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Abstract

Network pruning is used to reduce inference latency and power consumption in1

large neural networks. However, most existing methods use ad-hoc heuristics,2

lacking much insight and justified mainly by empirical results. We introduce3

Hyperflux, a conceptually-grounded L0 pruning approach that estimates each4

weight’s importance through its flux, the gradient’s response to the weight’s removal.5

A global pressure term continuously drives all weights toward pruning, with those6

critical for accuracy being automatically regrown based on their flux. We postulate7

several properties that naturally follow from our framework and experimentally8

validate each of them. One such property is the relationship between final sparsity9

and pressure, for which we derive a generalized scaling-law equation that is used10

to design our sparsity-controlling scheduler. Empirically, we demonstrate state-of-11

the-art results with ResNet-50 and VGG-19 on CIFAR-10 and CIFAR-100.12

1 Introduction13

Overparameterization has become the norm in modern deep learning to achieve state-of-the-art14

performance [35, 2, 25]. Despite clear benefits for training, this practice also increases computational15

and memory costs, complicating deployment on resource-constrained devices such as edge hardware,16

IoT platforms, and autonomous robots [42, 26]. Recent theoretical and empirical findings suggest17

that sparse subnetworks extracted from large dense models can match or exceed the accuracy of18

their dense counterparts [7, 58, 33, 24, 5, 4, 55, 8, 51] and even outperform smaller dense models of19

equal size [37, 27, 59]. These results have created interest in network pruning as a strategy to identify20

minimal, high-performing subnetworks.21

Pruning has a rich history [22, 34, 47] and continues to prove valuable for real-time applications22

[13, 19, 50]. Recent methods have significantly advanced the field by resorting to a variety of23

strategies and heuristics, from magnitude pruning, gradient methods, and Hessian-based criteria24

[12, 13, 23, 43, 3, 7] to dynamic pruning approaches [29, 4, 40, 21, 52] or combinations thereof [30, 6].25

However, the strong interdependence between weights remains a challenge [18, 46, 24, 5, 31], as it26

complicates the task of determining each weight’s importance. Optimal pruning has been explored27

[16, 23], but such formulations are typically computationally intractable in practice. In contrast,28

most current state-of-the-art strategies prioritize empirical results and speed through heuristics, at the29

expense of theoretical grounding.30

Given this gap, we ask: Can we create a pruning method that is both empirically strong and31

conceptually grounded?32

Inspired by the principle that the value of something is not truly known until it is lost, which has33

shaped major discoveries in fields such as functional genomics [10, 41], neuroscience [38], and34

network science [1], we introduce Hyperflux, an L0 pruning method that determines a weight’s35
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importance by first removing it. Unlike most works, Hyperflux puts a large emphasis on conceptual36

grounding and explainability.37

The main idea of our method is that each weight has a flux, which appears when the weight is pruned38

through the network’s gradients. A global L0 regularization term called pressure pushes all weights39

towards pruning, aiming to uncover each of their fluxes. Those weights whose flux is greater than40

the pressure will be regrown, while the rest will remain pruned. This process is repeated until the41

end of training. A useful side effect of pruning and regrowth happening concurrently on all weights42

multiple times is that the network’s topology implicitly becomes noisy, disentangling the overall43

weight evaluation from a specific topology.44

We postulate several properties that emerge from our framework: sparsity convergence, a sparsity-45

pressure relationship, and large flux for important weights. We empirically confirm each of these46

properties and, for the sparsity-pressure relationship, we obtain dependencies similar to those of47

known scaling laws in neural networks [15, 20, 48, 39, 11, 14, 56, 17]. Based on the postulated48

properties, we propose a pressure scheduler, as well as a stabilization stage after pruning, further49

differentiating Hyperflux from recent L0 methods [32, 40, 54, 29]. The scheduler is used to achieve50

the desired sparsity, after which the stabilization stage recovers accuracy lost to noise induced by51

pruning.52

Summarizing, our key contributions are:53

• We introduce Hyperflux, a conceptually grounded pruning method which develops the54

notions of flux and pressure, before empirically studying their emergent properties.55

• Based on these properties, we introduce a pressure-controlling scheduler to achieve a desired56

sparsity, as well as a stabilization stage after pruning.57

• We obtain state-of-the-art results, achieving better or comparable accuracy to existing58

methods in empirical validation across several networks and datasets.59

2 Related work60

Research on neural network pruning has a relatively old history, with some methods going back61

decades and laying the groundwork for modern approaches. Early approaches, such as [22] and62

[23], utilized Hessian-based techniques and Taylor expansions to identify and remove unimportant63

specific weights, while [34] employed derivatives to remove whole units, an early form of structured64

pruning. These initial studies demonstrated the feasibility of reducing network complexity without65

significantly compromising performance. An influential overview [47] concluded that magnitude66

pruning was particularly effective, a paradigm that since then has been widely adopted [13, 7, 58, 6,67

21, 12, 44, 36, 9].68

The existence of highly effective subnetworks builds upon these foundational studies, with the69

Lottery Ticket Hypothesis [7] being a good example. This work uses magnitude pruning to demon-70

strate that there exists a mask which, if applied at the start of training, produces a sparse subnetwork71

capable of matching the performance of the original dense network after training, if the initialization72

is kept unmodified. Subsequent research has further validated this concept by showing that these73

subnetworks produced by masks, even without any training, achieve significantly higher accuracy74

than random chance [58], reaching up to 80% accuracy on MNIST. Moreover, training these masks75

instead of the actual weight values can result in performance comparable to the original network76

[37, 58], suggesting that neural network training can occur through mechanisms different from weight77

updates, including the masking of randomly initialized weights. Other studies have attempted to78

identify the most trainable subnetworks at initialization. SNIP [24] use gradient magnitudes as a way79

to identify trainable weights, while [40] employ L0 regularization along with a sigmoid function that80

gradually transitions into a step function during training, enabling continuous sparsification. These81

findings indicate that the specific values and even the existence of certain weights may be less critical82

than previously believed.83

Dynamic pruning differs from classical heuristics by allowing the model to make pruning decisions84

while processing the input, without a fixed pattern. Some methods use learnable parameters, e.g.85

[21] train magnitude thresholds for each layer in the network to determine which weights will be86

pruned. Other works, like that of [4], do not have any learnable parameters, learning instead a weight87

distribution whose shape will determine which and how many weights are pruned. Yet another class88
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of L0 regularization techniques [40, 32] try to maximize the number of removed weights. Hyperflux89

aligns with the dynamic pruning paradigm by enabling continuous pruning of weights based on90

learnable parameters. However, unlike such methods, Hyperflux does not treat the regularization as91

a fixed value, but as an adjustable input of the training procedure, which can be used to control its92

behavior.93

Pruning based on gradient values is another prominent approach, often overlapping with dynamic94

methods, which assesses weight properties in relation to the loss function. Works [24] and [5] assess95

the trainability of subnetworks by analyzing initial gradient magnitudes relative to the loss function.96

AutoPrune [53] introduces handcrafted gradients that influence training, while Dynamic Pruning97

with Feedback [28] uses gradients during backpropagation to recover pruned weights with high98

trainability, preserving accuracy. RigL [6] use gradient and weight magnitudes to determine which99

weights to prune and to regrow. GraNet [30] employs a neuroregeneration scheme, which prunes100

and regrows the same number of weights, effectively keeping the sparsity constant while growing101

accuracy. Hyperflux distinguishes itself from all these methods by evaluating the importance of102

weights after the moment of their pruning. Instead of deciding which weights are (un)important103

based solely on instantaneous gradients or single-stage evaluations, Hyperflux identifies a weight’s104

significance based on the aggregated impact across topologies its removal has on the network’s105

performance.106

3 Hyperflux method107

We associate each weight ωi to a learnable parameter ti, which determines whether the weight is108

present (ti > 0) or pruned (ti ≤ 0). We define a weight’s importance to be the increase in loss caused109

by its pruning. We assess the importance of a weight ωi through its flux, the gradient of ti with110

respect to the loss function when ti ≤ 0. The connection between flux and weight importance is111

detailed in Section 3.2. The pressure term, denoted by L−∞, will push all t values towards −∞,112

pruning the weights and revealing their fluxes. No manual selection or analysis of gradients is needed,113

since the interaction between pressure and flux during backpropagation will naturally only keep114

important weights whose flux is large.115

3.1 Preliminaries116

Consider a neural network defined as a function f : X × Rd → Y where X is the input space, Y is117

the output space, and Rd is the space of weights. Given a training set {(xj , yj)}Jj=1, learning the118

weights ω amounts to minimizing a loss function so that f(xj , ω) aligns with yj :119

L(ω) =
J∑

j=1

ℓ
(
f(xj , ω), yj

)
,

We define the topology of the neural network as a binary vector T ∈ {0, 1}d where Ti represents120

whether weight ωi is pruned or not. We denote a family of topologies as T 1→K , with K its cardinality121

and T k a specific topology from the family. Thus, the loss of a network with topology T is:122

L(ω, T ) =
J∑

j=1

ℓ
(
f(xj , ω ⊙ T ), yj

)
,

where ⊙ is the Hadamard product. For each weight ωi, we introduce a learnable presence parameter123

ti with t ∈ Rd denoting the vector collecting all ti. The vector t is used to generate the topology T124

with Ti = H(ti), where:125

H(ti) =

{
1 if ti > 0,

0 if ti ≤ 0.

Thus, if ti > 0 then ωi is active, otherwise (when ti ≤ 0), ωi is pruned. We use a global penalty term126

L−∞ to push all ti values towards −∞, which we discuss in detail in Section 3.2. Our goal is to find127

a topology T ∗ and set of weights ω∗ such that the following loss is minimized:128

J (ω, T ) = L(ω, T ) + L−∞(t).
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3.2 Weight flux129

We begin by introducing the notion of flux, evaluated on one topology T , and develop its connection130

to weight importance. Since the optimal topology T ∗ is initially unknown, any metric measured on131

some topology T might not be relevant for T ∗. For this reason, we then extend flux to aggregated132

flux, a more informative evaluation based on a family of topologies T 1→K .133

We start by defining Gi(ω, T ), representing the direction in which ti needs to change to minimize the134

loss for topology T and weights ω:135

Gi(ω, T ) = −
∂L(ω, T )

∂ti
,∀ti ∈ R. (1)

To allow computing (1) despite the non-differentiable step function H(ti), we employ a straight-136

through estimator for the gradient of H with respect to ti, which we denote by STEH . Several137

choices for STEH will create the behavior we desire in G (e.g., STEH(ti) = σ(ti) · (1 − σ(ti)),138

STEH(ti) = 1 − tanh2(ti)), but none perform significantly better than the others in experiments.139

Therefore, for the sake of simplicity, we choose STEH(ti) = 1.140

To fully understand the implications of Gi on updating ti, we study the gradients composing it. We141

define θi = ωi ·H(ti), and refer to θi as effective weight. By rewriting Gi we get:142

Gi(ω, T ) = −
∂L(ω, T )

∂θi︸ ︷︷ ︸
=:Ai

·∂θi
∂ti

= Ai · ωi · STEH(ti) = Ai · ωi.

Ai represents the direction in which the effective weight θi should change to minimize the loss. If Ai143

has the same sign as the weight ωi, then ti will increase, reinforcing presence. Otherwise, if they144

have different signs, ti will decrease towards pruning. This behavior takes two meanings depending145

on whether ti ≤ 0 or ti > 0, which we analyze below. For this purpose, we defineWi = − ∂L
∂ωi

, the146

direction in which ωi should change to reduce the loss.147

For ti > 0,Wi = Ai ·H(ti) = Ai. Therefore, Gi(ω, T ) can be rewritten asWi · ωi, meaning that148

ti increases when Wi and ωi have the same sign and decreases otherwise. Note that Wi and ωi149

having the same sign also means that |ωi| increases, while opposite signs imply that |ωi| decreases.150

Therefore, ti follows the direction of change in |ωi|.151

To assess the importance of θi = ωi, the method allows ti ≤ 0, causing θi = 0, and checks whether152

as a result Ai points towards ωi, i.e. whether sign(Ai) = sign(ωi). If this is true, moving θi from 0153

towards ωi would reduce the new loss (obtained after θi became 0) and consequently, Gi increases154

ti until regrowth, θi = ωi. In this way, Hyperflux implements the key insight that one never knows155

the value of something (θi) until one loses it (sets it to 0). Otherwise, if sign(Ai) ̸= sign(ωi), ti156

decreases, keeping the weight pruned, θi = 0. All four combinations of signs are presented in Fig. 1.157

For this ti ≤ 0 setting, Gi takes the meaning of flux, and its relation to weight importance is further158

discussed in Appendix A.1.159

3
ωi

0-3
θi

Loss

(0)

H(t)=0 H(t)=1

A

θi regrows

i

(a)

3
ωi

0-3
θi

Loss

(0)

H(t)=0H(t)=1

A

θi prunes

i

(b)

3
ωi

0-3
θi

Loss

(0)

H(t)=0 H(t)=1

A

θi prunes

i

(c)

3
ωi

0-3
θi

Loss

(0)

H(t)=0H(t)=1

A

θi regrows

i

(d)

Figure 1: Scenarios for θi when H(ti) = 0. If Ai points towards ωi the flux G−i regrows the weight
as in (a) and (d). Otherwise, it keeps the weight pruned as in (b) and (c). Numerical values are only
illustrative.
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Given the fact that Gi(ω, T ) takes two different meanings, we introduce two different notations:160

Gi(ω, T ) =:

{
G−i (ω, T ), ti ≤ 0,

G+i (ω, T ), ti > 0.
(2)

G−i (ω, T ) refers to flux, whereas G+i (ω, T ) is the tendency of |ωi|.161

Despite having flux as a metric of importance, we have not presented so far a criterion to prune the162

weights, that would lead us to uncover their flux. To drive t values towards −∞, we employ an163

“L−∞” loss called pressure, formulated as:164

L−∞(t) =
1

d
· γ ·

d∑
i=1

ti, (3)

where γ is a scalar used to control sparsity and d the total number of weights in the network. Any165

reference about an increase, decrease, value or scheduler of pressure will refer to γ. The pressure166

term yields a constant gradient γ
d with respect to each ti parameter, independent of their current167

value.168

We let Gi(ω, T ) and the gradient of L−∞(t) interact during backpropagation without direct inter-169

vention. As a result, a family of topologies T 1→K emerges implicitly during training by concurrent170

pruning (determined by L−∞) and regrowth (determined by G−i increasing ti). Furthermore, a ti ≤ 0171

may be increased for several iterations until it reaches ti > 0, being evaluated at each iteration over a172

potentially different topology T k ∈ T 1→K . This behavior is desirable, given that evaluating flux on173

a single topology provides a limited estimate of importance. To get a better picture of the underlying174

interactions, we begin by extending equation (2) to a family of topologies:175

G−/+
i

(
ω, T 1→K

)
=

1

K

K∑
k=1

G−/+
i

(
ω, T k

)
. (4)

This leads to an aggregated flux G−i (ω, T 1→K) and an average tendency of change in weight176

magnitude G+i (ω, T 1→K) respectively. In Hyperflux, the updates over H iterations write:177

t<=0 t>0t>0

Figure 2: Depiction of gradients
(as arrows) influencing ti, red,
yellow and blue denote pressure,
G+i and respectively G−i .

178

H∑
h=1

∂(L(T h, ω) + L−∞(t))

∂ti
=

H∑
h=1

(Gi(ω, T h) +
γ

d
), (5)

where T h is the topology at iteration h. We examine the “life179

cycle” of a presence parameter ti over the H training iterations. In180

figure 2 we show how the gradients of ti, represented by arrows,181

interact. During these H steps, ti alternates between active phases182

during which it follows tendency of |ωi|, and pruned phases during183

which flux accumulates. We refer to the transition from a pruned184

phase back to a present phase as implicit regrowth. To illustrate185

the interactions between flux and pressure in our method, consider186

a pruned phase beginning at iteration Ps and ending at iteration187

Pf (1 < Ps < Pf ≤ H). If Pf marks the final step of that pruned188

phase, the total change in ti over [Ps, Pf ] is positive, which gives:189

Pf∑
h=Ps

(Gi(ω, T h)− γ

d
) > 0 ⇐⇒ (Pf − Ps) ·

[
G−i

(
ω, T Ps→Pf

)
− γ

d

]
> 0. (6)

Thus, a weight will be regrown if the aggregated flux is greater than the pressure. Conversely, after190

an active interval, the weight becomes pruned i.e.
[
G+i

(
ω, T Ps→Pf

)
− γ

d

]
< 0. This mechanism191

influences all weights: pressure pushes them toward pruning, but they regrow whenever the aggregated192

flux exceeds that pressure. Consequently, since our method relies on weights that already encode193

meaningful information, we begin pruning by initializing the network with pretrained weights.194

5



3.3 Pressure & Flux Properties195

Following from the theoretical insights about flux and pressure described so far, we postulate a series196

of properties that naturally emerge from these concepts. We experimentally validate each one of the197

properties, confirming our expectations, and laying the foundation for our γ scheduler.198

Property 1: Sparsity Convergence for a Fixed γ. As sparsity increases and the number of199

weights decreases, fewer weights are used to represent the same information contained within the200

dataset, so the overall importance and flux of the remaining weights should be larger. Once the201

flux of the remaining weights surpasses the pressure, sparsity should converge. Therefore, we202

ask the following question: Given a fixed γ, will the network converge to a final sparsity S? In203

Figure 3a, we test this by running LeNet-300 on MNIST and ResNet-50 on Cifar-10. We allow204

each network to train for 300 to 1000 epochs with a constant pressure γ and observe the results.205

(a)

(b)

Figure 3: Convergence for fixed γ = 2 is show-
cased in (a), while in (b) we present the relation-
ship between γ and final sparsity.

We test two different optimizers for t values,206

SGD and Adam, while for weights we use the207

same Adam optimizer everywhere (more on train-208

ing setup and its notation in Appendix F). Our209

findings suggest that there is no one curve that fits210

the decrease in parameters for both optimizers,211

but S is the same regardless of the optimizer used.212

An important observation is that S is influenced213

by the weights learning rate ηω . If ηω is high, con-214

vergence happens in a larger number of epochs215

(1000 in our experiments), at a higher sparsity.216

If ηω is low, convergence happens sooner (300217

epochs), at a lower sparsity. One way to ensure218

smooth convergence is to decrease ηω during219

training. Otherwise, the network tends to con-220

verge more slowly, as seen in the green curve221

experiment. Further ablation studies are found in222

Appendix B.223

Property 2: Relationship Between γ and Final224

Sparsity. Assuming as illustrated above that all225

networks have a sparsity they converge to for a226

fixed γ, we ask: Can we find the relationship227

between γ and S? We modify the previous exper-228

iment to run the networks for 300 epochs with the229

same training setup for several values of γ. Our230

empirical results suggest a generalized scaling231

law:232

ln(s) = ln(c) − α0 ln(γ) − α1

(
ln(γ)

)2
(7)

where constants, c, α0, α1 depend on dataset, net-233

work architecture and training setup. Figure 3b234

showcases different convergence points for dif-235

ferent optimizers and γ values. The curves bend more sharply toward the end as the network236

loses accuracy (and feature representations), yielding a lower convergence point, until the net-237

work collapses, pruning all weights. We call this property by the name Neural Pruning Law.238

Table 1: Pressure
needed to prune the
bottleneck

Sparsity (%) Pressure

99.05 γB
99.75 γB · 23
99.95 γB · 27

Bottleneck γB · 213

Property 3: Important weights developing large flux is probably the239

most important idea in Hyperflux. Therefore we ask: How large is the flux240

of critical weights compared to other weights? To obtain a set of critical241

weights, we create a bottleneck in a LeNet-300 network by pruning only242

the last weight matrix, until an identity remains between the hidden layer243

and each unit of the output layer (in our case 10 weights). We measure their244

flux by reporting the largest pressure that still does not prune the weights,245

since we know that weights carrying greater flux demand higher pressure246

to prune, see equation (6).247

As a baseline of comparison, we use the original network without the248

bottleneck, and report several γ and the corresponding S they produce. The249
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results are reported in Table 1. The bottleneck weights have 213 more flux than the weights of a 99%250

sparsified network.251

3.4 Pressure Scheduler & Stabilization Stage252

Our findings from Section 3.3 suggest that a γ exists for any desired S. However, in practical253

applications, γ is not known at the start and tuning it would require hyperparameter search. Instead,254

we propose a dynamic scheduler that adjusts γ after each epoch automatically, driving the network255

towards a desired sparsity. Furthermore, to ensure convergence of weights after pruning, we introduce256

a stabilization stage at the end.257

Algorithm 1 Pressure scheduler - SCHED(se, e)
1: Input: Current sparsity se and epoch e
2: Requires: Pruning epochs Ep, desired final sparsity
S, pressure policy Π, step u, exponent α.

3: Internals: Positive and negative inertia p+, p−,
base scalar pe for epoch 1, p1 (all initialized to 0).
▷ Runs after each epoch

4: if Π(Ep,S, se, e) then
5: pe ← pe−1 + u+ p+
6: p+ ← p+ + u

4
7: p− ← 0
8: else
9: pe ← pe−1 − u− p−

10: p− ← p− + u
4

11: p+ ← 0
12: end if
13: Return: pressure γe = (pe)

α

Pressure Scheduler: The goal of our scheduler258

is to adjust γ such that the network converges to259

S with minimal accuracy decrease. We denote260

by γe and se, the pressure and network spar-261

sity at epoch e. Because the frequency of up-262

dates is constant, occurring after each epoch, any263

non-linear change in pressure required to affect264

sparsity (see Eq. 7) must arise from the update265

rule. To get this nonlinearity we set γe = (pe)
α,266

with pe, a scalar base, updated according to Al-267

gorithm 1. Inertia terms p+ and p− account268

for suboptimal α or u. Apart from non-linear269

updates, our scheduler requires a binary pres-270

sure policy Π to determine when those updates271

are applied such that S is reached. We explore272

two choices for Π. In the first, se follows a273

user-defined curve f(e), trading precise conver-274

gence to S for trajectory control. In this case275

Π(Ep,S, se, e) is true if and only if se < f(e).276

In the second policy, se stays between a dynamic upper bound and the target S, achieving precise277

convergence to S at the cost of poorer trajectory control. Both policies are discussed in Appendix E.278

Stabilization Stage: One side effect of Hyperflux is the noise created by pruning and reactivation of279

weights, which while helpful for pruning, is harmful for convergence. For this reason, to allow the280

weights and network topology to converge, we introduce a stabilization stage. Specifically, we set the281

pressure to zero to encourage regrowth while simultaneously decaying the learning rate ηt to prevent282

excessive reactivation.283

Algorithm 2 Hyperflux Pruning Algorithm

1: Input: Pretrained weights ωinit, pruning epochs Ep, stabilization epochs Es (leading to total epochs
Et = Ep + Es), pressure scheduler SCHED(se, e).

2: Output: Weights ω∗, final topology T ∗.
3: Initialize:
4: Weights ω ← ωinit .
5: Presence parameters ti ← positive values, ∀i ∈ {1, 2, ..., d}.
6: Topology Ti ← 1, ∀i ∈ {1, 2, ..., d}.
7: for epoch e = 1 to Et do
8: Calculate total loss J (ω, T ) = L(ω, T ) + L−∞(t).
9: ω ← ω − ηω∇ωL.

10: t← t− ηt∇tJ .
11: if e ≤ Ep then
12: γ ← SCHED(current sparsity se, e)
13: else
14: ηt ← 0.9 · ηt
15: γ ← 0
16: end if
17: end for
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4 Performance Comparison284

To validate Hyperflux, we conduct comprehensive pruning experiments on a diverse set of architectures285

and datasets: ResNet-50 and VGG-19 on CIFAR-10/100, and ResNet-50 on ImageNet-1K. We pit286

Hyperflux against state-of-the-art pruning approaches such as GraNet [30], GMP [59], Spartan [44],287

and AC/DC [36]. To ensure a fair comparison, we run ourselves all other methods, initializing288

them with the pretrained weights used in Hyperflux, while maintaining the same training budget and289

augmentations. We test several training setups for each method and report the best results, to ensure290

no unfair degradation occurs due to suboptimal hyperparameters.291

Additionally, to better position Hyperflux within the broader literature, we choose to include one-shot292

methods [24, 49, 45] commonly used as benchmarks in other works, even though our post-training293

setup is not applicable to them. These benchmarks will be marked with ∗.294

None of our comparison methods incorporate learnable masks as Hyperflux does. Although we295

identified some mask-based methods [40, 32, 57], their differences in benchmarks, methodology296

or missing code prevent a direct comparison to our work. Each configuration but ResNet-50 on297

ImageNet is run three times and we report the results as mean ± standard deviation, all experiments298

are run on three NVIDIA GeForce RTX 4090 GPUs. Full details on training recipe are in Appendix F.299

4.1 CIFAR-10 / 100300

We evaluate the performance of Hyperflux on CIFAR-10 and CIFAR-100 using ResNet-50 and301

VGG-19 architectures. Results are presented in Table 2. On CIFAR-10, Hyperflux outperforms the302

baseline at 90%, 95%, and 98% sparsity for both VGG-19 and ResNet-50, with accuracy gains under303

1% over the next best. Specifically, for VGG-19, it beats GraNet by 0.18% and GMP by 0.23% at304

90% sparsity (rising to 1.61% over GMP at 98%), while on ResNet-50 it maintains a 0.7% lead over305

GraNet across all levels. We also analyze ResNet-50’s layer-wise sparsity at extreme rates (99.74%,306

99.01%, 98.13%) and illustrate weight distribution changes in Appendix C.1.307

On CIFAR-100, Hyperflux leads in 4 of 6 benchmarks, being behind GraNet by only 0.1% and308

0.3% in the other two. Notably, GraNet gains nearly 2% on ResNet-50 when initialized with our309

pretrained weights. Conversely, RigL gains 1.5% points of accuracy on ResNet-50 for CIFAR-100,310

yet experiences drops of up to 0.3% on ResNet-50 for CIFAR-10. On the remaining two benchmarks,311

its gains are only moderate. At 90% and 95% sparsity, Hyperflux outperforms all methods, including312

GraNet, by 0.5%. Furthermore, GMP finds itself at a difference of 0.2% at 98% sparsity on VGG-19,313

increasing to 1.2% points of accuracy at 90% sparsity, while RigL is behind by 2.9% at 98% and314

1.3% at 90% sparsity.315

Table 2: Comparison on CIFAR-10 and CIFAR-100 datasets at different pruning ratios (90.0%,
95.0%, 98.0%). Bold values represent the best performance for each setting.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90.0% 95.0% 98.0% 90.0% 95.0% 98.0%

VGG-19 (Dense) 93.85 ± 0.06 73.44 ± 0.09

SNIP∗ 93.63 93.43 92.05 72.84 71.83 58.46
GraSP∗ 93.30 93.04 92.19 71.95 71.23 68.90
Synflow∗ 93.35 93.45 92.24 71.77 71.72 70.94
GMP 93.82 ± 0.15 93.84 ± 0.14 92.34 ± 0.13 73.57 ± 0.20 73.39 ± 0.11 72.78 ± 0.07
RigL 93.60±0.15 93.17±0.09 92.39 ± 0.04 73.03±0.14 72.68±0.22 70.02 ± 0.7
GraNet (si = 0) 93.87 ± 0.05 93.84 ± 0.16 93.87 ± 0.11 74.08 ± 0.10 73.86 ± 0.04 73.00 ± 0.18
Hyperflux (ours) 94.05 ± 0.17 94.15 ± 0.14 93.95 ± 0.18 74.37 ± 0.21 74.18 ± 0.15 72.9 ± 0.05

ResNet-50 (Dense) 94.72 ± 0.05 78.32 ± 0.08

SNIP∗ 92.65 90.86 87.21 73.14 69.25 58.43
GraSP∗ 92.47 91.32 88.77 73.28 70.29 62.12
Synflow∗ 93.35 93.45 92.24 71.77 71.72 70.94
RigL 94.02±0.33 93.76±0.23 92.93 ± 0.1 78.04±0.19 77.39±0.21 75.61 ± 0.11
GMP 94.81 ± 0.05 94.89 ± 0.1 94.52 ± 0.12 78.39 ± 0.18 78.38 ± 0.43 77.16 ± 0.25
GraNet (si = 0) 94.69 ± 0.08 94.44 ± 0.01 94.34 ± 0.17 79.09 ± 0.23 78.71 ± 0.16 78.01 ± 0.20
Hyperflux (ours) 95.41 ± 0.12 95.15 ± 0.11 95.26 ± 0.13 79.58 ± 0.18 79.23 ± 0.16 77.7 ± 0.08
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4.2 ImageNet-2012316

To test Hyperflux at scale, we pruned ResNet-50 on ImageNet-2012. Table 3 shows that, even at317

extreme sparsity, Hyperflux performs competitively against state-of-the-art. Interestingly, our loading318

of pretrained weights increased the accuracy of all methods, with the exception of Spartan, which319

lost almost 1.5% accuracy compared to its reported results.320

At 96.42% sparsity, Hyperflux reaches 72.21% accuracy, surpassing GMP, GraNet and Spar-321

tan, while performing competitively against AC/DC, at a difference of 0.3%. This hierarchy322

Table 3: ResNet-50 top-1 accuracy, parameter
count, sparsity, and compute cost on ImageNet-
2012. We denote by s the sparsity, and by Ftrain

and Ftest the compute cost (FLOPs) required for
training and testing, respectively.

Method Top-1(%) Params s(%) Ftest Ftrain

ResNet-50 77.01 25.6M 0.00 1.00× 1.00×

GMP 74.29 2.56M 90.00 0.10× 0.51×
GraNet 74.68 2.56M 90.00 0.16× 0.23×
Spartan 75.12 2.56M 90.00 0.14× -
AC/DC 75.83 2.56M 90.00 0.18× 0.58×
Hyperflux 75.28 2.54M 90.11 0.15× 0.60×

GMP 70.95 1.28M 95.00 0.05× -
GraNet 72.83 1.28M 95.00 0.12× 0.17×
Spartan 72.92 1.28M 95.00 0.08× -
AC/DC 74.03 1.28M 95.00 0.11× 0.53×
Hyperflux 73.30 1.28M 95.00 0.08× 0.52×

GMP 70.62 0.90M 96.50 - -
GraNet 71.06 0.90M 96.50 0.09× 0.15×
Spartan 71.13 0.90M 96.50 - -
AC/DC 72.50 0.90M 96.50 - -
Hyperflux 72.21 0.92M 96.42 0.06× 0.49×

is maintained for both 90% and 95% sparsity,323

with the gap between Hyperflux and AC/DC324

remaining below 0.6 points in accuracy. We con-325

ducted an analysis on the weight histograms of326

ResNet-50 on ImageNet to study the difference327

in weight distribution and observed that Hyper-328

flux pruned aggressively the convolutional lay-329

ers, details in Appendix C.1330

The computational cost is only assessed on331

ImageNet-1k as it is the most intensive bench-332

mark. Pruning cuts FLOPs to 0.15× in-333

ference/0.60× training at 90% sparsity, and334

0.08×/0.52× at 95% sparsity. Despite incurring335

larger costs for training than other methods, Hy-336

perflux is able to produce sparse networks whose337

inference cost is lower. This is caused by the338

per-layer sparsity distribution generated by our339

method, which prunes more the layers contribut-340

ing most to the computational cost. For the base-341

lines, we report the computational costs when342

they are available in their respective papers, and343

fill with − when they are not. More details on344

computational cost are given in Appendix D.345

5 Conclusions, Limitations and Future Work346

We introduced Hyperflux, a conceptually grounded L0 method in which we construct the notions of347

flux and pressure and study their relationship with weight importance. Furthermore, we postulate and348

validate several properties of Hyperflux that enhance its explainability. Finally, our experiments show349

strong performance compared to existing state-of-the-art methods.350

Despite its advantages, Hyperflux has several areas which could be improved. Our method incurs351

at least 33% of the dense network’s computational cost (see Appendix D) and demands additional352

hyperparameters (e.g. scheduler policy and step, ηt) which work well at the same values across the353

vision tasks we tested on, but may require adjustment on other tasks. To address some of these issues,354

we can treat the network sparsity as the output of a dynamical control problem and the pressure as355

its input, so as to tightly control the transient and steady-state sparsity S despite differences in the356

tasks. Additionally, we are interested in checking whether the empirical Neural pruning law we found357

generalizes to other deep learning tasks.358
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A Analysis516

A.1 Why Important Weights Generate Stronger Flux517

To study the flux of important weights, let us focus on a specific weight ωi in the regime ti ≤ 0,518

and thus θi = 0. For analytical purposes, we define the loss in terms of the effective weights519

θi = ωi ·H(ti) as L(θ), where L(θ|θi = 0) is the loss when ti ≤ 0 and L(θ|θi = ωi) is the loss520

when ti > 0. We perform a Taylor expansion of L(θ) around θi = 0. By perturbing θi by ωi (i.e.521

by approximating the effect of regrowing the weight), we observe that the first-order term in the522

expansion is the flux of ωi. Formally:523

L(θ|θi = ωi) = L(θ|θi = 0) + ωi
∂L(θ|θi = 0)

∂θi
+

1

2
ω2
i

∂2L(θ|θi = 0)

∂θ2i
+O

(
ω3
i

)
. (8)

Recalling the formula for flux, G−i (ω, T ), and neglecting the second and higher-order terms:524

L(θ|θi = 0)− L(θ|θi = ωi) ≈ −ωi
∂L(θ|θi = 0)

∂θi
= G−i (ω, T ).

Thus we obtain a direct relationship between flux and weight importance: the flux approximates the525

change in the loss that could be incurred when the weight is regrown. However, this relationship526

holds only up to neglected higher-order terms, so it should be viewed as a useful approximation rather527

than an exact law.528

A.2 Flux Connection To The Hessian529

To relate flux to other importance metrics, specifically the Hessian, we consider the Taylor approxi-530

mation from (8) and write:531

L(θ|θi = 0)− L(θ|θi = ωi) = −
(
ωi

∂L(θ|θi = 0)

∂θi
+

1

2
ω2
i

∂2L(θ|θi = 0)

∂θ2i

)
−O

(
ω3
i

)
.

Given that the flux G−i (ω, T ) = −ωi
∂L(θ|θi=0)

∂θi
and neglecting terms of order O

(
ω3
i

)
and higher, we532

obtain:533

L(θ|θi = 0)− L(θ|θi = ωi) ≈ G−i (ω, T )− 1

2
ω2
i

∂2L(θ|θi = 0)

∂θ2i︸ ︷︷ ︸
Hθ

ii

The second term, − 1
2 ω

2
i H

θ
ii, contains the diagonal element, Hθ

ii, of the Hessian matrix of the loss534

function with respect to θi. This shows that our flux metric captures the linear component of the535

loss change, while the second term captures the quadratic component, which is generally associated536

with Hessian-based pruning methods like Optimal Brain Damage [22]. In Optimal Brain Damage,537

a weight’s saliency is estimated by 1
2Hiiω

2
i , typically under the assumption that the network is at538

a minimum where first-order gradients are zero. On the other hand, Hyperflux prunes the weights,539

therefore recovering the first linear component of the Taylor expansion which becomes 0 when540

weights converge.541

B Ablation Studies542

B.1 Factors influencing flux G−i (ω, T )543

We begin by analyzing how the flux value G−i (ω, T ) is influenced by factors other than ηt, the544

learning rate on presence parameters. Our findings from Section 3.3, suggest that weight learning545

affects the behavior of flux, by changing the final convergence point a network will reach for the546

same constant pressure γ. We study this effect in the case of LeNet-300. We run the network547

for 1000 epochs for three different learning rates of 0.005, 0.0005 and 0.00005, with no sched-548

ulers used and the same constant γ. Our findings are summarized in Figure 4, which shows that549

increasing ηω , the weights learning rate, leads to smaller fluxes and convergence at higher sparsities.550
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Figure 4: MNIST convergence for constant θ =
1 for different learning rates

Given the impact of ηω on network convergence,551

we study the influence of high and low learning552

rates on our pruning and regrowth phases. In our553

experiments, we study three setups on ResNet-554

50 with CIFAR-10. In the first two experiments,555

we study how constant learning rates across the556

entire pruning and regrowth process affect sparsity557

and regrowth. We choose a high learning rate of558

0.01 and a low learning rate of 0.0001. For our559

third experiment, we start with the high learning560

rate which is then decayed using cosine annealing561

to a low learning rate until the end of regrowth.562

For all three studies we let our scheduler guide563

the network towards the same sparsity rate of 1%.564

However, we observe significant differences in the565

regrowth stage. For the first experiment, regrowth566

does not occur at all, with more weights being pruned even after the pressure is set to 0, while for the567

low learning rate, the performance initially degrades, but is followed by a substantial regrowth stage568

where the number of remaining parameters increases by 60%. For the third experiment performance569

does not degrade as much as for the low learning rate and the regrowth is done in a more controlled570

way, experiencing an increase in remaining parameters of 35%. The results are illustrated in Figure 5.571

Lastly, we study how weight flux is affected by weight decay. Being directly applied on the weights,572

weight decay acts on both pruned and present weights. If a weight has been pruned in the first epochs573

on the training, weight decay will keep making it smaller and smaller, in this way diminishing its flux.574

We run similar experiments to the ones before, with a learning rate of 0.01, decayed during training575

to 0.0001, both with and without the standard weight decay. As expected, we observe in Figure 7a576

that regrowth without weight decay is more ample. We run this experiment five times, and note that577

each time the pattern illustrated in the figure remains consistent.578
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Figure 5: The impact of the weights’ learning rate on pruning accuracy (left) and achieved sparsity
(right).

B.2 Weights ηω and pruning579

Given the large impact ηω has on flux, we explore its implications for producing an optimal pruning580

setup for Hyperflux. We run three experimental setups on ResNet-50 CIFAR-10 similar to the ones581

before. For each one of them, we select a starting learning rate, which is then decayed during training582

to 0.0001 to ensure convergence. For this setup, we run experiments using ηω = 0.1, 0.01, 0.0001.583

We analyze the results from the perspective of accuracy after pruning, noise, regrowth, and final584

accuracy. We find that the third setup is the most effective for Hyperflux.585

We observe that each of the four studied aspects has a relationship with the learning rate. The noise586

is increased as initial learning rate increases, accuracy at the end of pruning is decreased the most587

for low learning rates and the highest for large learning rates. We obtain the highest final accuracy588
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for higher learning rates and the regrowth phase is diminished the higher the learning rate. These589

relationships hold and can be easily seen in Figure 7.
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Figure 6: Training evolution for different learning rate configurations.
590

B.3 ηt values and regrowth591

We analyze regrowth behavior for several values of ηt. At regrowth stage, we scale ηt with592

5, 10, 20, 30 for VGG-19 on CIFAR-100 to observe the behavior of regrowth stage. Our findings are593

summarized in Figure 7b. As ηt increases so does the number of regrown weights. However, we note594

that after a point, generally about an increase of 50% in remaining parameters, the effects of regrowth595

start to be diminished and starts introducing noise in the performance, while also regrowing more596

weights.
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Figure 7: Factors affecting regrowth.
597

C Extended experiments598

C.1 Layerwise sparsity levels & Weight Histograms599

In this section, we examine the layer-wise sparsity observed for ResNet-50 on CIFAR-10 across the600

following pruning rates: 99.74%, 99.01%, and 98.13%. As illustrated in Figure 8, the overall sparsity601

hierarchy is maintained, displaying a decreasing trend in sparsity from the initial layers down to the602

final layer, where this pattern is interrupted. We hypothesize that earlier layers retain more weights603

due to their critical role in feature extraction, while deeper layers can sustain higher levels of pruning604

without significantly impacting overall performance. Notably, the penultimate layer experiences the605

highest degree of pruning, which means that it contains higher redundancy or less critical weights for606

performance. Furthermore, by analyzing the weight histograms for ResNet-50 with sparsity levels of607

99.01% and 99.74% in Figure 11, we observe the influence of sparsity on the weight distributions.608
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High sparsity levels significantly alter weight distributions, demonstrating that extreme pruning not609

only reduces the number of active weights but also changes the underlying weight dynamics within610

the network.611

The histograms in Figure 12 illustrate the differences in weight distributions between the pruning612

and regrowth stages on ImageNet with ResNet-50 at approximately 4.23% remaining weights. In the613

pruning stage, weights are more evenly distributed across the range of [−0.4, 0.4], with a noticeable614

dip near zero, reflecting the removal of low-magnitude weights. In contrast, during regrowth stage the615

weight distribution shifts significantly, showing a sharp clustering of weights around zero, indicating616

the reactivation of low-magnitude weights during this process. This change in distribution correlates617

with a notable performance gap: the regrowth stage achieves 72.4% accuracy, while the pruning stage618

reaches only 66.13%, we consider the cause of this to be the fact that during the pruning process the619

small magnitude weights are pruned and during the regrowth phase we recover from these weights620

the ones that improve performance the most.621
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Figure 8: Per-layer sparsity for ResNet-50 CIFAR-10. We present 3 levels of sparsity:
99.74%, 99.01% and 98.13%.

C.2 Implicit regrowth622

Implicit regrowth serves as the main source of noise in our network, promoting diverse topologies623

throughout the training process. In Figure 9, we identify patterns in flip frequency, such as the lower624

number of flips at the start of training. This behavior is anticipated, as pruning a critical weight early625

on allows its features to be more readily absorbed by other weights. Around iteration 14, we notice626

a plateau followed by a brief decline in weight flips, which we attribute to the network stabilizing627

during this phase.628

As training progresses and the number of parameters declines, the per-weight flip frequency continues629

to increase, while the overall flip frequency remains relatively steady, resulting in a continue increase630

of the per-weight flip frequency. The regrowth phase is marked by a sharp decrease in the total631

number of flips as the network stabilizes and the learning rate of flux parameters diminishes toward632

zero. This pattern is visible between iterations 70 and 130, alongside a gradual increase in the number633

of parameters.634

In Figure 9 we can observe the behavior of flux in relation to the gradients of t values. Note that635

negative values of the gradients translate into positive updates for t values and vice-versa.Two636

specific type of weights emerge, the first type can be seen in the top-left and bottom-right diagrams637

in Figure 10, where the gradient G+i (ω, T ) does not oppose significant pressure for ti > 0. This638
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leads to the weight being pruned multiple times, which coincides, with large negative values in the639

gradient, which push ti back over 0. The second type of weights, as common as the first one, does640

not get pruned at all. In this case, G+i (ω, T ) averaged over several iterations, attempts to increase641

the magnitude of the weight, therefore increasing ti at the same time, which leads to the weight not642

being pruned at all. We can see that in this case the overall magnitude of the gradients is below −1.5,643

which in our experiment was enough to resist pressure.644
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Figure 9: Frequency of Flips: The blue histogram represents the percentage of remaining parameters
on a logarithmic scale, while the orange histogram illustrates the ratio of parameter flips per iteration
relative to the total number of network parameters, also on a logarithmic scale. In our figure, one
iteration is equivalent to the aggregation of 100 actual training iterations. We aggregate iterations to
present the flip data in a more manageable way.
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Figure 10: Gradient values over time for four remaining weights in the pruned network. Blue bars
show gradients when ti > 0, red when ti ≤ 0. Notice the high-magnitude red gradients (flux
G−i (ω, T )) versus the typically smaller positive gradients (momentum G+i (ω, T )).

18



0.6 0.4 0.2 0.0 0.2 0.4

100

101

102

103

conv1.weight
Sparsity: 48.21%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

layer1.0.conv1.weight
Sparsity: 81.15%

0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

layer1.0.conv2.weight
Sparsity: 95.73%

0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

layer1.0.conv3.weight
Sparsity: 90.38%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

layer1.1.conv1.weight
Sparsity: 96.77%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

layer1.1.conv2.weight
Sparsity: 97.41%

0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

layer1.1.conv3.weight
Sparsity: 94.50%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

layer1.2.conv1.weight
Sparsity: 96.67%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

layer1.2.conv2.weight
Sparsity: 97.01%

0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

layer1.2.conv3.weight
Sparsity: 94.17%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

layer1.0.downsample.0.weight
Sparsity: 93.62%

0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

layer2.0.conv1.weight
Sparsity: 95.70%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer2.0.conv2.weight
Sparsity: 98.92%

0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

105

layer2.0.conv3.weight
Sparsity: 97.45%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

101

102

103

104

105

layer2.1.conv1.weight
Sparsity: 99.06%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

101

102

103

104

105

layer2.1.conv2.weight
Sparsity: 98.94%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer2.1.conv3.weight
Sparsity: 97.88%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer2.2.conv1.weight
Sparsity: 98.69%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

layer2.2.conv2.weight
Sparsity: 98.78%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer2.2.conv3.weight
Sparsity: 97.94%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer2.3.conv1.weight
Sparsity: 99.38%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

layer2.3.conv2.weight
Sparsity: 99.63%

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

100

101

102

103

104

105

layer2.3.conv3.weight
Sparsity: 99.23%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer2.0.downsample.0.weight
Sparsity: 98.97%

0.10 0.05 0.00 0.05 0.10

101

102

103

104

105

layer3.0.conv1.weight
Sparsity: 98.42%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer3.0.conv2.weight
Sparsity: 99.62%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100 0.125

100

101

102

103

104

105

layer3.0.conv3.weight
Sparsity: 99.17%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

layer3.1.conv1.weight
Sparsity: 99.71%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer3.1.conv2.weight
Sparsity: 99.64%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

layer3.1.conv3.weight
Sparsity: 99.21%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

layer3.2.conv1.weight
Sparsity: 99.45%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer3.2.conv2.weight
Sparsity: 99.50%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

layer3.2.conv3.weight
Sparsity: 99.31%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer3.3.conv1.weight
Sparsity: 99.37%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100 0.125

100

101

102

103

104

105

106

layer3.3.conv2.weight
Sparsity: 99.66%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer3.3.conv3.weight
Sparsity: 99.60%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer3.4.conv1.weight
Sparsity: 99.66%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

106

layer3.4.conv2.weight
Sparsity: 99.84%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer3.4.conv3.weight
Sparsity: 99.79%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

layer3.5.conv1.weight
Sparsity: 99.75%

0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

106

layer3.5.conv2.weight
Sparsity: 99.92%

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

100

101

102

103

104

105

layer3.5.conv3.weight
Sparsity: 99.88%

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

100

101

102

103

104

105

106

layer3.0.downsample.0.weight
Sparsity: 99.74%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer4.0.conv1.weight
Sparsity: 99.81%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

106

layer4.0.conv2.weight
Sparsity: 99.96%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer4.0.conv3.weight
Sparsity: 99.96%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer4.1.conv1.weight
Sparsity: 99.98%

0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

106

layer4.1.conv2.weight
Sparsity: 99.98%

0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

105

106

layer4.1.conv3.weight
Sparsity: 99.96%

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

100

101

102

103

104

105

106

layer4.2.conv1.weight
Sparsity: 99.98%

0.06 0.04 0.02 0.00 0.02 0.04 0.06

100

101

102

103

104

105

106

layer4.2.conv2.weight
Sparsity: 99.99%

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06

100

101

102

103

104

105

106

layer4.2.conv3.weight
Sparsity: 99.97%

0.04 0.02 0.00 0.02 0.04 0.06

100

101

102

103

104

105

106

layer4.0.downsample.0.weight
Sparsity: 99.99%

0.3 0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

fc.weight
Sparsity: 96.07%

(a) 99.74% sparsity (92.81% acc).
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(b) 99.1% sparsity (94.44% acc).

Figure 11: Weight-value histograms of ResNet-50 on CIFAR-10 at two different sparsity levels. Note
how the weight distribution reshapes as sparsity increases.

19



0.6 0.4 0.2 0.0 0.2 0.4 0.6

100

101

102

103

conv1.weight
Sparsity: 48.37%

0.6 0.4 0.2 0.0 0.2

100

101

102

103

layer1.0.conv1.weight
Sparsity: 64.16%

0.3 0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

layer1.0.conv2.weight
Sparsity: 88.49%

0.3 0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

layer1.0.conv3.weight
Sparsity: 81.35%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

layer1.1.conv1.weight
Sparsity: 83.19%

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5

100

101

102

103

104

layer1.1.conv2.weight
Sparsity: 86.69%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

layer1.1.conv3.weight
Sparsity: 81.82%

0.15 0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

layer1.2.conv1.weight
Sparsity: 83.36%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

layer1.2.conv2.weight
Sparsity: 81.19%

0.1 0.0 0.1 0.2

100

101

102

103

104

layer1.2.conv3.weight
Sparsity: 84.16%

0.6 0.4 0.2 0.0 0.2 0.4 0.6

100

101

102

103

104

layer1.0.downsample.0.weight
Sparsity: 71.67%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

layer2.0.conv1.weight
Sparsity: 80.31%

0.20 0.15 0.10 0.05 0.00 0.05 0.10

100

101

102

103

104

105

layer2.0.conv2.weight
Sparsity: 92.63%

0.3 0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer2.0.conv3.weight
Sparsity: 88.44%

0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

layer2.1.conv1.weight
Sparsity: 96.64%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer2.1.conv2.weight
Sparsity: 94.91%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer2.1.conv3.weight
Sparsity: 92.76%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

layer2.2.conv1.weight
Sparsity: 92.08%

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

layer2.2.conv2.weight
Sparsity: 93.56%

0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer2.2.conv3.weight
Sparsity: 89.13%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

layer2.3.conv1.weight
Sparsity: 89.93%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

layer2.3.conv2.weight
Sparsity: 92.12%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer2.3.conv3.weight
Sparsity: 90.18%

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

100

101

102

103

104

105

layer2.0.downsample.0.weight
Sparsity: 94.43%

0.3 0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer3.0.conv1.weight
Sparsity: 84.40%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

106

layer3.0.conv2.weight
Sparsity: 96.08%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer3.0.conv3.weight
Sparsity: 90.83%

0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer3.1.conv1.weight
Sparsity: 96.41%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

106

layer3.1.conv2.weight
Sparsity: 97.15%

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer3.1.conv3.weight
Sparsity: 93.20%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

layer3.2.conv1.weight
Sparsity: 96.84%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

106

layer3.2.conv2.weight
Sparsity: 97.30%

0.3 0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer3.2.conv3.weight
Sparsity: 94.40%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

layer3.3.conv1.weight
Sparsity: 95.53%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

106

layer3.3.conv2.weight
Sparsity: 97.07%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer3.3.conv3.weight
Sparsity: 94.42%

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25

100

101

102

103

104

105

layer3.4.conv1.weight
Sparsity: 94.71%

0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

106

layer3.4.conv2.weight
Sparsity: 96.87%

0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer3.4.conv3.weight
Sparsity: 94.15%

0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer3.5.conv1.weight
Sparsity: 93.03%

0.2 0.1 0.0 0.1

100

101

102

103

104

105

106

layer3.5.conv2.weight
Sparsity: 96.32%

0.3 0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer3.5.conv3.weight
Sparsity: 92.27%

0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

layer3.0.downsample.0.weight
Sparsity: 97.19%

0.3 0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

layer4.0.conv1.weight
Sparsity: 89.28%

0.2 0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

106

layer4.0.conv2.weight
Sparsity: 97.81%

0.1 0.0 0.1 0.2 0.3

100

101

102

103

104

105

106

layer4.0.conv3.weight
Sparsity: 95.57%

0.2 0.0 0.2 0.4

100

101

102

103

104

105

106

layer4.1.conv1.weight
Sparsity: 96.14%

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15

100

101

102

103

104

105

106

layer4.1.conv2.weight
Sparsity: 97.78%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

106

layer4.1.conv3.weight
Sparsity: 95.82%

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

106

layer4.2.conv1.weight
Sparsity: 94.51%

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075

100

101

102

103

104

105

106

layer4.2.conv2.weight
Sparsity: 98.05%

0.2 0.1 0.0 0.1 0.2

100

101

102

103

104

105

106

layer4.2.conv3.weight
Sparsity: 95.85%

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5

100

101

102

103

104

105

106

layer4.0.downsample.0.weight
Sparsity: 98.97%

0.2 0.0 0.2 0.4 0.6

100

101

102

103

104

105

106

fc.weight
Sparsity: 91.80%

(a) Pruning phase (66.13% acc).
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(b) Regrowth phase (72.40% acc).

Figure 12: Weight histograms of ResNet-50 on ImageNet during two different phases at 95.77%
sparsity.
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D Complexity analysis645

We analyze both the training-time and inference-time compute cost of Hyperflux relative to a standard646

dense baseline. Let fd denote the FLOPs required for a forward pass of the dense network, and fs the647

(reduced) FLOPs for a forward pass through the sparse weights. We approximate the backward-pass648

cost for sparse weights as 2fs, following common conventions, and account for the dense parameters649

t with a full backward cost of fd. The reason for this is that all t values are updated, no matter650

whether their associated weight is pruned or not, thereby requiring the full cost fd. Thus, the total651

training cost of Hyperflux is652

FLOPstrain = fs + 2fs + fd = 3fs + fd,

while the dense baseline requires653

FLOPsdense
train = fd + 2fd = 3fd.

Consequently, the relative training cost is:654

3fs + fd
3fd

=
fs
fd

+
1

3
.

At inference, Hyperflux uses only the sparse weights, yielding:655

FLOPstest = fs.

E Schedulers implementation656

In section 3.4 we discussed briefly about pressure policy C, but we did not provide detailed implemen-657

tation. Here we provide clear steps that each scheduler follows along with our experimental findings.658

We begin by defining a mapping from epoch e to a expected decay factor in sparsity at epoch e,659

0 < d(e) ≤ 1. Our sparsity function f(e) is defined as f(e) = 100 ·
∏e

i=1 ·d(i). For example, if660

d(1) = 0.9 and d(2) = 0.8, the expected sparsity at epoch 2 will be f(2) = 100 · 0.9 · 0.8 = 72. We661

will use f(e) from now on to refer to our sparsity curve. For the u parameter in our scheduler we find662

a value of 0.1 to be suited for vision tasks, while for α we choose 1.5.663

E.1 Pressure scheduler with trajectory control664

This is the first implementation of our scheduler pressure policy C. Its aim is to track a user defined665

curve at each epoch, by increasing the pressure when sparsity is below the curve (too many parameters)666

and decreasing pressure when sparsity is above the curve (too few parameters). Concretely, the667

decisions at each step are taken as in Algorithm 3. This scheduler is able to follow more precisely a668

specific sparsity trajectory, but its convergence standard deviation to S might reach 10%-20% of the669

remaining parameters.670

Algorithm 3 Pressure policy C for trajectory control

1: Initialization: Sparsity function f .
2: Policy parameteres: Pruning epochs Ep, Final sparsity S , Current sparsity se, Current epoch e,
3: if se < f(e) then
4: Return true
5: else
6: Return false
7: end if

E.2 Pressure scheduler with upper boundary671

The second implementation of the pressure policy C achieves S within tight boundaries (under 5%672

standard deviation from expected remaining parameters (e.g. S = 98%, we expect 2% remaining673

parameters and the scheduler generally reaches the interval [1.95, 2.05]%), by trading off exact674

control over sparsity curve. The upper boundary, defined in the same way as the sparsity curve but675
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used differently, is recalculated at each epoch, essentially creating an ever-tightening sparsity space676

in which the network’s sparsity resides. When the network’s sparsity increases (fewer parameters),677

the upper boundary is recalculated to not allow decreases in sparsity again. The algorithm for C is678

presented in Algorithm 4. Since ub is recalculated at each epoch, it does not make sense to access679

other indexes other than 1. However, we still need to calculate the curve in order to ensure the network680

trajectory is steered towards S.681

Algorithm 4 Pressure policy C for upper boundary

1: Initialization: Upper boundary function ub.
2: Policy paramteres: Pruning epochs Ep, Final sparsity S, Current sparsity se, Current epoch e,
3: Internals: Sparsity history sh.
4: sh.append(se).
5: Recalculate ub such that ub(Ep − e) = S (will reach S in the remaining epochs).
6: prev_decrease← sh(e)

sh(e−1)

7: if prev_decrease < ub(1) then
8: Return true
9: else

10: Return false
11: end if

F Training setup and reproducibility682

Table 4: Hyperparameter configurations for the pruning and stabilization stages across CIFAR-10,
CIFAR-100, and ImageNet-1K with ResNet-50 and VGG19 architectures.

Dataset CIFAR-10 CIFAR-100 ImageNet-1K
Network ResNet-50 VGG19 ResNet-50 VGG19 ResNet-50
Acc (%) 94.72 ± 0.05 93.85 ± 0.06 78.32 ± 0.08 73.44 ± 0.09 77.01

Batch size 128 128 128 128 1024

Total epochs 160 160 160 160 100
Ep/Es 100/60 100/60 100/60 100/60 80/20

Ot ADAM ADAM ADAM ADAM ADAM
Oω SGD SGD SGD SGD SGD
Sω Cosine Cosine Cosine Cosine Cosine

Pruning

ηsω 0.1 0.1 0.1 0.1 0.1
ηeω 0.003 0.003 0.003 0.003 0.003
ηt 0.001 0.001 0.001 0.001 0.001

Stabilization

ηiω 0.001 0.001 0.001 0.001 0.001
ηfω 0.0001 0.0001 0.0001 0.0001 0.0001
ηt 0.001 0.001 0.001 0.001 0.001

St LambdaLR LambdaLR LambdaLR LambdaLR LambdaLR
λt 0.75 0.75 0.75 0.75 0.55

As summarized in Table 4, our training protocol consists of two stages over a fixed number of epochs:683

a pruning stage followed immediately by a stabilization (regrowth) stage. In both stages, weights ω684

are optimized with by SGD under a cosine annealing scheduler Sw, while presence parameters t are685

optimized with ADAM. Furthermore, the presence parameters are uniformly initialized in the range686

0.2–0.5.687
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During the pruning stage the learning rate for ω is decayed from ηsω to ηeω, and t uses a constant ηt.688

Without resetting training, we then set the pruning pressure to zero and enter the stabilization stage,689

where ηω is further decayed (from its new ηiω to ηfω) and the presence parameters are trained under a690

LambdaLR scheduler St with decay parameter λt. This two-stage setup, with separate optimizer and691

learning rate schedules for weights and presence parameters, ensures that both the sparse structure692

and the remaining weights are allowed to converge to their optimal configurations. Let Ow be the693

optimizer for the weights and Ot the optimizer for the presence parameters. We prune for Ep epochs694

and then enter a stabilization stage lasting Es epochs, for a total of Ep +Es epochs. All experiments695

use the pressure scheduler presented in Algorithm 3.696

Across all experiments, we applied a weight decay of 10−4, while omitting any weight decay on the697

batch-normalization layers. Regarding augmentations, on ImageNet we adopt the same pipeline as698

our baselines: random resize, crop and random horizontal flip for training, and resize plus center crop699

for validation; on CIFAR-10/100 we apply random crop with padding, random horizontal flip for700

training, and no augmentations for testing.701
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NeurIPS Paper Checklist702

1. Claims703

Question: Do the main claims made in the abstract and introduction accurately reflect the704

paper’s contributions and scope?705

Answer: [Yes]706

Justification: The main aim of the paper, as stated in the introduction and abstract, is to create707

a conceptually grounded, empirically strong method which is able to maintain theoretical708

depth with respect to pruning criteria and weight importance. We consider to have achieved709

this goal successfully, since we have (1) SOTA results for CIFAR-10/100 and competitive710

results on Imagenet (2) in depth explanations of how pruning is performed using the notions711

of flux and pressure, which also lead to interesting properties that we validate.712

Guidelines:713

• The answer NA means that the abstract and introduction do not include the claims714

made in the paper.715

• The abstract and/or introduction should clearly state the claims made, including the716

contributions made in the paper and important assumptions and limitations. A No or717

NA answer to this question will not be perceived well by the reviewers.718

• The claims made should match theoretical and experimental results, and reflect how719

much the results can be expected to generalize to other settings.720

• It is fine to include aspirational goals as motivation as long as it is clear that these goals721

are not attained by the paper.722

2. Limitations723

Question: Does the paper discuss the limitations of the work performed by the authors?724

Answer: [Yes]725

Justification: We have included and discussed the limitations of our framework in the final726

Section 5 at the end of the paper, specifically the training overhead and potential lack of727

generalization when it comes to other tasks other than vision.728

Guidelines:729

• The answer NA means that the paper has no limitation while the answer No means that730

the paper has limitations, but those are not discussed in the paper.731

• The authors are encouraged to create a separate "Limitations" section in their paper.732

• The paper should point out any strong assumptions and how robust the results are to733

violations of these assumptions (e.g., independence assumptions, noiseless settings,734

model well-specification, asymptotic approximations only holding locally). The authors735

should reflect on how these assumptions might be violated in practice and what the736

implications would be.737

• The authors should reflect on the scope of the claims made, e.g., if the approach was738

only tested on a few datasets or with a few runs. In general, empirical results often739

depend on implicit assumptions, which should be articulated.740

• The authors should reflect on the factors that influence the performance of the approach.741

For example, a facial recognition algorithm may perform poorly when image resolution742

is low or images are taken in low lighting. Or a speech-to-text system might not be743

used reliably to provide closed captions for online lectures because it fails to handle744

technical jargon.745

• The authors should discuss the computational efficiency of the proposed algorithms746

and how they scale with dataset size.747

• If applicable, the authors should discuss possible limitations of their approach to748

address problems of privacy and fairness.749

• While the authors might fear that complete honesty about limitations might be used by750

reviewers as grounds for rejection, a worse outcome might be that reviewers discover751

limitations that aren’t acknowledged in the paper. The authors should use their best752

judgment and recognize that individual actions in favor of transparency play an impor-753

tant role in developing norms that preserve the integrity of the community. Reviewers754

will be specifically instructed to not penalize honesty concerning limitations.755
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3. Theory assumptions and proofs756

Question: For each theoretical result, does the paper provide the full set of assumptions and757

a complete (and correct) proof?758

Answer: [Yes]759

Justification: While our paper does not use formal theorems or proofs, we do rely on certain760

mathematical derivations to infer several properties of our method. As far as we are aware,761

these derivations are complete and their required conditions are stated.762

Guidelines:763

• The answer NA means that the paper does not include theoretical results.764

• All the theorems, formulas, and proofs in the paper should be numbered and cross-765

referenced.766

• All assumptions should be clearly stated or referenced in the statement of any theorems.767

• The proofs can either appear in the main paper or the supplemental material, but if768

they appear in the supplemental material, the authors are encouraged to provide a short769

proof sketch to provide intuition.770

• Inversely, any informal proof provided in the core of the paper should be complemented771

by formal proofs provided in appendix or supplemental material.772

• Theorems and Lemmas that the proof relies upon should be properly referenced.773

4. Experimental result reproducibility774

Question: Does the paper fully disclose all the information needed to reproduce the main ex-775

perimental results of the paper to the extent that it affects the main claims and/or conclusions776

of the paper (regardless of whether the code and data are provided or not)?777

Answer: [Yes]778

Justification: We have included all the necessary training recipes needed for reproducing our779

results, including a table in the appendix with all the hyperparameters, as well as detailed780

algorithms for our schedulers.781

Guidelines:782

• The answer NA means that the paper does not include experiments.783

• If the paper includes experiments, a No answer to this question will not be perceived784

well by the reviewers: Making the paper reproducible is important, regardless of785

whether the code and data are provided or not.786

• If the contribution is a dataset and/or model, the authors should describe the steps taken787

to make their results reproducible or verifiable.788

• Depending on the contribution, reproducibility can be accomplished in various ways.789

For example, if the contribution is a novel architecture, describing the architecture fully790

might suffice, or if the contribution is a specific model and empirical evaluation, it may791

be necessary to either make it possible for others to replicate the model with the same792

dataset, or provide access to the model. In general. releasing code and data is often793

one good way to accomplish this, but reproducibility can also be provided via detailed794

instructions for how to replicate the results, access to a hosted model (e.g., in the case795

of a large language model), releasing of a model checkpoint, or other means that are796

appropriate to the research performed.797

• While NeurIPS does not require releasing code, the conference does require all submis-798

sions to provide some reasonable avenue for reproducibility, which may depend on the799

nature of the contribution. For example800

(a) If the contribution is primarily a new algorithm, the paper should make it clear how801

to reproduce that algorithm.802

(b) If the contribution is primarily a new model architecture, the paper should describe803

the architecture clearly and fully.804

(c) If the contribution is a new model (e.g., a large language model), then there should805

either be a way to access this model for reproducing the results or a way to reproduce806

the model (e.g., with an open-source dataset or instructions for how to construct807

the dataset).808
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(d) We recognize that reproducibility may be tricky in some cases, in which case809

authors are welcome to describe the particular way they provide for reproducibility.810

In the case of closed-source models, it may be that access to the model is limited in811

some way (e.g., to registered users), but it should be possible for other researchers812

to have some path to reproducing or verifying the results.813

5. Open access to data and code814

Question: Does the paper provide open access to the data and code, with sufficient instruc-815

tions to faithfully reproduce the main experimental results, as described in supplemental816

material?817

Answer: [Yes]818

Justification: Yes, we went to great lengths to ensure reproducibility and open access,819

including code, Readmes, a file with all the packages needed to run the code, and a config820

file allowing to enable/disable third parties we used like WanDb so no one will be forced to821

use them too. The code is uploaded as supplementary material.822

Guidelines:823

• The answer NA means that paper does not include experiments requiring code.824

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/825

public/guides/CodeSubmissionPolicy) for more details.826

• While we encourage the release of code and data, we understand that this might not be827

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not828

including code, unless this is central to the contribution (e.g., for a new open-source829

benchmark).830

• The instructions should contain the exact command and environment needed to run to831

reproduce the results. See the NeurIPS code and data submission guidelines (https:832

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.833

• The authors should provide instructions on data access and preparation, including how834

to access the raw data, preprocessed data, intermediate data, and generated data, etc.835

• The authors should provide scripts to reproduce all experimental results for the new836

proposed method and baselines. If only a subset of experiments are reproducible, they837

should state which ones are omitted from the script and why.838

• At submission time, to preserve anonymity, the authors should release anonymized839

versions (if applicable).840

• Providing as much information as possible in supplemental material (appended to the841

paper) is recommended, but including URLs to data and code is permitted.842

6. Experimental setting/details843

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-844

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the845

results?846

Answer: [Yes]847

Justification: Yes, we include detailed training recipes needed for practitioners.848

Guidelines:849

• The answer NA means that the paper does not include experiments.850

• The experimental setting should be presented in the core of the paper to a level of detail851

that is necessary to appreciate the results and make sense of them.852

• The full details can be provided either with the code, in appendix, or as supplemental853

material.854

7. Experiment statistical significance855

Question: Does the paper report error bars suitably and correctly defined or other appropriate856

information about the statistical significance of the experiments?857

Answer: [Yes]858

Justification: Yes, we report appropriate information about statistical significance of the859

experiments, including standard deviation and mean.860
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Guidelines:861

• The answer NA means that the paper does not include experiments.862

• The authors should answer "Yes" if the results are accompanied by error bars, confi-863

dence intervals, or statistical significance tests, at least for the experiments that support864

the main claims of the paper.865

• The factors of variability that the error bars are capturing should be clearly stated (for866

example, train/test split, initialization, random drawing of some parameter, or overall867

run with given experimental conditions).868

• The method for calculating the error bars should be explained (closed form formula,869

call to a library function, bootstrap, etc.)870

• The assumptions made should be given (e.g., Normally distributed errors).871

• It should be clear whether the error bar is the standard deviation or the standard error872

of the mean.873

• It is OK to report 1-sigma error bars, but one should state it. The authors should874

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis875

of Normality of errors is not verified.876

• For asymmetric distributions, the authors should be careful not to show in tables or877

figures symmetric error bars that would yield results that are out of range (e.g. negative878

error rates).879

• If error bars are reported in tables or plots, The authors should explain in the text how880

they were calculated and reference the corresponding figures or tables in the text.881

8. Experiments compute resources882

Question: For each experiment, does the paper provide sufficient information on the com-883

puter resources (type of compute workers, memory, time of execution) needed to reproduce884

the experiments?885

Answer: [Yes]886

Justification: Yes. The paper details the compute resources required (3 × NVIDIA GeForce887

RTX 4090 GPUs) and evaluates computational cost exclusively on ImageNet, the most888

comprehensive benchmark.889

Guidelines:890

• The answer NA means that the paper does not include experiments.891

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,892

or cloud provider, including relevant memory and storage.893

• The paper should provide the amount of compute required for each of the individual894

experimental runs as well as estimate the total compute.895

• The paper should disclose whether the full research project required more compute896

than the experiments reported in the paper (e.g., preliminary or failed experiments that897

didn’t make it into the paper).898

9. Code of ethics899

Question: Does the research conducted in the paper conform, in every respect, with the900

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?901

Answer: [Yes]902

Justification: Yes, we conform to the NeurIPS Code of Ethics.903

Guidelines:904

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.905

• If the authors answer No, they should explain the special circumstances that require a906

deviation from the Code of Ethics.907

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-908

eration due to laws or regulations in their jurisdiction).909

10. Broader impacts910

Question: Does the paper discuss both potential positive societal impacts and negative911

societal impacts of the work performed?912
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Answer: [NA]913

Justification: Although our work falls under generic neural network optimization without914

direct societal impacts, the reduction in inference energy consumption is beneficial for the915

environment.916

Guidelines:917

• The answer NA means that there is no societal impact of the work performed.918

• If the authors answer NA or No, they should explain why their work has no societal919

impact or why the paper does not address societal impact.920

• Examples of negative societal impacts include potential malicious or unintended uses921

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations922

(e.g., deployment of technologies that could make decisions that unfairly impact specific923

groups), privacy considerations, and security considerations.924

• The conference expects that many papers will be foundational research and not tied925

to particular applications, let alone deployments. However, if there is a direct path to926

any negative applications, the authors should point it out. For example, it is legitimate927

to point out that an improvement in the quality of generative models could be used to928

generate deepfakes for disinformation. On the other hand, it is not needed to point out929

that a generic algorithm for optimizing neural networks could enable people to train930

models that generate Deepfakes faster.931

• The authors should consider possible harms that could arise when the technology is932

being used as intended and functioning correctly, harms that could arise when the933

technology is being used as intended but gives incorrect results, and harms following934

from (intentional or unintentional) misuse of the technology.935

• If there are negative societal impacts, the authors could also discuss possible mitigation936

strategies (e.g., gated release of models, providing defenses in addition to attacks,937

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from938

feedback over time, improving the efficiency and accessibility of ML).939

11. Safeguards940

Question: Does the paper describe safeguards that have been put in place for responsible941

release of data or models that have a high risk for misuse (e.g., pretrained language models,942

image generators, or scraped datasets)?943

Answer: [NA]944

Justification: The paper does not have such risks.945

Guidelines:946

• The answer NA means that the paper poses no such risks.947

• Released models that have a high risk for misuse or dual-use should be released with948

necessary safeguards to allow for controlled use of the model, for example by requiring949

that users adhere to usage guidelines or restrictions to access the model or implementing950

safety filters.951

• Datasets that have been scraped from the Internet could pose safety risks. The authors952

should describe how they avoided releasing unsafe images.953

• We recognize that providing effective safeguards is challenging, and many papers do954

not require this, but we encourage authors to take this into account and make a best955

faith effort.956

12. Licenses for existing assets957

Question: Are the creators or original owners of assets (e.g., code, data, models), used in958

the paper, properly credited and are the license and terms of use explicitly mentioned and959

properly respected?960

Answer: [Yes]961

Justification: Standard datasets (CIFAR-10/100, ImageNet-1K) and libraries (e.g., PyTorch)962

are used in compliance with their respective terms. CIFAR is available for research. Ima-963

geNet is used per its terms for non-commercial research, with images subject to original964

copyrights.965

28



Guidelines:966

• The answer NA means that the paper does not use existing assets.967

• The authors should cite the original paper that produced the code package or dataset.968

• The authors should state which version of the asset is used and, if possible, include a969

URL.970

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.971

• For scraped data from a particular source (e.g., website), the copyright and terms of972

service of that source should be provided.973

• If assets are released, the license, copyright information, and terms of use in the974

package should be provided. For popular datasets, paperswithcode.com/datasets975

has curated licenses for some datasets. Their licensing guide can help determine the976

license of a dataset.977

• For existing datasets that are re-packaged, both the original license and the license of978

the derived asset (if it has changed) should be provided.979

• If this information is not available online, the authors are encouraged to reach out to980

the asset’s creators.981

13. New assets982

Question: Are new assets introduced in the paper well documented and is the documentation983

provided alongside the assets?984

Answer: [NA]985

Justification: No new assets have been introduced.986

Guidelines:987

• The answer NA means that the paper does not release new assets.988

• Researchers should communicate the details of the dataset/code/model as part of their989

submissions via structured templates. This includes details about training, license,990

limitations, etc.991

• The paper should discuss whether and how consent was obtained from people whose992

asset is used.993

• At submission time, remember to anonymize your assets (if applicable). You can either994

create an anonymized URL or include an anonymized zip file.995

14. Crowdsourcing and research with human subjects996

Question: For crowdsourcing experiments and research with human subjects, does the paper997

include the full text of instructions given to participants and screenshots, if applicable, as998

well as details about compensation (if any)?999

Answer: [NA]1000

Justification: Not applicable.1001

Guidelines:1002

• The answer NA means that the paper does not involve crowdsourcing nor research with1003

human subjects.1004

• Including this information in the supplemental material is fine, but if the main contribu-1005

tion of the paper involves human subjects, then as much detail as possible should be1006

included in the main paper.1007

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1008

or other labor should be paid at least the minimum wage in the country of the data1009

collector.1010

15. Institutional review board (IRB) approvals or equivalent for research with human1011

subjects1012

Question: Does the paper describe potential risks incurred by study participants, whether1013

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1014

approvals (or an equivalent approval/review based on the requirements of your country or1015

institution) were obtained?1016

Answer: [NA]1017
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Justification: Not applicable.1018

Guidelines:1019

• The answer NA means that the paper does not involve crowdsourcing nor research with1020

human subjects.1021

• Depending on the country in which research is conducted, IRB approval (or equivalent)1022

may be required for any human subjects research. If you obtained IRB approval, you1023

should clearly state this in the paper.1024

• We recognize that the procedures for this may vary significantly between institutions1025

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1026

guidelines for their institution.1027

• For initial submissions, do not include any information that would break anonymity (if1028

applicable), such as the institution conducting the review.1029

16. Declaration of LLM usage1030

Question: Does the paper describe the usage of LLMs if it is an important, original, or1031

non-standard component of the core methods in this research? Note that if the LLM is used1032

only for writing, editing, or formatting purposes and does not impact the core methodology,1033

scientific rigorousness, or originality of the research, declaration is not required.1034

Answer: [NA]1035

Justification: LLM’s were not used for any important component of this paper.1036

Guidelines:1037

• The answer NA means that the core method development in this research does not1038

involve LLMs as any important, original, or non-standard components.1039

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1040

for what should or should not be described.1041
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