
Just Trial Once: Ongoing Causal Validation of Machine Learning Models

Jacob M. Chen1 Michael Oberst1

1Department of Computer Science, Johns Hopkins University

Abstract

Machine learning (ML) models are increasingly
used as decision-support tools in high-risk do-
mains. Evaluating the causal impact of deploying
such models can be done with a randomized con-
trolled trial (RCT) that randomizes users to ML vs.
control groups and assesses the effect on relevant
outcomes. However, ML models are inevitably up-
dated over time, and we often lack evidence for the
causal impact of these updates. While the causal
effect could be repeatedly validated with ongoing
RCTs, such experiments are expensive and time-
consuming to run. In this work, we present an alter-
native solution: using only data from a prior RCT,
we give conditions under which the causal impact
of a new ML model can be precisely bounded or es-
timated, even if it was not included in the RCT. Our
assumptions incorporate two realistic constraints:
ML predictions are often deterministic, and their
impacts depend on user trust in the model. Based
on our analysis, we give recommendations for trial
designs that maximize our ability to assess future
versions of an ML model. Our hope is that our
trial design recommendations will save practition-
ers time and resources while allowing for quicker
deployments of updates to ML models.

1 INTRODUCTION

Machine learning (ML) models are increasingly deployed
in high-risk domains like healthcare and criminal justice
as tools to support human decision-makers. For instance,
in healthcare, ML-powered decision-support tools (ML-
DSTs) are widespread, including early warning systems
for sepsis [Adams et al., 2022, Sendak et al., 2020, Boussina
et al., 2024], computer-assisted decision-support for antibi-
otic treatment decisions [Gohil et al., 2024a,b], and a va-

riety of tools for computer-aided diagnostics in radiology
and pathology, with the FDA having cleared or approved
over 1,000 AI/ML-enabled devices to date [FDA, 2024].
Although these models often exhibit high accuracy, it is
not always clear whether their deployment actually leads to
better decisions, and thus, better downstream outcomes. In
healthcare, for instance, we are interested not only in model
accuracy, but also whether deployment of an ML-DST im-
proves health outcomes for patients.

The gold standard evaluation of ML-enabled decision-
support is to assess impact in a randomized controlled trial
(RCT), typically structured as a cluster RCT, where decision-
makers (e.g., clinicians in a given hospital) are randomized
to an ML-DST or no ML-DST. Such trials are becoming
more common in healthcare [Han et al., 2024] and criminal
justice [Imai et al., 2023]. Examples include recent “failed
trials” like the PROTEUS trial of ML-assisted diagnosis
of stress echocardiography [Upton et al., 2024] and trials
with more positive results, such as the INSPIRE trials for
antibiotic recommendations powered by ML predictions of
resistance likelihood [Gohil et al., 2024a,b]. These trials pro-
vide rigorous evidence for the impact of deploying specific
ML-enabled systems (and their underlying models), and the
broader research community recognizes the need for more
randomized trials [Ouyang and Hogan, 2024] and evaluation
of ML systems as interventions [Joshi et al., 2025].

However, the traditional RCT framework is not designed
for ML-enabled systems, which (unlike drugs) are often
updated frequently to handle performance degradation. Even
when RCT data is available for a single version of an ML-
DST, it is not obvious whether those results apply to later
models, and running additional RCTs to verify continued
effectiveness is both time-consuming and costly.

Our work addresses this challenge from a methodological
perspective, as illustrated in Fig. 1: We formalize conditions
under which data from an existing RCT can be used to
precisely infer or bound the causal impact of deploying
models that were not included in the original RCT. We take
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Figure 1: (a) The goal of this paper is to predict the causal impact of deploying a new model πe, given data from a cluster
randomized trial that randomizes sets of users (e.g., hospitals) to one of a set of trial models that does not include πe. (b)
The first challenge: Relevant outcomes (e.g., of patients) are not only influenced by model outputs, but also by how users
actually respond to the outputs of model-based decision-support, which may itself be affected by the perceived reliability /
performance of the model. (c) The second challenge: There may exist some subset of cases (e.g., patients) for whom we
never observe certain model outputs, making it impossible to give precise predictions for outcomes of patients in that group.
In this example, π1 alerts for patients with high blood pressure, and π2 alerts for patients with high heart rate; thus, patients
with high blood pressure and high heart rate receive an alert from both π1 and π2. However, patients in the white region –
those who have both low to medium blood pressure and heart rate – never receive an alert from either trialed model.

into account two important practical considerations: First,
model performance (e.g., accuracy at diagnosing disease)
will influence user trust in the system, and thereby indirectly
influence outcomes (Fig. 1b). Second, while the deployment
of DSTs is often randomized, the predictions themselves are
not typically randomized (Fig. 1c), since doing so would
undermine trust (e.g., by raising alerts randomly). Hence,
there may be some combinations of model outputs (e.g.,
diagnoses) and inputs (e.g., patients) that we never observe.

Under limited assumptions that incorporate these considera-
tions, we derive bounds on the causal impact of deploying
a new model. Crucially, we show that both of our main as-
sumptions can be checked using RCT data that includes at
least two models with differing performance characteristics.
In a simulation study, we show how our framework yields
more rigorous conclusions about the value of model updates,
as compared to naive approaches that only judge models
based on their raw performance.

Our results have practical implications for post-trial analysis
and pre-trial design. First, evaluating new models using
historical trial data is possible under reasonably limited
assumptions, but not all alternative models can be precisely
evaluated in this way. Second, our results suggest a benefit
to running RCTs with multiple ML models to maximize the
ability to estimate causal impacts in future model updates.

To summarize, our contributions are as follows:

• We provide assumptions (Assumptions 2.1 and 3.1
to 3.3) under which we derive bounds (Theorem 3.1)
on the effect of deploying a new ML model, given data

from a prior RCT. Our bounds are tight, and cannot be
improved without further assumptions (Theorem 3.2).

• We provide a simple estimator for these bounds and
a procedure for generating asymptotically valid confi-
dence intervals (Proposition 3.4). We also show that
our core assumptions can be falsified via hypothesis
tests constructed from RCT data trialing multiple mod-
els (Propositions 3.1 and 3.2).

• We provide recommendations for pre-trial design and
post-trial analysis in light of our results (Section 4),
and demonstrate in a simulation study (Section 5) that
our bounds provide a more informative tool to select
among model updates as compared to using the raw
performance (e.g., accuracy) of updated models.

Related literature: Our work is related to off-policy pol-
icy evaluation in causal inference and reinforcement learn-
ing [Uehara et al., 2022]. An ML-DST can be viewed as a
deterministic policy that chooses actions (i.e., predictions
or alerts to raise) based on context (i.e., inputs to the model)
with the goal of obtaining some reward (i.e., positively influ-
encing outcomes for patients). Two critical distinctions arise
in our work versus the standard setting: First, the policies
that are present in retrospective data (in our case, from a
trial) are deterministic rather than random, leading to vio-
lation of the common assumption that, for a given context,
there is a positive probability of seeing any action. Second,
we allow for the fact that actions taken for one patient can
influence outcomes for other patients.

Our work is also related to causal evaluations of AI-assisted
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Figure 2: The directed acyclic graph (DAG) G depicting the
causal relationships in our problem setup (Assumption 2.1).
We draw circles around the nodes Π, A, and M to represent
that these variables are deterministic given their parents (the
nodes that have a direct edge to them).

decision-making in criminal justice settings [Imai et al.,
2023, Ben-Michael et al., 2024, 2025], but our goal differs:
Rather than evaluating the impact of AI-assistance on the
accuracy of (observable) predictions made by a human, we
are interested in the total effect of model deployment on
downstream outcomes. Finally, our work is connected to
the study of causal transportability where the goal is to in-
fer the effect of a known intervention from an RCT onto a
new target population where randomization is difficult, ex-
pensive, or impossible [Pearl and Bareinboim, 2011, Stuart
et al., 2011]. This is similar to our setting as we are also
attempting to draw inference from RCT data. However, our
problem differs in that we would like to infer the effect of
an unseen intervention (i.e., a new model with no historical
trial data) on the same population as in the original RCT.

2 MODEL AND PROBLEM SETUP

Notation: In the rest of this paper, we use the terms model
and policy interchangeably. We use upper case letters X
to denote a random variable, calligraphic font X to denote
the space of possible values, and lower-case letters x to
denote a specific realization of a random variable. We as-
sume that the causal structure of an RCT is modeled by
a directed acyclic graph (DAG) G over a set of vertices
V = {A, Y,D,X,Π,M}, where A ∈ A represents the out-
put (or “action”) of the deployed model, Y ∈ R represents
an outcome of interest, D ∈ D represents the cluster to
which a user is assigned, X ∈ X represents covariates used
as inputs to the ML model, Π ∈ Π represents the specific
ML model that was deployed, and M ∈ R represents model
performance, which we represent as a real number. We as-
sume that model performance is computable for any model
via some functional fM (π) (e.g., the accuracy, precision, re-
call, sensitivity, specificity, or some combination, computed
on a held-out dataset where π(X) is considered the model
prediction). We also use the indicator function 1{S} that is
equal to 1 if the event S is true, and 0 otherwise.

Example 1 (Alerting Systems). Suppose we are interested
in the effect of deploying a DST that monitors patient vital
signs and selectively raises an “alert”. A common applica-

tion of these systems is detecting the onset of sepsis and
alerting clinicians to facilitate timely intervention [Adams
et al., 2022, Sendak et al., 2020, Boussina et al., 2024]. Here,
the inputs X to the model are typically vital signs, the out-
come Y may be long-term patient survival, and the outputs
A include raising an alert (A = 1) or not (A = 0). The vari-
able M in this setting could correspond to the false alarm
rate of the alerting policy Π when it comes to predicting
the onset of disease within the next hour. Note that the la-
bel used for computing performance here (onset of disease)
differs from the patient outcome of interest Y (survival).
A control arm of “no assistance” can be represented as a
deterministic policy that never raises an alert.

Example 2 (Computer Assisted Diagnosis). Suppose we
are interested in the effect of deploying a diagnostic model
that assists with screening for some disease. Here, the out-
come of interest Y may be long-term patient survival, X
would include inputs to the model (e.g., medical imaging,
past medical history), and the set of actionsA could include
a set of K possible diagnostic labels as well as the option of
deferring to a human expert, such that A = {∅, 1, . . . ,K},
where ∅ denotes deferral. The variable M in this setting
could represent the overall accuracy of the diagnostic model
at predicting some true diagnostic label or some combina-
tion of its sensitivity and specificity when it does not defer.
In a randomized trial where the control arm consists of “no
assistance”, the resulting “policy” in the control arm could
be viewed as a deterministic policy that always defers.

For concreteness in the remainder of this paper, we will
primarily use the language of healthcare applications (e.g.,
patients, likelihood of disease onset, clinical outcomes, etc).
Our assumed causal structure can be represented by the
structural causal model (SCM) [Pearl, 2009] that we define
below, which is consistent with the DAG shown in Fig. 2.

Assumption 2.1 (Data Generating Process). The random
variables D ∈ D, Π ∈ Π , X ∈ X , A ∈ A, and Y ∈ R are
generated according to the SCM

D = fD(ϵD), X = fX(ϵX),

Π = πD, M = fM (Π),

A = Π(X) Y = fY (A,X,M, ϵY ),

where ϵY , ϵD, and ϵX are mutually independent.

We make a few notes regarding Assumption 2.1. First, the
randomization into a specific policy (signified by D) is
independent of covariates X . Second, the policy Π is en-
tirely determined by D, model performance M is entirely
determined by Π (and observable), and the output A is a
deterministic function of X , based on Π. This deterministic
nature of model outputs can create difficulties in evaluating
new models; in particular, we are unlikely to see all possible
outputs a ∈ A for all types of patients X . Finally, we as-
sume that outcomes Y are not only a function of covariates



X and the model output A, but also the performance M of
the model1. Note that we assume thatM andA are sufficient
to capture the impact of a deployed model on outcomes.

3 IDENTIFICATION AND BOUNDS

Goal: We adopt potential outcomes notation [Richardson
and Robins, 2013] where we use Y (A = a,M = m) :=
fY (a,X,m, ϵY ) to denote counterfactual outcomes, repre-
senting the value of Y that would be observed if we had
taken action A = a with a model whose performance is
given by M = m2. Using this notation, our goal is to infer
expected outcomes if we had deployed a new model / policy
πe not trialed in the original RCT, i.e.

E[Y (πe)] = E[Y (A = πe,M = fM (πe))]
3 (1)

We refer to E[Y (A = πe,M = fM (πe))] as our target esti-
mand or policy value. Once this value is inferred, one could
compute the causal effect of deploying πe as opposed to any
other trialed model πi by evaluating E[Y (A = πe,M =
fM (πe))]− E[Y (A = πi,M = fM (πi))].

Example 1 (continued). Suppose that the trialed model
alerts based on thresholding a pre-defined risk score r(x)
that is a function of vital signs (e.g., systolic blood pressure,
respiratory rate, etc). Suppose that an initial RCT assigns
patients to a control arm, D = 0 where π0 = 0 (alerts are
never raised), and a treatment arm, D = 1 where the model
raises alerts using the threshold T ∗, i.e., π1(x) := 1{r(x) >
T ∗}. Suppose we want to use this RCT data to evaluate
the impact of an alternative model with a lower threshold,
πl(x) := 1{r(x) > T l} where T l < T ∗. Fig. 3 visually
demonstrates the challenges of this inference task for πl as
we never observe alerts for patients with r(x) ∈ [T l, T ∗].

In order to estimate the policy value in Eq. (1), we introduce
a few key assumptions that relate outcomes under different
hypothetical models / policies. First, since it is unlikely that
our target policy πe has exactly the same performance M
as policies trialed during the RCT, we need to assume a
relationship between outcomes and model performance.

Assumption 3.1 (Performance Monotonicity). Potential
outcomes are non-decreasing in model performance, i.e., if
mi < mj , then for all a ∈ A,

Y (A = a,M = mi) ≤ Y (A = a,M = mj)

Assumption 3.1 says that improvements in model perfor-
mance do not harm patient outcomes, given a fixed action.

1We discuss defining M for the control arm in Section 3.
2We defer a more detailed discussion of potential outcomes

and other causal inference background to Appendix A.
3In the rest of this paper, we use πe as shorthand for πe(X).
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Figure 3: Illustration from Example 1, demonstrating the
challenge of our task. We can use data from both the control
arm, that does not raise alerts, and the treatment arm, that
raises alerts for patients with risk scores greater than T ∗,
to infer patient outcomes when πl does not raise alerts for
patients with risk scores less than T l. Next, we can use data
from π1 to infer patient outcomes when πl raises alerts for
patients with risk scores greater than T ∗. However, we do
not know what patient outcomes are when πl raises alerts
for patients with risk scores between T l and T ∗.

For instance, in the context of Example 1, we might ex-
pect that, for a given patient, having an alarm raised by
a high-performance model would not lead to worse out-
comes than if that alert had been raised by a model with
frequent false alarms. Note that this assumption is stated
with a fixed action A = a and does not imply that improv-
ing performance alone is guaranteed to improve outcomes
– a change in model performance is generally associated
with a change in outputs, which may have its own effect
on outcomes. In Section 5, we give a case where improved
overall performance (accuracy) is associated with worse
outcomes. Assumption 3.1, however, may not always hold;
for instance, clinicians may begin paying less attention to
patients that receive a low risk score from the DST, even
if it is wrong, as their trust in the system increases. Such a
scenario would violate Assumption 3.1. To address this, we
propose a method for falsifying Assumption 3.1 below.

Proposition 3.1 (Falsification of Assumption 3.1). Let X
denote the full space of possible covariate values. Under As-
sumption 2.1, given data from an RCT that includes at least
two trialed models π1 and π2 with different levels of per-
formance fM (π1) < fM (π2), and whose actions agree on
a non-empty set of patients Xagree := {x ∈ X | π1(x) =
π2(x)} such that P (X ∈ Xagree) > 0, the observation that

E[Y | X ∈ Xagree,Π = π2] < E[Y | X ∈ Xagree,Π = π1],

implies that Assumption 3.1 is false.

The proof for Proposition 3.1, along with all other proofs, is
given in Appendix D. While it is not possible to guarantee
that Assumption 3.1 is true in general (over all possible
models), it has observable implications in an RCT that we



can check. In particular, this result suggests a simple hypoth-
esis test that we can use to falsify Assumption 3.1: compare
two empirical means in the data and check if outcomes are
lower under π2 than under π1 on those cases where π1 and
π2 agree on their actions.

In our discussions thus far, we have considered the con-
trol arm to be just another policy. However, this framework
creates practical difficulties when considering the model
performance of a control arm. For instance, suppose the
relevant metric for model performance is the false positiv-
ity rate (as in Example 1); then, M is not clearly defined
because the control arm never raises alerts. Alternatively, if
the relevant metric were model accuracy under no deferral
(as in Example 2), then the performance of the control arm
would be similarly undefined. One way of resolving this
tension is to presume the existence of a “neutral” action
(e.g., not raising an alert, or deferring to clinicians).

Assumption 3.2 (Neutral Actions). There exists a “neutral
action” a0 ∈ A such that the potential outcome of Y under
a0 does not depend on model performance M . That is, for
any two values m1,m2, including when m1 ̸= m2,

Y (A = a0,M = m1) = Y (A = a0,M = m2), (2)

and in these cases we use the shorthand Y (A = a0) to
reflect the fact that the outcome does not depend on M .

Assumption 3.2 is a sufficient condition for leveraging data
from the control arm of an RCT in our setting, and it implies
that, when a model output is “neutral” (e.g., no alert in Ex-
ample 1, or deferral in Example 2), decision-makers act as
they would if no model were deployed. However, note that
there may not always exist a “neutral” output, especially if
decision-makers tend to pay attention to model performance
for all possible model outputs4. Again, we propose a method
for falsifying Assumption 3.2 below.

Proposition 3.2 (Falsification of Assumption 3.2). Un-
der Assumption 2.1, given data from an RCT that includes
at least two trialed models π1 and π2 with different lev-
els of performance fM (π1) < fM (π2), and which both
models take the neutral action a0 on a non-empty set of
patients Xa0

:= {x ∈ X | π1(x) = π2(x) = a0} such that
P (X ∈ Xa0

) > 0, the observation that

E[Y | X ∈ Xa0 ,Π = π2] ̸= E[Y | X ∈ Xa0 ,Π = π1],

implies that Assumption 3.2 is false.

Similar to Proposition 3.1, Proposition 3.2 suggests a simple
hypothesis test that can be used to falsify Assumption 3.2:

4While all of our results make use of Assumption 3.2, they can
also be re-written to hold if Assumption 3.2 is false by re-defining
a0 as some placeholder model output that is never observed under
any model (including πe), such that indicators like 1{πe(x) = a0}
are always zero.

compare two empirical means in the data to test if outcomes
under π1 and π2 are significantly different on the cases
where they both choose a0 as the model output. Of particular
interest is the scenario where a control arm exists, and we are
interested in checking whether outcomes under the control
arm (e.g., not alerting in Example 1) coincide with outcomes
in a treatment arm where the trialed model agrees with the
control arm (e.g., does not raise alerts in Example 1).

Example 1 (continued). Consider an evaluation policy
πu(x) = 1{r(x) > Tu} where the threshold for alerting
Tu > T ∗ is greater than the threshold used in the original
trial and where the performance of πu(x) (e.g., the preci-
sion) is greater than that of the original trialed policy π1.
Fig. 3 gives a visual illustration of such a policy. In this
scenario, under Assumptions 3.1 and 3.2, we can intuitively
infer a lower bound on the policy value of πu using the
outcomes of both (a) patients with r(x) ≤ Tu who did not
receive alerts in the trial (either because they were in the
control arm or because π1 did not raise alerts), and (b) those
patients with r(x) > Tu who did receive alerts under π1.

While these assumptions are sufficient in some scenarios,
they do not yield meaningful bounds when a new policy
takes actions (i.e., a new model produces outputs) on a
given case that was never seen for similar cases in the RCT.

Example 1 (continued). Consider the evaluation policy
πl(x) = 1{r(x) > T l} where the threshold for alerting
T l < T ∗ is less than the threshold used in the original trial.
Regardless of the performance of πl in this scenario, even
under Assumptions 3.1 and 3.2, we have no way to infer out-
comes under πl for the individuals where r(x) ∈ [T l, T ∗].
These correspond to a set of “never alerted” individuals
where πl raises an alert but where neither the control arm
nor the trialed policy π1 raised an alert.

To resolve this fundamental uncertainty, it is sufficient to
know that outcomes Y are bounded, such that we can pro-
vide some bounds on expected outcomes in the evaluation
of policies that take never-before-seen actions.

Assumption 3.3 (Bounded Outcomes). There exists con-
stants Ymin, Ymax such that Ymin ≤ Y ≤ Ymax.

Aside: Why require the performance assumption? We
pause to reflect on the importance of the assumption (im-
plicit in Assumption 2.1) that implies that our choice of
model Π impacts outcomes, not only through the outputs A,
but also through model performance M . Broadly speaking,
this assumption is not only intuitive from a real-world per-
spective, but it also has the welcome side-effect of ruling
out nonsensical conclusions about trial design. For instance,
there are trivial ways to satisfy the condition that, for every
value of X , there exists some model in the trial that matches
the output of πe. In the context of Example 1, for instance,
one could trial an alerting system that simply always raises



alerts for every patient, alongside a control arm that never
raises alerts. Then, the requirement that we observe what
happens to patients both under no alerts and under alerts for
each x ∈ X would be satisfied, eliminating any challenges
related to coverage. The assumption that model accuracy
M impacts outcomes gives a formal rationale for why this
type of trial design is nonsensical: The observed impact of
this “always alert” policy would likely be minimal, or even
harmful, compared to never raising alerts due to the negative
impact of extremely poor accuracy.

We will shortly present our main result: Under our data-
generating process (Assumption 2.1) and the assumptions
above (Assumptions 3.1 to 3.3), we can compute tight
bounds on expected outcomes under any proposed model
πe. First, however, we will define some useful notation for
conveying our results, which builds upon the intuition above.

Definition 3.1 (Policy/Model Sets). For each value of x ∈
X , we define the sets of trialed policies/models (possibly
none) that agree with πe(x) and subsets of this set based on
the performance characteristics of those trialed models5.

Πe(x) := {π ∈ Π | π(x) = πe(x)}
Πe

≤(x) := {π ∈ Π | π(x) = πe(x), fM (π) ≤ fM (πe)}
Πe

≥(x) := {π ∈ Π | π(x) = πe(x), fM (π) ≥ fM (πe)}

We also further define subsets of Πe
≤ and Πe

≥ that contain
only the next-worst or next-best performing model6.

Π̃e
≤(x) := argmax

π∈Πe
≤(x)

fM (π),

Π̃e
≥(x) := argmin

π∈Πe
≥(x)

fM (π)

Remark 3.1. To summarize our notation related to deployed
and new models, we use Π to denote the space of all de-
ployed models in the RCT, Π to refer to the variable rep-
resenting the deployed model, π to denote a specific de-
ployed model, πe to denote the new model we are eval-
uating, and Π in boldface with the superscript e, such
as Πe(x),Πe

≤(x), Π̃
e
≤(x),Π

e
≥(x), and Π̃e

≥(x), to denote
functions that take a value of x ∈ X as input and return a
set of models satisfying various criteria.

Using Definition 3.1, we can give precise lower and upper
bounds on the performance of a new model πe.

Theorem 3.1. Given the data generating process in As-
sumption 2.1, and under Assumptions 3.1 to 3.3, the policy
value of a model / policy πe is bounded as

L(πe) ≤ E[Y (A = πe,M = fM (πe))] ≤ U(πe), (3)
5All these sets are defined with respect to the model πe and

could be written more precisely with πe as an argument instead
of in the superscript (e.g., Π(x, πe)) but we use the superscript
notation for conciseness.

6Where relevant, we use the convention that
argminπ∈∅(fM (π)) = ∅.

where

L(πe) = E
[
1{πe ̸= a0}

(
1{Π̃e

≤(X) ̸= ∅}E[Y | X,Π ∈ Π̃e
≤(X)] (4)

+1{Π̃e
≤(X) = ∅}Ymin

)
(5)

+1{πe = a0}
(

1{Πe(X) ̸= ∅}E[Y | X,Π ∈ Πe(X)] (6)

+1{Πe(X) = ∅}Ymin

)]
(7)

U(πe) = E
[
1{πe ̸= a0}

(
1{Π̃e

≥(X) ̸= ∅}E[Y | X,Π ∈ Π̃e
≥(X)]

+1{Π̃e
≥(X) = ∅}Ymax

)
+1{πe = a0}

(
1{Πe(X) ̸= ∅}E[Y | X,Π ∈ Πe(X)]

+1{Πe(X) = ∅}Ymax

)
]

These bounds are still valid if we replace Π̃e
≤(X) with

Πe
≤(X) and Π̃e

≥(X) with Πe
≥(X).

We give intuition for the construction of the lower bound.
First, note that each value of x ∈ X makes a contribution to
the construction of the lower bound based on which green
and which purple indicator it activates. In Eq. (4), we con-
sider model outputs that are not the neutral action a0 and
values of X at which Π̃e

≤(X) is non-empty. That is, there
is at least one trialed model agreeing in output with πe that
also has less than or equal performance. Here, we use out-
come data from trial arms with the next-worst performance
to infer outcomes. Next, Eq. (5) represents values of X
where πe does not output the neutral action and there are no
agreeing trialed models with less than or equal performance.
In this case, we use Ymin to lower bound outcomes as we
have no trial data on outcomes under such model output. In
Eq. (6), the new model outputs the neutral action a0, and
there is at least one trial model agreeing in output. We can
then use data from any trial models that agreed in output
to infer outcomes as model performance does not influence
outcomes under the neutral action. Finally, Eq. (7) repre-
sents no trial models agreeing in an output of the neutral
action; here, we lower bound by Ymin. The intuition for the
upper bound follows similarly.

The lower and upper bounds in Theorem 3.1 can be con-
structed by iterating over all possible values of X , determin-
ing whether the model output is a neutral action, checking
whether there are agreeing trial models with appropriate
levels of performance, and taking the weighted average of
the appropriate bounds given the observations above over
X . In Appendix B, we give an algorithm for constructing
the bounds proposed in Theorem 3.1 in this manner.

Theorem 3.2 (Tightness of bounds in Theorem 3.1). For
any observational distribution P (X,Y,A,M,Π, D) consis-
tent with the assumptions of Theorem 3.1, there exist two



structural causal modelsML,MU such that both are con-
sistent with Assumptions 2.1 and 3.1 to 3.3, both give rise
to that same observational distribution P , and where the
policy value of any policy πe underML,MU is given by
L(πe), U(πe) from Theorem 3.1, respectively. Hence, these
bounds cannot be improved without further assumptions.

Note that Theorem 3.2 implies that the tightest possible
bounds require the use of Π̃e

≤(x) and Π̃e
≥(x) in place of

Πe
≤(x) and Πe

≥(x), respectively. This requirement arises
because we may get tighter lower-bounds (and similarly,
tighter upper-bounds) by using only outcomes under the
“next-worst/best” performing model, rather than averaging
over outcomes under all worse/better-performing models.
Nonetheless, it may be useful to use Πe

≤(x) instead of
Π̃e

≤(x) in some scenarios due to sample-size concerns, es-
pecially if outcomes Y do not vary significantly with M .

When is exact identification possible? To better understand
conditions for agreement of upper and lower bounds, we
directly consider the width of these bounds.

Proposition 3.3 (Bound Decomposition). The gap between
the bounds in Theorem 3.1 can be written as

U(πe)− L(πe) = E[δ(X,Y,Π)]

where

δ(X,Y,Π) =

1{Πe(X) = ∅}(Ymax − Ymin) (8)

+1{πe ̸= a0}
[

1{Π̃e
≤(X) ̸= ∅, Π̃e

≥(X) ̸= ∅}· (9)

(E[Y | X,Π ∈ Π̃e
≥(X)]− E[Y | X,Π ∈ Π̃e

≤(X)])

+1{Π̃e
≤(X) ̸= ∅, Π̃e

≥(X) = ∅}· (10)

(Ymax − E[Y | X,Π ∈ Π̃e
≤(X)])

+1{Π̃e
≤(X) = ∅, Π̃e

≥(X) ̸= ∅}· (11)

(E[Y | X,Π ∈ Π̃e
≥(X)]− Ymin)

]
Moreover, δ(X,Y,Π) ≥ 0 almost surely under the assump-
tions of Theorem 3.1.

Note that the only way to achieve point identification (a gap
of zero in Proposition 3.3) is if each component (Eqs. (8)
to (11)) is equal to zero. Here, a value of x ∈ X only con-
tributes to the bound decomposition if x satisfies a blue
indicator or both a green and purple indicator. Eq. (8) cap-
tures uncertainty that arises in the subset of the population,
indexed by x ∈ X , for which {Πe(x) = ∅} where no
trialed model agrees with the output of the model πe re-
gardless of whether the new model outputs a0. For this
term to be zero, there must exist some trialed model that
agrees with the action taken by πe for every value of x ∈ X .
Second, Eq. (9) reflects differences in the bounds for the

subpopulation where the evaluation policy πe takes a non-
neutral action (πe(X) ̸= a0), and the trialed models that
agree with πe have at least one of equal performance7 or
include both better-performing and worse-performing mod-
els. Here, the outcomes under the better/worse-performing
models give an upper/lower bound on the outcomes under
πe. For this term to be zero, either there exists an agree-
ing trial model with equal performance, this subpopulation
{Π̃e

≤(x) ̸= ∅, Π̃e
≥(x) ̸= ∅} is empty, or the outcomes

under the better and worse-performing models coincide8.
Equations (10) and (11) capture subpopulations where the
only models that agree with πe are either worse-performing
(giving a lower bound, but no meaningful upper bound) or
better-performing (giving an upper bound, but no meaning-
ful lower bound) when the new model does not output a0,
and these sets must be empty for these terms to be zero.

How can we estimate these bounds from data? Proposi-
tion 3.4 below implies a simple estimator that can be used
to estimate bounds (and provide asymptotically valid con-
fidence intervals) on the policy value for a new policy πe
without the need for training auxiliary models.

Proposition 3.4. The bounds in Theorem 3.1 can be written
L(πe) = E[ψL(Y,X,Π)] and U(πe) = E[ψU (Y,X,Π)],
where ψL and ψU are defined as follows

ψL(Y,X,Π)

:=


Y · 1{Π∈Π̃e

≤(X)}
P (Π∈Π̃e

≤(X))
, if Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0

Ymin, if Π̃e
≤(X) = ∅, πe(X) ̸= a0

Y · 1{Π∈Πe(X)}
P (Π∈Πe(X)) , if Πe(X) ̸= ∅, πe(X) = a0

Ymin, if Πe(X) = ∅, πe(X) = a0

ψU (Y,X,Π)

:=


Y · 1{Π∈Π̃e

≥(X)}
P (Π∈Π̃e

≥(X))
, if Π̃e

≥(X) ̸= ∅, πe(X) ̸= a0

Ymax, if Π̃e
≥(X) = ∅, πe(X) ̸= a0

Y · 1{Π∈Πe(X)}
P (Π∈Πe(X)) , if Πe(X) ̸= ∅, πe(X) = a0

Ymax, if Πe(X) = ∅, πe(X) = a0

Moreover, since ψL, ψU are known functions of the data,
these bounds can be estimated as

L̂(πe) := n−1
∑
i

ψL(Yi, Xi,Πi)

Û(πe) := n−1
∑
i

ψU (Yi, Xi,Πi)

7When there exists an agreeing trial model with equal per-
formance, both {Π̃e

≤(X) ̸= ∅} and {Π̃e
≥(X) ̸= ∅} are true

according to their definitions.
8Equivalence of conditional outcomes could occur if differ-

ences in performance do not impact outcomes for the range of
performances tested. Note that Assumption 3.1 allows for this
occurrence, as it does not assume a strict inequality.



where
√
n(L − L̂) d→ N(0, σ2(ψL)) where σ2(ψL) is the

variance of ψL and d→ denotes convergence in distribution,
with similar convergence of Û , and hence[

L̂(πe)− Φ−1
(
1− α

2

)
· σ̂(ψL)√

n
,

Û(πe) + Φ−1
(
1− α

2

)
· σ̂(ψU )√

n

]
is an asymptotically valid (1−α)-confidence interval, where
σ̂(ψ) is the empirical standard deviation of ψ and Φ−1 is
the inverse of the standard normal CDF.

Proposition 3.4 gives a straightforward way of estimating
bounds from data as empirical means over the RCT dataset.
To give intuition, terms like P (Π ∈ Πe

≥(X)) are known by
design (though they depend on X), since P (Π) is assumed
to be known and the trialed policies Π are known, and so
asymptotic normality is straightforward to demonstrate9. In
Section 5, we use Proposition 3.4 to estimate the bounds for
the effect of deploying a new model.

4 RECOMMENDATIONS FOR
PRE-TRIAL DESIGN

Recommendation: Conduct trials with multiple models.
Our results suggest the utility of trialing multiple models in
a cluster RCT that vary in their outputs on different patient
populations and which exhibit a range of reasonable per-
formance characteristics. First of all, doing so gives more
flexibility to estimate the effect of new models if there are
sizeable populations where trialed models raise different
outputs. Second, falsification of our main assumptions (As-
sumptions 3.1 and 3.2) can be done using data from patient
populations where the outputs of different models agree.

Recommendation: Use previous trial data to inform de-
ployment of new models. Given a set of models or policies
included in a trial, it may be tempting to conclude that an
updated model that is more accurate (on average) should be
deployed. However, this conclusion may be flawed given the
goal of improving patient outcomes. For instance, a model
that is more accurate, but achieves higher accuracy by sacri-
ficing performance on some important subpopulation, may
ultimately lead to worse outcomes. Indeed, in Section 5, we
give a simple simulated example where the optimal model
is not the model with the best performance. Given the po-
tential impacts of deploying ML models in practice, it is
paramount that we use previous trial data to draw inference
on outcomes of interest prior to deploying a new model.

9The statistical efficiency of these bounds could potentially
be improved by using a doubly-robust-style estimator that incor-
porates an estimate of terms, such as µ=(X) := E[Y | X =
x,Π ∈ Π̃e

≤(X)], but we present this simpler estimator for ease of
exposition and understanding.
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Figure 4: Bar graph giving a visual representation of the
data generating process in the simulation study. The bars
on the left depict the likelihood of disease onset for varying
levels of baseline health X , and the bars on the right depict
the likelihood of survival, assuming model performance is
fixed at m = 0.5. The arrows above the bars on the right
show how survival rates change for each level of X when
patients receive an alert from an alerting model.

Table 1: Probability of developing disease (E[O]) and ex-
pected survival rate (E[Y (a,m)]) for the simulation study.

X = 0 X = 1
E[O] 0.9 0.7

E[Y (a,m)] 0.46 + ((1 +m)/2) · 0.18a 0.37 + ((1 +m)/2) · 0.56a

X = 2 X = 3
E[O] 0.6 0.5

E[Y (a,m)] 0.46 + ((1 +m)/2) · 0.48a 0.55 + ((1 +m)/2) · 0.4a

5 SIMULATION STUDY

We now describe a simple simulated example, inspired
by Example 1, that demonstrates the results derived in Sec-
tion 3 and how our proposed method allows for more robust
comparisons between models. We consider machine learn-
ing models that alert clinicians to the near-term onset of
some disease, denoted by O ∈ {0, 1}. We simulate a cluster
RCT with three arms: A control arm, denoted as a policy
π0 that never alerts, and two arms where models π1 and
π2 are deployed, respectively. For simplicity, we consider
model performance M to be the ground-truth accuracy in
predicting disease onset. Our outcome of interest, denoted
by Y ∈ {0, 1}, is patient survival, and X represents a base-
line health characteristic. For the sake of an interpretable
simulation, X takes on values uniformly in {0, 1, 2, 3}, and
O and Y are Bernoulli random variables. The probability
of O = 1 depends only on X whereas the probability of
Y = 1 depends on X , A, and M . The trialed models are
defined as π1 = 1{X = 1} and π2 = 1{X ∈ {2, 3}}.

Table 1 gives expected values ofO and Y (a,m) over all pos-
sible values of X , satisfying Assumptions 2.1, 3.2 and 3.3;
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Figure 5: Bar graph showing accuracy at predicting disease
and expected patient survival rates of different simulated
alerting models. Bars denote ground-truth values, and blue
intervals denote estimated bounds using our approach. Be-
cause πe0 and πe1 were not trialed in the RCT, their bounds
are wider. Despite πe1 having the greatest raw accuracy, πe0
has the most positive effect on patient survival rates.

Fig. 4 visualizes the same information for fixed model per-
formance. The aggregate patterns reflect the following pro-
cess: First, we assume that all patients who do not develop
disease will survive. Then, among the sickest individuals
(X = 0), the survival rate among patients with disease is
40% without alerts10 and between 50-60% with alerts, as in-
fluenced bym, where 50% corresponds to a model with zero
accuracy, and 60% is achieved by a model with perfect accu-
racy. These patterns reflect the intuition that survival is im-
proved (when alerts are raised) under a model perceived to
be more accurate. However, the survival rate (among those
with disease) is much improved for other groups, going from
10% without alerts to 50-90% with alerts11. Since the actual
prevalence of disease varies across these groups, and since
alerts only help those with disease, the overall causal effect
is largest among those where X = 1. Appendix C describes
and explains this data generating process in detail.

We consider the effect of deploying two new models, πe0 =
1{X ∈ {1, 2, 3}} and πe1 = 1{X ∈ {0, 1}}, whose ac-
curacies at predicting onset are computable using Table 1.
We then estimate bounds on E[Y (A = π,M = fM (π))]
for each model (including confidence intervals to incorpo-
rate finite-sample uncertainty, as described under Propo-
sition 3.4) using data from a simulation with n = 5, 000.
Fig. 5 shows the simulation results and illustrates that the
most accurate model is not always the best: πe1 has the
greatest accuracy in predicting the onset of disease, but πe0

10To align this explanation with Table 1, note that all of the 10%
without disease and 40% of the 90% with disease survive, yielding
the overall survival rate of 46% without alerts.

11For explicit computations of survival rates with and without
alerts, see Appendix C.

has the largest causal impact on patient outcomes. This re-
versal occurs since πe0 raises alerts for patients who stand
to benefit the most, whereas πe1 tends to alert for patients
who have little to gain from them. Moreover, our bounds re-
flect greater confidence in the (positive) impact of πe0, since
the lower bound for patient outcomes under πe0 is greater
than patient outcomes under all trialed models. Python code
implementing this simulation study, implementing the esti-
mation procedure proposed in Proposition 3.4, and for gener-
ating Figs. 4 and 5 are publicly available online at: https:
//github.com/jacobmchen/just_trial_once.

6 CONCLUSION AND LIMITATIONS

In this paper, we discussed methods for estimating the causal
impact of new or updated ML and AI models not previously
trialed in an RCT. Under the important considerations that
ML predictions are deterministic and that clinician trust
in ML models play a role in determining their impacts on
patient outcomes, we demonstrated how one could estimate
lower and upper bounds on the effect of deploying a new
model. We further proved tightness of our proposed bounds
(Theorem 3.2) and gave inverse probability weighted-style
estimators for them (Proposition 3.4). Given the possibility
that key assumptions for employing our methods may not be
fulfilled, we also proposed simple strategies for testing and
falsifying them. Finally, we concluded with a simulation
study to illustrate the application of our method and to
highlight its benefits when selecting among model updates.

However, our work is not without limitations: First, our de-
rived bounds are naturally pessimistic, and, while they can-
not be tightened without further assumptions (Theorem 3.2),
some additional assumptions may be warranted in certain
cases. For instance, we implicitly assume that “anything can
happen” when a model raises an alert on patients who never
received alerts in the past. One could instead assume that
alerts are not harmful (except for their impact on perfor-
mance), or that they are not harmful for a specific patient
if the alert is correct. Second, we assume that model per-
formance can be summarized in a single real number, but
a more complex representation (e.g., involving subgroup-
specific performance, performance adaptation over time,
and clinician experience) may be warranted in some appli-
cations. Finally, a core limitation of our approach is that we
still require an RCT. Using RCT data comes with many ben-
efits: It allows for greater confidence that core assumptions
(e.g., randomization of policies) hold by design, and even
allows for checking (in some cases) the core assumptions
we make in this paper, as we have shown (Propositions 3.1
and 3.2). However, observational studies (e.g., pre-post stud-
ies of model deployments) are often easier to run in practice.
Our hope is that this work can serve as a springboard to-
wards increasing the utility, and thus adoption, of RCTs for
ML models deployed in high-risk settings.

https://github.com/jacobmchen/just_trial_once
https://github.com/jacobmchen/just_trial_once
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A BRIEF CAUSAL INFERENCE OVERVIEW
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Figure 6: SWIG showing G(a,m).

In this section, we give a brief overview of additional topics in causal inference that we use in our proofs and provide
references for further reading on these topics.

First, independencies implied in the full data distribution P (V) can be read off from G using the d-separation criterion
[Pearl, 2014]. Next, we follow [Richardson and Robins, 2013] to convert a DAG G, given an intervened on variable W , to
a single-world intervention graph (SWIG) using a node-splitting transformation as follows: (1) replace all children of W
(here, V ) with the potential outcome random variable V (w), (2) add the intervened on variable w into G as a new vertex,
and (3) change all outgoing edges from W to originate from w instead. This new SWIG is denoted by G(w). It is possible
to intervene on multiple variables in G by repeatedly applying the node-splitting transformation described above. Fig. 6
shows the SWIG G(a,m), the SWIG containing the potential outcome random variable Y (a,m) corresponding to the target
estimand E[Y (A = πe,M = fM (πe))].

In order to connect potential outcome distributions to observed distributions, [Malinsky et al., 2019] propose a set of three
rules known as the potential outcome calculus (po-calculus). Most salient to our proofs is Rule 2 of po-calculus, which
states that P (V (w) | X) = P (V | X,W = w) if V (w) ⊥⊥ W | X in G(w), where X is any set of random variables in
G(w), including the empty set. Rule 2 is also referred to as the conditional ignorability assumption commonly used in causal
inference, which states that a potential outcome of interest is independent of a treatment of interest conditional on a sufficiently
rich set of covariates X. The benefit of using Rule 2 of po-calculus is that it allows us to use d-separation in a SWIG to directly
verify whether conditional ignorability holds given a graph. For instance, note that Y (a,m) ⊥⊥ A,M | X in the SWIG
shown in Fig. 6. Rule 2 of po-calculus thus allows us to conclude that P (Y (a,m) | X) = P (Y | A = a,M = m,X).

We now formally define some concepts from our discussion above that we use in our proofs.

Corollary A.1 (Consistency). Under Assumption 2.1, if A = a,M = m, then Y = Y (A = a,M = m).

Corollary A.2 (Conditional Ignorability). Under Assumption 2.1, since Y (a,m) ⊥⊥ A,M | X , then P (Y (a,m) | X) =
P (Y | A = a,M = m,X).



B ALGORITHMIC VIEWPOINT OF COMPUTING BOUNDS

Here, we give an algorithmic construction of the lower and upper bounds presented in Theorem 3.1. First, we define
sub-algorithms in Algorithm 1 that compute the lower and upper bounds conditional on a value of x ∈ X . Next, we define
the algorithm that constructs the complete bounds in Algorithm 2 by iterating through all possible values of x ∈ X and
computing the weighted average of the bounds for each x.

Algorithm 1 Sub-Algorithms for computing lower and upper bounds conditional on X .

1: Input: x
2: Output: Tight lower bound on Y conditional on X = x
3: function CONDITIONAL_LOWER(x)
4: if πe(x) ̸= a0 then
5: if Π̃e

≤(x) ̸= ∅ then return E[Y | X = x,Π ∈ Π̃e
≤(x)]

6: else if Π̃e
≤(x) = ∅ then return Ymin

7: end if
8: else if πe(x) = a0 then
9: if Πe(x) ̸= ∅ then return E[Y | X = x,Π ∈ Πe(x)]

10: else if Πe(x) = ∅ then return Ymin

11: end if
12: end if
13: end function
14:
15: Input: x
16: Output: Tight upper bound on Y conditional on X = x
17: function CONDITIONAL_UPPER(x)
18: if πe(x) ̸= a0 then
19: if Π̃e

≥(x) ̸= ∅ then return E[Y | X = x,Π ∈ Π̃e
≥(x)]

20: else if Π̃e
≥(x) = ∅ then return Ymax

21: end if
22: else if πe(x) = a0 then
23: if Πe(x) ̸= ∅ then return E[Y | X = x,Π ∈ Πe(x)]
24: else if Πe(x) = ∅ then return Ymax

25: end if
26: end if
27: end function

Algorithm 2 Algorithm for computing lower and upper bounds for E[Y (A = πe,M = fM (πe)].

1: lower_bound← 0
2: upper_bound← 0
3: for x ∈ X do
4: lower_bound← lower_bound+ CONDITIONAL_LOWER(x)× P (X = x)
5: upper_bound← upper_bound+ CONDITIONAL_UPPER(x)× P (X = x)
6: end for
7: return (lower_bound, upper_bound)

C DATA GENERATING PROCESS OF SIMULATION STUDY

Here, we define in detail the data generating process for the simulation study in Section 5. The trialed models are defined
as π0 = 0, π1 = 1{X = 1}, and π2 = 1{X ∈ {2, 3}}. We use acc(πi) to denote the accuracy of policy πi at predicting



disease O. One can verify that this data generating process obeys the structural causal model given in Assumption 2.1.

X ∼ discrete uniform[0, 3]

D ∼ discrete uniform[0, 2]

Π = πD

A = πD(X)

O ∼ Bernoulli(1{X = 0}0.9 + 1{X = 1}0.7 + 1{X = 2}0.6 + 1{X = 3}0.5)
M = acc(Π)

Y ∼ Bernoulli(1{X = 0}(0.46 + ((1 +m)/2) · 0.18A) + 1{X = 1}(0.37 + ((1 +m)/2) · 0.56A)
+ 1{X = 2}(0.46 + ((1 +m)/2) · 0.48A) + 1{X = 3}(0.55 + ((1 +m)/2) · 0.4A)

We now explain in detail how the probabilities of the survival rate Y are computed. First, conditional on patients who have
the disease (O = 1), the survival rates without and with alerts are as follows:

Table 2: Probability of survival (E[Y (a,m)]) under no alerts (E[Y (0,m)]) and alerts (E[Y (1,m)]) for the simulation study.

X = 0 X = 1
E[Y (0,m) | O = 1] 0.4 0.1
E[Y (1,m) | O = 1] 0.4 + ((1 +m)/2) · 0.2 0.1 + ((1 +m)/2) · 0.8

X = 2 X = 3
E[Y (0,m) | O = 1] 0.1 0.1
E[Y (1,m) | O = 1] 0.1 + ((1 +m)/2) · 0.8 0.1 + ((1 +m)/2) · 0.8

When patients do not have the disease (O = 0), their probability of survival is 1, that is E[Y (a,m) | O = 0] = 1 for all
values of A and M . The assumption that lower model performance has a weakening effect on the positive effect of alerting
is implicit in Table 2. For patients with X = 0 and O = 1, the survival probability with alerts range from 0.5 when accuracy
is 0 to 0.6 when accuracy is 1. For all other patients, the survival probability with alerts range from 0.5 when accuracy is 0
to 0.9 when accuracy is 1.

Now, to compute the probabilities of survival given in Table 1, we apply the law of total probability – E[Y (a,m)] =
E[Y (a,m) | O = 0]p(O = 0) + E[Y (a,m) | O = 1]p(O = 1) – for each value of X . We give this explicit computation in
the following table.

Table 3: Probability of survival (E[Y (a,m)]) computed explicitly when summed over the likelihood of developing the
disease (O = 1).

X = 0 X = 1
E[Y (a,m)] 1 · 0.1 + (0.4 + ((1 +m)/2)0.2a) · 0.9 1 · 0.3 + (0.1 + ((1 +m)/2)0.8a) · 0.7

X = 2 X = 3
E[Y (a,m)] 1 · 0.4 + (0.1 + ((1 +m)/2)0.8a) · 0.6 1 · 0.5 + (0.1 + ((1 +m)/2)0.8a) · 0.5

After simplifying the expressions above, we get the probabilities of survival shown in Table 1. Note that the dependence of
Y on O does not violate Assumption 2.1 and does not change Fig. 2 because O is an unobserved variable on the directed
path from X to Y .

D PROOFS

Proposition 3.1 (Falsification of Assumption 3.1). Let X denote the full space of possible covariate values. Under Assump-
tion 2.1, given data from an RCT that includes at least two trialed models π1 and π2 with different levels of performance
fM (π1) < fM (π2), and whose actions agree on a non-empty set of patients Xagree := {x ∈ X | π1(x) = π2(x)} such that
P (X ∈ Xagree) > 0, the observation that

E[Y | X ∈ Xagree,Π = π2] < E[Y | X ∈ Xagree,Π = π1],



implies that Assumption 3.1 is false.

Proof. We will show that if Assumption 3.1 holds, then the stated observation will yield a contradiction. We will first show
that the Assumption 3.1 implies a point-wise inequality over x, and then show that this inequality holds when aggregating
over X ∈ Xagree. First, choose any x ∈ Xagree. Then we can write

E[Y | X = x,Π = πi] = E[Y | X = x,A = πi(x),M = fM (πi),Π = πi] (12)
= E[Y (A = πi(x),M = fM (πi)) | X = x,A = πi(x),M = fM (πi),Π = πi] (13)
= E[Y (A = πi(x),M = fM (πi)) | X = x] (14)

where Eq. (12) follows from the implication {Π = πi, X = x} =⇒ {A = πi(x),M = fM (πi)}, Eq. (13) follows from
consistency (Corollary A.1), and Eq. (14) follows from conditional ignorability (Corollary A.2). Since Eq. (14) holds for
both policies π1, π2, we can then write that

E[Y | X = x,Π = π2]− E[Y | X = x,Π = π1]

= E[Y (A = π2(x),M = fM (π2))− Y (A = π1(x),M = fM (π1)) | X = x] (15)
≥ 0 (16)

where Eq. (15) follows from linearity of expectation, and Eq. (16) follows from Assumption 3.1, since π1(x) = π2(x) by
construction, and fM (π2) > fM (π1). To aggregate, we first observe that X ⊥⊥ Π in our data generating process (as the
policies are assigned randomly and independently of X). Hence P (X | Π = π2, X ∈ Xagree) = P (X | Π = π1, X ∈
Xagree) = P (X | X ∈ Xagree). Accordingly, we can write that

E[Y | X ∈ Xagree,Π = π2]− E[Y | X ∈ Xagree,Π = π1]

=

∫
x

E[Y | X = x,Π = π2]dP (x | Π = π2, X ∈ Xagree)−
∫
x

E[Y | X = x,Π = π1]dP (x | Π = π1, X ∈ Xagree)

=

∫
x

E[Y | X = x,Π = π2]dP (x | X ∈ Xagree)−
∫
x

E[Y | X = x,Π = π1]dP (x | X ∈ Xagree)

=

∫
x

(E[Y | X = x,Π = π2]− E[Y | X = x,Π = π1]) dP (x | X ∈ Xagree)

≥ 0

where the final inequality follows from the point-wise inequality in Eq. (16), and which directly gives the implication

E[Y | X ∈ Xagree,Π = π2] ≥ E[Y | X ∈ Xagree,Π = π1],

which is contradicted in the case where the stated observation (the relationship < instead of ≥) holds.

Proposition 3.2 (Falsification of Assumption 3.2). Under Assumption 2.1, given data from an RCT that includes at least
two trialed models π1 and π2 with different levels of performance fM (π1) < fM (π2), and which both models take the
neutral action a0 on a non-empty set of patients Xa0

:= {x ∈ X | π1(x) = π2(x) = a0} such that P (X ∈ Xa0) > 0, the
observation that

E[Y | X ∈ Xa0
,Π = π2] ̸= E[Y | X ∈ Xa0

,Π = π1],

implies that Assumption 3.2 is false.

Proof. Our proof follows a similar structure to that of Proposition 3.1. We will show that if Assumption 3.2 holds, then the
stated observation would yield a contradiction. We will first show that the Assumption 3.2 implies a point-wise equality over
x, and then show that this inequality holds when aggregating over X ∈ Xa0

. First, choose any x ∈ Xa0
. Then we can write

E[Y | X = x,Π = πi] = E[Y (A = πi(x),M = fM (πi)) | X = x] (17)

using the same argument as in Proposition 3.1 (namely, the implication that {Π = πi, X = x} =⇒ {A = πi(x),M =
fM (πi)}, consistency (Corollary A.1), and conditional ignorability (Corollary A.2). Since Eq. (17) holds for both policies



π1, π2, we can then write that

E[Y | X = x,Π = π2]− E[Y | X = x,Π = π1]

= E[Y (A = π2(x),M = fM (π2))− Y (A = π1(x),M = fM (π1)) | X = x] (18)
= E[Y (A = a0,M = fM (π2))− Y (A = a0,M = fM (π1)) | X = x] (19)
= 0 (20)

where Eq. (18) follows from linearity of expectation, Eq. (19) follows from the fact that x ∈ Xa0
, and Eq. (20) follows

from Assumption 3.2, which states that Y (A = a0,M = m) = Y (A = a0,M = m′) for any m,m′.

To aggregate, we first observe (similar to the proof of Proposition 3.1) that X ⊥⊥ Π in our data generating process (as the
policies are assigned randomly and independently of X). As a result, we can write that

E[Y | X ∈ Xa0 ,Π = π2]− E[Y | X ∈ Xa0 ,Π = π1]

=

∫
x

E[Y | X = x,Π = π2]dP (x | Π = π2, X ∈ Xa0)−
∫
x

E[Y | X = x,Π = π1]dP (x | Π = π1, X ∈ Xa0)

=

∫
x

E[Y | X = x,Π = π2]dP (x | X ∈ Xa0
)−

∫
x

E[Y | X = x,Π = π1]dP (x | X ∈ Xa0
)

=

∫
x

(E[Y | X = x,Π = π2]− E[Y | X = x,Π = π1]) dP (x | X ∈ Xa0
)

= 0

where the final equality follows from the point-wise equality in Eq. (20), and which directly gives the implication

E[Y | X ∈ Xa0
,Π = π2] = E[Y | X ∈ Xa0

,Π = π1],

which is contradicted in the case where the stated observation (an inequality instead of equality) holds.

D.1 PROOF OF THEOREM 3.1

Before we give the proof of Theorem 3.1, we restate Definition 3.1 from the main text, for ease of reference when reviewing
the proof.

Definition 3.1 (Policy/Model Sets). For each value of x ∈ X , we define the sets of trialed policies/models (possibly none)
that agree with πe(x) and subsets of this set based on the performance characteristics of those trialed models1.

Πe(x) := {π ∈ Π | π(x) = πe(x)}
Πe

≤(x) := {π ∈ Π | π(x) = πe(x), fM (π) ≤ fM (πe)}
Πe

≥(x) := {π ∈ Π | π(x) = πe(x), fM (π) ≥ fM (πe)}

We also further define subsets of Πe
≤ and Πe

≥ that contain only the next-worst or next-best performing model2.

Π̃e
≤(x) := argmax

π∈Πe
≤(x)

fM (π),

Π̃e
≥(x) := argmin

π∈Πe
≥(x)

fM (π)

Armed with Definition 3.1, we first state some useful inequalities that will form the core of the proof for Theorem 3.1

Lemma D.1 (Independence under neutral actions). Under the assumed data generating process (Assumption 2.1) and
Assumption 3.2,

Y ⊥⊥M | X,A = a0 (21)
1All these sets are defined with respect to the model πe and could be written more precisely with πe as an argument instead of in the

superscript (e.g., Π(x, πe)) but we use the superscript notation for conciseness.
2Where relevant, we use the convention that argminπ∈∅(fM (π)) = ∅.



Proof. This claim follows from Assumption 3.2 in a straightforward fashion. Let m and m′ be any two distinct values of M ,
then

P (Y | X = x,M = m,A = a0) = P (Y (A = a0,M = m) | X = x,M = m,A = a0) Consistency
= P (Y (A = a0,M = m′) | X = x,M = m,A = a0) By Assumption 3.2
= P (Y (A = a0,M = m′) | X = x,M = m′, A = a0) Y (a,m) ⊥⊥M,A | X
= P (Y | X = x,M = m′, A = a0) Consistency

The claim follows from the fact that we have shown equality P (Y | X = x,M = m,A = a0) = P (Y | X = x,M =
m′, A = a0) for arbitrary m,m′.

Lemma D.2 (Outcome Equalities / Inequalities). Under Assumptions 3.1 and 3.2, the following inequalities hold, where we
use πe as shorthand for πe(x),

1{Π̃e
≤(x) ̸= ∅}E[Y | X = x,A = πe,M = fM (πe)] ≥ 1{Π̃e

≤(x) ̸= ∅}E[Y | X = x,Π ∈ Π̃e
≤(x)] (22)

1{Π̃e
≥(x) ̸= ∅}E[Y | X = x,A = πe,M = fM (πe)] ≤ 1{Π̃e

≥(x) ̸= ∅}E[Y | X = x,Π ∈ Π̃e
≥(x)] (23)

1{Πe(x) ̸= ∅, πe = a0}E[Y | X = x,A = πe,M = fM (πe)] =

1{Πe(x) ̸= ∅, πe =a0}E[Y | X = x,Π ∈ Πe(x)] (24)

Proof. The proof for each of these relations follows a similar structure. For each, we only need to consider the relation when
the stated indicator (identical on either side) is equal to 1, since all are trivially true when the indicator is equal to zero.

For Eq. (22), the event {Π ∈ Π̃e
≤(x)} implies {A = πe(x),M ≤ fM (πe)} from the definition of Π̃e

≤(x) (see Definition 3.1).
By the independence Y ⊥⊥ Π | X,A,M , we have it that E[Y | X = x,Π ∈ Π̃e

≤(x)] = E[Y | X = x,A = πe,M ≤
fM (πe)], and this conditional expectation is well-defined when Π̃e

≤(x) ̸= ∅. Finally, we make use of Assumption 3.1,
which implies that E[Y | X = x,A = πe,M = fM (πe)] ≥ E[Y | X = x,A = πe,M ≤ fM (πe)]. The stated inequality
follows.

For Eq. (23), the event {Π ∈ Π̃e
≥(x)} implies {A = πe(x),M ≥ fM (πe)} from the definition of Π̃e

≥(x) (see Definition 3.1).
By the independence Y ⊥⊥ Π | X,A,M , we have it that E[Y | X = x,Π ∈ Π̃e

≥(x)] = E[Y | X = x,A = πe,M ≥
fM (πe)], and this conditional expectation is well-defined when Π̃e

≥(x) ̸= ∅. Finally, we make use of Assumption 3.1,
which implies that E[Y | X = x,A = πe,M = fM (πe)] ≤ E[Y | X = x,A = πe,M ≥ fM (πe)]. The stated inequality
follows.

Finally, for Eq. (24), we can observe that

1{Πe(x) ̸= ∅, πe = a0}E[Y | X = x,Π ∈ Πe(x)]

= 1{Πe(x) ̸= ∅, πe = a0}E[Y | X = x,A = πe(x),Π ∈ Πe(x)] (25)
= 1{Πe(x) ̸= ∅, πe = a0}EM [E[Y | X = x,A = πe(x),Π ∈ Πe(x),M ] | X = x,A = πe(x),Π ∈ Πe(x)] (26)
= 1{Πe(x) ̸= ∅, πe = a0}EM [E[Y | X = x,A = πe(x),M ] | X = x,A = πe(x),Π ∈ Πe(x)] (27)
= 1{Πe(x) ̸= ∅, πe = a0}EM [E[Y | X = x,A = a0,M ] | X = x,A = πe(x),Π ∈ Πe(x)] (28)
= 1{Πe(x) ̸= ∅, πe = a0}EM [E[Y | X = x,A = a0] | X = x,A = πe(x),Π ∈ Πe(x)] (29)
= 1{Πe(x) ̸= ∅, πe = a0}E[Y | X = x,A = a0] (30)
= 1{Πe(x) ̸= ∅, πe = a0}E[Y | X = x,A = πe,M = fM (πe)] (31)

where Eq. (25) follows from the fact that the event {Π ∈ Πe(x)} =⇒ {A = πe(x)} by the definition of Πe(x)
(see Definition 3.1). Equation (26) simply applies the law of total probability, including M in the inner expectation (and
where we use EM as helpful shorthand to remind the reader that the outer expectation is taken over M ). Equation (27)
uses the fact that Y ⊥⊥ Π | A,M,X in our data-generating process to remove Π from the inner expectation. Equation (28)
replaces πe(x) with a0 due to the outside indicator that restricts to x where πe(x) = a0, so whenever this expression is
non-zero, then πe(x) = a0. Finally, Eq. (29) uses Lemma D.1, which implies that E[Y | X = x,A = a0,M = m] = E[Y |
X = x,A = a0], and Eq. (30) uses the fact that the inner expectation is a constant value, to remove the outer expectation
over M . From Eq. (30), we can simply add back the conditioning on M = fM (πe), again using Lemma D.1, and recall that
πe = a0 under the indicator, to arrive at Eq. (31), which completes the proof.



We will also make use of the following inequalities that follow from boundedness of Y under Assumption 3.3.

Lemma D.3 (Boundedness). Under Assumption 3.3, the following inequalities hold by the fact that Y ∈ [Ymin, Ymax].

1{Π̃e
≤(X) = ∅}E[Y | X = x,A = πe,M = fM (πe)] ≥ 1{Π̃e

≤(X) = ∅}Ymin

1{Π̃e
≥(X) = ∅}E[Y | X = x,A = πe,M = fM (πe)] ≤ 1{Π̃e

≥(X) = ∅}Ymax

1{Πe(X) = ∅, πe(x) = a0}E[Y | X = x,A = a0,M = fM (πe)] ≥ 1{Πe(X) = ∅, πe(x) = a0}Ymin

1{Πe(X) = ∅, πe(x) = a0}E[Y | X = x,A = a0,M = fM (πe)] ≤ 1{Πe(X) = ∅, πe(x) = a0}Ymax

Proof. Each claim is immediate from the fact that Y is bounded between Ymin and Ymax, with the additional observation that
for each inequality, the indicators are identical on either side.

We are now prepared to prove our main result.

Theorem 3.1. Given the data generating process in Assumption 2.1, and under Assumptions 3.1 to 3.3, the policy value of a
model / policy πe is bounded as

L(πe) ≤ E[Y (A = πe,M = fM (πe))] ≤ U(πe), (3)

where

L(πe) = E
[
1{πe ̸= a0}

(
1{Π̃e

≤(X) ̸= ∅}E[Y | X,Π ∈ Π̃e
≤(X)] (4)

+1{Π̃e
≤(X) = ∅}Ymin

)
(5)

+1{πe = a0}
(

1{Πe(X) ̸= ∅}E[Y | X,Π ∈ Πe(X)] (6)

+1{Πe(X) = ∅}Ymin

)]
(7)

U(πe) = E
[
1{πe ̸= a0}

(
1{Π̃e

≥(X) ̸= ∅}E[Y | X,Π ∈ Π̃e
≥(X)]

+1{Π̃e
≥(X) = ∅}Ymax

)
+1{πe = a0}

(
1{Πe(X) ̸= ∅}E[Y | X,Π ∈ Πe(X)]

+1{Πe(X) = ∅}Ymax

)
]

These bounds are still valid if we replace Π̃e
≤(X) with Πe

≤(X) and Π̃e
≥(X) with Πe

≥(X).

Proof. We begin with the lower bound, and note that the upper bound follows similarly.

Lower Bound First, we observe that the given set indicators form a partition over X (a set of disjoint subsets of X whose
union is equal to X ), such that

1 = 1{Π̃e
≤(X) ̸= ∅, πe(X) ̸= a0}+ 1{Π̃e

≤(X) = ∅, πe(X) ̸= a0}
+ 1{Πe(X) ̸= ∅, πe(X) = a0}+ 1{Πe(X) = ∅, πe(X) = a0} (32)



Here, the subsets of X ∈ X satisfying each of {Π̃e
≤(X) ̸= ∅} and {Π̃e

≤(X) = ∅} form a partition over X by definition as
does {Πe(X) ̸= ∅} and {Πe(X) = ∅}. Hence, we can write that

E[Y (A = πe,M = fM (πe))]

= E[E[Y (A = πe,M = fM (πe)) | X]] (33)
= E[E[Y | X,A = πe,M = fM (πe))]] (34)

= E[(1{Π̃e
≤(X) ̸= ∅, πe(X) ̸= a0}+ 1{Π̃e

≤(X) = ∅, πe(X) ̸= a0}
+ 1{Πe(X) ̸= ∅, πe(X) = a0}+ 1{Πe(X) = ∅, πe(X) = a0})E[Y | X,A = πe,M = fM (πe)]] (35)

= E
[
1{Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,A = πe,M = fM (πe)]

+ 1{Π̃e
≤(X) = ∅, πe(X) ̸= a0}E[Y | X,A = πe,M = fM (πe)]

+ 1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,A = πe,M = fM (πe)]

+ 1{Πe(X) = ∅, πe(X) = a0}E[Y | X,A = πe,M = fM (πe)]
]

(36)

where Eq. (33) follows from the law of iterated expectation, Eq. (34) follows from consistency (Corollary A.1) and the fact
that Y (a,m) ⊥⊥ A,M | X (Corollary A.2), and Eq. (35) follows from Eq. (32). After distributing terms in Eq. (36), the
lower bound follows from the application of Lemmas D.2 and D.3 to each term.

First, 1{Π̃e
≤(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,A = πe,M = fM (πe)] ≥ 1{Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,Π ∈
Π̃e

≤(x)] follows from Lemma D.2.

Next, 1{Π̃e
≤(X) = ∅, πe(X) ̸= a0}E[Y | X,A = πe,M = fM (πe)] ≥ 1{Π̃e

≤(X) = ∅, πe(X) ̸= a0}Ymin follows
from Lemma D.3.

Next, 1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,A = πe,M = fM (πe)] = 1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,Π ∈
Πe(x)] follows from Lemma D.2.

Finally, 1{Πe(X) = ∅, πe(X) = a0}E[Y | X,A = πe,M = fM (πe)] ≥ 1{Πe(X) = ∅, πe(X) = a0}Ymin follows
from Lemma D.3.

As each term above is either equal to or less than or equal to their respective corresponding terms, the sum of all the
components above will be less than or equal to the target estimand.

Upper Bound For the upper bound, we use the partition given by

1 = 1{Π̃e
≥(X) ̸= ∅, πe(X) ̸= a0}+ 1{Π̃e

≥(X) = ∅, πe(X) ̸= a0}
+ 1{Πe(X) ̸= ∅, πe(X) = a0}+ 1{Πe(X) = ∅, πe(X) = a0} (37)

and the argument follows similarly, such that the upper bound follows from the application of Lemmas D.2 and D.3 to each
term.

First, 1{Π̃e
≥(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,A = πe,M = fM (πe)] ≤ 1{Π̃e

≥(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,Π ∈
Π̃e

≥(X)] follows from Lemma D.2.

Next, 1{Π̃e
≥(X) = ∅, πe(X) ̸= a0}E[Y | X,A = πe,M = fM (πe)] ≤ 1{Π̃e

≥(X) = ∅, πe(X) ̸= a0}Ymax follows
from Lemma D.3.

Next, 1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,A = πe,M = fM (πe)] = 1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,Π ∈
Πe(x)] follows from Lemma D.2.

Finally, 1{Πe(X) = ∅, πe(X) = a0}E[Y | X,A = πe,M = fM (πe)] ≤ 1{Πe(X) = ∅, πe(X) = a0}Ymax follows
from Lemma D.3.

Proposition 3.3 (Bound Decomposition). The gap between the bounds in Theorem 3.1 can be written as

U(πe)− L(πe) = E[δ(X,Y,Π)]



where

δ(X,Y,Π) =

1{Πe(X) = ∅}(Ymax − Ymin) (8)

+1{πe ̸= a0}
[

1{Π̃e
≤(X) ̸= ∅, Π̃e

≥(X) ̸= ∅}· (9)

(E[Y | X,Π ∈ Π̃e
≥(X)]− E[Y | X,Π ∈ Π̃e

≤(X)])

+1{Π̃e
≤(X) ̸= ∅, Π̃e

≥(X) = ∅}· (10)

(Ymax − E[Y | X,Π ∈ Π̃e
≤(X)])

+1{Π̃e
≤(X) = ∅, Π̃e

≥(X) ̸= ∅}· (11)

(E[Y | X,Π ∈ Π̃e
≥(X)]− Ymin)

]
Moreover, δ(X,Y,Π) ≥ 0 almost surely under the assumptions of Theorem 3.1.

Proof. We will start by observing that certain terms cancel out in the difference of the bound U(πe)− L(πe). We begin by
recalling the definition of these bounds from Theorem 3.1, rearranged slightly.

L(πe) = E[1{Π̃e
≤(X) ̸= ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e

≤(x)]

+ 1{Π̃e
≤(X) = ∅}1{πe ̸= a0}Ymin

+ 1{Πe(X) ̸= ∅}1{πe = a0}E[Y | X = x,Π ∈ Πe(x)] (38)
+ 1{Πe(X) = ∅}1{πe = a0}Ymin] (39)

U(πe) = E[1{Π̃e
≥(X) ̸= ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e

≥(x)]

+ 1{Π̃e
≥(X) = ∅}1{πe ̸= a0}Ymax

+ 1{Πe(X) ̸= ∅}1{πe = a0}E[Y | X = x,Π ∈ Πe(x)] (40)
+ 1{Πe(X) = ∅}1{πe = a0}Ymax] (41)

By linearity of expectation, we can remove identical terms, i.e., we can observe that in the difference U(πe)− L(πe), the
terms in Eqs. (38) and (40) cancel, leaving us with the following after collecting similar terms Eqs. (39) and (41).

U(πe)− L(πe)
= E[1{Π̃e

≥(X) ̸= ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e
≥(x)] (42)

− 1{Π̃e
≤(X) ̸= ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e

≤(x)] (43)

+ 1{Π̃e
≥(X) = ∅}1{πe ̸= a0}Ymax (44)

− 1{Π̃e
≤(X) = ∅}1{πe ̸= a0}Ymin (45)

+ (1{Πe(X) = ∅}1{πe = a0})(Ymax − Ymin)] (46)

Now we will conduct two splits of indicators, to reflect finer-grained subgroups.

• First, we note that we can partition the subset of X satisfying {Π̃e
≤(X) ̸= ∅} into two further subsets: The set of x

where the only agreeing policies are those with worse performance, and the set where there also exists agreeing policies
with equal or greater performance. Note that, if there exists trial policies with exactly equal performance to the new
policy, both {Π̃e

≤(X) ̸= ∅} and {Π̃e
≥(X) ̸= ∅} must be true. We can argue similarly for {Π̃e

≥(X) ̸= ∅}, and write

1{Π̃e
≤(X) ̸= ∅} = 1{Π̃e

≤(X) ̸= ∅, Π̃e
≥(X) = ∅}+ 1{Π̃e

≤(X) ̸= ∅, Π̃e
≥(X) ̸= ∅}

1{Π̃e
≥(X) ̸= ∅} = 1{Π̃e

≥(X) ̸= ∅, Π̃e
≤(X) = ∅}+ 1{Π̃e

≥(X) ̸= ∅, Π̃e
≤(X) ̸= ∅}

• Second, we note that we can partition the subset of X satisfying {Π̃e
≤(X) = ∅} into two further subsets: The set of x

where the only agreeing trial policies have greater performance, and the set where there are no agreeing trial policies at



all. We can argue similarly for {Π̃e
≥(X) = ∅}, and write

1{Π̃e
≤(X) = ∅} = 1{Πe(X) = ∅}+ 1{Π̃e

≤(X) = ∅, Π̃e
≥(X) ̸= ∅}

1{Π̃e
≥(X) = ∅} = 1{Πe(X) = ∅}+ 1{Π̃e

≥(X) = ∅, Π̃e
≤(X) ̸= ∅}

With these equalities in mind, we can rewrite the difference as follows by expanding terms

U(πe)− L(πe)
= E[1{Π̃e

≥(X) ̸= ∅, Π̃e
≤(X) ̸= ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e

≥(x)] From Eq. (42) (47)

+ 1{Π̃e
≥(X) ̸= ∅, Π̃e

≤(X) = ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e
≥(x)] From Eq. (42) (48)

− 1{Π̃e
≤(X) ̸= ∅, Π̃e

≥(X) ̸= ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e
≤(x)] From Eq. (43) (49)

− 1{Π̃e
≤(X) ̸= ∅, Π̃e

≥(X) = ∅}1{πe ̸= a0}E[Y | X = x,Π ∈ Π̃e
≤(x)] From Eq. (43) (50)

+ 1{Π̃e
≥(X) = ∅, Π̃e

≤(X) ̸= ∅}1{πe ̸= a0}Ymax From Eq. (44) (51)

+ 1{Πe(X) = ∅}1{πe ̸= a0}Ymax From Eq. (44) (52)

− 1{Π̃e
≤(X) = ∅, Π̃e

≥(X) ̸= ∅}1{πe ̸= a0}Ymin From Eq. (45) (53)

− 1{Πe(X) = ∅}1{πe ̸= a0}Ymin From Eq. (45) (54)
+ (1{Πe(X) = ∅}1{πe = a0})(Ymax − Ymin)] From Eq. (46) (55)

And by rearranging terms, we arrive at

U(πe)− L(πe)
= E[1{Πe(X) = ∅}(Ymax − Ymin) Eqs. (52), (54) and (55)

+ 1{Π̃e
≥(X) ̸= ∅, Π̃e

≤(X) ̸= ∅}1{πe ̸= a0}
(E[Y | X = x,Π ∈ Π̃e

≥(x)]− E[Y | X = x,Π ∈ Π̃e
≤(x)]) Eqs. (47) and (49)

+ 1{Π̃e
≥(X) = ∅, Π̃e

≤(X) ̸= ∅}1{πe ̸= a0}(Ymax − E[Y | X = x,Π ∈ Π̃e
≤(x)]) Eqs. (50) and (51)

+ 1{Π̃e
≥(X) ̸= ∅, Π̃e

≤(X) = ∅}1{πe ̸= a0}(E[Y | X = x,Π ∈ Π̃e
≥(x)]− Ymin)] Eqs. (48) and (53)

After rearranging terms slightly, this gives us the desired result of the form of δ(X,Y,Π) stated in the theorem. The
fact that δ(X,Y,Π) ≥ 0 almost surely follows from the fact that Ymax ≥ E[Y | C] ≥ Ymin for any conditioning set C
according to Assumption 3.3, and the fact that (E[Y | X = x,Π ∈ Π̃e

≥(x)]− E[Y | X = x,Π ∈ Π̃e
≤(x)]) is nonnegative

by Assumption 3.1.

Theorem 3.2 (Tightness of bounds in Theorem 3.1). For any observational distribution P (X,Y,A,M,Π, D) consistent
with the assumptions of Theorem 3.1, there exist two structural causal modelsML,MU such that both are consistent with
Assumptions 2.1 and 3.1 to 3.3, both give rise to that same observational distribution P , and where the policy value of
any policy πe underML,MU is given by L(πe), U(πe) from Theorem 3.1, respectively. Hence, these bounds cannot be
improved without further assumptions.

Proof. Recall that we make use of the more stringent sets of comparison arms

Π̃e
≤(x) = argmax

π∈Πe
≤(x)

fM (π) Π̃e
≥(x) = argmin

π∈Πe
≥(x)

fM (π).

From here, we will construct a pair of SCMsML,MU that satisfy our criteria, which are defined as follows, using fL to
denote the structural equations underML and fU to denote the structural equations underMU , and f (without a superscript)
is used to denote structural equations that are shared between the two.

Shared Structural Equations forML,MU : Both SCMs share the following equations that respect Assumptions 3.1
and 3.2, which give rise to a shared distribution over P (X,A,M,Π, D), and these can be chosen to match any such observed
distribution.

D = fD(ϵD), X = fX(ϵX) Π = πD

M = fM (Π), A = Π(X)



Differences between ML,MU : These SCMs will differ in terms of how Y is generated. Let fLY (A,X,M, ϵY ),
fUY (A,X,M, ϵY ) denote the structural equations for ML,MU respectively. We will define these functions for every
possible set of inputs, using knowledge of the true conditional distribution P (Y | X = x,A = a,M = m) wherever this
combination of inputs (x, a,m) has positive density under the observed distribution P (x, a,m) > 0.

We will define these functions constructively, by defining their behavior for every value of (x, a,m).

1. First, fix any value of x ∈ X . For this value of x, we need to define the value of fLY , f
U
Y for all values of a ∈ A,m ∈ R.

To do so, let
Πa(x) := {π ∈ Π | π(x) = a}

be the set of all policies (possibly an empty set) that have output a on the input x, and let Ma(x) = (m1, . . . ,mK) be
the (ordered) set of performance values for these policies, where m1 denotes the worst performance fM (πi) (breaking
ties arbitrarily) of all policies πi where πi ∈ Πa(x), and mK denotes the best performance, where K is the size of the
set Πa(x).

2. Now we consider any arbitrary a ∈ A, in addition to our fixed x ∈ X . Here, there are two cases to consider:

• If Πa(x) is empty for this a, then for all m ∈ R, we let fLY (x, a,m, ϵY ) = Ymin, fUY (x, a,m, ϵY ) = Ymax. In
other words, at this point in x, if no trialed policy takes action a, we assume the worst (for fLY ) and the best (for
fUY ) possible outcomes. We can easily verify that both fLY , f

U
Y satisfy Assumptions 3.1 and 3.2 since the output is

a constant for each function, and satisfy Assumption 3.3 since the output remains bounded.
• If Πa(x) (and consequently Ma(x)) is non-empty, then we first define the behavior of fLY , f

U
Y at all the (observ-

able) performance values in Ma(x) to match the conditional distribution P (Y | x, a,m).

fUY (x, a,m, ϵY ) = fLY (x, a,m, ϵY ) ∼ P (Y | x, a,m),∀m ∈Ma(x),

with the additional constraint that fLY , f
U
Y are constant with respect to m when a = a0, which itself must be

achievable since we assume that the true SCM generating P adheres to this constraint by Assumption 3.2.
Note that we can always achieve the equivalence of distribution shown above by taking ϵY to be a uniform
random variable in [0, 1], and defining our function as sampling from P (Y | x, a,m) using the inverse CDF
fY (x, a,m, ϵY ) = F−1

Y |x,a,m(ϵY ). Because we assume that P (Y | x, a,m) does not violate our assumptions, it
should be clear that fLY (x, a,m, ϵY ), f

U
Y (x, a,m, ϵY ) do not violate our assumptions for values of m ∈Ma(x).

In addition, we have that for any m ̸∈ M(x), our construction above does not violate Assumption 3.2 (since in
this case, fLY (x, a0,m, ϵY ) is constant for all values of m).
We have now defined the behavior of fLY , f

U
Y when a = a0, and when a ̸= a0,m ∈ Ma(x). Now it remains

to define the behavior of fLY , f
U
Y for other values of m when a ̸= a0. For any value m′ ̸∈ Ma(x), there

are three possible scenarios: It is smaller than the smallest value (m1), larger than the largest value mK ,
or in-between two values, which we denote hprev(m

′) < m′ < hnext(m
′) without loss of generality, where

hprev(m
′) = max(m ∈ Ma(x) | m < m′) and hnext(m

′) = min(m ∈ Ma | m > m′). Here, hprev(m
′)

corresponds to the performance of the “next-worst” policy among those deployed, and hnext(m
′) corresponds to

the performance of the “next-best” policy. We define behavior on these sets as follows

fLY (x, a,m
′, ϵY ) =

{
Ymin, if m′ < min(Ma(x))

fLY (x, a, hprev(m
′), ϵY ) if m′ > min(Ma(x)),m ̸∈Ma(x)

fUY (x, a,m′, ϵY ) =

{
Ymax, if m′ > max(Ma(x))

fUY (x, a, hnext(m
′), ϵY ) if m′ < max(Ma(x)),m ̸∈Ma(x)

In words, we have “filled in” the missing gaps in fLY , f
U
Y for all values of m using piecewise constant functions:

For any m′ ̸∈Ma(x), if m′ is worse than any observed performance, we assume the worst-case for the lower
bound, and ifm′ is better than any observed performance, we assume the best-case for the upper bound. Otherwise,
we have hprev(m

′) < m′ and/or m′ < hnext(m
′), and we assume for the lower bound that the outcomes at m′

match those at hprev(m
′), and for the upper bound we assume the outcomes atm′ match that at hnext(m

′). Because
we have maintained monotonicity with respect to m, our construction continues to satisfy our core assumptions.

3. We have now fully defined fLY , f
U
Y , having defined these functions for any input (x, a,m), and shown that they satisfy



our core assumptions Assumptions 3.1 to 3.3. Putting it together, we have it that

fLY (x, a,m, ϵY ) =


Ymin, if Πa(x) = ∅,
Ymin, if Πa(x) ̸= ∅,m < min(Ma(x))

F−1
Y |x,a,hprev(m)(ϵY ), if Πa(x) ̸= ∅,m > min(Ma(x)),m ̸∈Ma(x),

F−1
Y |x,a,m(ϵY ), if Πa(x) ̸= ∅,m ∈Ma(x),

(56)

fUY (x, a,m, ϵY ) =


Ymax, if Πa(x) = ∅,
Ymax, if Πa(x) ̸= ∅,m > max(Ma(x))

F−1
Y |x,a,hnext(m)(ϵY ), if Πa(x) ̸= ∅,m < max(Ma(x)),m ̸∈Ma(x),

F−1
Y |x,a,m(ϵY ), if Πa(x) ̸= ∅,m ∈Ma(x),

(57)

where F−1
Y |x,a,m is the inverse conditional CDF of Y given X,A,M , derived from P , and where Πa(x) := {π ∈ Π |

π(x) = a} and Ma(x) := {fM (π) : π ∈ Πa(x)}, as defined previously above.

Verifying conditions We have now defined the SCMsML,MU , and shown that these SCMs are both consistent with our
assumptions. We will now briefly verify that both SCMs give rise to the same observed distribution P (X,Y,A,M,Π, D),
and then demonstrate that these SCMs achieve the upper and lower bounds that are given in Theorem 3.1.

First, we have it by construction that both SCMs yield the observed distribution P (X,Y,A,M,Π, D), so it remains to
demonstrate that they agree with the observed distribution P (Y | X,A,M,D,Π), which we can write equivalently as
P (Y | X,A,M), since D,Π ⊥⊥ Y | X,A,M under our assumed data-generating process. Note that P (Y | X,A,M,Π, D)
is only well-defined for x, a,m with positive density (if X is continuous) or probability mass (if X is discrete). Assuming
that P (x) > 0 for all x ∈ X , we have constructed fLY , f

U
Y to agree with P (Y | x, a,m) for all a,m where there exists a

trialed policy π that outputs a = π(x) with performance m = fM (π). We note that for any other value of a′,m′, we have
it that P (a′,m′ | x) = 0, and hence the entire set (x, a′,m′) has zero density, and it is precisely on these never-observed
subsets of inputs whereML,MU disagree.

Second, we can verify that the policy values under fLY and fUY evaluate to L(πe) and U(πe), respectively. Recalling that
Y (A = πe,M = fM (πe)) = fY (X,πe(X), fM (πe), ϵY ), and recalling Eq. (32), we can write that underML,

EML
[Y (A = πe,M = fM (πe))] = E

[
1{Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0}fLY (X,πe(X), fM (πe), ϵY ) (58)

+ 1{Π̃e
≤(X) = ∅, πe(X) ̸= a0}fLY (X,πe(X), fM (πe), ϵY ) (59)

+ 1{Πe(X) ̸= ∅, πe(X) = a0}fLY (X,πe(X), fM (πe), ϵY ) (60)

+ 1{Πe(X) = ∅, πe(X) = a0}fLY (X,πe(X), fM (πe), ϵY )] (61)

where we can consider each component in the sum individually by linearity of expectation, and the fact that E[1{x ∈
Ω}f(x, ϵY )] = E[1{x ∈ Ω}E[f(x, ϵY ) | x ∈ Ω]] for any set Ω. We consider each term under the definition of fLY
in Eq. (56).

• For Eq. (58), we can observe that for all x ∈ X satisfying Π̃e
≤(X) ̸= ∅, a = πe(x), the set Πa(x) is non-empty

by definition of Π̃e
≤(X), and moreover that me ≥ min(Ma(x)). As a result, we have it that fLY (x, a,me, ϵY ) =

F−1
Y |x,a,hprev(me)

(ϵY ) ∼ P (Y | x, a, hprev(me)), and thus this term can be re-written as

1{Π̃e
≤(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,Π ∈ Π̃e

≤(X)] (62)

since for any πi ∈ Π̃e
≤(X), we have it that πi(X) = πe(X) and fM (πi) = hprev(me) by definition of hprev(me) and

Π̃e
≤(X).

• For Eq. (59), we can observe that for all x ∈ X satisfying Π̃e
≤(X) = ∅, a = πe(x), the set Πa(x) is either empty, or

non-empty where fM (πe) < min(Ma(x)), by definition of Π̃e
≤(X). In either case, we have it that fLY = Ymin, and so

this term is equal to
1{Π̃e

≤(X) = ∅, πe(X) ̸= a0}Ymin (63)



• For Eq. (60), we can observe that for all x ∈ X satisfying Πe(X) ̸= ∅, a = πe(x) = a0, the set Πa(x) is non-
empty by definition of Πe(X), and moreover that fLY is invariant to the choice of m, and so this term is equal to
1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,A = πe(X),M = fM (πe)], which is equal to

1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,Π ∈ Πe(X)] (64)

from Eq. (24) of Lemma D.2

• For Eq. (61), we can observe that for all x ∈ X satisfying Πe(X) = ∅, the set Πa(x) is empty by definition of
Πe(X), and so fLY = Ymin. Thus, this term is equal to

1{Πe(X) = ∅, πe(X) = a0}Ymin (65)

Collecting terms Eqs. (62) to (65) gives us that

EML
[Y (A = πe,M = fM (πe))]

= E
[
1{Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0}E[Y | X,Π ∈ Π̃e
≤(X)]

+ 1{Π̃e
≤(X) = ∅, πe(X) ̸= a0}Ymin

+ 1{Πe(X) ̸= ∅, πe(X) = a0}E[Y | X,Π ∈ Πe(X)]

+ 1{Πe(X) = ∅, πe(X) = a0}Ymin
]

which is equivalent to L(πe) and completes the proof for the lower bound. For the upper bound, the argument is similar, and
roughly symmetric, but uses the partition given by Eq. (37).

Conclusion Because it is possible to construct structural causal models that are consistent with our assumptions and that
have counterfactual policy values that are exactly L(πe) and U(πe), the bounds in Theorem 3.1 cannot be improved without
further assumptions.

Proposition 3.4. The bounds in Theorem 3.1 can be written L(πe) = E[ψL(Y,X,Π)] and U(πe) = E[ψU (Y,X,Π)],
where ψL and ψU are defined as follows

ψL(Y,X,Π)

:=


Y · 1{Π∈Π̃e

≤(X)}
P (Π∈Π̃e

≤(X))
, if Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0

Ymin, if Π̃e
≤(X) = ∅, πe(X) ̸= a0

Y · 1{Π∈Πe(X)}
P (Π∈Πe(X)) , if Πe(X) ̸= ∅, πe(X) = a0

Ymin, if Πe(X) = ∅, πe(X) = a0

ψU (Y,X,Π)

:=


Y · 1{Π∈Π̃e

≥(X)}
P (Π∈Π̃e

≥(X))
, if Π̃e

≥(X) ̸= ∅, πe(X) ̸= a0

Ymax, if Π̃e
≥(X) = ∅, πe(X) ̸= a0

Y · 1{Π∈Πe(X)}
P (Π∈Πe(X)) , if Πe(X) ̸= ∅, πe(X) = a0

Ymax, if Πe(X) = ∅, πe(X) = a0

Moreover, since ψL, ψU are known functions of the data, these bounds can be estimated as

L̂(πe) := n−1
∑
i

ψL(Yi, Xi,Πi)

Û(πe) := n−1
∑
i

ψU (Yi, Xi,Πi)

where
√
n(L− L̂) d→ N(0, σ2(ψL)) where σ2(ψL) is the variance of ψL and d→ denotes convergence in distribution, with

similar convergence of Û , and hence [
L̂(πe)− Φ−1

(
1− α

2

)
· σ̂(ψL)√

n
,

Û(πe) + Φ−1
(
1− α

2

)
· σ̂(ψU )√

n

]



is an asymptotically valid (1− α)-confidence interval, where σ̂(ψ) is the empirical standard deviation of ψ and Φ−1 is the
inverse of the standard normal CDF.

Proof. First, note that the conditional expectation of Y is always finite due to Assumption 3.3.

Lemma D.4. Let Π′(X) be a function that maps from X to any subset (including the empty set) of Π, and let X ′ be a
subset of X . If P (Π ∈ Π′(x)) > 0,∀x ∈ X ′, then

E
[
Y
1{Π ∈ Π′(X)}
P (Π ∈ Π′(X))

1{X ∈ X ′}
]
= E[E[Y | Π ∈ Π′(X), X]1{X ∈ X ′}] (66)

Proof.

E
[
Y
1{Π ∈ Π′(X)}
P (Π ∈ Π′(X))

1{X ∈ X ′}
]
= E

[
E[Y 1{Π ∈ Π′(X)} | X]

1{X ∈ X ′}
P (Π ∈ Π′(X))

]
(67)

= E
[
E[Y | Π ∈ Π′(X), X]P (Π ∈ Π′(X) | X)

1{X ∈ X ′}
P (Π ∈ Π′(X))

]
(68)

= E[E[Y | Π ∈ Π′(X), X]1{X ∈ X ′}] (69)

where the first equality is well-defined on both sides by the assumption that for any X ∈ X ′, P (Π ∈ Π′(X)) > 0. For the
second-to-last line, note that this follows from the basic fact that A,B,C

E[A · 1{B ∈ B} | C] = E[A · 1{B ∈ B} | B ∈ B, C]P (B ∈ B | C)
+ E[A · 1{B ∈ B} | B ̸∈ B, C]P (B ̸∈ B | C)

= E[A | B ∈ B, C]P (B ∈ B | C)

and the last line follows from the fact that Π ⊥⊥ X under Assumption 2.1, so that P (Π ∈ Π′(X) | X) = P (Π ∈
Π′(X)).

Note that Lemma D.4 applies to all of the pairs (e.g., Πe(X) ̸= ∅ and {Π̃e
≥(X) ̸= ∅, πe(X) ̸= a0}) used in Proposition 3.4.

Thus, we can directly write the following through linearity of expectations and two applications of Lemma D.4.

L(πe) = E[1{Π̃e
≤(X) ̸= ∅}1{πe ̸= a0}E[Y | X,Π ∈ Π̃e

≤(X)]

+ 1{Π̃e
≤(X) = ∅}1{πe ̸= a0}Ymin

+ 1{Πe(X) ̸= ∅}1{πe = a0}E[Y | X,Π ∈ Πe(X)]

+ 1{Πe(X) = ∅}1{πe = a0}Ymin]

= E[Y
1{Π ∈ Π̃e

≤(X)}
P (Π ∈ Π̃e

≤(X))
1{Π̃e

≤(X) ̸= ∅}1{πe ̸= a0}

+ Ymin1{Π̃e
≤(X) = ∅}1{πe ̸= a0}

+
1{Π ∈ Πe(X)}
P (Π ∈ Πe(X))

1{Πe(X) ̸= ∅}1{πe = a0}

+ Ymin1{Πe(X) = ∅}1{πe = a0}]

We apply Lemma D.4 in two instances: one where the indicator function 1{Π̃e
≤(X) ̸= ∅} is turned on and one where the

indicator function 1{Πe(X) ̸= ∅} is turned on. In the case where {Π̃e
≤(X) ̸= ∅} is true, P (Π ∈ Π̃e

≤(X)) > 0 is also true
because there is at least one trial policy in the set Π̃e

≤(X). Similarly, when {Πe(X) ̸= ∅} is satisfied, P (Π ∈ Πe(X)) > 0
will also be satisfied. Thus, when applying Lemma D.4, the assumption required in the lemma that P (Π ∈ Π′(x)) > 0
is satisfied by the decomposition of the lower bound, and we do not require any additional assumptions regarding the
probability of deploying a particular set of trial models.



Because the sets (Π̃e
≤(X) ̸= ∅, πe ̸= a0), (Π̃e

≤(X) = ∅, πe ̸= a0), (Πe(X) ̸= ∅, πe = a0), and (Πe(X) = ∅, πe = a0)
are disjoint, only one product of the indicator functions inside the expectation above ever evaluates to 1. Thus, we can
equivalently express the expression inside the expectation above as the piecewise function

ψL(Y,X,Π)

:=


Y · 1{Π∈Π̃e

≤(X)}
P (Π∈Π̃e

≤(X))
, if Π̃e

≤(X) ̸= ∅, πe(X) ̸= a0

Ymin, if Π̃e
≤(X) = ∅, πe(X) ̸= a0

Y · 1{Π∈Πe(X)}
P (Π∈Πe(X)) , if Πe(X) ̸= ∅, πe(X) = a0

Ymin, if Πe(X) = ∅, πe(X) = a0

Thus, L(πe) = E[ψL(Y,X,Π)].

The proof for U(πe) follows similarly. We directly write the following through linearity of expectations and two applications
of Lemma D.4.

U(πe) = E[1{Π̃e
≥(X) ̸= ∅}1{πe ̸= a0}E[Y | X,Π ∈ Π̃e

≥(X)]

+ 1{Π̃e
≥(X) = ∅}1{πe ̸= a0}Ymax

+ 1{Πe(X) ̸= ∅}1{πe = a0}E[Y | X,Π ∈ Πe(X)]

+ 1{Πe(X) = ∅}1{πe = a0}Ymax]

= E[Y
1{Π ∈ Π̃e

≥(X)}
P (Π ∈ Π̃e

≥(X))
1{Π̃e

≥(X) ̸= ∅}1{πe ̸= a0}

+ Ymax1{Π̃e
≥(X) = ∅}1{πe ̸= a0}

+
1{Π ∈ Πe(X)}
P (Π ∈ Πe(X))

1{Πe(X) ̸= ∅}1{πe = a0}

+ Ymax1{Πe(X) = ∅}1{πe = a0}]

Because this different enumeration of the sets (Π̃e
≥(X) ̸= ∅, πe ̸= a0), (Π̃e

≥(X) = ∅, πe ̸= a0), (Πe(X) ̸= ∅, πe = a0),
and (Πe(X) = ∅, πe = a0) is also disjoint, only one product of the indicator functions inside the expectation above ever
evaluates to 1. Thus, we can equivalently express the expression inside the expectation above as the piecewise function

ψU (Y,X,Π)

:=


Y · 1{Π∈Π̃e

≥(X)}
P (Π∈Π̃e

≥(X))
, if Π̃e

≥(X) ̸= ∅, πe(X) ̸= a0

Ymax, if Π̃e
≥(X) = ∅, πe(X) ̸= a0

Y · 1{Π∈Πe(X)}
P (Π∈Πe(X)) , if Πe(X) ̸= ∅, πe(X) = a0

Ymax, if Πe(X) = ∅, πe(X) = a0

Thus, U(πe) = E[ψU (Y,X,Π)].

To show asymptotic normality, it suffices to observe that ψU , ψL are known functions of the data, such that the problem
reduces to mean estimation using samples. The asymptotic behavior is then just a consequence of the central limit theorem
[Vaart, 1998], and the validity of the confidence intervals follows from the fact that we use the 1− α/2 lower bound for L,
such that the probability of failing to cover L is asymptotically 1− α/2, and similarly the 1− α/2 upper bound for U . The
validity of the given interval follows from application of the union bound.


	Introduction
	Model and Problem Setup
	Identification and Bounds
	Recommendations For Pre-trial Design
	Simulation Study
	Conclusion and Limitations
	Brief Causal Inference Overview
	Algorithmic Viewpoint of Computing Bounds
	Data Generating Process of Simulation Study
	Proofs
	Proof of Theorem 3.1


