
Measuring Progress in Dictionary Learning for
Language Model Interpretability with Board Game Models

Adam Karvonen * 1 Benjamin Wright * 2 Can Rager 1 Rico Angell 3 Jannik Brinkmann 4 Logan Smith 1

Claudio Mayrink Verdun 5 David Bau 6 Samuel Marks 6

Abstract
What latent features are encoded in language
model (LM) representations? Recent work on
training sparse autoencoders (SAEs) to disentan-
gle interpretable features in LM representations
has shown significant promise. However, evaluat-
ing the quality of these SAEs is difficult because
we lack a ground-truth collection of interpretable
features that we expect good SAEs to recover. We
thus propose to measure progress in interpretable
dictionary learning by working in the setting of
LMs trained on chess and Othello transcripts.
These settings carry natural collections of inter-
pretable features—for example, “there is a knight
on F3”—which we leverage into supervised met-
rics for SAE quality. To guide progress in inter-
pretable dictionary learning, we introduce a new
SAE training technique, p-annealing, which im-
proves performance on prior unsupervised metrics
as well as our new metrics.1

1. Introduction
Mechanistic interpretability aims to reverse engineer neural
networks into human-understandable components. What,
however, should these components be? Recent work has
applied Sparse Autoencoders (SAEs) (Bricken et al., 2023;
Cunningham et al., 2023), a scalable unsupervised learn-
ing method inspired by sparse dictionary learning to find
a disentangled representation of language model (LM) in-
ternals. However, measuring progress in training SAEs is
challenging because we do not know what a gold-standard
dictionary would look like, as it is difficult to anticipate
which ground-truth features underlie model cognition. Prior
work has either attempted to measure SAE quality in toy

*Equal contribution 1Independent 2MIT 3University of Mas-
sachusetts, Amherst 4University of Mannheim 5Harvard University
6Northeastern University. Correspondence to: Adam Karvonen
<adam.karvonen@gmail.com>.

Vienna, Austria. PMLR 235, 2024. Copyright 2024 by the au-
thor(s).

synthetic settings (Sharkey et al., 2023) or relied on various
proxies such as sparsity, fidelity of the reconstruction, and
LM-assisted autointerpretability (Bills et al., 2023).

In this work, we explore a setting that lies between toy
synthetic data (where all ground-truth features are known;
cf. Elhage et al. (2022)) and natural language: LMs trained
on board game transcripts. This setting allows us to for-
mally specify natural categories of interpretable features,
e.g., “there is a knight on e3” or “the bishop on f5 is
pinned.” We leverage this to introduce two novel metrics for
how much of a model’s knowledge an SAEs has captured:

• Board reconstruction. Can we reconstruct the state of
the game board by interpreting each feature as a classifier
for some board configuration?

• Coverage. Out of a catalog of researcher-specified can-
didate features, how many of these candidate features
actually appear in the SAE?

These metrics carry the limitation that they are sensitive to
researcher preconceptions. Nevertheless, we show that they
provide a useful new signal of SAE quality.

Additionally, we introduce p-annealing, a novel technique
for training SAEs. When training an SAE with p-annealing,
we use an Lp-norm-based sparsity penalty with p ranging
from p = 1 at the beginning of training (corresponding to a
convex minimization problem) to some p < 1 (a non-convex
objective) by the end of training. We demonstrate that p-
annealing improves over prior methods, giving performance
on par with the more compute-intensive Gated SAEs from
Rajamanoharan et al. (2024), as measured both by prior
metrics and our new metrics.

Overall, our main contributions are as follows:

1. We train and open-source over 500 SAEs trained on
chess and Othello models each.

2. We introduce two new metrics for measuring the qual-
ity of SAEs.

1Code, models, and data are available at https://github.
com/adamkarvonen/SAE_BoardGameEval

1

https://github.com/adamkarvonen/SAE_BoardGameEval
https://github.com/adamkarvonen/SAE_BoardGameEval

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

3. We introduce p-annealing, a novel technique for train-
ing SAEs that improves on prior techniques.

2. Background
2.1. Language models for Othello and chess

In this work, we make use of LMs trained to autoregres-
sively predict transcripts of chess and Othello games. We
emphasize that these transcripts only give lists of moves in
a standard notation and do not directly expose the board
state. Based on behavioral evidence (the high accuracy of
the LMs for predicting legal moves) and prior studies of
LM representations (Li et al., 2023a; Nanda et al., 2023;
Karvonen, 2024) we infer that the LMs internally model the
board state, making them a good testbed setting for studying
LM representations.

Othello. Othello is a two-player strategy board game
played on an 8x8 grid, with players using black and white
discs. Players take turns placing discs on the board, captur-
ing their opponent’s discs by bracketing them between their
own, causing the captured discs to turn their color. The goal
is to have more discs turned to display your color at the end
of the game. The game ends if every square on the board is
covered or either player cannot make a move.

In our experiments, we use an 8-layer GPT model with 8
attention heads and a n = 512 dimensional hidden space,
as provided by Li et al. (2023a). This model had no prior
knowledge of the game or its rules and was trained from
scratch on 20 million game transcripts, where each token
in the corpus represents a tile on which players place their
discs. The game transcripts were synthetically generated by
uniformly sampling from the Othello game tree. Thus, the
data distribution captures valid move sequences rather than
strategic depth. For this model, Li et al. (2023a) demon-
strated the emergence of a world model—an internal rep-
resentation of the correct board state allowing it to predict
the next move—that can be extracted from the model activa-
tions using a non-linear probe. Nanda et al. (2023) extended
this finding, showing that a similar internal representation
could be extracted using linear probes, supporting the linear
representation hypothesis (Mikolov et al., 2013).

Chess. Othello makes a natural testbed for studying emer-
gent internal representations since the game tree is far too
large to memorize. However, the rules and state are not par-
ticularly complex. Therefore, we also consider a language
model trained on chess game transcripts with identical archi-
tecture, provided by Karvonen (2024). The model again had
no prior knowledge of chess and was trained from scratch
on 16 million human games from the Lichess chess game
database (Lichess, 2024). The input to the model is a string
in the Portable Game Notation (PGN) format (e.g., “1.e4

e5 2.Nf3 ...”). The model predicts a legal move in
99.8 % of cases and, similar to Othello, it has an internal rep-
resentation of the board state that can be extracted from the
internal activations using a linear probe (Karvonen, 2024).

2.2. Sparse autoencoders

Given a dataset D of vectors x ∈ Rd, a sparse autoencoder
(SAE) is trained to produce an approximation

x ≈
dSAE∑
i

fi(x)di + b (1)

as a sparse linear combination of features. Here, the feature
vectors di ∈ Rd are unit vectors, the feature activations
fi(x) ≥ 0 are a sparse set of coefficients, and b ∈ Rd

is a bias term. Concretely, an SAE is a neural network
with an encoder-decoder architecture, where the encoder
maps x to the vector f =

[
f1(x) . . . fdSAE(x)

]
of fea-

ture activations, and the decoder maps f to an approximate
reconstruction of x.

In this paper, we train SAEs on datasets consisting of activa-
tions extracted from the residual stream after the sixth layer
for both the chess and Othello models. At these layers, lin-
ear probes trained with logistic regression were accurate for
classifying a variety of properties of the game board (Kar-
vonen, 2024; Nanda et al., 2023). For training SAEs, we
employ a variety of SAE architectures and training algo-
rithms, as detailed in Section 4.

3. Measuring autoencoder quality for chess
and Othello models

Many of the features learned by our SAEs reflect uninter-
esting, surface-level properties of the input, such as the
presence of certain tokens. However, upon inspection, we
additionally find many SAE features which seem to reflect a
latent model of the board state, e.g., features that reflect the
presence of certain pieces on particular squares, squares that
are legal to play on, and strategy-relevant properties like the
presence of a pin in chess (Figure 1).

Fortunately, in the setting of board games, we can formally
specify certain classes of these interesting features, allowing
us to more rigorously detect them and use them to under-
stand our SAEs. In Section 3.1, we specify certain classes
of interesting game board properties. Then, in Section 3.2,
we leverage these classes into two metrics of SAE quality.

3.1. Board state properties in chess and Othello models

We formalize a board state property (BSP) to be a function
g : {game board} → {0, 1}. In this work, we will consider
the following interpretable classes of BSPs:

2

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

Figure 1: We find SAE features that detect interpretable board state properties (BSP) with high precision (i.e., above 0.95).
This figure illustrates three distinct chessboard states, each an example of a BSP associated with a high activation of a
particular SAE feature. Left: A board state detector identifies a knight on square f3, owned by the player to move. Middle:
A rook threat detector indicates an immediate threat posed by a rook to a queen regardless of location and piece threatened.
Right: A pin detector recognizes moves that resolve a check on a diagonal by creating a pin, again, regardless of location
and piece pinned.

• Gboard state contains BSPs which classify the presence of a
piece at a specific board square, where the board consists
of 8 × 8 squares in both games. For chess, we consider
the full board for the twelve distinct piece types (white
king, white queen, ..., black king), giving a total of 8 ×
8× 12 BSPs. For Othello, we consider the full board for
the two distinct piece types (black and white), yielding
8× 8× 2 BSPs.

• Gstrategy consists of BSPs relevant for predicting legal
moves and playing strategically in chess, such as a pin de-
tector. They were selected by the authors based on domain
knowledge and prior interpretability work on the chess
model AlphaZero (McGrath et al., 2022). We provide a
full list of strategy BSPs in Table 3 in the Appendix. Be-
cause our Othello model was trained to play random legal
moves, we do not consider strategy BSPs for Othello.

3.2. Measuring SAE quality with board state properties

In this section, we introduce two metrics of SAE quality:
coverage and board reconstruction.

Coverage. Given a collection G of BSPs, our coverage
metric quantifies the extent to which an SAE has identi-
fied features that coincide with the BSPs in G. In more
detail, suppose that fi is an SAE feature and t ∈ [0, 1] is a
threshold, we define the function

ϕfi,t(x) = I [fi(x) > t · fmax
i] (2)

where fmax
i is (an empirical estimate of) maxx∼D fi(x),

the maximum value that fi takes over the dataset D of

activations extracted from our model, and I is the indicator
function. We interpret ϕfi,t as a binary classifier; intuitively,
it corresponds to binarizing the activations of fi into “on”
vs. “off” at some fraction t of the maximum value of fi
on D. Given some BSP g ∈ G, let F1(ϕfi,t; g) ∈ [0, 1]
denote the F1-score for ϕfi,t classifying g. Then we define
the coverage of an SAE with features {fi} relative to a set
of BSPs G to be

Cov({fi},G) :=
1

|G|
∑
g∈G

max
t

max
fi

F1(ϕfi,t; g). (3)

In other words, we take, for each g ∈ G, the F1-score of
the feature that best serves as a classifier for g, and then
take the mean of these maximal F1-scores. An SAE re-
ceives a coverage score of 1 if, for each BSP g ∈ G, it
has some feature that is a perfect classifier for g. Since
Cov depends on the choice of threshold t, we sweep over
t ∈ {0, 0.1, 0.2, . . . , 0.9} and take the best coverage score;
typically this best t is in {0, 0.1, 0.2}.

Board reconstruction. Again, let G be a set of BSPs.
Intuitively, the idea of our board reconstruction metric is
that, for a sufficiently good SAE, there should be a simple,
human-interpretable way to recover the state of the board
from the profile of feature activations {fi(x)} on an activa-
tion x ∈ Rd. Here, the activation x was extracted after the
post-MLP residual connection in layer 6.

We will base our board reconstruction metric around the
following human-interpretable way of recovering a board
state from a feature activation profile; we emphasize that
different ways of recovering boards from feature activations

3

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

may lead to qualitatively different results. This recovery rule
is based on the assumption that interpretable SAE features
tend to be high precision for some subset of BSPs, in line
with Templeton et al. (2024). For example, features that
classify common configurations of pieces are high precision
(but not necessarily high recall) for multiple BSPs. Thus,
using a batch of “train” dataDtrain we identify, for each SAE
feature fi, all of the BSPs g ∈ G for which ϕfi,t is a high
precision (of at least 0.95) classifier. Then for each g ∈ G
our prediction rule is

Pg({fi(x)}) =


1, if ϕfi,t(x) = 1 for any fi which

is high precision for g on Dtrain

0, otherwise.
(4)

Let F1(P({fi(x)});b) denote the F1-score for a given
board state b, where P({fi(x)}) = {Pg({fi(x)})}g∈G
represents the full predicted board (containing predictions
for all 64 squares) obtained from the SAE activations. Then,
the average F1-score over all board states in the test dataset
Dtest can be calculated as:

Rec({xi},Dtest) =
1

|Dtest|
∑

x∈Dtest

max
t

F1(P({fi(x)});b),

(5)

4. Training methodologies for SAEs
In our experiments, we investigate four methods for
training SAEs, as explained in this section. These
are given by two autoencoder architectures and two
training methodologies—one with p-annealing and one
without p-annealing—for each architecture. Our
SAEs are available at https://huggingface.co/
adamkarvonen/chess_saes/tree/main (chess)
and https://huggingface.co/adamkarvonen/
othello_saes/tree/main (Othello).

4.1. Standard SAEs

Let n be the dimension of the model’s residual stream acti-
vations that are input to the autoencoder, m the autoencoder
hidden dimension, and s the dataset size. Our baseline
“standard” SAE architecture, as introduced in Bricken et al.
(2023) is defined by encoder weights We ∈ Rm×n, decoder
weights Wd ∈ Rn×m with columns constrained to have a
L2-norm of 1, and biases be ∈ Rm, bd ∈ Rn. Given an
input x ∈ Rn, the SAE computes

f(x) = ReLU(We(x− bd) + be) (6)
x̂ = Wd f(x) + bd (7)

where f(x) is the vector of feature activations, and x̂ is the
reconstruction.

For a standard SAE, our baseline training method is as im-
plemented in the open-source dictionary learning

repository (Marks & Mueller, 2024), optimizing the loss

Lstandard = Ex∼Dtrain

[
∥x− x̂∥2 + λ∥f(x)∥1

]
. (8)

for some hyperparameter λ > 0 controlling sparsity.

4.2. Gated SAEs

The L1 penalty used in the original training method encour-
ages feature activations to be smaller than they would be
for optimal reconstruction (Wright & Sharkey, 2024). To
address this, Rajamanoharan et al. (2024) introduced a mod-
ification to the original SAE architecture that separates the
selection of dictionary elements to use in a reconstruction
and estimating the coefficients of these dictionary elements.
This results in the following gated architecture:

πgate(x) := Wgate(x− bd) + bgate

f̃(x) := I [πgate(x) > 0]⊙ ReLU(Wmag(x− bd) + bmag)

x̂(f̃(x)) = Wdf̃(x) + bd

where I[· > 0] is the Heaviside step function and ⊙ denotes
elementwise multiplication. Then, the loss function uses
x̂frozen, a frozen copy of the decoder:

Lgated := Ex∼Dtrain

[
∥x− x̂(f̃(x))∥22
+ λ∥ReLU(πgate(x))∥1 (9)

+ ∥x− x̂frozen(ReLU(πgate(x)))∥22
]

4.3. p-Annealing

Fundamentally, an L1 penalty has been used to induce spar-
sity in SAE features because it serves as a convex relaxation
of the true sparsity measure, the L0-norm. The L1-norm is
the convex hull of the L0-norm, making it a tractable alterna-
tive for promoting sparsity (Wright & Ma, 2022). However,
the proxy loss function is not the same as directly optimiz-
ing for sparsity, leading to issues such as feature shrinkage
(Wright & Sharkey, 2024) and potentially less sparse learned
features. Unfortunately, the L0-norm is non-differentiable
and directly minimizing it is an NP-hard problem (Natara-
jan, 1995; Davis et al., 1997), rendering it impractical for
training.

In this work, we propose the use of nonconvex Lp
p-

minimization, with p < 1, as an alternative to the stan-
dard L1 minimization in sparse autoencoders (SAEs). This
approach has been successfully employed in compressive
sensing and sparse recovery to achieve even sparser repre-
sentations (Chartrand, 2007; Wen et al., 2015; Yang et al.,
2018; Wang et al., 2011). To perform this optimization,
we introduce a method called p-annealing for training
SAEs, based on the compressive sensing technique called

4

https://huggingface.co/adamkarvonen/chess_saes/tree/main
https://huggingface.co/adamkarvonen/chess_saes/tree/main
https://huggingface.co/adamkarvonen/othello_saes/tree/main
https://huggingface.co/adamkarvonen/othello_saes/tree/main

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

(a) Coverage of Board State (b) Coverage of Board State vs. L0

(c) Board Reconstruction (d) Board Reconstruction vs. L0

Figure 2: Comparison of the coverage and board reconstruction metrics for chess SAE quality on Gboard state. The coverage
score reports the mean F1 scores over BSPs. The top row corresponds to coverage, and the bottom row corresponds to board
reconstruction. The left column contains a scatterplot of loss recovered vs. L0, with the scheme color corresponding to the
coverage score and each point representing different hyperparameters. We differentiate between SAE training methods with
shapes.

p-continuation (Zheng et al., 2017). The key idea is to start
with convex L1-minimization through setting p = 1 and
progressively decrease the value of p during training, result-
ing in closer approximations of the true sparsity measure,
L0, as p approaches 0. We define the sparsity penalty for
each batch x as a function of the current training step s:

Lsparse(x, s) = λs∥f(x)∥ps
ps

= λs

∑
i

fi(x)
ps (10)

In other words, the sparsity penalty will be a scaled Lp
p

norm of the SAE feature activations, with p decreasing over
time. At p = 1, the Lp

p norm is equal to the L1 norm,
and as p → 0, the Lp

p norm limits to the L0-norm, as
limp→0

∑
i fi(x)

p =
∑

i fi(x)
0.

The purpose of annealing p from 1→ 0 instead of starting
from a fixed, low value for p is that the lower the p, the more
concave (non-convex) the Lp

p norm is, increasing the likeli-
hood of the training process getting stuck in local optima,
which we have observed in initial experiments. Therefore,
we aim to first arrive at a region of an optimum using the
easier-to-train L1 penalty and then gradually shift the loss

function. This manifests as keeping p = 1 for a certain num-
ber of steps and then starting decreasing p linearly down to
pend > 0 at the end of training. We set pend = 0.2.

Coefficient Annealing. Changing the value of p changes
the scale of the Lp

p norm. Without also adapting the coeffi-
cient λ, the strength of the sparsity penalty would vary too
wildly across training. Empirically, we found that keeping a
constant λ would lead to far too weak of a sparsity penalty
for the larger p’s at the start of training, making the pro-
cess worse than simply training with a constant p from the
beginning.

Consequently, we aim to adapt the coefficient λ such that the
strength of the sparsity penalty is not changed significantly
due to p updates. Formally, the update step is:

λs+1 ← λs

∑s
j=s−q+1

∑
i fi(xj)

ps∑s
j=s−q+1

∑
i fi(xj)ps+1

. (11)

We keep a queue of the most recent q batches of feature
activations mid-training and use them to calibrate the λs

updates. Therefore, the strength of the sparsity penalty is
kept locally constant.

5

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

(a) Coverage of Strategy BSPs (b) Coverage of Strategy BSPs vs. L0

(c) Strategy BSP Reconstruction (d) Strategy BSP Reconstruction vs. L0

Figure 3: Comparison of the coverage and board reconstruction metrics for chess SAE quality on Gstrategy. The metrics
represent the average coverage and board reconstruction obtained across all BSPs in Gstrategy. The coverage score reports the
mean of maximal F1 scores over BSPs. The absolute coverage scores vary significantly between strategy BSPs, as discussed
in Appendix C. The top row corresponds to coverage, and the bottom row corresponds to board reconstruction. The left
column contains a scatterplot of loss recovered vs. L0, with the color scheme corresponding to the coverage score and each
point representing different hyperparameters. We differentiate between SAE training methods with shapes.

Combining p-annealing with other SAEs. Since the
p-annealing method only modifies the L1 terms in the
loss function without affecting the SAE architecture, it is
simple to combine p-annealing with other SAE modifica-
tions. This allows us to create the Gated-Annealed SAE
method by combining the Gated SAE architecture and p-
annealing. Concretely, we modify Lgated (Equation 9) by
replacing the sparsity term λ∥ReLU(πgate(x))∥1 in with
λs∥ReLU(πgate(x))∥ps

ps
. Our experiments showed that the

optimum values for coefficients λ and λs differ.

5. Results
In this section, we explore the performance of SAEs applied
to language models trained on Othello and chess. Consistent
with Nanda et al. (2023), we find that interpretable SAE fea-
tures typically track properties relative to the player whose
turn it is (e.g. “my king is pinned” rather than “the white
king is pinned”). To side-step subtleties arising from this,
we only extract our activations from the token immediately
preceding white’s move. Specifically, we consider SAEs
trained on the residual stream activations after the sixth

layer using the four methods from Section 4 (see Table 2
for additional hyperparameters). In addition to our metrics
introduced above, we also make use of unsupervised metrics
previously appearing in the literature (Bricken et al., 2023;
Cunningham et al., 2023; Rajamanoharan et al., 2024):

• L0 measures the average number of active SAE active
features (i.e., positive activation) on a given input.

• Loss recovered measures the change in model perfor-
mance when replacing activations with the corresponding
SAE reconstruction during a forward pass. This metric is
quantified as (H∗−H0)/(Horig−H0), where Horig is the
cross-entropy loss of the board game model for next-token
prediction, H∗ is the cross-entropy loss after substituting
the model activation x with its SAE reconstruction during
the forward pass, and H0 is the cross-entropy loss when
zero-ablating x.

Our key takeaways are as follows.

SAE features can accurately reconstruct game boards.
In general, we find that SAE features are effective at captur-

6

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

Chess Othello

Model Coverage Reconstruction Coverage Reconstruction

SAE: random GPT 0.11 0.01 0.27 0.08
SAE: trained GPT 0.48 0.85 0.52 0.95
Linear probe 0.98 0.98 0.99 0.99

Table 1: Best performance obtained for different techniques across games for Gboard state. As a baseline, we train an SAE on
random GPT, a version of the trained GPT model with randomly initialized weights. All models were trained on activations
after the post-MLP residual connection in layer 6.

ing board state information in both Othello and chess (see
Table 1, Figure 2d and 4d). In contrast, SAEs trained on a
model with random weights perform very poorly according
to our metrics, showing that SAE performance is driven by
identifying structure in the models’ learned representation
of game boards. Nonetheless, SAEs do not match the per-
formance of linear probes in terms of reconstructing the
board state. This performance gap suggests that SAEs do
not capture all of the information encoded in the model’s
internal representations.

Standard SAEs trained with p-annealing perform on par
with Gated SAEs. We find that standard SAEs trained
using p-annealing consistently perform better than those
trained with a constant L1 penalty (Equation 8), as mea-
sured by existing proxy metrics and in terms of improve-
ment in coverage (see Figure 2a and 4a). In fact, standard
SAEs trained using p-annealing show a coverage score that
is comparable to Gated SAEs trained without p-annealing.
However, we find cases where our coverage metric disagrees
with existing metrics. In Figure 2, for example, Gated SAEs
perform achieve a higher loss recovered score than Standard
SAEs trained using p-annealing. We emphasize that the
training and inference of Gated SAEs is more computation-
ally expensive, requiring 50% more compute per forward
pass compared to Standard SAEs (Rajamanoharan et al.,
2024).

Coverage and board reconstruction reveal differences
in SAE quality not captured by unsupervised metrics.
Our metrics reveal improvements in SAE performance that
traditional proxy metrics fail to capture. For example, we
trained SAEs with hidden dimensions 4096 and 8192 (ex-
pansion factors of 8 and 16, respectively). We expect the
SAEs with 8192 hidden dimensions to perform better since
they have greater capacity. However, we observe that they
perform equally well according to prior unsupervised met-
rics (see Figures 2 a, c and 4 a, c). In contrast, our metrics
reveal that SAEs with larger hidden dimensions are better.
For the Standard architecture, this is reflected by the parallel
lines (of purple diamonds) in Figures 2 b, d and 4 b, d. Thus,
our metrics are able to capture improvements from larger

expansion factors. In addition, we find that the performance
of p-annealing closely resembles that of Gated SAEs when
evaluated using standard proxy metrics; it demonstrates
clear improvements under our proposed metrics.

Coverage and board reconstruction are consistent with
existing metrics. Figures 2, 4, and 3 demonstrate that
both coverage and board reconstruction metrics are opti-
mal in the elbow region of the Pareto frontier. This region,
where SAEs reconstruct internal activations efficiently with
minimal features, also yielded the most coherent interpreta-
tions during our manual inspections. This provides precise,
empirical validation to the common wisdom that SAEs in
this region of the Pareto frontier are the best.

6. Limitations
The proposed metrics for board reconstruction and coverage
provide a more objective evaluation of SAE quality than
previous subjective methods. Nevertheless, these metrics
exhibit several limitations. Primarily, their applicability is
confined to the chess and Othello domains, raising concerns
about their generalizability to other domains or different
models. Additionally, the set of BSPs that underpin these
metrics is determined by researchers based on their domain
knowledge. This approach may not encompass all pertinent
features or strategic concepts, thus potentially overlooking
essential aspects of model evaluation. Developing compa-
rable objective metrics for other domains, such as natural
language processing, remains a significant challenge. More-
over, our current focus is on evaluating the quality of SAEs
in terms of their ability to capture internal representations
of the model. However, this does not directly address how
these learned features could be utilized for downstream in-
terpretability tasks.

7. Related work
Sparse dictionary learning. Since the nineties, dictionary
learning (Elad, 2010; Dumitrescu & Irofti, 2018), sparse
regression (Foucart & Rauhut, 2013), and later, sparse au-
toencoders (Ng et al., 2011) have been extensively studied

7

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

(a) Coverage of Board State (b) Coverage of Board State vs. L0

(c) Board Reconstruction (d) Board Reconstruction vs. L0

Figure 4: Comparison of the coverage and board reconstruction metrics for Othello SAE quality on Gboard state. The coverage
score reports the mean of maximal F1 scores over BSPs. The top row corresponds to coverage, and the bottom row
corresponds to board reconstruction. The left column contains a scatterplot of loss recovered vs. L0, with the color scheme
corresponding to the coverage score and each point representing different hyperparameters. We differentiate between SAE
training methods with shapes.

in the machine learning and signal processing literature.
The seminal work of Olshausen & Field (1996) introduced
the concept of sparse coding in neuroscience (see also (Ol-
shausen & Field, 2004), building upon the earlier concept of
sparse representations (Donoho, 1992) and matching pursuit
(Mallat & Zhang, 1993). Subsequently, a series of works
established the theoretical and algorithmic foundations of
sparse dictionary learning (Elad & Bruckstein, 2002; Hoyer,
2002; Eggert & Korner, 2004; Aharon et al., 2006; Yang
et al., 2009; Jung et al., 2014; Tillmann, 2014; Arora et al.,
2015; Bao et al., 2015; Blasiok & Nelson, 2016; Chalk et al.,
2018). Notably, Gregor & LeCun (2010) introduced LISTA,
an unrolled version of ISTA (Daubechies et al., 2004) that
learns the dictionary instead of having it fixed.

In parallel, autoencoders were introduced in machine learn-
ing to automatically learn data features and perform dimen-
sionality reduction (Hinton & Zemel, 1993; Li et al., 2023b).
Inspired by sparse dictionary learning, sparse autoencoders
(Ng et al., 2011; Coates et al., 2011; Coates & Ng, 2011;
Makhzani & Frey, 2013; Li et al., 2016) were proposed as
an unsupervised learning model to build deep sparse hierar-
chical models of data, assuming a certain degree of sparsity

in the hidden layer activations. Later, Luo et al. (2017) gen-
eralized sparse autoencoders (SAEs) to convolutional SAEs.
Although the theory for SAEs is less developed than that of
dictionary learning with a fixed dictionary, some progress
has been made in quantifying whether autoencoders can, in-
deed, do sparse coding, e.g., Arpit et al. (2016); Rangamani
et al. (2018); Nguyen et al. (2019).

Feature disentanglement using sparse autoencoders.
The individual computational units of neural networks are
often polysemantic, i.e., they respond to multiple seem-
ingly unrelated inputs (Arora et al., 2018). Elhage et al.
(2022) investigated this phenomenon and suggested that
neural networks represent features in linear superposition,
which allows them to represent more features than they have
dimensions. Thus, in an internal representation of dimen-
sion n, a model can encode m ≫ n concepts as linear
directions (Park et al., 2023), such that only a sparse subset
of concepts are active across all inputs – a concept deeply
related to the coherence of vectors (Foucart & Rauhut, 2013)
and to frame theory in general (Christensen et al., 2003). To
identify these concepts, Sharkey et al. (2023) used SAEs
to perform dictionary learning on a one-layer transformer,

8

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

identifying a large (overcomplete) basis of features. Cun-
ningham et al. (2023) applied SAEs to language models
and demonstrated that dictionary features can be used to
localize and edit model behavior. Marks et al. (2024) pro-
posed a scalable method to discover sparse feature circuits,
as opposed to circuits consisting of polysemantic model
components, and demonstrated that a human could change
the generalization of a classifier by editing its feature circuit.
Recently, Kissane et al. (2024) explored autoencoders for
attention layer outputs. These works have benefited from a
variety of open-source libraries for training SAEs for LLM
interpretability (Marks & Mueller, 2024; Bloom & Chanin,
2024; Cooney, 2023).

Improving and evaluating sparse autoencoders. De-
spite the success of SAEs at extracting human-interpretable
features, they fail to perfectly reconstruct the activa-
tions (Cunningham et al., 2023). One challenge in the train-
ing of SAEs with an L1 penalty is shrinkage (or ’feature
suppression’); in addition to encouraging sparsity, an L1

penalty encourages feature activations to be smaller than
they would be otherwise. Wright & Sharkey (2024) ap-
proached this problem by fine-tuning the sparse autoencoder
without a sparsity penalty. Jermyn et al. (2024) and Riggs
& Brinkmann (2024) explored alternative sparsity penalties
to reduce feature suppression during training. Rajamanoha-
ran et al. (2024) introduced Gated SAEs, an architectural
variation for the encoder which both addresses shrinkage
and improves on the Pareto frontier of L0 vs reconstruction
error. Recently, Gao et al. (2024) systematically evaluated
the scaling laws with respect to sparsity, autoencoder size,
and language model size.

The goal of dictionary learning in machine learning is to
produce human-interpretable features and capture the under-
lying model’s computations (Bricken et al., 2023). However,
quantitatively measuring interpretability is difficult and of-
ten involves manual inspection. Therefore, most existing
work assesses the quality of SAEs along different proxy
metrics: (1) The cross-entropy loss recovered, which re-
flects the degree to which the original loss of the language
model can be recovered when replacing activations with the
autoencoder predictions. (2) The L0-norm of feature acti-
vations Ez∼D ∥h(z)∥0, measuring the number of activate
features given an input (Ferrando et al., 2024). Makelov
et al. (2024) proposed to compare SAEs against supervised
feature dictionaries in a natural language setting. However,
this requires a significant understanding of the model’s in-
ternal computations and is thus not scalable.

8. Conclusion
Most SAE research has relied on proxy metrics such as
loss recovered and L0, or subjective manual evaluation

of interpretability by examining top activations. However,
proxy measures only serve as an estimate of interpretabil-
ity, monosemantic nature, and comprehensiveness of the
learned features, while manual evaluations depend on the
researcher’s domain knowledge and tend to be inconsistent.

Our work provides a new, more objective paradigm for
evaluating the quality of an SAE methodology; coverage
serves as a quantifiable measure of monosemanticity and
quality of feature extraction, while board reconstruction
serves as a quantifiable measure of the extent to which an
SAE is exhaustively representing the information contained
within the language model. Therefore, the optimal SAE
methodology can be judged by whether it yields both high
coverage and high board reconstruction.

Finally, we propose the p-annealing method, a modification
to the SAE training paradigm that can be combined with
other SAE methodologies and results in an improvement in
both coverage and board reconstruction.

Author Contributions
A.K. built and maintained our infrastructure for working
with board-game models. A.K., S.M., C.R., J.B., and L.S.
designed the proposed metrics. B.W. performed initial ex-
periments demonstrating the benefits of training SAEs with
p < 1. B.W., C.M.V., and S.M. then proposed p-annealing,
with B.W. leading the implementation and developing coef-
ficient annealing. The basic framework for our dictionary
learning work was built and maintained by S.M. and C.R.
The training algorithms studied were implemented by S.M.,
C.R., B.W., R.A., and J.B. R.A. trained the SAEs used in our
experiments. A.K., C.R., and J.B. selected and implemented
the BSPs. A.K. and J.B. trained the linear probes. Many
of the authors (including L.S., J.B., R.A.) did experiments
applying traditional dictionary learning methods and explor-
ing both toy problems and natural language settings, which
helped build valuable intuition. The manuscript was pri-
marily drafted by A.K., B.W., C.R., R.A., J.B., C.M.V., and
S.M., with extensive feedback and editing from all authors.
D.B. suggested the original project idea.

Acknowledgments
C.R. is supported by Manifund Regrants and AISST. L.R. is
supported by the Long Term Future Fund. S.M. is supported
by an Open Philanthropy alignment grant.

The work reported here was performed in part by the Uni-
versity of Massachusetts Amherst Center for Data Science
and the Center for Intelligent Information Retrieval, and in
part using high performance computing equipment obtained
under a grant from the Collaborative R&D Fund managed
by the Massachusetts Technology Collaborative.

9

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

References
Aharon, M., Elad, M., and Bruckstein, A. K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on signal processing,
54(11):4311–4322, 2006.

Arora, S., Ge, R., Ma, T., and Moitra, A. Simple, efficient,
and neural algorithms for sparse coding. In Conference
on learning theory, pp. 113–149. PMLR, 2015.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. Lin-
ear algebraic structure of word senses, with applica-
tions to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018. doi: 10.
1162/tacl a 00034. URL https://aclanthology.
org/Q18-1034.

Arpit, D., Zhou, Y., Ngo, H., and Govindaraju, V. Why
regularized auto-encoders learn sparse representation?
In International Conference on Machine Learning, pp.
136–144. PMLR, 2016.

Bao, C., Ji, H., Quan, Y., and Shen, Z. Dictionary learning
for sparse coding: Algorithms and convergence analy-
sis. IEEE transactions on pattern analysis and machine
intelligence, 38(7):1356–1369, 2015.

Bills, S., Cammarata, N., Mossing, D., Tillman, H., Gao, L.,
Goh, G., Sutskever, I., Leike, J., Wu, J., and Saunders,
W. Language models can explain neurons in language
models. URL https://openaipublic. blob. core. windows.
net/neuron-explainer/paper/index. html.(Date accessed:
14.05. 2023), 2023.

Blasiok, J. and Nelson, J. An improved analysis of the er-
spud dictionary learning algorithm. In 43rd International
Colloquium on Automata, Languages, and Programming
(ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

Bloom, J. and Chanin, D. Sae lens. https://github.
com/jbloomAus/SAELens, 2024.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits
Thread, pp. 2, 2023.

Chalk, M., Marre, O., and Tkačik, G. Toward a unified
theory of efficient, predictive, and sparse coding. Pro-
ceedings of the National Academy of Sciences, 115(1):
186–191, 2018.

Chartrand, R. Exact reconstruction of sparse signals via
nonconvex minimization. IEEE Signal Processing Letters,
14(10):707–710, 2007.

Christensen, O. et al. An introduction to frames and Riesz
bases, volume 7. Springer, 2003.

Coates, A. and Ng, A. Y. The importance of encoding
versus training with sparse coding and vector quantization.
In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 921–928, 2011.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In Pro-
ceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 215–223. JMLR
Workshop and Conference Proceedings, 2011.

Cooney, A. Sparse autoencoder library. https:
//github.com/ai-safety-foundation/
sparse_autoencoder, 2023.

Cunningham, H., Ewart, A., Smith, L. R., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models. In The Twelfth International
Conference on Learning Representations, 2023.

Daubechies, I., Defrise, M., and De Mol, C. An iterative
thresholding algorithm for linear inverse problems with a
sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 57(11):1413–1457, 2004.

Davis, G., Mallat, S., and Avellaneda, M. Adaptive greedy
approximations. Constructive approximation, 13:57–98,
1997.

Donoho, D. L. Superresolution via sparsity constraints.
SIAM journal on mathematical analysis, 23(5):1309–
1331, 1992.

Dumitrescu, B. and Irofti, P. Dictionary learning algorithms
and applications. Springer, 2018.

Eggert, J. and Korner, E. Sparse coding and nmf. In 2004
IEEE International Joint Conference on Neural Networks
(IEEE Cat. No. 04CH37541), volume 4, pp. 2529–2533.
IEEE, 2004.

Elad, M. Sparse and redundant representations: from theory
to applications in signal and image processing. Springer
Science & Business Media, 2010.

Elad, M. and Bruckstein, A. M. A generalized uncertainty
principle and sparse representation in pairs of bases. IEEE
Transactions on Information Theory, 48(9):2558–2567,
2002.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., et al. Toy models of superposition. arXiv
preprint arXiv:2209.10652, 2022.

10

https://aclanthology.org/Q18-1034
https://aclanthology.org/Q18-1034
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://github.com/ai-safety-foundation/sparse_autoencoder
https://github.com/ai-safety-foundation/sparse_autoencoder
https://github.com/ai-safety-foundation/sparse_autoencoder

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

Ferrando, J., Sarti, G., Bisazza, A., and Costa-jussà, M. R.
A primer on the inner workings of transformer-based lan-
guage models. arXiv preprint arXiv:2405.00208, 2024.

Foucart, S. and Rauhut, H. A Mathematical Introduction
to Compressive Sensing. Springer New York, New York,
NY, 2013.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scal-
ing and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Gregor, K. and LeCun, Y. Learning fast approximations of
sparse coding. In Proceedings of the 27th international
conference on international conference on machine learn-
ing, pp. 399–406, 2010.

Hinton, G. E. and Zemel, R. Autoencoders, minimum de-
scription length and helmholtz free energy. Advances in
neural information processing systems, 6, 1993.

Hoyer, P. O. Non-negative sparse coding. In Proceedings
of the 12th IEEE workshop on neural networks for signal
processing, pp. 557–565. IEEE, 2002.

Jermyn, A., Templeton, A., Batson, J., and Bricken,
T. Tanh penalty in dictionary learning, 2024. URL
https://transformer-circuits.pub/
2024/feb-update/index.html. Accessed:
2024-05-20.

Jung, A., Eldar, Y. C., and Görtz, N. Performance limits
of dictionary learning for sparse coding. In 2014 22nd
European Signal Processing Conference (EUSIPCO), pp.
765–769. IEEE, 2014.

Karvonen, A. Emergent world models and latent variable
estimation in chess-playing language models, 2024.

Kissane, C., Krzyzanowski, R., Bloom, J. I., Conmy, A., and
Nanda, N. Interpreting attention layer outputs with sparse
autoencoders. In ICML 2024 Workshop on Mechanistic
Interpretability, 2024.

Li, J., Zhang, T., Luo, W., Yang, J., Yuan, X.-T., and Zhang,
J. Sparseness analysis in the pretraining of deep neural
networks. IEEE transactions on neural networks and
learning systems, 28(6):1425–1438, 2016.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task.
In The Eleventh International Conference on Learning
Representations, 2023a.

Li, P., Pei, Y., and Li, J. A comprehensive survey on design
and application of autoencoder in deep learning. Applied
Soft Computing, 138:110176, 2023b.

Lichess. lichess.org open database, 2024. URL https:
//database.lichess.org.

Luo, W., Li, J., Yang, J., Xu, W., and Zhang, J. Convolu-
tional sparse autoencoders for image classification. IEEE
transactions on neural networks and learning systems, 29
(7):3289–3294, 2017.

Makelov, A., Lange, G., and Nanda, N. Towards principled
evaluations of sparse autoencoders for interpretability and
control. arXiv preprint arXiv:2405.08366, 2024.

Makhzani, A. and Frey, B. K-sparse autoencoders. arXiv
preprint arXiv:1312.5663, 2013.

Mallat, S. G. and Zhang, Z. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on signal
processing, 41(12):3397–3415, 1993.

Marks, S. and Mueller, A. dictionary learning. https:
//github.com/saprmarks/dictionary_
learning, 2024.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D.,
and Mueller, A. Sparse feature circuits: Discovering and
editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

McGrath, T., Kapishnikov, A., Tomašev, N., Pearce, A.,
Wattenberg, M., Hassabis, D., Kim, B., Paquet, U., and
Kramnik, V. Acquisition of chess knowledge in alphazero.
Proceedings of the National Academy of Sciences, 119
(47), November 2022. ISSN 1091-6490. doi: 10.1073/
pnas.2206625119. URL http://dx.doi.org/10.
1073/pnas.2206625119.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. Advances in neural informa-
tion processing systems, 26, 2013.

Nanda, N., Lee, A., and Wattenberg, M. Emergent lin-
ear representations in world models of self-supervised
sequence models. In Belinkov, Y., Hao, S., Jumelet,
J., Kim, N., McCarthy, A., and Mohebbi, H. (eds.),
Proceedings of the 6th BlackboxNLP Workshop: An-
alyzing and Interpreting Neural Networks for NLP,
pp. 16–30, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.
blackboxnlp-1.2. URL https://aclanthology.
org/2023.blackboxnlp-1.2.

Natarajan, B. K. Sparse approximate solutions to linear
systems. SIAM journal on computing, 24(2):227–234,
1995.

Ng, A. et al. Sparse autoencoder. CS294A Lecture notes, 72
(2011):1–19, 2011.

11

https://transformer-circuits.pub/2024/feb-update/index.html
https://transformer-circuits.pub/2024/feb-update/index.html
https://database.lichess.org
https://database.lichess.org
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
http://dx.doi.org/10.1073/pnas.2206625119
http://dx.doi.org/10.1073/pnas.2206625119
https://aclanthology.org/2023.blackboxnlp-1.2
https://aclanthology.org/2023.blackboxnlp-1.2

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

Nguyen, T. V., Wong, R. K., and Hegde, C. On the dynam-
ics of gradient descent for autoencoders. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 2858–2867. PMLR, 2019.

Olshausen, B. A. and Field, D. J. Emergence of simple-cell
receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609, 1996.

Olshausen, B. A. and Field, D. J. Sparse coding of sensory
inputs. Current opinion in neurobiology, 14(4):481–487,
2004.

Park, K., Choe, Y. J., and Veitch, V. The linear represen-
tation hypothesis and the geometry of large language
models. arXiv preprint arXiv:2311.03658, 2023.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024.

Rangamani, A., Mukherjee, A., Basu, A., Arora, A., Gana-
pathi, T., Chin, S., and Tran, T. D. Sparse coding and
autoencoders. In 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 36–40. IEEE, 2018.

Riggs, L. and Brinkmann, J. Improving sparse autoencoders
by square-rooting l1 and removing lowest activation fea-
tures, 2024. URL https://www.lesswrong.
com/posts/YiGs8qJ8aNBgwt2YN/
improving-sae-s-by-sqrt-ing-l1-and-removing-lowest.
Accessed: 2024-05-20.

Sharkey, L., Braun, D., and Millidge, B. Taking fea-
tures out of superposition with sparse autoencoders,
2023. URL https://www.alignmentforum.
org/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition.
Accessed: 2023-05-10.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Tillmann, A. M. On the computational intractability of
exact and approximate dictionary learning. IEEE Signal
Processing Letters, 22(1):45–49, 2014.

Wang, M., Xu, W., and Tang, A. On the performance of
sparse recovery via ℓp-minimization (0 ≤ p ≤ 1). IEEE
Transactions on Information Theory, 57(11):7255–7278,
2011.

Wen, J., Li, D., and Zhu, F. Stable recovery of sparse
signals via lp-minimization. Applied and Computational
Harmonic Analysis, 38(1):161–176, 2015.

Wright, B. and Sharkey, L. Addressing fea-
ture suppression in sparse autoencoders,
2024. URL https://www.lesswrong.
com/posts/3JuSjTZyMzaSeTxKk/
addressing-feature-suppression-in-saes.
Accessed: 2024-05-20.

Wright, J. and Ma, Y. High-dimensional data analysis with
low-dimensional models: Principles, computation, and
applications. Cambridge University Press, 2022.

Yang, C., Shen, X., Ma, H., Gu, Y., and So, H. C. Sparse
recovery conditions and performance bounds for ℓp-
minimization. IEEE Transactions on Signal Processing,
66(19):5014–5028, 2018.

Yang, J., Yu, K., Gong, Y., and Huang, T. Linear spatial
pyramid matching using sparse coding for image classifi-
cation. In 2009 IEEE Conference on computer vision and
pattern recognition, pp. 1794–1801. IEEE, 2009.

Zheng, L., Maleki, A., Weng, H., Wang, X., and Long,
T. Does ℓp-minimization outperform ℓ1-minimization?
IEEE Transactions on Information Theory, 63(11):6896–
6935, 2017.

12

https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

A. Sparse Autoencoder Training Parameters
We used a single NVIDIA A100 GPU for training SAEs and experiments. It takes much less than 24 hours to train a single
SAE on 300 million tokens. Given a trained SAE, our evaluation requires less than 5 minutes of computing time.

Table 2: Training parameters of our sparse autoencoders.

Parameter Value
Number of tokens 300M
Optimizer Adam
Adam betas (0.9, 0.999)
Linear warmup steps 1,000
Batch size 8,192
Learning rate 3e-4
Expansion factor {8, 16}
Annealing start 10,000
pend 0.2
λinit [0.02, 2.0]

13

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

B. List of Board State Properties
Table 3 summarizes the high-level board state properties considered in Gstrategy. The selection of concepts was inspired
by McGrath et al. (2022). The column indicated by # denotes the number of individual BSPs per concept. A single BSP per
concept indicates we match this condition globally for any corresponding piece.

Table 3: List of strategic Board State Properties.

Concept # Description

check 1 Indicates whether the player to move is checked by the opponent.

can check 1 Indicates whether the player to move could check the opponent with the next
move.

queen 1 Indicates whether the player to move has a queen on the board.

can capture queen 1 Indicates whether the player to move can capture the queen of the opponent.

bishop pair 1 Indicates whether the player to move still has both bishops on the board.

castling rights 1 Indicates whether the player to move is still allowed to castle, contingent on
the king and the rooks not having moved.

kingside castling rights 1 Indicates whether the player to move is still allowed to kingside castle,
contingent on the king and the kingside rook not having moved.

queenside castling rights 1 Indicates whether the player to move is still allowed to queenside castle,
contingent on the king and the queenside rook not having moved.

fork 1 Indicates whether the player to move attacks has a fork on major pieces of the
opponent.

pin 1 Indicates whether there is a pin on the board, such that a player’s piece cannot
move without exposing the kind behind it to capture.

legal en passant 1 Indicates whether the player to move has a legal en passant: a special pawn
capture that can only occur immediately after an opponent moves a pawn two
squares from its starting position and it lands beside the player’s pawn.

ambiguous moves 1 Indicates whether there are moves that would require further specification as
more than one piece of the same type can move to the same square.

threatened squares 64 Indicates which squares are threatened by the opponent.

legal moves 64 Indicates which squares can be legally moved to by the current player.

14

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

C. Performance of Linear Probes and SAEs on Board State Properties
In Figure 3, we present a mean coverage score over strategy board state properties GBSP. Properties within GBSP vary
significantly in complexity. For example, queen detection can be inferred directly from the move history, while fork
detection requires an accurate representation of the board state. Table 4 shows that linear probe F1-score is below 0.95 for 6
out of 15 properties in GBSP. This suggests that chess-GPT (Karvonen, 2024) does not represent these properties linearly.
Additional experiments are required to determine whether the representation is present at all.

For the board state case, reconstruction is significantly higher than coverage. This is because there are many SAE features
that are high precision classifiers for a configuration of squares, such as ”white pawn on e4, white knight of f3”. In cases
where coverage is higher than reconstruction (such as for can check), it is because there are not many features that are
over 95% precision for “there is a check move available” from which we can recover if there is an available check move.
Coverage is significantly higher because there is at least one feature that has an F1-score of 0.54 for can check, which
may not have a precision greater than 95%.

Table 4: Comparison of performance of linear probes trained to predict board state properties given residual stream activation
of ChessGPT after the sixth layer with SAEs evaluated using our coverage and reconstruction metrics.

Concept Linear Probe F1-score Best SAE Reconstruction
score

Best SAE Coverage score

check 1.00 1.00 1.00

can check 0.93 0.27 0.54

can capture queen 0.66 0.62 0.48

queen 1.00 0.97 0.96

bishop pair 1.00 0.83 0.86

castling rights 1.00 0.98 0.82

kingside castling 1.00 0.98 0.81

queenside castling 1.00 0.97 0.81

fork 0.68 0.13 0.38

pin 0.67 0.20 0.33

legal en passant 0.96 0.92 0.90

ambiguous moves 0.72 0.25 0.57

threatened squares 0.96 0.93 0.71

legal moves 0.92 0.66 0.63

board state 0.98 0.67 0.41

15

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

Table 5: Comparison of performance of linear probes trained to predict high-level board state properties given residual
stream activations with SAEs, both trained on a model with the same architecture as ChessGPT but randomly initialized.
Performance on metrics can be high when the metric is correlated with move number or syntax level patterns (such as
castling, which corresponds to “0-0”).

Concept Linear Probe F1-score Best SAE Reconstruction
score

Best SAE Coverage score

check 0.00 0.00 0.13

can check 0.19 0.03 0.52

can capture queen 0.00 0.00 0.09

queen 0.85 0.95 0.93

bishop pair 0.82 0.74 0.81

castling rights 0.89 0.75 0.65

kingside castling 0.89 0.75 0.65

queenside castling 0.89 0.75 0.64

fork 0.01 0.00 0.07

pin 0.00 0.00 0.25

legal en passant 0.00 0.00 0.06

ambiguous moves 0.13 0.00 0.52

threatened squares 0.82 0.73 0.60

legal moves 0.65 0.36 0.45

board state 0.26 0.01 0.11

16

Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

D. Model Internal Board State Representation
D.1. Othello Models

Previous research of Othello-playing language models found that the model learned a nonlinear model of the board state (Li
et al., 2023a). Further investigation found a closely related linear representation of the board when probing for ”my color”
vs. ”opponent’s color” rather than white vs. black (Nanda et al., 2023). Based on these findings, when measuring the state
of the board in Othello, we represent squares as (mine, yours) rather than (white, black).

D.2. Chess Models

Similar to Othello models, prior studies of chess-playing language models found the same property, where linear probes
were only successful on the objective of the (mine, yours) representation and were unsuccessful on the (white, black)
representation (Karvonen, 2024). They measured board state at the location of every period in the Portable Game Notation
(PGN) string, which indicates that it is white’s turn to move and maintain the (mine, yours) objective. Some characters in
the PGN string contain little board state information as measured by linear probes, and there is not a clear ground truth
board state part way through a move (e.g., the “f” in “Nf3”). We follow these findings and measure the board state at every
period in the PGN string.

When measuring chess piece locations, we do not measure pieces on their initial starting location, as this correlates with
position in the PGN string. An SAE trained on residual stream activations after the first layer of the chess model (which
contains very little board state information as measured by linear probes) obtains a board reconstruction F1-score of 0.01 in
this setting. If we also measure pieces on their initial starting location, the layer 1 SAE’s F1-score increases to 0.52, as the
board can be mostly reconstructed in early game positions purely from the token’s location in the PGN string. Masking the
initial board state and blank squares decreases the F1-score of the linear probe from 0.99 to 0.98.

17

