £ 0.06 73.44 £ 0.09

SNIP* 93.63 93.43 92.05 72.84 71.83 58.46
GraSP* 93.30 93.04 92.19 71.95 71.23 68.90
Synflow* 93.35 93.45 92.24 71.77 71.72 70.94
GMP 93.82£0.15 9384+£0.14 92344+0.13 7357+£020 73.39+0.11 72.78 +0.07
RigL 93.60+0.15 93.17+0.09 9239 £0.04 73.03+0.14 72.6840.22 70.02 +0.7

GraNet (s; = 0) 93.87+£0.05 9384 +0.16 93.87+0.11 74.08=£0.10 73.86+0.04 73.00+0.18
Hyperflux (ours) 94.05 +0.17 94.15+0.14 93.95+0.18 7437+0.21 7418+0.15 72.9£0.05

ResNet-50 (Dense) 94.72 £+ 0.05 78.32 £+ 0.08

SNIP* 92.65 90.86 87.21 73.14 69.25 58.43
GraSP* 92.47 91.32 88.77 73.28 70.29 62.12
Synflow* 93.35 93.45 92.24 71.77 71.72 70.94
RigL 94.02+0.33 93.76+0.23 92.93 +0.1 78.04+0.19 77.39£0.21 75.61 £0.11
GMP 9481 £0.05 94.89+0.1 94524+0.12 7839£0.18 7838043 77.16+0.25

GraNet (s; = 0) 94.69 £ 0.08 94.44+0.01 9434+0.17 79.09+0.23 7871 £0.16 78.01 + 0.20
Hyperflux (ours) 9541 +0.12 9515+0.11 9526 +0.13 79.58 +0.18 79.23+0.16 77.7£0.08

316

317

319
320

321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346

347
348
349
350

351
352
353
354
355
356
357
358

359

360
361

362
363

365
366

4.2 ImageNet-2012

To test Hyperflux at scale, we pruned ResNet-50 on ImageNet-2012. Table [3]shows that, even at
extreme sparsity, Hyperflux performs competitively against state-of-the-art. Interestingly, our loading
of pretrained weights increased the accuracy of all methods, with the exception of Spartan, which
lost almost 1.5% accuracy compared to its reported results.

At 96.42% sparsity, Hyperflux reaches 72.21% accuracy, surpassing GMP, GraNet and Spar-
tan, while performing competitively against AC/DC, at a difference of 0.3%. This hierarchy
is maintained for both 90% and 95% sparsity,

with the gap between Hyperflux and AC/DC Table 3: ResNet-50 top-1 accuracy, parameter
remaining below 0.6 points in accuracy. We con- count, sparsity, and compute cost on ImageNet-
ducted an analysis on the weight histograms of 2012. We denote by s the sparsity, and by Fi;ain
ResNet-50 on ImageNet to study the difference and F}. the compute cost (FLOPs) required for
in weight distribution and observed that Hyper- training and testing, respectively.

flux pruned aggressively the convolutional lay-

ers, details in Appendix [C.]] Method Top-1(%) Params (%) Fiest Firain
The computational cost is only assessed on ResNet-50 77.01 ~ 25.6M 0.00 1.00x 1.00x
ImageNet-1k as it is the most intensive bench- GMP 7429 2.56M 90.00 0.10x 0.51x
mark. Pruning cuts FLOPs to 0.15x in- GraNet 74.68 2.56M 90.00 0.16x 0.23x

ference/0.60x training at 90% sparsity, and Spartan 75.12° 2.56M 90.00 0.14x -
0.08/0.52x at 95% sparsity. Despite incurring Ac/2C 7383 2.56M 90.00 0.18x 0.58x
: : o Sparsity. Lesp € Hyperflux 7528 2.54M 90.11 0.15x 0.60x

larger costs for training than other methods, Hy- GMP 7095 128M 95.00 003
perflux is able to produce sparse networks whose : : ‘ Ax -
inference cost is lower. This is caused by the S;Zg;tl ;%gg }%gm 3288 8(1)§§ 0.17x

per-layer sparsity distribution generated by our Ac/DC 7403 128M 95.00 0.11x 0.53x
method, which prunes more the layers contribut- Hyperflux 73.30 1.28M 95.00 0.08x 0.52x

ing most to the computational cost. For the base- Gyip 7062 0.90M 9650 - _
lines, we report the computational costs when GraNet 71.06 0.90M 96.50 0.09x 0.15%
they are available in their respective papers, and Spartan 71.13 0.90M 96.50 - -

fill with — when they are not. More details on AC/DC 72.50 0.90M 96.50 - -
computational cost are given in Appendix[D} ~ Hyperflux 7221 0.92M 9642 0.06x 049

5 Conclusions, Limitations and Future Work

We introduced Hyperflux, a conceptually grounded Ly method in which we construct the notions of
flux and pressure and study their relationship with weight importance. Furthermore, we postulate and
validate several properties of Hyperflux that enhance its explainability. Finally, our experiments show
strong performance compared to existing state-of-the-art methods.

Despite its advantages, Hyperflux has several areas which could be improved. Our method incurs
at least 33% of the dense network’s computational cost (see Appendix @]) and demands additional
hyperparameters (e.g. scheduler policy and step, ;) which work well at the same values across the
vision tasks we tested on, but may require adjustment on other tasks. To address some of these issues,
we can treat the network sparsity as the output of a dynamical control problem and the pressure as
its input, so as to tightly control the transient and steady-state sparsity S despite differences in the
tasks. Additionally, we are interested in checking whether the empirical Neural pruning law we found
generalizes to other deep learning tasks.

References

[1] Réka Albert, Hawoong Jeong, and Albert-L4szl6 Barabdsi. Error and attack tolerance of
complex networks. Nature, 2000.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning via
Over-Parameterization. In International Conference on Machine Learning, 2019.

[3] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep Rewiring:
Training Very Sparse Deep Networks. In International Conference on Learning Representations,
2018.

367
368

369
370
371

372
373

374
375

376
377
378

379
380

381
382

383
384
385

386
387
388

389
390
391

392
393

394
395
396

397
398
399

400
401
402

403
404
405

406
407
408

409
410
411

412
413
414

[4] Minho Cho, Sanjaya Adya, and Dattaraj Naik. PDP: Parameter-Free Differentiable Pruning is
All You Need. In International Conference on Neural Information Processing Systems, 2023.

[5] Pau De Jorge, Amartya Sanyal, Harkirat Singh Behl, Philip HS Torr, Grégory Rogez, and
Puneet Kumar Dokania. Progressive Skeletonization: Trimming More Fat from a Network at
Initialization. In International Conference on Learning Representations, 2021.

[6] Utku Evci, Gale, Trevor, Menick, Jacob, Castro, Pablo Samuel, and Erich Elsen. Rigging the
Lottery: Making All Tickets Winners. In International Conference on Machine Learning, 2020.

[7] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. In International Conference on Learning Representations, 2019.

[8] Elias Frantar, Carlos Riquelme Ruiz, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling
Laws for Sparsely-Connected Foundation Models. In International Conference on Learning
Representations, 2024.

[9] Athanasios Glentis Georgoulakis, George Retsinas, and Petros Maragos. Feather: An Elegant
Solution to Effective DNN Sparsification. In 34¢h British Machine Vision Conference, 2023.

[10] Guri Giaever, Angela M. Chu, Li Ni, Carla Connelly, Linda Riles, Steeve Véronneau, and et al.
Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002.

[11] Mitchell A Gordon, Kevin Duh, and Jared Kaplan. Data and parameter scaling laws for neural
machine translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2021.

[12] Song Han, Jeff Pool, John Tran, and William Dally. Learning Both Weights and Connections
for Efficient Neural Network. In International Conference on Neural Information Processing
Systems, 2015.

[13] Song Han, Huizi Mao, and William Dally. Deep compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In International Conference
on Learning Representations, 2016.

[14] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for
transfer. arXiv:2102.01293, 2021.

[15] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv:1712.00409, 2017.

[16] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in Deep Learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 2021.

[17] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, and et al. Clark, Aidan.
Training compute-optimal large language models. arXiv:2203.15556, 2022.

[18] Gaojie Jin, Xinping Yi, Liang Zhang, Lijun Zhang, Sven Schewe, and Xiaowei Huang. How
does Weight Correlation Affect the Generalisation Ability of Deep Neural Networks? In
Advances in Neural Information Processing Systems, 2020.

[19] Park Jongsoo, Li Sheng, Wen Wei, Tak Ping, Li Hai, Chen Yiran, and Dubey Pradeep. Faster
CNNs with Direct Sparse Convolutions and Guided Pruning. In International Conference on
Learning Representations, 2017.

[20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv:2001.08361, 2020.

[21] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft Threshold Weight Reparameterization for Learnable Sparsity. In
International Conference on Machine Learning, 2020.

10

415
416

417
418
419

420
421

422
423
424

425
426

427
428
429

430
431
432

433
434

436
437
438
439

440
441

442
443

444
445
446
447

448
449
450

451
452
453

454
455
456

457

459

460
461

[22] Yann LeCun, John S Denker, and Sara A Solla. Optimal Brain Damage. In International
Conference on Neural Information Processing Systems, 1989.

[23] Yann LeCun, John S Denker, and Sara A Solla. Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon. In International Conference on Neural Information Processing Systems,
1992.

[24] Jason Lee, Jie Gao, Cho-Jui Hsieh, and Tal Hassner. SNIP: Single-shot Network Pruning based
on Connection Sensitivity. In International Conference on Learning Representations, 2019.

[25] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic
Dimension of Objective Landscapes. In International Conference on Learning Representations,
2018.

[26] En Li, Zhi Zhou Liekang Zeng, and Xu Chen. Edge AI: On-demand accelerating deep neural
network inference via edge computing. IEEE Transactions on Wireless Communications, 2019.

[27] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joseph E.
Gonzalez. Train Big, Then Compress: Rethinking Model Size for Efficient Training and
Inference of Transformers. In International Conference on Machine Learning, 2020.

[28] Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic Model
Pruning with Feedback. In Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2020.

[29] Junjie Liu, Zhe Xu, Runbin Shi, Ray Cheung, and Hayden So. Dynamic Sparse Training: Find
Efficient Sparse Network From Scratch With Trainable Masked Layers. arXiv:2005.06870,
2020.

[30] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lingfei Yin, Haizhao Kou, Li Shen,
Mykola Pechenizkiy, and Zhangyang Wang. Sparse Training via Boosting Pruning Plasticity
with Neuroregeneration. In International Conference on Neural Information Processing Systems,
2022.

[31] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian Compression for Deep Learning.
In 31st Conference on Neural Information Processing Systems, 2017.

[32] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning Sparse Neural Networks
Through Ly Regularization. In International Conference on Learning Representations, 2018.

[33] Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu,
Minghai Qin, Sijia Liu, Zhangyang Wang, and Yanzhi Wang. Sanity Checks for Lottery Tickets:
Does Your Winning Ticket Really Win the Jackpot? In International Conference on Neural
Information Processing Systems, 2021.

[34] Michael C. Mozer and Paul Smolensky. Skeletonization: A Technique for Trimming the Fat
from a Network via Relevance Assessment. In International Conference on Neural Information
Processing Systems, 1988.

[35] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The
role of over-parametrization in generalization of neural networks. In International Conference
on Learning Representations, 2019.

[36] Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. AC/DC: Alternating Com-
pressed/DeCompressed Training of Deep Neural Networks. In Advances in Neural Information
Processing Systems, 2021.

[37] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad
Rastegari. What’s Hidden in a Randomly Weighted Neural Network? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[38] Chris Rorden and Hans-Otto Karnath. Using lesion-symptom mapping to study brain function.
Journal of Cognitive Neuroscience, 2004.

11

462
463
464

465
466

467
468
469

470
471

472
473

474
475

476
477
478

479
480
481
482
483
484

485
486

487
488
489

490
491

492
493
494

495
496
497

498
499

500
501

503
504

505
506

507
508

[39] Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive
prediction of the generalization error across scales. In International Conference on Learning
Representations, 2020.

[40] Pedro Savarese, Hugo Silva, and Michael Maire. Winning the Lottery with Continuous Sparsifi-
cation. In International Conference on Neural Information Processing Systems, 2020.

[41] Ophir Shalem, Neville E. Sanjana, Ella Hartenian, Xi Shi, David A. Scott, Tarjei S. Mikkelsen,
Dirk Heckl, Benjamin L. Ebert, David E. Root, John G. Doench, and Feng Zhang. Genome-scale
CRISPR-Cas9 knockout screening in human cells. Science, 2014.

[42] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge Computing: Vision and
Challenges. IEEE Internet of Things Journal, 2016.

[43] Sidak Pal Singh and Dan Alistarh. Efficient Second Order Derivatives for Network Compression.
In International Conference on Neural Information Processing Systems, 2020.

[44] Kai Sheng Tai, Taipeng Tian, and Ser-Nam Lim. Spartan: Differentiable Sparsity via Regular-
ized Transportation. In Advances in Neural Information Processing Systems, 2022.

[45] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural
networks without any data by iteratively conserving synaptic flow. In Advances in Neural
Information Processing Systems, 2020.

[46] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, Alex Tamkin, Esin Durmus, Tristan Hume,
Francesco Mosconi, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Bat-
son, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling Monosemanticity:
Extracting Interpretable Features from Claude 3 Sonnet. Technical report, Anthropic, 2024.

[47] Samuel Thimm and Hannes Hoppe. Evaluating Pruning Methods. In Proceedings of the
International Joint Conference on Artificial Intelligence, 1995.

[48] Henighan Tom, Kaplan Jared, Katz Mor, Chen Mark, Hesse Christopher, Jackson Jacob, Jun
Heewoo, Brown Tom B, Dhariwal Prafulla, and Gray Scott. Scaling laws for autoregressive
generative modeling. arXiv:2010.14701, 2020.

[49] Chaogi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[50] Kangning Wang, Zhuang Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-Aware
Automated Quantization with Mixed Precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[51] Qihan Wang, Chen Dun, Fangshuo Liao, Chris Jermaine, and Anastasios Kyrillidis. LOFT:
Finding Lottery Tickets through Filter-wise Training. In Proceedings of the 26th International
Conference on Artificial Intelligence and Statistics, 2023.

[52] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering Neural Wirings. In
International Conference on Neural Information Processing Systems, 2019.

[53] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. AutoPrune: Automatic Network Pruning
by Regularizing Auxiliary Parameters. In International Conference on Neural Information
Processing Systems, 2019.

[54] Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature Selection
using Stochastic Gates. In International conference on machine learning, 2020.

[55] Wang Yite, Li Dawei, and Sun Ruoyu. NTK-SAP: Improving neural network pruning by
aligning training dynamics. arXiv:2304.02840, 2023.

[56] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. arXiv:2106.04560, 2021.

12

509
510

511
512
513

514
515

[57] Yuxin Zhang, Mingbao Lin, Mengzhao Chen, Fei Chao, and Rongrong Ji. OptG: Optimizing
Gradient-driven Criteria in Network Sparsity. arXiv:2201.12826, 2022.

[58] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing Lottery Tickets:
Zeros, Signs, and the Supermask. In International Conference on Neural Information Processing
Systems, 2019.

[59] Michael Zhu and Suyog Gupta. To Prune, or Not to Prune: Exploring the Efficacy of Pruning
for Model Compression. In International Conference on Learning Representations, 2018.

13

516

517

518
519
520
521
522
523

524

525
526
527
528

529

530
531

532
533

534
535
536
537
538
539
540
541

542

543

544
545
546
547
548
549
550

A Analysis

A.1 Why Important Weights Generate Stronger Flux

To study the flux of important weights, let us focus on a specific weight w; in the regime ¢; < 0,
and thus #; = 0. For analytical purposes, we define the loss in terms of the effective weights
0; = w; - H(t;) as L(0), where L£(6]6; = 0) is the loss when ¢; < 0 and £(6|0; = w;) is the loss
when t; > 0. We perform a Taylor expansion of £(6) around 6; = 0. By perturbing 6; by w; (i.e.
by approximating the effect of regrowing the weight), we observe that the first-order term in the
expansion is the flux of w;. Formally:

OL®I0: =0) | 1 ,9L(6]6: =0)

1
L010; = wi) = L(616: = 0) +wi —55- 5 o7

+0(Wd). ®

K2

Recalling the formula for flux, G; (w, T'), and neglecting the second and higher-order terms:

L(0]0; = 0) — L(0]0; = w;) ~ —wz‘%

Thus we obtain a direct relationship between flux and weight importance: the flux approximates the
change in the loss that could be incurred when the weight is regrown. However, this relationship
holds only up to neglected higher-order terms, so it should be viewed as a useful approximation rather
than an exact law.

=G, (w, T).

A.2 Flux Connection To The Hessian

To relate flux to other importance metrics, specifically the Hessian, we consider the Taylor approxi-
mation from (8) and write:

aL0)6; =0) 1 ,9°L(A|6; =0)

L(0]6; = 0) — £(8]0; = w;) = — <wi — % *3 w? —)~ O(wd).
Given that the flux G, (w, T) = —w; %&ZO) and neglecting terms of order O (w?) and higher, we
obtain:

1 2L(010; =
L(010; = 0) — L(0]0; = w;) =~ G; (w,T) — 5 wf w
2 063
[—
HY.

The second term, —3 w? HY,, contains the diagonal element, H{,, of the Hessian matrix of the loss
function with respect to ;. This shows that our flux metric captures the linear component of the
loss change, while the second term captures the quadratic component, which is generally associated
with Hessian-based pruning methods like Optimal Brain Damage [22]. In Optimal Brain Damage,
a weight’s saliency is estimated by %Hiiwf , typically under the assumption that the network is at
a minimum where first-order gradients are zero. On the other hand, Hyperflux prunes the weights,
therefore recovering the first linear component of the Taylor expansion which becomes 0 when

weights converge.

B Ablation Studies

B.1 Factors influencing flux G, (w, 7))

We begin by analyzing how the flux value G; (w, T) is influenced by factors other than 7;, the
learning rate on presence parameters. Our findings from Section [3.3] suggest that weight learning
affects the behavior of flux, by changing the final convergence point a network will reach for the
same constant pressure 7. We study this effect in the case of LeNet-300. We run the network
for 1000 epochs for three different learning rates of 0.005,0.0005 and 0.00005, with no sched-
ulers used and the same constant . Our findings are summarized in Figure 4] which shows that
increasing 7,,, the weights learning rate, leads to smaller fluxes and convergence at higher sparsities.

14

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

571

572
573
574
575
576
577
578

579

580
581
582
583
584
585

586
587
588

Given the impact of 7,, on network convergence,
we study the influence of high and low learning
rates on our pruning and regrowth phases. In our
experiments, we study three setups on ResNet-
50 with CIFAR-10. In the first two experiments,
we study how constant learning rates across the
entire pruning and regrowth process affect sparsity
and regrowth. We choose a high learning rate of
0.01 and a low learning rate of 0.0001. For our
third experiment, we start with the high learning
rate which is then decayed using cosine annealing ol 5 555
to a low learning rate until the end of regrowth. feretion

For all three studies we let our scheduler guide
the network towards the same sparsity rate of 1%.
However, we observe significant differences in the
regrowth stage. For the first experiment, regrowth
does not occur at all, with more weights being pruned even after the pressure is set to 0, while for the
low learning rate, the performance initially degrades, but is followed by a substantial regrowth stage
where the number of remaining parameters increases by 60%. For the third experiment performance
does not degrade as much as for the low learning rate and the regrowth is done in a more controlled
way, experiencing an increase in remaining parameters of 35%. The results are illustrated in Figure 3]

100 — LeNet300, LR=5¢-03
—— LeNet300, LR=5e-04

—— LeNet300, LR=5e-05

cus e wE -t a0

Sparsity (%)

Figure 4: MNIST convergence for constant § =
1 for different learning rates

Lastly, we study how weight flux is affected by weight decay. Being directly applied on the weights,
weight decay acts on both pruned and present weights. If a weight has been pruned in the first epochs
on the training, weight decay will keep making it smaller and smaller, in this way diminishing its flux.
We run similar experiments to the ones before, with a learning rate of 0.01, decayed during training
to 0.0001, both with and without the standard weight decay. As expected, we observe in Figure
that regrowth without weight decay is more ample. We run this experiment five times, and note that
each time the pattern illustrated in the figure remains consistent.

100 — High constant LR
Low constant LR
—— High to low LR

10

Accuracy (%)
Sparsity (%)

— High constant LR
Low constant LR
891 — Hightolow LR

0 20 40 60

100 120 140 160 0 20 40 60 100 120 140 160

80 80
Epoch Epoch

(a) Pruning accuracy vs. LR. (b) Sparsity vs. LR.

Figure 5: The impact of the weights’ learning rate on pruning accuracy (left) and achieved sparsity
(right).

B.2 Weights 7, and pruning

Given the large impact 7, has on flux, we explore its implications for producing an optimal pruning
setup for Hyperflux. We run three experimental setups on ResNet-50 CIFAR-10 similar to the ones
before. For each one of them, we select a starting learning rate, which is then decayed during training
to 0.0001 to ensure convergence. For this setup, we run experiments using 7., = 0.1,0.01, 0.0001.
We analyze the results from the perspective of accuracy after pruning, noise, regrowth, and final
accuracy. We find that the third setup is the most effective for Hyperflux.

We observe that each of the four studied aspects has a relationship with the learning rate. The noise
is increased as initial learning rate increases, accuracy at the end of pruning is decreased the most
for low learning rates and the highest for large learning rates. We obtain the highest final accuracy

15

589

590

591

593
594
595
596

597

598

599

600
601
602
603
604
605
606
607
608

for higher learning rates and the regrowth phase is diminished the higher the learning rate. These
relationships hold and can be easily seen in Figure

100 —— initial to low LR
high to low LR
— low to low LR

@
@

10

Accuracy (%)
Sparsity (%)

— initial to low LR
high to low LR
— low to low LR

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Epoch Epoch

(a) Training accuracy over epochs. (b) Training sparsity over epochs.

Figure 6: Training evolution for different learning rate configurations.

B.3 1, values and regrowth

We analyze regrowth behavior for several values of 7. At regrowth stage, we scale 7, with
5,10, 20, 30 for VGG-19 on CIFAR-100 to observe the behavior of regrowth stage. Our findings are
summarized in Figure As 1, increases so does the number of regrown weights. However, we note
that after a point, generally about an increase of 50% in remaining parameters, the effects of regrowth
start to be diminished and starts introducing noise in the performance, while also regrowing more
weights.

100 —— With decay, 1.35% sparsity 100
No decay, 1.43% sparsity

10

Sparsity (%)
=
5
Sparsity (%)

\\
1 N ~ 1
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Epoch Epoch
(a) Effect of weight decay on the regrowth process (b) How differently scaled 7 affect regrowth

Figure 7: Factors affecting regrowth.

C Extended experiments

C.1 Layerwise sparsity levels & Weight Histograms

In this section, we examine the layer-wise sparsity observed for ResNet-50 on CIFAR-10 across the
following pruning rates: 99.74%, 99.01%, and 98.13%. As illustrated in Figure[§] the overall sparsity
hierarchy is maintained, displaying a decreasing trend in sparsity from the initial layers down to the
final layer, where this pattern is interrupted. We hypothesize that earlier layers retain more weights
due to their critical role in feature extraction, while deeper layers can sustain higher levels of pruning
without significantly impacting overall performance. Notably, the penultimate layer experiences the
highest degree of pruning, which means that it contains higher redundancy or less critical weights for
performance. Furthermore, by analyzing the weight histograms for ResNet-50 with sparsity levels of
99.01% and 99.74% in Figure[IT] we observe the influence of sparsity on the weight distributions.

16

609
610
611

612
613
614
615
616
617
618
619
620
621

622

623
624
625
626
627
628

629
630
631
632

634

635
636
637
638

High sparsity levels significantly alter weight distributions, demonstrating that extreme pruning not
only reduces the number of active weights but also changes the underlying weight dynamics within
the network.

The histograms in Figure[T2]illustrate the differences in weight distributions between the pruning
and regrowth stages on ImageNet with ResNet-50 at approximately 4.23% remaining weights. In the
pruning stage, weights are more evenly distributed across the range of [—0.4, 0.4], with a noticeable
dip near zero, reflecting the removal of low-magnitude weights. In contrast, during regrowth stage the
weight distribution shifts significantly, showing a sharp clustering of weights around zero, indicating
the reactivation of low-magnitude weights during this process. This change in distribution correlates
with a notable performance gap: the regrowth stage achieves 72.4% accuracy, while the pruning stage
reaches only 66.13%, we consider the cause of this to be the fact that during the pruning process the
small magnitude weights are pruned and during the regrowth phase we recover from these weights
the ones that improve performance the most.

100.0%

Datasets
EEW CIFAR-10 (99.74% Sparsity)
N CIFAR-10 (99.01% Sparsity)

CIFAR-10 (98.13% Sparsity)

10.0%

Non-Zero Parameters (%)
2

ht

Wit e
2. Weight - e

conv3

layer2.2.convL.weight

layer3.0.
laye:

S
[
&

Layers

Figure 8: Per-layer sparsity for ResNet-50 CIFAR-10. We present 3 levels of sparsity:
99.74%,99.01% and 98.13%.

C.2 Implicit regrowth

Implicit regrowth serves as the main source of noise in our network, promoting diverse topologies
throughout the training process. In Figure[9] we identify patterns in flip frequency, such as the lower
number of flips at the start of training. This behavior is anticipated, as pruning a critical weight early
on allows its features to be more readily absorbed by other weights. Around iteration 14, we notice
a plateau followed by a brief decline in weight flips, which we attribute to the network stabilizing
during this phase.

As training progresses and the number of parameters declines, the per-weight flip frequency continues
to increase, while the overall flip frequency remains relatively steady, resulting in a continue increase
of the per-weight flip frequency. The regrowth phase is marked by a sharp decrease in the total
number of flips as the network stabilizes and the learning rate of flux parameters diminishes toward
zero. This pattern is visible between iterations 70 and 130, alongside a gradual increase in the number
of parameters.

In Figure 9] we can observe the behavior of flux in relation to the gradients of ¢ values. Note that
negative values of the gradients translate into positive updates for ¢ values and vice-versa.Two
specific type of weights emerge, the first type can be seen in the top-left and bottom-right diagrams
in Figure |10} where the gradient g;f (w, T) does not oppose significant pressure for ¢; > 0. This

17

639
640
641
642
643
644

leads to the weight being pruned multiple times, which coincides, with large negative values in the
gradient, which push ¢; back over 0. The second type of weights, as common as the first one, does
not get pruned at all. In this case, G; (w, T) averaged over several iterations, attempts to increase
the magnitude of the weight, therefore increasing ¢; at the same time, which leads to the weight not
being pruned at all. We can see that in this case the overall magnitude of the gradients is below —1.5,
which in our experiment was enough to resist pressure.

EEm Non-zero weights
Flips

100% 4

1% 4

0.01% 4

Percentage (%) [Log Scale]

0.001% 4

0.0001% §

14 28 42 56 70 84 98 112 126 140
Iteration

Figure 9: Frequency of Flips: The blue histogram represents the percentage of remaining parameters
on a logarithmic scale, while the orange histogram illustrates the ratio of parameter flips per iteration
relative to the total number of network parameters, also on a logarithmic scale. In our figure, one
iteration is equivalent to the aggregation of 100 actual training iterations. We aggregate iterations to
present the flip data in a more manageable way.

Ll
P T

“‘f““JfJ“'% ‘I' p M%H%'@MWV#M "u\ W '|TL7JJ'“'”H AL lmH

Gradient (Averaged)

o 100 200 300 400 500] 500
Downsampled Bar Index Downsampled Bar ndex

(a) Weight w, gradients. (b) Weight w3 gradients.

=

i m‘” ”’MHLWW

wa, b u% UM e lw ‘ «’wn‘\ m

G
é;
—
——
—
|
Gradient (Averaged)

o 100 200 300 400 500 o 100 200 300 400 500 500
Downsampled Bar Index Downsampled Bar Index

(c) Weight wq1 gradients. (d) Weight w12 gradients.

Figure 10: Gradient values over time for four remaining weights in the pruned network. Blue bars
show gradients when ¢; > 0, red when ¢; < 0. Notice the high-magnitude red gradients (flux
G, (w, T)) versus the typically smaller positive gradients (momentum G;" (w, 7).

18

y—
*®
N
=)
N— N
> i
= [
g 7
o

w

=
<t
= I
~~
<
N—

A A

MW
Mm
i .
. SO
8 x| . -4 $ -4l L

- ¥ . 1 S

. . d J TR

; : : . . . N

: : ” 8

‘ . - -2
B 7 3" & 1K Lk e &
& B g+ § 15 B 2 i
m» ,ww nwm uw» Amw uw» .nha m»

. ') =)

: : : B
¥ Hw - u Mm) i
! g g g I

SppRes

5 . . . %
H £ 2 | 5|] + 5 . | d
il m mw i B M) %

nM _ _ _ ‘ ‘ Q
. : 5 . [77)
i : <
i . =
ww | p
4 =
; =]
0]
o)

i .
. Q
u 5
on
o £
&2
S
¢]
1 Z

xAAALAm
RReRPRy
PPy

a4

645

646
647
648
649
650
651
652

653

655

656

657
658
659
660

662
663

664

665
666
667
668
669

671

672

674
675

D Complexity analysis

We analyze both the training-time and inference-time compute cost of Hyperflux relative to a standard
dense baseline. Let f; denote the FLOPs required for a forward pass of the dense network, and f; the
(reduced) FLOPs for a forward pass through the sparse weights. We approximate the backward-pass
cost for sparse weights as 2 f, following common conventions, and account for the dense parameters
t with a full backward cost of f;. The reason for this is that all ¢ values are updated, no matter
whether their associated weight is pruned or not, thereby requiring the full cost fy. Thus, the total
training cost of Hyperflux is

FLOPswain = fs + 2fs + fa=3fs + fa
while the dense baseline requires
FLOPs3® = fa + 2fa = 3fa.
Consequently, the relative training cost is:

3fs+fd _ fs

1
3fa fa 3
At inference, Hyperflux uses only the sparse weights, yielding:

FLOPss = fs .

E Schedulers implementation

In section [3.4] we discussed briefly about pressure policy C, but we did not provide detailed implemen-
tation. Here we provide clear steps that each scheduler follows along with our experimental findings.
We begin by defining a mapping from epoch e to a expected decay factor in sparsity at epoch e,
0 < d(e) < 1. Our sparsity function f(e) is defined as f(e) = 100 - [[_, -d(i). For example, if
d(1) = 0.9 and d(2) = 0.8, the expected sparsity at epoch 2 will be f(2) = 100-0.9 - 0.8 = 72. We
will use f(e) from now on to refer to our sparsity curve. For the w parameter in our scheduler we find
a value of 0.1 to be suited for vision tasks, while for o we choose 1.5.

E.1 Pressure scheduler with trajectory control

This is the first implementation of our scheduler pressure policy C. Its aim is to track a user defined
curve at each epoch, by increasing the pressure when sparsity is below the curve (too many parameters)
and decreasing pressure when sparsity is above the curve (too few parameters). Concretely, the
decisions at each step are taken as in Algorithm[3} This scheduler is able to follow more precisely a
specific sparsity trajectory, but its convergence standard deviation to S might reach 10%-20% of the
remaining parameters.

Algorithm 3 Pressure policy C for trajectory control

Initialization: Sparsity function f.
Policy parameteres: Pruning epochs F,, Final sparsity S, Current sparsity s., Current epoch e,
if s, < f(e) then
Return true
else
Return false
end if

A A o

E.2 Pressure scheduler with upper boundary

The second implementation of the pressure policy C achieves S within tight boundaries (under 5%
standard deviation from expected remaining parameters (e.g. S = 98%, we expect 2% remaining
parameters and the scheduler generally reaches the interval [1.95,2.05]%), by trading off exact
control over sparsity curve. The upper boundary, defined in the same way as the sparsity curve but

21

676
677
678
679
680
681

682

683
684
685
686
687

used differently, is recalculated at each epoch, essentially creating an ever-tightening sparsity space
in which the network’s sparsity resides. When the network’s sparsity increases (fewer parameters),
the upper boundary is recalculated to not allow decreases in sparsity again. The algorithm for C is
presented in Algorithm[d] Since ub is recalculated at each epoch, it does not make sense to access
other indexes other than 1. However, we still need to calculate the curve in order to ensure the network
trajectory is steered towards S.

Algorithm 4 Pressure policy C for upper boundary

—_

Initialization: Upper boundary function ub.
Policy paramteres: Pruning epochs E,, Final sparsity S, Current sparsity s., Current epoch e,
Internals: Sparsity history sh.
sh.append(s.).
Recalculate ub such that ub(E, — e) = S (will reach § in the remaining epochs).
shs(he(i)l)
if prev_decrease < ub(1) then
Return true
else
Return false
end if

prev_decrease <—

TeYe kN

—_—

F Training setup and reproducibility

Table 4: Hyperparameter configurations for the pruning and stabilization stages across CIFAR-10,
CIFAR-100, and ImageNet-1K with ResNet-50 and VGG19 architectures.

Dataset | CIFAR-10 \ CIFAR-100 | ImageNet-1K
Network ResNet-50 VGG19 ResNet-50 VGG19 ResNet-50
Acce (%) 9472 £0.05 93.85£0.06 | 78.32 £0.08 73.44 £+ 0.09 77.01
Batch size \ 128 128 \ 128 128 \ 1024
Total epochs 160 160 160 160 100
E,/E; 100/60 100/60 100/60 100/60 80/20
O; ADAM ADAM ADAM ADAM ADAM
O, SGD SGD SGD SGD SGD
S. Cosine Cosine Cosine Cosine Cosine
Pruning
ng 0.1 0.1 0.1 0.1 0.1
NS, 0.003 0.003 0.003 0.003 0.003
Mt 0.001 0.001 0.001 0.001 0.001
Stabilization
nt 0.001 0.001 0.001 0.001 0.001
77£ 0.0001 0.0001 0.0001 0.0001 0.0001
Mt 0.001 0.001 0.001 0.001 0.001
S, LambdalLR LambdalLR LambdalLR LambdalLR LambdalLR
At 0.75 0.75 0.75 0.75 0.55

As summarized in Table[d] our training protocol consists of two stages over a fixed number of epochs:
a pruning stage followed immediately by a stabilization (regrowth) stage. In both stages, weights w
are optimized with by SGD under a cosine annealing scheduler S,,,, while presence parameters ¢ are
optimized with ADAM. Furthermore, the presence parameters are uniformly initialized in the range
0.2-0.5.

22

688
689
690
691
692
693
694
695
696

697
698
699
700
701

During the pruning stage the learning rate for w is decayed from 7 to 1, and ¢ uses a constant 7.
Without resetting training, we then set the pruning pressure to zero and enter the stabilization stage,
where 7),, is further decayed (from its new 7/, to 1/) and the presence parameters are trained under a
Lambdal.R scheduler S; with decay parameter \;. This two-stage setup, with separate optimizer and
learning rate schedules for weights and presence parameters, ensures that both the sparse structure
and the remaining weights are allowed to converge to their optimal configurations. Let O,, be the
optimizer for the weights and O; the optimizer for the presence parameters. We prune for £, epochs
and then enter a stabilization stage lasting s epochs, for a total of I, + E, epochs. All experiments
use the pressure scheduler presented in Algorithm [3]

Across all experiments, we applied a weight decay of 10~4, while omitting any weight decay on the
batch-normalization layers. Regarding augmentations, on ImageNet we adopt the same pipeline as
our baselines: random resize, crop and random horizontal flip for training, and resize plus center crop
for validation; on CIFAR-10/100 we apply random crop with padding, random horizontal flip for
training, and no augmentations for testing.

23

702

703

704
705

706

707
708
709
710
71
712

713

714
715
716
77
718
719
720
721
722

723

724

725

726
727
728

729

730
731
732

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

754
755

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main aim of the paper, as stated in the introduction and abstract, is to create
a conceptually grounded, empirically strong method which is able to maintain theoretical
depth with respect to pruning criteria and weight importance. We consider to have achieved
this goal successfully, since we have (1) SOTA results for CIFAR-10/100 and competitive
results on Imagenet (2) in depth explanations of how pruning is performed using the notions
of flux and pressure, which also lead to interesting properties that we validate.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have included and discussed the limitations of our framework in the final
Section [5 at the end of the paper, specifically the training overhead and potential lack of
generalization when it comes to other tasks other than vision.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

24

756

757
758

759

760
761
762

764

765
766
767
768
769
770
771
772

773

774

775
776
777

778

779
780
781

782

783

784
785

787
788

789
790
791
792

794
795
796
797

798

800

801
802
803
804
805
806
807
808

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: While our paper does not use formal theorems or proofs, we do rely on certain
mathematical derivations to infer several properties of our method. As far as we are aware,
these derivations are complete and their required conditions are stated.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included all the necessary training recipes needed for reproducing our
results, including a table in the appendix with all the hyperparameters, as well as detailed
algorithms for our schedulers.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

25

809
810
811
812
813

814

815
816
817

818

819

821
822

823

824

825
826

827
828
829
830

832
833

834
835

836
837
838

839
840

841
842

843

844
845
846

847

848

849

850

851
852

853
854

855

856
857

858

859
860

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we went to great lengths to ensure reproducibility and open access,
including code, Readmes, a file with all the packages needed to run the code, and a config
file allowing to enable/disable third parties we used like WanDb so no one will be forced to
use them too. The code is uploaded as supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we include detailed training recipes needed for practitioners.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report appropriate information about statistical significance of the
experiments, including standard deviation and mean.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

861

862

863
864
865

866
867
868

869
870

871

872
873

874

876
877

879
880
881
882

883
884
885

886

887
888
889

890

891

892
893

894
895

896
897
898

899

900
901

905

906
907

908
909

910

911
912

8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes. The paper details the compute resources required (3 x NVIDIA GeForce
RTX 4090 GPUs) and evaluates computational cost exclusively on ImageNet, the most
comprehensive benchmark.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, we conform to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

27

https://neurips.cc/public/EthicsGuidelines

913

914
915
916

917

918

919
920
921
922
923
924

926
927
928
929
930
931
932
933
934
935
936
937
938
939

940

941
942
943

944

945

946

947

948

950
951
952
953
954
955
956

957

958
959
960

961

962
963
964
965

11.

12.

Answer: [NA]

Justification: Although our work falls under generic neural network optimization without
direct societal impacts, the reduction in inference energy consumption is beneficial for the
environment.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Standard datasets (CIFAR-10/100, ImageNet-1K) and libraries (e.g., PyTorch)
are used in compliance with their respective terms. CIFAR is available for research. Ima-
geNet is used per its terms for non-commercial research, with images subject to original
copyrights.

28

966

967
968

969
970

971

972
973

974
975
976
977

979
980

982

983
984

985

986

987

988

989
990
991

993
994
995
996

997
998
999

1000

1001

1002

1003

1004

1005
1006
1007
1008
1009
1010

1011
1012

1013
1014
1015
1016

1017

13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets have been introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

29

paperswithcode.com/datasets

1018 Justification: Not applicable.

1019 Guidelines:

1020 * The answer NA means that the paper does not involve crowdsourcing nor research with
1021 human subjects.

1022 * Depending on the country in which research is conducted, IRB approval (or equivalent)
1023 may be required for any human subjects research. If you obtained IRB approval, you
1024 should clearly state this in the paper.

1025 * We recognize that the procedures for this may vary significantly between institutions
1026 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1027 guidelines for their institution.

1028 * For initial submissions, do not include any information that would break anonymity (if
1029 applicable), such as the institution conducting the review.

1080 16. Declaration of LLLM usage

1031 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1032 non-standard component of the core methods in this research? Note that if the LLM is used
1033 only for writing, editing, or formatting purposes and does not impact the core methodology,
1034 scientific rigorousness, or originality of the research, declaration is not required.

1035 Answer: [NA]

1036 Justification: LLM’s were not used for any important component of this paper.

1037 Guidelines:

1038 * The answer NA means that the core method development in this research does not
1039 involve LLMs as any important, original, or non-standard components.

1040 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1041 for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Hyperflux method
	Preliminaries
	Weight flux
	Pressure & Flux Properties
	Pressure Scheduler & Stabilization Stage

	Performance Comparison
	CIFAR-10 / 100
	ImageNet-2012

	Conclusions, Limitations and Future Work
	Analysis
	Why Important Weights Generate Stronger Flux
	Flux Connection To The Hessian

	Ablation Studies
	Factors influencing flux Gi-(, T)
	Weights and pruning
	t values and regrowth

	Extended experiments
	Layerwise sparsity levels & Weight Histograms
	Implicit regrowth

	Complexity analysis
	Schedulers implementation
	Pressure scheduler with trajectory control
	Pressure scheduler with upper boundary

	Training setup and reproducibility

