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Abstract

Current vision-language models (VLMs) have001
demonstrated remarkable capabilities across di-002
verse video understanding applications. De-003
signing VLMs for video inputs requires effec-004
tively modeling the temporal dimension (i.e.005
capturing dependencies across frames) and bal-006
ancing the processing of short and long videos.007
Specifically, short videos demand preservation008
of fine-grained details, whereas long videos009
require strategic compression of visual infor-010
mation to handle extensive temporal contexts011
efficiently. However, our empirical analysis re-012
veals a critical limitation: most existing VLMs013
suffer severe performance degradation in long014
video understanding tasks when compressing015
visual tokens below a quarter of their original016
visual tokens. To enable more effective mod-017
eling of both short and long video inputs, we018
propose Clapper, a method that utilizes a slow-019
fast strategy for video representation and intro-020
duces a novel module named TimePerceiver for021
efficient temporal-spatial encoding within ex-022
isting VLM backbones. By using our method,023
we achieves 13x compression of visual tokens024
per frame (averaging 61 tokens/frame) with-025
out compromising QA accuracy. In our experi-026
ments, Clapper achieves 62.0% on VideoMME,027
69.8% on MLVU, and 67.4% on TempCom-028
pass, all with fewer than 6,000 visual tokens029
per video. The code will be publicly available030
on the homepage.031

1 Introduction032

Vision Language Models (VLMs) have achieved033

significant progress in understanding single images,034

high-resolution images (Wei et al., 2025; Ye et al.,035

2023; Chen et al., 2024a), and multiple images (Li036

et al., 2023; Alayrac et al., 2022; Li et al., 2024a)037

over the past few years. However, representation038

and understanding of videos in VLMs remain rela-039

tively underexplored. As an extension of images,040

videos comprise sequences of frames that introduce041

an additional temporal dimension. Unlike multiple- 042

image inputs, videos continuously extend over time, 043

typically recorded at 30 frames per second (fps) or 044

24 fps, offering rich and dynamic information. This 045

temporal richness also imposes substantially higher 046

computational demands. For instance, even when 047

the video is sampled at a reduced rate of 1 fps, if we 048

use 196 visual tokens per frame (Li et al., 2024a; 049

Zhang et al., 2024c), we would need to encode 050

110,760 tokens in VLMs for a 10-minute video. 051

Many VLM works have been proposed to model 052

the temporal characteristic of video data for video 053

understanding. Some methods (Lin et al., 2023; 054

Wang et al., 2024c) introduce dedicated video en- 055

coders specifically designed for video representa- 056

tion, while others (Xu et al., 2024a,b; Maaz et al., 057

2024; Li et al., 2024a) reuse the image encoders and 058

apply spatial or temporal pooling to video frame 059

features without adding extra training parameters. 060

Additionally, some research works aim to reduce 061

the number of tokens required for video inputs. For 062

example, some methods (Li et al., 2024c; Chen 063

et al., 2024b) compress video clips at extreme ra- 064

tios, such as reducing 4 or 8 frames to 1–32 to- 065

kens. However, they may result in significant loss 066

of detailed information, which undermines their 067

performance in fine-grained video QA tasks such 068

as VideoMME (Fu et al., 2024). Aiming to achieve 069

strong performance across a variety of Video QA 070

benchmarks with different video lengths and ques- 071

tion types, models must make trade-offs between 072

video token compression rates and the preservation 073

of various detailed information. While high com- 074

pression rates enable the model to accept longer 075

inputs, which benefits long videos, the information 076

loss introduced by such high compression often 077

degrades QA performance on short videos. 078

Another critical issue we find is the lack of a 079

fair evaluation setting of video understanding tasks. 080

Many results in current video QA benchmarks fail 081

to report the number of tokens used by the video, 082
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which can lead to unfair comparisons. This is be-083

cause, for a given number of input frames, the more084

vision tokens used, the better the QA performance085

typically becomes. Even for the same model, in-086

creasing the number of input frames within certain087

limits can lead to significant performance improve-088

ments.089

In this work, we aim to study effective modeling090

and fair evaluation that can be applied to both short091

and long video inputs. For effective modeling, we092

propose a more effective and efficient approach093

by employing an image-based vision encoder com-094

bined with a TimePerceiver module to represent095

video content, allowing video compact learning096

within the VLM framework. For fair evaluation,097

our goal is to provide the video QA benchmark098

results within a fixed vision token upper bound.099

These results not only advocate for fairer compar-100

isons, but also offer more relevant insights for prac-101

tical applications, where a balance between compu-102

tational cost and accuracy must be achieved.103

The contributions of this work are as follows:104

• We propose Clapper, a competitive VLM105

for video understanding, which is capable of106

achieving strong performance using less than107

one third of the tokens required by previous108

state-of-the-art models.109

• We introduce a novel video representation110

method that leverages a slow-fast strategy and111

the TimePerceiver module, enabling efficient112

and compact learning for VLMs.113

• We explored the performance of current114

VLMs under a unified upper bound on video115

tokens, providing greater practical value for116

the application of video VLMs in real-world117

scenarios.118

2 Related Works119

2.1 Video Representation120

For video inputs in VLM, frames are typically sam-121

pled at a fixed frame rate, such as 1 fps, or a fixed122

number of frames are force-sampled and fed into123

the model. The VLMs are then revised to embed124

the video frames, producing an embedding that125

represents the video segment. For instance, In-126

ternVideo2 (Wang et al., 2024c) accepts a fixed127

input of 8 frames and outputs an embedding of size128

C×L = 3200×2048, C is the channel dimension,129

and L is the token length.130

Some other models process frames individually131

through the image encoder, such as CLIP (Rad-132

ford et al., 2021) or SigLIP (Zhai et al., 2023), to 133

obtain their image embeddings. Ultimately, these 134

visual inputs are then either passed through an MLP 135

and directly concatenated with the text query, or 136

processed using a Q-former structure, where an 137

LLM performs video understanding tasks (Li et al., 138

2023; Zhang et al., 2023; Li et al., 2024c). If the 139

Q-former structure is used, we need to recalculate 140

visual inputs for each query, which is inefficient 141

for multi-turn dialogue. Direct concatenation of 142

visual tokens is more simple, but it can result in 143

excessively long sequences, which limit the perfor- 144

mance and efficiency of the LLM. Consequently, 145

extensive research has focused on compressing vi- 146

sual tokens, and will be discussed in the following 147

section. 148

2.2 Token Compression 149

Visual token compression have rapid advancements 150

in VLMs with image inputs. For example, high- 151

resolution images are essential for fine-grained 152

perception tasks such as OCR, object grounding, 153

and detailed information-based QA. To address 154

the demands of high-resolution image inputs, dy- 155

namic high-resolution techniques have been pro- 156

posed, which divide the high-resolution image into 157

multiple small patches (referred to as "tails"). How- 158

ever, the increase in the number of tokens due to 159

these multiple tails results in a rapid rise in mem- 160

ory usage and latency, which limits the practical 161

applicability of VLMs. In response to the above 162

issue, several models have introduced techniques 163

such as pixel shuffle (Chen et al., 2024d; Dai et al., 164

2024), spatial pooling (Li et al., 2024a; Zhang et al., 165

2024c), or bilinear interpolation (Li et al., 2024a), 166

to reduce the number of tokens generated by these 167

tails, typically achieving a reduction of approxi- 168

mately a quarter. 169

For video inputs, there are also some works that 170

reduce the number of visual tokens of multiple 171

frames from videos. PLLaVA (Xu et al., 2024a) 172

explored the effects of average pooling at varying 173

strides in both spatial and temporal dimensions. 174

Their experiments on MVBench (Li et al., 2024b) 175

and VCGBench (Maaz et al., 2024) revealed that 176

while 50% spatial downsampling maintains perfor- 177

mance levels, temporal pooling or more aggressive 178

spatial compression leads to notable performance 179

degradation. To mitigate resolution loss for critical 180

frames, SlowFast (Xu et al., 2024b; Zhang et al., 181

2024f) adopts an asymmetric strategy where key 182

frames undergo spatial downsampling by a factor 183
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Figure 1: Architecture of Clapper. The model consists of a vision encoder, a TimePerceiver module, an MLP layer,
and an LLM. Input videos are sampled and divided into segments, with each segment represented by a combination
of high-resolution keyframe embedding and compressed temporal embedding.

of 2 (slow pathway) while other frames use down-184

sampling by a factor of 4 (fast pathway). Mean-185

while, alternative architectures have explored learn-186

able compression mechanisms: MiniCPM (Yao187

et al., 2024) and InternVideo2-HD (Wang et al.,188

2024c) implement Perceiver-style cross-attention189

to project each frame’s features into fixed-length190

tokens. However, experimental results indicate191

that these methods still suffer from non-negligible192

performance degradation and face challenges in193

further reducing token counts. LLaMA-VID (Li194

et al., 2024c) achieves an exceptional compres-195

sion by using context-aware techniques, where text196

queries and visual embeddings interact through197

cross-modal attention to produce two adaptive to-198

kens per frame. However, this approach may not199

be optimal for all tasks, such as video captioning.200

3 Method201

3.1 Architecture202

We introduce Clapper, a VLM for video understand-203

ing that achieves compressed video representation204

and aligns it with an LLM backbone. As shown in205

Figure 1, unlike approaches that require extensive206

data resources to train a video foundation model207

from scratch or those that use image foundation208

models in a training-free manner, we adapt a pre-209

trained image foundation model as the base.210

Specifically, we employ SigLIP-448px/16 (Zhai211

et al., 2023) as the vision encoder, which outputs a 212

784-dimensional embedding for each input image. 213

For input videos, during training, we sample the 214

video at 1 fps, resulting in a sequence of frames 215

I ∈ R(T×448×448×3) with the length T . We se- 216

quentially divide the video into short segments, 217

each consisting of 4 consecutive frames. The first 218

frame of each segment is designated as the key 219

frame, and its embedding is obtained by apply- 220

ing a spatial pooling with a stride of 2 to the orig- 221

inal 784-dimensional embedding, resulting in a 222

196-dimensional representation. This key frame is 223

crucial for preserving detailed spatial information, 224

such as the attributes of the scene and the main 225

subjects. It ensures that important visual details 226

including the layout of the scene, the appearance of 227

objects, and the positions of characters, are retained 228

in the video representation. 229

We then introduce a trainable component, 230

TimePerceiver, to effectively learn the tempo- 231

ral information within each segment. TimePer- 232

ceiver takes 4 frames as input and outputs a 233

49-dimensional embedding representation. Ulti- 234

mately, the video segment is represented by com- 235

bining high-resolution keyframe information with 236

highly compressed temporal information. The 237

keyframe captures the detailed spatial attributes, 238

while TimePerceiver focuses on temporal dynam- 239

ics, ensuring that both aspects are adequately rep- 240
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resented in the final video embedding. Each video241

segment occupies a total of 245 tokens.242

For the last video segment that may not have 4243

frames, if it contains only one frame, it will have244

196 tokens corresponding to the key frame. If it245

contains two or three frames, it still occupies 245 to-246

kens. The visual tokens obtained from all processed247

video segments are concatenated in sequence and248

combined with the query to serve as the input to the249

LLM. In our experiments, we use Qwen2 (Yang250

et al., 2024) as our LLM backbone.251

The architecture of TimePerceiver is depicted252

in Figure 2. This module accepts a sequence of253

T image features (in our approach, it typically re-254

ceives 4 frames as input, though occasionally it255

may receive 2 to 3 frames) from the vision en-256

coder, and it generates a fixed number of visual257

outputs (set to 49 in our method). For the input258

visual features Xf ∈ R(T×L×D), we first apply259

spatial average pooling with a stride of 4, resulting260

in Xs ∈ R(T×L/16×D). Subsequently, we perform261

average pooling along the temporal dimension to262

obtain X ∈ R(1×L/16×D). L and D represents the263

length and dimension of the visual features. In our264

method, L is 784 and D is 1152. By using X as265

the input queries and cross-attending to the flat-266

tened visual features Xf , the model can focus on267

regions that change across the frames. Following268

the approach of Flamingo (Alayrac et al., 2022),269

the keys and values are computed from the concate-270

nation of X and Xf . The number of output tokens271

from TimePerceiver is equal to the number of in-272

put queries. Our ablation studies demonstrate that273

employing such a TimePerceiver module yields274

superior performance compared to a standard Per-275

ceiver (Alayrac et al., 2022).276

3.2 Training Recipe277

The training of Clapper is divided into two stages.278

In the first stage, TimePerceiver is trained to better279

model temporal motion information using video-280

caption pairs. During this stage, video-caption pair281

data is used for training. We first selected 178k282

video-caption pairs from LLaVA-Video (Zhang283

et al., 2024f). These unedited videos, ranging from284

a few seconds to 3 minutes in length, offer detailed285

captions that describe various aspects of the con-286

tent, capturing rich variations. Additionally, we287

used OpenVid-1M (Nan et al., 2024), a dataset288

for video generation. Videos in this dataset are289

trimmed to ensure scene consistency, and the cap-290

tions are relatively concise.291

Figure 2: The TimePerceiver module processes 2-4
frames to generate a fixed number of temporal embed-
ding outputs (49 in this paper).

In the second stage, we employ video instruction- 292

tuning data to train the model’s instruction- 293

following capabilities. The training data in- 294

cludes LLaVA-Video-178K (Zhang et al., 2024f), 295

ActivityNet-QA (Yu et al., 2019), NExT-QA (Xiao 296

et al., 2021), PerceptionTest (Patraucean et al., 297

2024), and LLaVA-Hound-255K (Zhang et al., 298

2024d), which together provide a total of 1.6 mil- 299

lion video-language samples. 300

4 Experiments 301

We conducted evaluations across all benchmarks 302

using LMMs-Eval (Zhang et al., 2024a) to ensure 303

standardization and reproducibility. To fairly com- 304

pare with other leading VLMs that support video 305

understanding, we primarily reused results from 306

original papers. When results were not available, 307

we integrated the models into LMMs-Eval and as- 308

sessed them under consistent settings. 309

4.1 Implementation Details 310

We use LLaVA-Onevision-SI (Li et al., 2024a) with 311

7B parameters as our baseline model and finetune 312

it for two stages. In the first stage, we freeze the 313

weights of vision encoder and optimize the other 314

parameters include the MLP layers, the TimePer- 315

veiver module and the language model. In the sec- 316

ond stage, we finetune all parameters of the model 317

on video instruction pairs. We train the model with 318

a batch size of 128 for only 1 epoch in both two 319

stages. The start learning rate is set to 2e-5. During 320

training, videos are sampled at 1 fps, and for videos 321

exceeding 96 seconds, we sample a fixed number 322

of 96 frames at equal intervals. 323
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4.2 Overall Results324

We report the accuracy of Clapper on six pop-325

ular and challenging multiple-choice video QA326

benchmarks. Compared to open-ended questions,327

multiple-choice questions are easier to evaluate328

and yield more stable results that are less influ-329

enced by the specific evaluation model. The bench-330

marks are introduced in the order of video du-331

ration, starting with TempCompass (Liu et al.,332

2024b), MVBench (Li et al., 2024b) and Percep-333

tionTest (Patraucean et al., 2024), which focus on334

short videos. LongVideoBench (Wu et al., 2024)335

and MLVU (Zhou et al., 2024) focus on long video336

understanding. Finally, VideoMME (Fu et al.,337

2024) covers a broad range of video understand-338

ing tasks. Most results are from original papers or339

benchmark leaderboards.340

Overall comparison. Table 1 shows the perfor-341

mance of Clapper compared to a wide range of342

VLMs that have leading performance on these343

benchmarks, including both proprietary models and344

open-source models within the 7B-9B parameter345

range. We explicitly display the number of frames346

used during evaluation and the average number of347

tokens per frame in the table. The open-source348

models are categorized based on their compression349

ratio into three groups: compression ratio ≤ 4x, 4x350

< compression ratio ≤ 16x, and extreme compres-351

sion ratio > 16x. The compression ratio (CR) is352

mathematically defined as:353

CR =
Noriginal

Ncompressed
(1)354

where Noriginal denotes the number of visual tokens355

generated by the vision encoder, and Ncompressed356

represents the number of compressed visual tokens357

actually used by the model. This metric quantifies358

the degree of token reduction achieved during the359

compression process, with higher values indicating360

more aggressive compression.361

Our proposed Clapper achieves competitive362

results in the compression ratio > 4x category,363

obtaining the best performance on four bench-364

marks: TempCompass, PerceptionTest, MLVU365

and VideoMME. Specifically, Clapper achieves366

67.4% on TempCompass, 66.5% on Perception-367

Test, 69.8% on MLVU and 62.0% on VideoMME368

without subtitles. Compared to other models with369

similar performance, Clapper maintains a lower370

visual token overhead.371
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Figure 3: Performance of Clapper under different
frames on the eight video QA benchmarks.

We also conducted a qualitative analysis of the 372

model performance. As illustrated in Figure 4, 373

we compare the video captioning results of our 374

proposed Clapper method with those of advanced 375

models, including LLaVA-Video (Zhang et al., 376

2024f), MiniCPM-V 2.6 (Yao et al., 2024), and 377

InternVL2 (Chen et al., 2024d). The figure also 378

presents the visual tokens utilized by each method. 379

Notably, Clapper is able to capture key points and 380

details that are absent in the outputs of other mod- 381

els, as highlighted in bold green text. This demon- 382

strates Clapper’s superior ability to extract and 383

summarize dynamic and detailed information, even 384

with the minimal use of visual tokens. 385

Performance under different frames. To ex- 386

plore how Clapper performs under varying visual 387

token upper bounds, we adjusted the number of 388

test frames for each video and observed the cor- 389

responding changes in performance across eight 390

benchmarks. As illustrated in Figure 3, Clapper 391

shows a steady improvement in MLVU perfor- 392

mance as the number of input frames increases. 393

On VideoMME, NextQA, LongVideoBench, and 394

Egoschema, the overall trend also rises with in- 395

5



Model Size
#Tokens./

#Frames #Tokens
TempCompass MVBench PerceptionTest LongVideoBench MLVU VideoMME

Frame M-Avg Avg Val Val M-Avg Overall
Avg. Duration 13s 16s 23s 473s 651s 1010s

Proprietary Models
GPT4-V (OpenAI, 2023) - - 1fps - - 43.7 - 59.1 49.2 59.9/63.3
GPT4-o (OpenAI, 2024) - - 1fps - 71.0 64.6 - 66.7 64.6 71.9/77.2
Gemini-1.5-Pro (Reid et al., 2024) - - 1fps - 67.1 60.5 - 64.0 - 75.0/81.3

Compression Ratio ≤ 4x
IXComposer-2.5 (Zhang et al., 2024b) 7B 400 [32,64] 26k 61.3 69.1 34.4 - 58.8 55.8/58.8
InternVL2 (Chen et al., 2024d) 8B 256 [8,16] 4k 65.6 65.8 - 54.6 64.0 54.0/56.9
InternVL2.5 (Chen et al., 2024c) 8B 256 [16,32,48,64] 16k - 72.0 - 60.0 68.9 64.2/66.9
Kangaroo (Liu et al., 2024a) 8B 256 64 16k 62.5 61.1 - 54.8 61.0 56.0 / 57.6
LongVILA (Xue et al., 2024) 7B 196 256 50k - 67.1 58.1 57.1 - 60.1/65.1
LLaVA-Video (Zhang et al., 2024f) 7B 196 64 13k 67.3 58.6 67.9 58.2 70.8 63.3/69.7
LLaVA-OneVision (Li et al., 2024a) 7B 196 32 6k 64.8 56.7 57.1 56.3 64.7 58.2/61.5
LLaVA-NeXT-Video (Zhang et al., 2024e) 7B 144 32 5k 50.6 53.1 48.8 49.1 - - /46.5
LongVA (Zhang et al., 2024c) 7B 144 [32,128] 18k 56.1 - - - 56.3 52.6/54.3
LongLLaVA (Wang et al., 2024b) 9B 144 128 18k - 49.1 - - - 43.7/ -
Qwen2-VL (Wang et al., 2024a) 7B Dyn 1fps - 68.5 67.0 62.3 - - 63.3/69.0

4x < Compression Ratio ≤ 16x
MiniCPM-V 2.6 (Yao et al., 2024) 8B 96 64 6k 66.3 - - 54.9 - 60.9/63.7
VideoLLaMA2 (Cheng et al., 2024) 7B 72 16 1k - 54.6 51.4 - 48.5 47.9/50.3
VideoChat2-HD (Li et al., 2024b) 7B 72 16 1k 51.1 62.3 - - 47.9 45.3/55.7
InternVideo2-HD (Wang et al., 2024c) 8B 72 16 1k - 67.2 63.4 - - 49.4/ -
LongVU (Shen et al., 2024) 7B 64 1fps - - 66.9 - - 65.4 - /60.6
Clapper (Ours) 7B 61 96 6k 67.4 60.3 66.5 55.6 69.8 62.0/64.6
Clapper (Ours) 7B 61 1fps - 67.3 59.6 67.1 55.3 72.0 62.7/64.0

Extreme Compression Ratio
LLaMA-VID (Li et al., 2024c) 7B 2 1fps - 38.0 41.9 44.6 - 33.2 25.9/ -

Table 1: Main results on multiple-choice video QA benchmarks. M-Avg refers to the average score of multiple-
choice QA tasks within each benchmark. The average tokens per frame and evaluation frames are shown for direct
comparison. In “#Tokens./frame”, Dyn denotes naive dynamic resolution. In “#Frames”, brackets indicate that
scores are tested across multiple frame settings and reported as the highest value. The best and second-best results
in open-source models are bolded and underlined, respectively.

creasing frames, though with some fluctuations. In396

contrast, performance in TempCompass, Percep-397

tionTest, and MVBench shows little correlation398

with the number of input frames. These trends are399

highly correlated with the average video duration400

of each benchmark. When the average video length401

is less than the number of test frames, their per-402

formance does not benefit significantly from addi-403

tional frames. In contrast, when the average video404

length is several times longer than the number of405

test frames, the models show a more substantial406

performance gain with increased frame sampling.407

Performance under the same visual token up-408

per bounds. To understand the trade-off between409

model accuracy and computational cost for practi-410

cal deployment, we analyzed model performance411

by adjusting the number of input video frames to en-412

sure all models operate under the same visual token413

upper bounds. Specifically, we set two token limits:414

2k and 6k tokens. The number of input frames for415

each model was calculated by dividing these token416

limits by each model’s tokens-per-frame number417

(#Tokens/frame), as detailed in the #Frames col-418

umn in Table 2.419

We selected VideoMME to compare different420

models under the same Visual Token Upper Bounds 421

by varying the number of evaluation frames be- 422

cause it includes videos of varying lengths, catego- 423

rized into short, medium, and long for evaluation. 424

This facilitates our experimental observations. The 425

results are shown in Table 2. As can be seen, our 426

proposed Clapper achieves the best performance 427

within the 2k and 6k visual token limit, particularly 428

excelling in short and medium-length videos. This 429

highlights Clapper’s ability to efficiently capture 430

spatiotemporal information within limited token 431

budgets. However, there is still significant room 432

for improvement in understanding videos longer 433

than 30 minutes within the 6k visual token limit. 434

In the future, we aim to extend Clapper’s strong 435

performance to longer video durations. 436

4.3 Further Analysis 437

To reduce experimental overhead, all models in the 438

analysis section were trained using one-tenth of 439

the full dataset used in Stage 2, which amounts to 440

approximately 160k samples. This reduced dataset 441

size allows for more efficient experiments while 442

still providing sufficient data to evaluate the effec- 443

tiveness of different components and strategies in 444

our model design. 445
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Model #Frames VideoMME
Short Medium Long

Visual Token Under 2k
InternVideo2-HD 32 53.7 43.0 40.1
LLaVA-Video 10 67.8 53.1 47.0
Clapper (Ours) 32 70.1 55.3 50.1

Visual Token Under 6k
MiniCPM-V 2.6 64 71.3 59.4 51.8
LLaVA-Video 32 72.4 58.6 50.6
Clapper (Ours) 96 74.7 60.1 51.2

Table 2: Detailed results on VideoMME (wo) with
two fixed visual token upper bounds. Video lengths:
Short (0–2 minutes), Medium (4–15 minutes), and Long
(30–60 minutes).

Method CR MVBench TempCompass VideoMME

Baseline 4x 55.4 63.1 59.1

Temporal Pooling 16x 56.3 (+0.9) 64.7 (+1.6) 56.9 (-2.2)
Spatial Pooling 16x 55.1 (-0.3) 64.8 (+1.7) 58.4 (-0.7)

Perceiver 13x 56.5 (+1.1) 64.2 (+1.1) 56.5 (-2.6)
TimePerceiver 13x 57.2 (+1.8) 65.5 (+2.4) 59.3 (+0.2)

Table 3: Comparison of video token compression strate-
gies. CR stands for compression ratio. The performance
differences show accuracy variations from the baseline.

Analysis of video token compression. To iden-446

tify the optimal compression strategy that main-447

tains the model performance while significantly448

reducing the token count, we conducted compre-449

hensive experiments comparing different compres-450

sion approaches for ablation. The Baseline method451

achieves a 4x compression of visual tokens by ap-452

plying spatial pooling with a stride of 2 to all input453

frames. When using SigLIP@448px/16 as the vi-454

sion encoder, the average number of tokens per455

frame in baseline is 196. To further reduce the456

token count from 4x to 16x compression, we com-457

pared four different compression strategies:458

1. Temporal Pooling: Extend the baseline by in-459

corporating temporal pooling with a stride of460

4 along the temporal dimension.461

2. Spatial Pooling: Build upon the baseline by462

applying an additional spatial pooling layer463

with a stride of 2.464

3. Perceiver: Utilize a Perceiver architec-465

ture (Alayrac et al., 2022) with 49 randomly466

initialized learnable queries to aggregate in-467

formation from every 4 frames.468

4. TimePerceiver: Our method to integrate infor-469

mation from every 4 frames into 49 tokens.470

In Perceiver and TimePerceiver, the first frame of 471

every 4 frames is treated as a key frame and com- 472

pressed using the baseline method. It is then con- 473

catenated with the generated 49 tokens to represent 474

these 4 frames. Table 3 shows the results. We eval- 475

uated these strategies on three video QA datasets 476

with input frames uniformly sampled to 64. Tempo- 477

ral and Spatial Pooling achieve a 16x compression 478

ratio, using 3k tokens per video, while Perceiver 479

and TimePerceiver achieve a 13x compression ra- 480

tio, using 4k tokens per video. 481

In benchmarks less sensitive to input frame 482

count, like MVBench and TempCompass, meth- 483

ods that primarily compress temporal information, 484

such as Temporal Pooling and Perceiver, perform 485

better. Specifically, Temporal Pooling achieves a 486

+0.9% improvement on MVBench and a +1.6% im- 487

provement on TempCompass. Perceiver improves 488

by +1.1% on both. However, on VideoMME, 489

which is more frame-sensitive, both Temporal Pool- 490

ing and Perceiver suffer significant performance 491

drops, indicating substantial loss of temporal in- 492

formation. In contrast, Spatial Pooling achieves a 493

+1.7% improvement on TempCompass but shows 494

a -0.3% drop on MVBench and a -0.7% drop 495

on VideoMME. This suggests that MVBench and 496

VideoMME may contain more fine-grained under- 497

standing questions, while TempCompass has lower 498

requirements for spatial resolution. 499

Our proposed TimePerceiver method performs 500

well across all three benchmarks, demonstrating 501

effective compression in both spatial and temporal 502

dimensions. Compared to the baseline with a 4x 503

compression ratio, TimePerceiver achieves a 13x 504

compression ratio while maintaining stable or even 505

improved overall performance. 506

Impact of training designs. Experiments in this 507

section were designed to evaluate how each train- 508

ing stage impacts the model performance, particu- 509

larly the integration of the TimePerceiver module. 510

We compared three setups: (1) a baseline model 511

without TimePerceiver, (2) add TimePerceiver with 512

direct training in the fine-tuning stage, and (3) add 513

TimePerceiver with the full two-stage training strat- 514

egy, stage 1 warm-up followed by stage 2 fine- 515

tuning. 516

Results in Table 4 demonstrate that the inclu- 517

sion of the TimePerceiver module, even with direct 518

training, provides modest improvements over the 519

baseline, with gains of +0.5 on MVBench and +0.7 520

on TempCompass. However, this setup shows a 521

7



7s videoInstruction: Give a detailed description of the video.

InternVL2: The video depicts a lively and energetic scene set in what appears to be a crowded outdoor event, possibly a festival or concert. The atmosphere
is vibrant, with a mix of bright lights and colorful smoke filling the air, creating a visually stimulating environment. The crowd is dense, with numerous people
gathered closely together, all facing towards a central point of interest. In the foreground, several individuals are holding up their smartphones, capturing the
moment on camera. Their faces are partially obscured by the smoke, but their intent is clear as they document the event. The smoke adds a dynamic element to the
scene, creating a hazy, dreamlike quality that enhances the overall ambiance. The background is filled with various bright lights, including red and yellow
hues, which illuminate the scene and add to the festive atmosphere. The lights are strategically placed, creating a visually appealing backdrop that contrasts with
the darker tones of the smoke. The smoke itself is a mix of white and gray, swirling and dancing in the air, adding a sense of movement and energy to the scene.
As the video progresses, the smoke becomes more pronounced, enveloping the crowd and creating a sense of unity among the attendees. The lights continue to
flicker and change, casting different colors and patterns across the scene. The crowd remains engaged, with some individuals raising their hands in the air, possibly
in celebration or excitement. In one notable moment, a person in the crowd is seen holding up a large, colorful object, possibly a flag or a piece of clothing,
which adds to the visual spectacle. The object is brightly colored, standing out against the darker tones of the smoke and the crowd. The video captures the essence
of a lively event, with the crowd fully immersed in the experience. The combination of bright lights, colorful smoke, and the enthusiastic crowd creates a dynamic
and engaging scene that is both visually stunning and emotionally resonant. The use of smartphones to document the event further emphasizes the importance of
capturing these moments, highlighting the significance of the occasion for those in attendance.

MiniCPM-V 2.6: The video captures a vibrant and chaotic scene at what appears to be a cultural or festive event. A crowd of people, many wearing hats with
Chinese characters on them, are gathered closely together amidst thick smoke and sparks flying in the air. The atmosphere is intense as bright lights illuminate
parts of the scene, adding to the sense of excitement and energy. Some individuals can be seen holding up their phones, possibly recording the event or taking
photos. In the background, there is a large structure that looks like it might be part of a traditional performance or display. As the sequence progresses, more sparks
become visible, enhancing the dynamic nature of the scene. Despite the smoky conditions making visibility slightly difficult, the overall mood remains one of
celebration and festivity.

LLaVA-Video: The video captures a vibrant scene of a crowd gathered in what appears to be an outdoor setting, possibly during a festival or celebration. The
atmosphere is filled with excitement and energy, as evidenced by the people's raised hands and the use of mobile phones to capture the moment. The crowd is
diverse, with individuals wearing various types of hats, some of which are traditional conical hats, suggesting a cultural event. The lighting is low, with the
primary light sources being the fireworks and the ambient light from the surroundings. The fireworks display includes bursts of light and smoke, creating a dynamic
and colorful spectacle. The smoke from the fireworks creates a hazy atmosphere, partially obscuring the view of the crowd and the background.

Clapper (Ours): The video captures a vibrant and festive scene of a traditional dragon dance performance. The setting is a crowded outdoor area, filled with
people who are enthusiastically watching the event. Many in the crowd are wearing traditional conical hats, adding to the cultural ambiance. The background is
illuminated by bright lights, enhancing the celebratory atmosphere. A large, elaborately decorated dragon figure, adorned with red and yellow colors, moves
through the crowd. The dragon's head is particularly detailed, with intricate designs and glowing eyes, captivating the onlookers. The crowd is actively
engaged, with many individuals holding up their phones to capture the moment. The air is filled with smoke and sparks from the fireworks or firecrackers being
used as part of the performance. The overall mood is one of excitement and celebration, with the dragon dance being the focal point of the event.

8 frames; 490 visual tokens

8 frames; 2048 visual tokens

8 frames; 768 visual tokens

8 frames; 1568 visual tokens

Figure 4: Comparison of video captioning results using Clapper and others. Key points are displayed in bold.
Details uniquely captured by Clapper, which are absent in other models, are highlighted in bold green.

Stage1 Stage2 MVBench TempCompass VideoMME

Baseline 55.4 63.1 59.1

✗ ✓ 55.9 (+0.5) 63.8 (+0.7) 58.3 (-0.8)
✓ ✓ 57.2 (+1.8) 65.5 (+2.4) 59.3 (+0.2)

Table 4: Ablation study on different training designs.

slight degradation of -0.8 on VideoMME, suggest-522

ing that direct training may not fully leverage the523

module’s potential for video understanding. In con-524

trast, the two-stage training strategy yields more525

significant improvements across all benchmarks,526

achieving +1.8 on MVBench, +2.4 on TempCom-527

pass, and +0.2 on VideoMME. These findings in-528

dicate that the two-stage training approach allows529

the TimePerceiver module to be more effectively530

trained for temporal information, leading to better531

overall performance on video understanding tasks.532

The warmup stage likely helps the model initial-533

ize and stabilize its learning of temporal features,534

while the fine-tuning stage refines these features for535

optimal performance. This highlights the impor- 536

tance of a carefully designed training strategy for 537

integrating complex modules like TimePerceiver 538

into video understanding models. 539

5 Conclusion 540

In this work, we proposed Clapper, an efficient 541

video language model that demonstrates com- 542

petitive performance across various benchmarks. 543

Through the introduction of our TimePerceiver 544

module, we successfully increased the compression 545

ratio from 4x to 13x while preserving essential tem- 546

poral and spatial information. This advancement 547

allows Clapper to balance computational efficiency 548

and accuracy, enabling faster inference and lower 549

memory requirements. In the future, we aim to 550

explore methods for further optimization of token 551

representations to push compression boundaries 552

even further. Additionally, we plan to extend our 553

architecture’s temporal modeling capacity to han- 554

dle longer visual contexts. 555
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6 Limitations556

Clapper was trained at 1fps with a maximum of 96557

frames, without additional training for length ex-558

trapolation. As a result, it is constrained by length559

extrapolation and the context length of large lan-560

guage models. For videos longer than 5 minutes,561

the model’s performance may degrade as the video562

length increases. Additionally, Clapper has not563

undergone Reinforcement Learning from Human564

Feedback alignment training, which may lead to565

the generation of hallucinated outputs.566
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