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ABSTRACT

Most gradient-based neural architecture search methods construct a super-net for
search and derive a target-net as its sub-graph for evaluation. There is a significant
gap between the architectures in search and evaluation. As a result, current meth-
ods suffer from the problem of an inaccurate, inefficient, and inflexible search pro-
cess. In this paper, we aim to close the gap and solve these problems. We introduce
EnTranNAS that is composed of Engine-cells and Transit-cells. The Engine-cell
is differentiable for architecture search, while the Transit-cell only transits the
current sub-graph by architecture derivation. Consequently, the gap between the
architectures in search and evaluation is significantly reduced. Our method also
spares much memory and computation cost, which speeds up the search process.
A feature sharing strategy is introduced for more efficient parameter training in
the search phase. Furthermore, we develop a new architecture derivation method
to replace the traditional one that is based on a hand-crafted rule. Our method
enables differentiable sparsification, so keeps the derived architecture equivalent
to the one in search. Besides, it supports the search for topology where a node can
be connected to prior nodes with any number of connections, so that the searched
architectures could be more flexible. For experiments on CIFAR-10, our search
on the standard space requires only 0.06 GPU-day. We further have an error rate
of 2.22% with 0.07 GPU-day for the search on an extended space. We can directly
perform our search on ImageNet with topology learnable and achieve a top-1 error
rate of 23.2%. Code will be released.

1 INTRODUCTION

Current neural architecture search (NAS) methods include reinforcement learning-based NAS
(Baker et al., 2017; Zoph & Le, 2017), evolution-based NAS (Real et al., 2017; Liu et al., 2018b),
Bayesian optimization-based NAS (Kandasamy et al., 2018; Zhou et al., 2019), and gradient-based
NAS (Luo et al., 2018; Liu et al., 2019b), some of which have successfully been applied to related
tasks for better architectures, such as semantic segmentation (Chen et al., 2018; Liu et al., 2019a)
and object detection (Peng et al., 2019; Chen et al., 2019b; Ghiasi et al., 2019; Tan et al., 2019b).

Among the NAS methods, gradient-based algorithms gain much attention because of the simplicity.
Liu et al. first propose the differentiable search framework, DARTS (Liu et al., 2019b), based on
continuous relaxation and weight sharing (Pham et al., 2018), and inspire a series of follow-up
studies (Xie et al., 2019; Cai et al., 2019; Chang et al., 2019; Xu et al., 2020; Chen et al., 2019a).
In DARTS, different architectures share their weights as sub-graphs of a super-net. The super-net
is trained for search, after which a target-net is derived for evaluation by only keeping important
paths according to their softmax activations with a hand-crafted rule. Despite the simplicity, the
architecture for evaluation only covers a small subset of the one for search, which causes a significant
gap between super-net and target-net. We point out that the gap causes the following problems:

• inaccurate: The super-net trained in the search phase is a summation among all candidate con-
nections with a trainable distribution induced by softmax. It essentially optimizes a feature
combination, instead of feature selection, which is the real goal of a search problem. As noted
by (Chang et al., 2019; Yao et al., 2020), operations may be highly correlated. Even if the
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weight of some connection is small, the corresponding path may be indispensable for the per-
formance. So the target-net derived from a high-performance super-net is not ensured to be a
good one (Sciuto et al., 2020). The search process is inaccurate.
• inefficient: Because the super-net is a combination among all candidate connections, the whole

graph needs to be stored in both forward and backward stages, which requires much memory
and computational consumption. As a result, the search can be performed only on a very limited
number of candidate operations, and the super-net is slow and inefficient to train.
• inflexible: The gap between the architectures in search and evaluation does not allow the search

for topology in a differentiable way. In current methods (Liu et al., 2019b; Xie et al., 2019;
Cai et al., 2019; Xu et al., 2020; Chen et al., 2019a), the target-net is derived based on a hand-
crafted rule where each intermediate node keeps the top-2 strongest connections to prior nodes.
However, it limits the diversity of derived architectures in the topological sense. There is no
theoretical or experimental evidence that supports this rule. Therefore, the search result is not
flexible as we cannot obtain other kinds of topologies.

Some studies adopt the Gumbel Softmax strategy (Jang et al., 2016; Maddison et al., 2016) to sample
a target-net that approaches to the one in search so that the gap can be reduced (Xie et al., 2019; Wu
et al., 2019; Chang et al., 2019; Dong & Yang, 2019). But still, the demand for computation and
memory of the whole graph is not relieved. Chen et al. (Chen et al., 2019a) propose a progressive
shrinking method to bridge the depth gap between the super-net and target-net. NASP (Yao et al.,
2020) and ProxylessNAS (Cai et al., 2019) only propagate the proximal or sampled paths in search,
which effectively reduces the computational cost. However, all these methods do not support the
search for more flexible topologies in a differentiable way. DenseNAS (Fang et al., 2019) and PC-
DARTS (Xu et al., 2020) introduce another set of trainable parameters to model path probabilities,
but the target-net is still derived based on a hand-crafted rule.

In this paper, we aim to close the gap between the architectures in search and evaluation, and solve
the problems mentioned above. Inspired by the observation that only one cell armed with learnable
architecture parameters suffices to enable differentiable search, we introduce EnTranNAS composed
of Engine-cells and Transit-cells. The Engine-cell is differentiable for architecture search as an
engine, while the Transit-cell only transits the current derived architecture. So the network in search
is close to that in evaluation. We also adopt a feature sharing strategy that improves the training
efficiency and reduces the memory cost in search. Given that Engine-cell still has a gap with the
architecture in evaluation, we further develop a new architecture derivation method that enables
differentiable sparsification. The connections with non-zero weights are active for evaluation, which
keeps the derived architecture equivalent to the one in search, and meanwhile supports differentiable
search for more flexible topologies.

We list the contributions of this study as follows:

• We introduce a new NAS algorithm, named EnTranNAS, which effectively reduces the gap
between the architectures in search and evaluation. A feature sharing strategy is developed for
improving training efficiency and reducing memory cost of the super-net during search.
• We propose a new architecture derivation method to replace the hand-crafted rule widely

adopted in current studies. The derived target-net has the equivalent architecture to the one
in search, which closes the architecture gap between search and evaluation. It also makes
topology learnable to explore more flexible search results.
• Extensive experiments verify the validity of our proposed methods. We achieve an error rate of

2.22% on CIFAR-10 with 0.07 GPU-day. Our method is able to efficiently search for flexible
architectures of different scales directly on ImageNet with state-of-the-art performances.

2 ENTRANNAS

In this section, we first briefly review the gradient-based search method widely adopted in current
studies, and then develop our EnTranNAS. Finally, we show how to close the gap and meanwhile
enable the differentiable search for topology in EnTranNAS-DST.

2.1 PRELIMINARIES

In (Liu et al., 2019b; Xie et al., 2019; Cai et al., 2019; Chen et al., 2019a; Xu et al., 2020; Chang
et al., 2019), the cell-based search space is represented by a directed acyclic graph (DAG) composed
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Figure 1: A diagram of DARTS. The target-net is derived by keeping the top-2 strongest connections
of each node and has a significant gap with the architecture in search. The connections in different
color represent candidate operations. The numbers beside them are exemplar weights.

of n nodes {x1, x2, · · · , xn} and a set of edges E = {e(i,j)|1 ≤ i < j ≤ n}. For each edge
e(i,j), there areK connections in accordance with the candidate operationsO = {o1, · · · , oK}. The
forward propagation of the super-net for search is formulated as:

xj =
∑
i<j

K∑
k=1

p
(i,j)
k ok(w

(i,j)
k , xi), (1)

where p(i,j)
k ∈ {0, 1} is a binary variable that indicates whether the connection is active, ok denotes

the k-th operation, and w(i,j)
k is its corresponding weight on this connection and becomes none for

non-parametric operations, such as max pooling and identity. Since binary variables are not easy to
optimize in a differentiable way, continuous relaxation is adopted and p(i,j)

k is relaxed as:

p
(i,j)
k =

exp(α
(i,j)
k )∑

k exp(α
(i,j)
k )

, (2)

where α(i,j)
k is the introduced architecture parameter jointly optimized with the super-net weights.

After search, as shown in Figure 1, a target-net is derived according to a hand-crafted rule based on
p

(i,j)
k as the importance of connections. We let P ∈ R|E|×K denote the matrix formed by p(i,j)

k , and
the forward propagation of the target-net for evaluation is formulated as:

xj =
∑

(i,k)∈Sj

ok(w
(i,j)
k , xi), (3)

Sj = {(i, k)|A(i,j)
k = 1,∀i < j, 1 ≤ k ≤ K}, A = ProjΩ(P), (4)

where A(i,j)
k is the element of A ∈ {0, 1}|E|×K and Ω denotes the hand-crafted rule by which only

the top-2 strongest connections of each node are projected onto 1 and others are 0.

It is shown that there is a gap between the super-net and target-net in DARTS. As mentioned in
Section 1, the gap may cause a sub-optimal target-net, and the super-net is not efficient to train.
Besides, the hand-crafted rule limits the derived architecture to be a fixed topology.

2.2 ENGINE-CELL AND TRANSIT-CELL

Given that only one cell armed with learnable parameters suffices to enable differentiable search,
we re-design the DARTS framework. At the super-net level, we introduce EnTranNAS composed
of Engine-cells and Transit-cells. As shown in Figure 2 (a), the architecture derivation is not a
post-processing step as in DARTS, but is performed at each iteration of search. Engine-cell has the
same role as the cell in DARTS and stores the whole DAG. It performs architecture search as an
engine by optimizing architecture parameters α(i,j)

k . As a comparison, Transit-cell only transits the
currently derived architecture as a sub-graph into later cells. By doing so, EnTranNAS keeps the
differentiability for architecture search by Engine-cell, and effectively reduces the gap between the
super-net and target-net. At the final layer of super-net, representation is output from a Transit-cell,
which has the same architecture as the target-net. Thus, with more confidence, a higher super-net
performance indicates a better target-net architecture. Besides, a huge amount of computation and
memory overhead is saved, so we can use a larger batchsize to speed up the search process. In
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Figure 2: A diagram of our (a) EnTranNAS and (b) EnTranNAS-DST. Engine-cell and Transit-
cell are in red and green boxes, respectively. EnTranNAS reduces the gap between the super-net
and target-net. EnTranNAS-DST derive the architecture by keeping the connections with non-zero
weights, so the valid computation graph for search is equivalent to the one for evaluation, and is not
subject to any hand-crafted topology, which means the gap is closed. Zoom in to view better.

implementation, we set the first normal and reduction cells as Engine-cells, and the other cells as
Transit-cells. Its illustration is shown in Figure 5 in Appendix A.

By introducing a temperature parameter (Xie et al., 2019; Wu et al., 2019), we calculate p(i,j)
k in

Engine-cell as:

p
(i,j)
k =

exp(α
(i,j)
k /τ)∑

k exp(α
(i,j)
k /τ)

, (5)

where τ is a temperature parameter. As τ → 0, p(i,j)
k approaches to a one-hot vector. We do not

introduce the Gumble random variables as adopted in (Xie et al., 2019; Wu et al., 2019) because our
architecture is not derived by sampling. We anneal τ with epoch so that Engine-cell approximately
performs operation selection after convergence and has a smaller gap with Transit-cell.

2.3 FEATURE SHARING STRATEGY

Since Transit-cell only conducts the derived sub-graph, only a small portion of super-net weights
w

(i,j)
k is optimized in Transit-cell at each update. It impedes the training efficiency of super-net and

may affect the search result due to the uneven optimization on candidate operations. In order to
circumvent this issue, we introduce a feature sharing strategy at the cell level.

We notice that the non-parametric operation from a node to different nodes always produces the
same features, which can be stored and computed only once. We extend this effect to parameterized
operations, by assuming that the same operation from node i to other nodes j > i always shares the
same feature in one cell. The output of node xj in our EnTranNAS is thus formulated as:

xj =

{ ∑
i<j

∑K
k=1 p

(i,j)
k ok(w

(i)
k , xi), for Engine-cell,∑

(i,k)∈Sj
ok(w

(i)
k , xi), for Transit-cell,

(6)

where w(i)
k is the parameter of operation k for node i, and becomes none for non-parametric opera-

tions. In this way, we further reduce the computation and memory overhead of super-net for search.
In addition, the number of trainable connections in one cell is reduced from |E|×K̄ to (n−1)×K̄,
where K̄ denotes the number of parametrized operations and |E| = C2

n. Consequently, the less
learnable parameters have a more balanced opportunity to be optimized. The training efficiency of
super-net is improved and the memory cost is reduced. Note that the feature sharing strategy harms
the representation power of super-net. However, this approximation is valid for the search process
as the features for selection are still produced by the same operations on the same nodes.
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Figure 3: An illustration of the computation procedures of q̂(i,j)
k as an example. The gray bin denotes

the maximal element of p(i,j)
k for all 1 ≤ k ≤ K and i < j.

2.4 DIFFERENTIABLE SEARCH FOR TOPOLOGY

Albeit EnTranNAS reduces the gap between super-net and target-net, the Engine-cell still computes
the whole graph and is different from the derived cell for evaluation. To this end, we further reduce
the gap by proposing a new architecture derivation method that enables the differentiable search
for topology, named EnTranNAS-DST. As shown in Figure 2 (b), in Engine-cell, the non-derived
connections always have zero weights, such that the valid propagation of Engine-cell is equivalent
to that of derived cell, which closes the gap between the architectures in search and evaluation.

In prior studies (Liu et al., 2019b; Chen et al., 2019a; Xu et al., 2020), connection weights are soft-
max activations and do not support zero values. A differentiable sparsification method is proposed
in (Lee, 2019) for network pruning. We keep the softmax activations and also enable the differen-
tiability for zero weighs. Concretely, we compute p(i,j)

k by Eq. (5), and then perform a connection
normalization for each intermediate node j > 1 as:

p̂
(i,j)
k =

p
(i,j)
k

max
i<j,1≤k≤K

{p(i,j)
k }

, (7)

where p̂(i,j)
k is the activation after connection normalization. We introduce another set of trainable

parameters {β(j)}nj=2 and have the threshold of each intermediate node as t(j) = sigmoid(β(j)).
With the thresholds, we can prune these connections as:

q
(i,j)
k = σ(p̂

(i,j)
k − t(j)), (8)

where σ denotes the ReLU function. Finally, if there exists a k such that q(i,j)
k 6= 0 for edge (i, j),

we perform an operation normalization by:

q̂
(i,j)
k =

q
(i,j)
k∑
k q

(i,j)
k

, (9)

where q̂(i,j)
k is used as the coefficients of connections. It enables sparsification in a differentiable

way. Given that maxi<j,1≤k≤K{p̂(i,j)
k } = 1 and t(j) < 1, there is at least one connection left for

each intermediate node j by Eq. (8), so the cell structure will not be broken, and will keep valid
along the training. An illustration of how do we compute q̂(i,j)

k is shown in Figure 3.

In Engine-cell, we replace the p(i,j)
k in Eq. (6) with q̂(i,j)

k for search. To derive the architecture in
Transit-cell or for evaluation, the Sj in Eq. (6) changes from Eq. (4) to the following form:

Sj = {(i, k)|q̂(i,j)
k > 0,∀i < j, 1 ≤ k ≤ K}. (10)

In this way, we only keep the connections with non-zero weights as the derived architecture, which
closes its gap with super-net, and does not limit the architecture to any hand-crafted topology.

In implementation, we enforce sparsification by adding a regularization. Our optimization is in
accordance with the bi-level manner introduced in (Liu et al., 2019b). The loss function of our
super-net when optimizing the architecture parameters {α(i,j)

k } and {β(j)} is formulated as:

min
α,β

Lval (α,w∗) + λ
1

n− 1

∑n

j=2
− log(t(j)), (11)

where Lval (α,w∗) is the validation loss with current network parameters w∗, and λ is a hyper-
parameter by which we can control the degree of sparsification to obtain more flexible topologies.
We visualize the search process of EnTranNAS-DST (λ = 0.1) in the video attached in the supple-
mentary material. Its corresponding description is shown in Appendix C.
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Engine-cell
Super-net Child-net
Acc. (%) Acc. (%)

all (DARTS) 88.29 63.97
one half 87.45 65.51

last 84.02 83.35
first 86.68 86.24

Table 1: Super-net accuracy drop
in different settings of Engine-cell.

Memory Batchsize Cost
(G) (64) (GPU-day)

DARTS (1st order) 9.0 ×1 0.73
+Engine&Transit-cell 4.5 ×2 0.22
+feature sharing 2.6 ×4 0.09
+bottleneck 1.5 ×8 0.06

Table 2: Efficiency improved by each component. The
three components are accumulated from top to bottom.

3 RELATED WORK

Reinforcement learning is first adopted to assign the better architecture with a higher reward in
(Baker et al., 2017; Zoph & Le, 2017). Follow-up studies focus on reducing the computational
cost (Zoph et al., 2018; Zhong et al., 2018; Liu et al., 2018a; Cai et al., 2018a;b; Pham et al.,
2018). As another line of NAS methods, evolution-based algorithms search for architectures as an
evolving process towards better performance (Xie & Yuille, 2017; Real et al., 2017; Liu et al., 2018b;
Real et al., 2019; Elsken et al., 2019; Miikkulainen et al., 2019). However, the search cost of both
reinforcement leaning- and evolution-based methods is still demanding for practical applications. A
good solution to this problem is one-shot methods that constructs a super-net covering all candidate
architectures (Bender et al., 2018; Brock et al., 2018). The super-net is trained only once in search
and is then deemed as a performance estimator. Some studies train the super-net by sampling a
single path (Guo et al., 2019; Li & Talwalkar, 2019; You et al., 2020) in a chain-based search space
(Hu et al., 2020; Cai et al., 2020; Mei et al., 2020; Yu et al., 2020). As a comparison, DARTS-based
methods (Liu et al., 2019b; Xie et al., 2019) introduce architecture parameters jointly optimized
with the super-net weights and performs the differentiable search in a cell-based space. Our study
belongs to this category because it enables to discover more complex connecting patterns.

Despite the simplicity of DARTS, the architecture gap between search and evaluation impedes its
validity. Follow-up studies aim to reduce the gap (Xie et al., 2019; Chen et al., 2019a; Chang
et al., 2019), improve the search efficiency (Yao et al., 2020), and model path probabilities (Xu
et al., 2020). However, all these methods derive the final architecture based on a hand-crafted rule,
which constrains the topology and inevitably introduces an architecture gap. Our method differs
from these studies in that the super-net of EnTranNAS dynamically changes in the search phase in a
differentiable way, and then derives a target-net that has the same architecture as the one in search,
and is not subject to any specific topology.

4 EXPERIMENTS

We first analyze how each of our designs contributes to a more accurate, efficient and flexible search
process, and then compare our results on CIFAR-10 and ImageNet with state-of-the-art methods.

4.1 DATASETS AND IMPLEMENTATION DETAILS

Most of our settings for search and evaluation are consistent with (Liu et al., 2019b; Xu et al.,
2020) for fair comparison. We have the detailed description of datasets and our implementations in
Appendix B. All searched architectures are visualized in Appendix C.

4.2 ABLATION STUDIES

Accuracy. EnTranNAS reduces the gap between the super-net and target-net. We test the effects of
our design with different settings. After search on CIFAR-10, we perform inference only through the
paths in the derived architecture as a child-net and compare their validation accuracies. As shown
in Table 1, when all cells are set as Engine-cell, the super-net is equivalent to DARTS and has the
largest accuracy drop. Setting one half of cells as Engine-cell also causes a large accuracy drop. As a
comparison, when only one Engine-cell is used, we have a small accuracy drop, which demonstrates
the validity of our method to reduce the gap. We set the first cell as Engine-cell because it has a
better super-net accuracy than the last cell setting.

Efficiency. The improved efficiency of search on CIFAR-10 by each component is shown in Table 2.
“Memory” shows the memory consumption with a batchsize of 64. “Batchsize” is the largest batch-
size that can be used on a single GTX 1080 Ti GPU. “Cost” denotes the corresponding search time
using the enlarged batchsize. Both of our Engine&Transit-cell design and feature sharing strategy
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λ
Edges Params Flops
(N / R) (M) (M)

0.2 9 / 8 5.07 580
0.1 11 / 6 5.88 673
0.05 13 / 14 6.99 779

Table 3: EnTranNAS-DST with
different λ. “N” and “R” denote
normal and reduction cell, respec-
tively.
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Figure 4: Comparison of top-1 accuracies on ImageNet with
parameters (left) and Flops (right). Zoom in to view better.

significantly improve the search efficiency. Similar to (Xu et al., 2020) that reduces the number of
channels when performing operations, we adopt a bottleneck before all candidate operations, and
then recover the channel number for each intermediate node. Its detailed description is shown in
Appendix B.4. When “bottleneck” is added, we can use a batchsize of 512 and reduce the search
time to 0.06 GPU-day, which is about ten times as fast as our re-implementation of DARTS.

Flexibility. EnTranNAS-DST enables the differentiable search for topology and does not limit the
number of edges in normal or reduction cells. We can obtain architectures with diverse capacities. A
larger λmakes t(j) closer to 1, which cuts out more connections by Eq. (8) and leads to a more sparse
architecture. Our search results on ImageNet with different λ are shown in Table 3. Their accuracies
on ImageNet validation are depicted as a function of parameters and FLOPs in Figure 4. It is shown
that we have a better trade-off than the strong baseline of manually designed architecture, DenseNet.
Our EnTranNAS-DST (λ=0.05) surpasses DenseNet-169 with about one half of parameters and less
than one fourth of FLOPs. Its FLOPs is relatively large in the mobile setting, because our method
breaks the topology constraint and enables to look for higher performance outside the limitation of
mobile setting. EnTranNAS-DST supports an explicit learning of flexible topologies with diverse
capacities, which is beyond the ability of most current NAS methods.

4.3 RESULTS ON CIFAR-10

We search on CIFAR-10 from the standard and extended version of candidate operation space. The
standard space has 7 operations and is consistent with current studies (Liu et al., 2019b; Xie et al.,
2019; Chen et al., 2019a; Xu et al., 2020). The extended version additionally has 5 more operations,
which are 1 × 1 convolution, 3 × 3 convolution, 1 × 3 then 3 × 1 convolution, 1 × 5 then 5 × 1
convolution, and 1 × 7 then 7 × 1 convolution. The two versions are listed in Table 6 in Appendix
B.2. As shown in Table 4, for the standard search space, EnTranNAS achieves a state-of-the-art
performance of 2.53% error rate with only 0.06 GPU-day. The accuracy is on par with MiLeNAS
(He et al., 2020), whose search cost is 5 times as much as ours. To our best knowledge, 0.06 GPU-
day is the top speed on DARTS-based search space. EnTranNAS-DST achieves a better performance
with less parameters than EnTranNAS due to its superiority in learnable topology. When we search
on the extended search space, a higher-performance architecture is searched with an error rate of
2.22%, which is better than NASP (Yao et al., 2020) that also searches on 12 operations. The search
cost still has superiority and is increased by only 0.01 GPU-day than that on the standard version.
That is because the extra operations only add the computational cost on Engine-cells, which account
for a small portion of the super-net in search. Therefore, the search cost of EnTranNAS increases
sub-linearly as the search space is enlarged.

4.4 RESULTS ON IMAGENET

We use both EnTranNAS and EnTranNAS-DST for experiments on ImageNet with the standard
search space. As shown in Table 5, EnTranNAS searched on CIFAR-10 has a top-1 error rate of
24.8%, which is competitive given that its search time is much more friendly than other methods. We
also directly search on ImageNet. EnTranNAS achieves a top-1/5 error rates of 24.3%/7.2%, which
is on par with PC-DARTS whose search cost is twice as much as ours. Different from other studies,
EnTranNAS-DST is the only method that does not limit the topology of searched architecture. When
λ in Eq. (11) is 0.05, a large model is searched and has a top-1 error rate of 23.2%, which surpasses
EnTranNAS (ImageNet) by 1.1% error rate. The search cost is larger than EnTranNAS because at
the beginning of search all connections to any node have non-zero weights and are kept active. As
the search proceeds, EnTranNAS-DST dynamically drops connections. We see its search cost is still
faster than PC-DARTS. An illustration of how EnTranNAS-DST changes its derived architecture in
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Methods
Test Error Params Search Cost

Method
(%) (M) (GPU-day)

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual
NASNet-A + cutout (Zoph et al., 2018) 2.65 3.3 1800 RL
ENAS + cutout (Pham et al., 2018) 2.89 4.6 0.5 RL
AmoebaNet-B +cutout (Real et al., 2019) 2.55±0.05 2.8 3150 evolution
Hierarchical Evolution (Liu et al., 2018b) 3.75±0.12 15.7 300 evolution
DARTS (2nd order) + cutout (Liu et al., 2019b) 2.76±0.09 3.3 4.0 gradient
SNAS (moderate) + cutout (Xie et al., 2019) 2.85±0.02 2.8 1.5 gradient
ProxylessNAS+cutout (Cai et al., 2019) 2.08† 5.7 4.0 gradient
PC-DARTS + cutout (Xu et al., 2020) 2.57±0.07 3.6 0.1 gradient
NASP + cutout (Yao et al., 2020) 2.83±0.09 3.3 0.1 gradient
MiLeNAS + cutout (He et al., 2020) 2.51±0.11 3.87 0.3 gradient
EnTranNAS + cutout 2.53±0.06 3.45 0.06 gradient
EnTranNAS-DST + cutout 2.48±0.08 3.20 0.10 gradient
NASP (12 operations) + cutout (Yao et al., 2020) 2.44±0.04 7.4 0.2 gradient
EnTranNAS (12 operations) + cutout 2.22±0.05 7.68 0.07 gradient

Table 4: Search results on CIFAR-10 and comparison with state-of-the-art methods. Search cost is
tested on a single NVIDIA GTX 1080 Ti GPU. The best and second best results are shown in blue
and black bold. †: ProxylessNAS uses a different macro-architecture from other methods.

Methods
Test Err. (%) Params Flops Search Cost

Method
top-1 top-5 (M) (M) (GPU days)

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 - manual
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 - manual
ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 - ∼5 591 - manual
MnasNet-92 (Tan et al., 2019a) 25.2 8.0 4.4 388 - RL
AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 570 3150 evolution
DARTS (2nd order) (Liu et al., 2019b) 26.7 8.7 4.7 574 4.0 gradient
SNAS (Xie et al., 2019) 27.3 9.2 4.3 522 1.5 gradient
P-DARTS (Chen et al., 2019a) 24.4 7.4 4.9 557 0.3 gradient
ProxylessNAS (ImageNet) (Cai et al., 2019) 24.9 7.5 7.1 465 8.3 gradient
PC-DARTS (ImageNet) (Xu et al., 2020) 24.2 7.3 5.3 597 3.8 gradient
EnTranNAS (CIFAR-10) 24.8 7.6 4.9 562 0.06 gradient
EnTranNAS (ImageNet) 24.3 7.2 5.5 637 1.9 gradient
EnTranNAS-DST (ImageNet) 23.2 6.9 7.0 779 2.2 gradient

Table 5: Search results on ImageNet and comparison with state-of-the-art methods. Search cost
is tested on eight NVIDIA GTX 1080 Ti GPUs. “(ImageNet)” indicates the method is directly
searched on ImageNet. Otherwise, it is searched on CIFAR-10, and then transfered to ImageNet.

search is shown in the supplementary video and Appendix C. The parameters and FLOPs are large
because EnTranNAS-DST is able to break the topology limitation and look for higher performance.
We show in our ablation studies that architectures with flexible topologies of diverse capacities can
be searched by controlling the hyper-parameter λ.

5 CONCLUSION

In this paper, we introduce EnTranNAS that reduces the gap between the architectures in search and
evaluation and saves much computational and memory cost. A feature sharing strategy is adopted to
improve the training efficiency of search. We further propose EnTranNAS-DST that closes the gap
by a differentiable architecture derivation. It supports search for more flexible architectures without
topology constraint. Experiments show EnTranNAS improves the search accuracy and efficiency,
and EnTranNAS-DST extends the flexibility of searched architectures. We produce state-of-the-art
search results on CIFAR-10 or directly on ImageNet with obvious superiority in search cost.
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A APPENDIX: THE SEARCH ARCHITECTURE OF ENTRANNAS

An illustration of our EnTranNAS architecture for search on CIFAR-10 is shown in Figure 5. There
are 8 cells in total. The first cells of normal and reduction cells are set as Engine-cells, while the
others are Transit-cells. Different configurations are compared in Table 1 to ablate our design choice.

Image
Engine 

normal cell
× 2

Transit 
normal cell

Engine 
reduce cell

Transit 
normal cell

Transit 
reduce cell

Transit 
normal cell

× 2 Label

Figure 5: Our architecture for search. Engine-cell and Transit-cell are shown in red and green boxes,
respectively. Normal and reduction cells are shown in solid and dotted boxes, respectively.

B APPENDIX: DATASETS AND IMPLEMENTATION DETAILS

B.1 DATASETS

The CIFAR-10 dataset consists of 60,000 images of size 32 × 32 in 10 classes. There are 50,000
images for training and 10,000 images for testing. In search, we use a half of the training set to
optimize network weights and the other half as the validation set to optimize architecture parameters.

The ImageNet dataset contains 1.2 million training images, 50,000 validation images, and 100,000
test images. Following Xu et al. (2020), we directly perform the search on ImageNet by randomly
sampling 10% images of the training set for network weights, and another 10% for architecture
parameters.

The standard data augmentation methods are used for both CIFAR-10 and ImageNet.

B.2 SEARCH SPACE

Following Liu et al. (2019b); Chen et al. (2019a); Xu et al. (2020), we search on the commonly used
operation space that includes 3×3 and 5×5 separable convolution, 3×3 and 5×5 dilated separable
convolution, 3 × 3 max pooling, 3 × 3 average pooling, identity, and zero. Because our method is
friendly to memory consumption and thus can be performed on a larger search space, we adopt an
extended version of operation space that has 5 extra operations: 1×1 convolution, 3×3 convolution,
1× 3 then 3× 1 convolution, 1× 5 then 5× 1 convolution, and 1× 7 then 7× 1 convolution. The
two versions of operation space are listed in Table 6. The zero operation is used to indicate the lack
of connection between two nodes Liu et al. (2019b). For EngineNAS, we keep the zero operation as
convention, while we remove the zero operation for EngineNAS-DST because it inherently has the
ability to learn topology in an explicit manner.

Operation Standard Space Extended Space
zero 3 3

3× 3 separable convolution 3 3

5× 5 separable convolution 3 3

3× 3 dilated separable convolution 3 3

5× 5 dilated separable convolution 3 3

3× 3 max pooling 3 3

3× 3 average pooling 3 3

identity 3 3

1× 1 convolution - 3

3× 3 convolution - 3

1× 3 then 3× 1 convolution - 3

1× 5 then 5× 1 convolution - 3

1× 7 then 7× 1 convolution - 3

Table 6: The standard and extended operation space.
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B.3 SEARCH AND EVALUATION DETAILS

Results on CIFAR-10. The super-net for search on CIFAR-10 is composed of 8 cells (6 normal
cells and 2 reduction cells) with the initial number of channels as 16. There are 6 nodes in each
cell. The first 2 nodes in cell k are input nodes, which are the outputs of cell k − 2 and k − 1,
respectively. The output of each cell is the concatenation of all intermediate nodes. We train the
super-net for 50 epochs with a batchsize of 512. SGD is used to optimize the super-net weights with
a momentum of 0.9 and a weight decay of 3e-4. Its learning rate is set as 0.2 and is annealed down
to zero with a cosine scheduler. We use the Adam optimizer for the architecture parameters {α(i,j)

k }
with a learning rate of 6e-4, a momentum of (0.5, 0.999) and a weight decay of 1e-3. The initial
temperature in Eq. (5) is set as 5.0 and is annealed by 0.923 every epoch. We choose the architecture
with the best validation accuracy as the searched one. We run our search for 5 times and select the
best architecture. In evaluation, the target-net has 20 cells (18 normal cells and 2 reduction cells)
with the initial number of channel as 36. We train for 600 epochs with a batchsize of 96, and report
the mean error rate with the standard deviation of 5 independent runs. SGD optimizer is used with
a momentum of 0.9, a weight decay of 3e-4, and a gradient clipping of 5. The initial learning rate
is set as 0.025 and is annealed down to zero following a cosine scheduler. As convention, a cutout
length of 16, a drop out rate of 0.2, and an auxiliary head are adopted.

Results on ImageNet. Following Xu et al. (2020), we perform three convolution layers of stride of 2
to reduce the resolution from the input size 224×224 to 28×28. The super-net for search has 8 cells
with the initial number of channels as 16, while the target-net for evaluation has 14 cells and starts
with 48 channels. We use a batchsize of 1,024 for both search and evaluation. In search, we train
for 50 epochs with the same optimizers, momentum, and weight decay as that on CIFAR-10. The
initial learning rate of network weights is 0.5 (annealed down to zero following a cosine scheduler).
The learning rate of architecture parameters {α(i,j)

k } (and {β(j)} for EnTranNAS-DST) is 6e-3.
The initial temperature and its annealing ratio for EnTranNAS are the same as that on CIFAR-10.
For EnTranNAS-DST, the initial temperature is set as 1 and is annealed by 0.9 every epoch. In
evaluation, we train for 250 epochs from scratch using the SGD optimizer with a momentum of
0.9 and a weight decay of 3e-5. The initial learning rate is set as 0.5 and is annealed down to zero
linearly. Following Xu et al. (2020), an auxiliary head and the label smoothing technique are also
adopted.

B.4 BOTTLENECK

Similar to the partial channel connection strategy in Xu et al. (2020), we also try to reduce the num-
ber of channels to further save memory cost and reduce search time. Different from their method, we
adopt the bottleneck technique as mentioned in Section 4.3 of our paper. The bottleneck technique
is also widely used in traditional architectures He et al. (2016); Huang et al. (2017). Concretely, we
perform a 1× 1 convolution to reduce the number of channels by a ratio before feeding a node to all
candidate operations. Another 1 × 1 convolution is appended to recover the number of channels to
form each intermediate node. The reduction ratio is set as 4 in our experiments.

C APPENDIX: VISUALIZATION OF SEARCHED ARCHITECTURES

We visualize all searched architectures of our methods. Concretely, the EnTranNAS searched on the
standard operation space of CIFAR-10 is shown in Figure 6 and 7. Its result on the extended space
is shown in Figure 8 and 9. The EnTranNAS-DST searched on CIFAR-10 is shown in Figure 10 and
11. The EnTranNAS directly searched on ImageNet is shown in Figure 12 and 13. The results of
EnTranNAS-DST with different λ on ImageNet are shown from Figure 14 to 19.

To better inspect the search process of EnTranNAS-DST, we further show the derived architecture
of each epoch in the video in the supplementary file. It is shown that at the beginning of search,
all connections are kept active by the initialization of architecture parameters {α(i,j)

k } and {β(j)},
i.e., q̂(i,j)

k > 0,∀i, j, k. As the optimization proceeds, we finally obtain an architecture with both
operation and topology learnable. The topology is not subject to any hand-crafted rule.
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Figure 6: EnTranNAS normal cell searched on CIFAR-10
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Figure 7: EnTranNAS reduction cell searched on CIFAR-10
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Figure 8: EnTranNAS (12 operations) normal cell searched on CIFAR-10

c_{k-2}

0

conv_1771

1

conv_1771

2

max_pool_3x3

c_{k-1}

avg_pool_3x3

avg_pool_3x3

conv_3x3

3
conv_3x3

c_{k}

sep_conv_5x5

Figure 9: EnTranNAS (12 operations) reduction cell searched on CIFAR-10
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Figure 10: EnTranNAS-DST normal cell searched on CIFAR-10
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Figure 11: EnTranNAS-DST reduction cell searched on CIFAR-10
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Figure 12: EnTranNAS normal cell searched on ImageNet
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Figure 13: EnTranNAS reduction cell searched on ImageNet
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Figure 14: EnTranNAS-DST (λ = 0.2) normal cell searched on ImageNet
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Figure 15: EnTranNAS-DST (λ = 0.2) reduction cell searched on ImageNet
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Figure 16: EnTranNAS-DST (λ = 0.1) normal cell searched on ImageNet
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Figure 17: EnTranNAS-DST (λ = 0.1) reduction cell searched on ImageNet
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Figure 18: EnTranNAS-DST (λ = 0.05) normal cell searched on ImageNet
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Figure 19: EnTranNAS-DST (λ = 0.05) reduction cell searched on ImageNet
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