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Abstract001

Large Language Models (LLMs) encounter002
challenges in efficiently answering long-text003
questions, as seen in applications like enter-004
prise document analysis and financial report005
comprehension. While conventional solutions006
employ long-context processing or Retrieval-007
Augmented Generation (RAG), they suffer008
from prohibitive input expenses or incomplete009
information. Recent advancements adopt con-010
text compression and dynamic retrieval loops,011
but still sacrifice critical details or incur iter-012
ative costs. To address these limitations, we013
propose OkraLong, a novel framework that flex-014
ibly optimizes the entire processing workflow.015
Unlike prior static or coarse-grained adaptive016
strategies, OkraLong adopts fine-grained or-017
chestration through three synergistic compo-018
nents: analyzer, organizer and executor. The019
analyzer characterizes the task states, which020
guide the organizer in dynamically scheduling021
the workflow. The executor carries out the ex-022
ecution and generates the final answer. Ex-023
perimental results demonstrate that OkraLong024
not only enhances answer accuracy by 5.7%-025
41.2%, but also achieves cost savings of 1.3x-026
4.7x.027

1 Introduction028

Large Language Models (LLMs) have been exten-029

sively utilized to handle external knowledge and030

unseen data, which is a common scenario in real-031

world applications such as enterprise search and032

data analysis (Gao et al., 2023; Hui et al., 2024). A033

critical challenge in these domains, however, lies in034

querying and comprehending long-form text (Bai035

et al., 2024). For example, a company may need to036

query its proprietary technique documents; a finan-037

cial expert may need to extract insights from the038

latest corporate reports; and a research group may039

need to assimilate cutting-edge academic papers to040

guide their innovations.041

To tackle long-text questions, two prevalent042
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Figure 1: Comparison of OkraLong with two prevalent
advanced paradigms for processing long-text questions.

methodologies are typically utilized: long-context 043

(LC) and Retrieval-Augmented Generation (RAG) 044

(Li et al., 2024a; Xu et al., 2024b). The LC ap- 045

proach leverages the LLM’s inherent ability to 046

process extensive texts by inputting entire con- 047

tent, enabling responses grounded in global contex- 048

tual awareness (Xu et al., 2024b; Fei et al., 2024). 049

In contrast, RAG employs a lightweight retriever 050

to first identify question-relevant text segments, 051

which are then analyzed by the LLM to get the 052

answer (Lewis et al., 2020; Jeong et al., 2024; Asai 053

et al., 2024). 054

However, when deployed in practical settings, 055

these strategies encounter significant limitations in 056

cost-effectiveness and accuracy. First, given that 057

the cost of LLMs escalate with data volume, em- 058

ploying LC with voluminous text may prove pro- 059

hibitively expensive (e.g., a financial reports may 060

span hundreds of pages) (Li et al., 2024c; Jiang 061

et al., 2024). While RAG reduces input length by 062

filtering irrelevant text, the context content still in- 063

curs moderate costs and risk omitting critical infor- 064

mation (Gao et al., 2023). Furthermore, real-world 065
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queries vary widely, from simple fact extraction to066

multi-step reasoning. Rigid approaches like static067

retrieval struggle to adapt to this diversity, leading068

to information loss and inaccuracies (Shao et al.,069

2023; Zhuang et al., 2024).070

Recent efforts to mitigate these limitations pri-071

marily focus on two paradigms: context compres-072

sion and dynamic RAGs. As shown in Figure 1,073

compression-based approaches typically operate on074

extensive text segments, removing non-informative075

tokens or iteratively summarize the content us-076

ing small generative models (Jiang et al., 2024;077

Jiang et al., 2023a; Yoon et al., 2024). How-078

ever, these methods risk losing critical specific079

details and incur latency overhead due to heavy080

reliance on small models (Hwang et al., 2024). Dy-081

namic RAG approaches employ iterative retrieval-082

generation cycles to adaptively make retrieval de-083

cisions (Asai et al., 2024; Jiang et al., 2023b; Su084

et al., 2024). However, iterative workflow requires085

frequent LLM calls, escalating financial costs, and086

the existing adaptive mechanisms remain coarse-087

grained, failing to optimize the performance effec-088

tively in varied scenarios.089

To address these limitations, we propose Okra-090

Long, a novel retrieval-augmented framework that091

systematically optimizes long-text question answer-092

ing. Unlike above approaches that rely on fixed093

workflow patterns, OkraLong flexibly orchestrates094

various pipelines according to different task sce-095

narios. As illustrated in Figure 2, our framework096

comprises three synergistic components: (1) Ana-097

lyzer: a fine-tuned lightweight model that proac-098

tively characterizes task states, utilizing question099

semantics and preliminary retrieved contexts; (2)100

Adaptive Organizer: a dynamic scheduler that gen-101

erates optimized execution plans, based on previ-102

ous analysis; (3) Executor: a modular operator suite103

that supports the execution of diverse processing104

pipelines and strategies.105

Distinct from prior adaptive RAG methods106

(Jiang et al., 2023b; Jeong et al., 2024) that make107

coarse-grained decisions (e.g. whether to generate108

iteratively or retrieve additional data) , OkraLong109

is designed to fine-grainedly optimize the entire110

processing workflow, covering multiple modules111

and various pipelines. First, to improve accuracy112

performance, OkraLong constructs the flexibility113

to tailor strategies for different tasks. For example,114

comparative tasks (e.g., Who won the most awards,115

A, B or C?) demand separate entity retrieval, while116

multi-step questions (e.g., What is the place of birth117

of the director of film Clowning Around?) trigger 118

iterative reasoning process. Second, for financial ef- 119

fectiveness, our cost-aware organizer dynamically 120

allocates token budgets and information resources. 121

For instance, general summarizing questions re- 122

ceive multiple aggregated contexts, whereas fact 123

extraction questions utilize targeted context slicing. 124

It is worth noting that these flexible orchestrations 125

are facilitated by the task-understanding analyzer 126

and we also develop several innovative executing 127

operators to support tailored strategies. 128

We evaluate OkraLong using an extensive col- 129

lection of long-text question-answering datasets, 130

spanning multiple domains, covering various ques- 131

tion types. The experimental results demonstrate 132

that OkraLong not only enhances answer accuracy 133

by 5.7%-41.2%, but also provides superior cost 134

savings of 1.3x-4.7x. 135

2 Related Work 136

2.1 Long-Text Processing 137

Understanding and reasoning over long-form text 138

have always been crucial in natural language pro- 139

cessing. Considerable efforts have been made to en- 140

hance LLMs to handle long contexts (Tworkowski 141

et al., 2023; Liang et al., 2023; Chen et al., 2023). 142

Besides, increasingly powerful LLMs such as Gem- 143

ini (Team et al., 2024) and GPT-4 (Achiam et al., 144

2023), have achieved remarkable large context ca- 145

pability, yet directly processing full-length content 146

incurs high financial expenses. 147

To address this issue, context compression has 148

emerged as a practical solution for handling large 149

prompts. Extractive compression methods directly 150

select informational tokens or sentences from the 151

context. For instance, RECOMP-Extr (Xu et al., 152

2024a) performs sentence-level selection based on 153

similarity scores, while LLMlingua (Jiang et al., 154

2023a; Pan et al., 2024) and Longllmlingua (Jiang 155

et al., 2024) employ token-level filtering through 156

information entropy. Abstractive approaches lever- 157

age generative models for content summariza- 158

tion, as exemplified by RECOMP-Abst(Xu et al., 159

2024a), CompAct (Yoon et al., 2024), and Refiner 160

(Li et al., 2024b). However, these methods still 161

exhibit critical limitations : (1) heavily calling aux- 162

iliary models that introduce latency overhead, (2) 163

potential loss of specific information during com- 164

pression. 165
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Figure 2: Architecture of OkraLong with an example. After the primary retrieval, the analyzer assesses the current
task states in three aspects. Based on the analysis, the organizer dynamically provides execution plans: the "multi-
source" task activates the question-splitter (i.e., prompting the LLM to get two university-specific sub-questions),
followed by separate retrieval; then the retrieved contexts should be processed and merged, which are then fed into
the LLM for answering. For the configurations, inadequate evidence demands the extended retrieval, while semantic
info-pattern favors embedding-based semantic retrieval. Finally, the executor carries out the planned workflow. A
more detailed example is provided in Appendix B.

2.2 Retrieval Augmented Generation166

Retrieval Augmented Generation (RAG) is a preva-167

lent technique for enhancing LLM capabilities with168

external knowledge (Lewis et al., 2020). Con-169

ventional RAG pipelines always segment text into170

chunks, embed them, and retrieve question-relevant171

content for the LLM generation (Gao et al., 2023).172

However, basic RAG systems are prone to infor-173

mation loss, particularly in multi-hop queries, lead-174

ing to suboptimal accuracy (Tang and Yang, 2024;175

Zhuang et al., 2024; Shao et al., 2023).176

Recent advances propose iterative and adaptive177

refinement mechanisms to mitigate these issues.178

For instance, FLARE (Jiang et al., 2023b) and179

DRAGIN (Su et al., 2024) activate the search en-180

gine when LLMs output tokens with low proba-181

bility. Self-RAG (Asai et al., 2024) and MIGRES182

(Wang et al., 2024) prompt LLMs to make decision183

on iterative retrieval. Adaptive-RAG (Jeong et al.,184

2024) and MBA-RAG (Tang et al., 2025) employ185

adaptive routing strategies to enhance effectiveness.186

Press et al. (2023) and Gao et al. (2024) improve187

RAG performance utilizing self-asking and self-188

correcting. Despite these advancements, in practi-189

cal settings, existing iterative methods often incur190

high costs due to extensive LLM calls, and the191

adaptive strategies remain coarse-grained, failing192

to account for diverse application scenarios.193

3 Methodology 194

3.1 Framework Overview 195

In this section, we introduce OkraLong, a flexi- 196

ble and efficient retrieval-augmented framework 197

for long-text question answering. As depicted in 198

Figure 2, OkraLong comprises three core modules: 199

analyzer, organizer and executor. Given a question 200

and the long-form text, OkraLong initiates with 201

primary question-relevant context retrieval. The 202

context and the question are subsequently fed to 203

our lightweight analyzer (implemented as a fine- 204

tuned language model) for real-time task character- 205

ization. This analysis covers multiple dimensions, 206

including question types, evidence containing, and 207

information patterns. These analytical results then 208

drive our organizer to dynamically schedule spe- 209

cific execution plans with corresponding configura- 210

tions. Finally, the executor conducts the optimized 211

processing pipeline through a composition of oper- 212

ators, ultimately generating the final response. 213

With this architecture, OkraLong facilitates flex- 214

ible and efficient processing workflows. For flex- 215

ibility, we develop multiple execution operators 216

as the core infrastructure, and the analyzer pro- 217

vides a comprehensive characterization of task 218

states. These allow for adaptive and fine-grained 219

organization. For efficiency, OkraLong orches- 220
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trates the appropriate processing workflow and bud-221

gets, optimizing both response quality and cost-222

effectiveness. Besides, the lightweight analyzer223

and the compact framework architecture prevent224

unaffordable latency, an issue often neglected in225

previous iterative and generative methodologies.226

3.2 Analyzer227

The Analyzer constitutes the cognitive foundation228

of OkraLong, performing real-time assessment of229

the task states. Its analytical outputs drives dy-230

namic workflow scheduling.231

Initially, the analyzer activates the retriever to232

fetch question-relevant contexts, dispatched along-233

side the question for assessment. Compared to the234

pure-question analysis, this inclusive strategy al-235

lows for a holistic assessment of both the question236

requirements and the overall context environment.237

The derived analysis results cover three key as-238

pects: (1) Question type (θq): Queries with dif-239

fering objectives demand diverse processing tech-240

niques. To organize these, we classify the tasks241

into five categories: arithmetic, extractive, summa-242

rizing, multi-source, and multi-bridge. The multi-243

source tasks require information from various enti-244

ties or sources, whereas multi-bridge tasks involve245

several interconnected procedural steps (more ex-246

amples in Table 5). (2) Information Pattern (ψi):247

The requisite information can manifest in different248

forms, such as semantically correlated or exactly249

matched patterns. We classify these patterns as250

either semantic, exact, or a combination of both,251

utilizing it to guide retrieval strategies. (3) Evi-252

dence Identification (ϕe): We confirm whether the253

initially retrieved context includes clear evidence to254

address the question, which also reveals the task’s255

complexity.256

Therefore, given long-from text D and the ques-257

tion q, the analyzer can be formulated as:258

Cq = {c1, c2, ..., ck} = Retriever(q,D) (1)259

260
{θq, ψi, ϕe} = Analyzer(Instruct(q, Cq)) (2)261

where the question q and the retrieved chunks Cq262

are combined into the instructing prompt. The an-263

alyzer returns the θq, ψi, ϕe, which represent the264

question, information and evidence terms in analyt-265

ical results.266

To implement the analyzer, we refine a light-267

weight language model via supervised fine-tuning.268

The training dataset is derived from public datasets.269

Data entries with human annotations are processed270

and integrated, while unannotated entries are la- 271

beled utilizing the advanced LLM like GPT-4o 272

(more implementation details in Appendix A). 273

3.3 Organizer 274

The Organizer serves as the pivotal decision engine 275

that transforms analytical insights into executable 276

plans. It employs a task-aware heuristic orchestra- 277

tion to dynamically optimize and configure the pro- 278

cessing pipeline. The organization covers three crit- 279

ical dimensions: workflow architecture, retrieval 280

granularity, and evidence aggregation. 281

Workflow construction utilizes question-type 282

(θq) to organize task-specific processing pipelines, 283

enhancing the targeted handling. For example, 284

multi-bridge questions, which require sequential 285

reasoning across interdependent facts, are managed 286

by a step-wise iterative pipeline that decomposes 287

the task into chained sub-tasks with interleaved 288

retrieval. Multi-source questions trigger a split- 289

aggregate pipeline that independently processes 290

evidence retrieval for distinct entities before fi- 291

nal aggregation. Arithmetic questions activate an 292

pipeline with context-extension after the specific 293

retrieval, ensuring both precise detail matching and 294

expansive contextual inclusion. These typology- 295

adaptive workflows guarantee an efficient align- 296

ment between query requirement and processing 297

strategy, enhancing both flexibility and efficiency. 298

Retrieval granularity is adaptively governed 299

through a dual-criteria mechanism. First, the ques- 300

tion type (θq) naturally dictates the basic retrieval 301

scope and granularity. Contextual tasks (e.g., sum- 302

marizing questions) would activate extensive con- 303

text scope, whereas factoid tasks (e.g., extrac- 304

tive questions) and iterative augmented tasks (e.g., 305

multi-bridge questions) adopt more focused narrow 306

context. Additionally, the evidence state (ϕe) trig- 307

gers dynamic granularity adjustments: insufficient 308

evidence initiates a scale extension and granularity 309

expansion to incorporate broader evidential infor- 310

mation (more details in Appendix C.3). 311

Evidence aggregation integrates scores from var- 312

ious retrieval strategies, as no single strategy is 313

universally effective. These strategies primarily in- 314

clude exact sparse retriever (e.g., BM25 (Robertson 315

et al., 2009)) and semantic dense retriever (e.g., var- 316

ious embedding models). Each provides a match 317

score between the question and a candidate text 318

chunk. Guided by the analyzed information pat- 319

tern (ψi), these scores are combined using tailored 320

weights. Specifically, for tasks dominated by ex- 321
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act keywords (e.g., entity lookup), a higher weight322

we is applied to Sexact. Conversely, for semantic-323

centric tasks, the semantic score receives a higher324

weight ws. The final aggregated score is computed325

as: S = we · Sexact + ws · Ssemantic. This score,326

adaptively adjusted to the information pattern, is327

used to rank and determine the final retrieval re-328

sults.329

Overall, the organizer optimizes both the pro-330

cessing workflow and the modular configurations.331

These strategic and flexible approaches help to ro-332

bustly manage complex task scenarios.333

3.4 Executor334

The executor serves as the core processing engine335

of OkraLong, comprising multiple distinct opera-336

tors. Its primary function is to accomplish retrieval-337

augmented processing, which necessitates basic338

modules: indexing, retrieval, and generation. To339

enable more flexible processing pipelines, we en-340

hance these core functionalities and develop the fol-341

lowing operators (more details in Appendix C.3):342

• Fundamental Operators: Basic text chunking,343

indexing, context retrieval, and LLM generation.344

• Assembled Retriever: This operator integrates345

multiple retrieval strategies. It normalizes the346

matching scores and performs weighted aggre-347

gation to produce improved context.348

• Context Processor: Instead of merely concatenat-349

ing retrieved text chunks, this operator provides350

functionalities for context merging, context ex-351

tension, and table recovery. This ensures both352

precise detail matching and enriched contextual353

information.354

• Question Splitter: For questions spanning mul-355

tiple entities, this tool divides the original ques-356

tions into sub-questions, which are then indepen-357

dently processed and subsequently merged (cf.358

Table 9).359

• Step-wise Reasoner: Complex queries may re-360

quire step-by-step reasoning. Inspired by itera-361

tive processes, it prompts the LLM to perform362

the current reasoning step and produce next-363

query for subsequent retrieval operations (cf. Ta-364

ble 10).365

These operators, guided by the organizer’s execu-366

tion plans and configurations, empower the execu-367

tor to support both linear and complex branching368

processing topologies, thus effectively adapting to369

diverse task characteristics.370

4 Experiment Setups 371

4.1 Datasets 372

To evaluate the performance of OkraLong compre- 373

hensively, we conduct experiments on six long-text 374

question-answering datasets, spanning various do- 375

mains and multiple question types: 376

(1) FINQA (Chen et al., 2021) is a financial 377

numerical reasoning dataset, constructed from the 378

earnings reports. (2) TAT-DQA (Zhu et al., 2022) 379

is another financial dataset, derived from annual re- 380

ports, covering diverse question types. (3) Qasper 381

(Dasigi et al., 2021) is a reading comprehension 382

dataset based on NLP research papers, containing 383

summarizing and extractive questions. (4) Multi- 384

fieldQA (Bai et al., 2024) has question-answering 385

pairs sourced from diverse fields, including le- 386

gal documents, government reports, etc. (5) Hot- 387

potQA (Yang et al., 2018) involves two-hop ques- 388

tions based on Wikipedia paragraphs. (6) 2Wiki- 389

MultihopQA (Ho et al., 2020) consists of multi- 390

hop questions, also based on Wikipedia content. 391

Detailed characteristics of these datasets are pre- 392

sented in Table 6. To align with practical long-text 393

settings, such as unsegmented full content, we de- 394

rived these datasets from the processed data collec- 395

tions UDA (Hui et al., 2024) and LongBench (Bai 396

et al., 2024) (further details in Appendix C.1). 397

4.2 Baselines and Setups 398

Baselines. We select the following six ap- 399

proaches as the baselines: (1) Standard RAG 400

utilizes a traditional chunking, retrieval and gen- 401

eration workflow. (2) Standard Long-Context 402

Strategy processes the entire long-text using a 403

LLM without additional context refinement. (3) 404

LongLLMLingua (Jiang et al., 2024), a con- 405

text compression approach that filters tokens 406

based on informational significance according to 407

a lightweight model. (4) CompAct (Yoon et al., 408

2024), another compression approach, employing 409

a lightweight model to iteratively generate the sum- 410

marized text content. (5) FLARE (Jiang et al., 411

2023b), a dynamic RAG method that adapts re- 412

trieval based on token probabilities during iterative 413

text generation. (6) Adaptive-RAG (Jeong et al., 414

2024), another dynamic RAG method, adaptively 415

conducting multi-step or single-step retrieval based 416

on question complexity. 417

Evaluation Metrics. To assess the quality of the 418

generated responses, we adopt the original evalua- 419
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tion metrics from the source benchmarks (Hui et al.,420

2024; Bai et al., 2024). For FINQA’s numerical-421

oriented tasks, we employ Exact Match (EM) ac-422

curacy, while using F1 scores for all other datasets.423

Consistent with prior research (Xu et al., 2024a;424

Li et al., 2024c), we estimate the financial costs425

by measuring the total token usage of the LLM, as426

the small retrievers cost negligible in overall eval-427

uation. The latency overhead is recorded as the428

end-to-end execution time from query submission429

to final response generation.430

Experimental Settings. In all experiments, we431

utilize the GPT-4o (Hurst et al., 2024) as the back-432

bone LLM for generating answers. Following pre-433

vious works (Xu et al., 2024a; Asai et al., 2024), we434

use Contriever-MSMARCO (Izacard et al., 2021)435

as the basic retrieval model, with a default chunk-436

size of 512 tokens. For the RAG pipelines, the437

top-5 chunks are fetched, and for the compression-438

based pipelines, we fed the top-30 chunks into sub-439

sequent compression stages (Yoon et al., 2024).440

Implementation Details. We perform supervised441

fine-tuning on the Llama-3.2-1B-Instruct (Dubey442

et al., 2024) model to serve as the lightweight an-443

alyzer. The fine-tuning dataset was constructed444

by sampling from the train splits of the Hot-445

potQA, TAT-DQA, and Qasper datasets. This446

makes the evaluation on the other three datasets447

out-of-distribution. We employ BM-25 (Robertson448

et al., 2009), a widely used sparse retriever, for449

exact retrieval augmentation.450

Further details on experiments and implementa-451

tion are provided in Appendix C.452

5 Results and Analysis453

5.1 Main Results454

Table 1 presents the main experimental results, sup-455

ported by a visualization of averaged results in Fig-456

ure 3. Overall, OkraLong demonstrates significant457

effectiveness in both answering accuracy and cost458

efficiency. The basic OkraLong maintains decent459

performance across diverse datasets, although occa-460

sional suboptimal results on Multi-FieldQA. This461

may be attributed to the implicit semantic patterns462

among its factoid questions, which occasionally463

challenges the OkraLong’s analyzer in task charac-464

terization.465

Analysis of the baselines reveals two extreme466

cases: While compression-based CompAct min-467

imizes token usage, its aggressive content sum-468
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Figure 3: Average performance of end-to-end question
answering across six datasets. Superior approaches are
left and top positioned, indicating lower cost and higher
accuracy. And the execution time is represented by the
colors (the dark color denotes reduced latency).

marization causes severe information loss (with 469

39.9% accuracy degradation). Conversely, leverag- 470

ing the capability of GPT-4o, long-context process- 471

ing achieves peak accuracy through exhaustive con- 472

text retention, but incurs prohibitive costs (16.8x 473

higher than the basic OkraLong). 474

Aside from these extremes, the basic OkraLong 475

enhances answer accuracy by 5.7%-41.2% while 476

achieving cost savings of 1.3x-4.7x compared to 477

prior advancement. Furthermore, we also introduce 478

the OkraLong with Precise-Mode, which automat- 479

ically apply full context to initially unanswerable 480

questions 1. This cascading augmentation achieves 481

the equivalent answer quality with the long-context 482

processing, while maintaining a 4.4x cost advan- 483

tage. The integration of both modes establish a 484

Pareto-optimal frontier in the cost-accuracy spec- 485

trum (shown in Figure 3), enabling highly efficient 486

deployment in practical long-text query processing. 487

5.2 Latency Overhead 488

We conduct a comprehensive latency analysis 489

among different approaches. Figure 4 summarizes 490

the average end-to-end latency results with decom- 491

position. 492

The overall execution time can be divided into 493

two primary components: context processing and 494

LLM generation. For traditional approaches, the 495

context processing of the standard RAG entails 496

basic indexing and retrieval. The long-context 497

mechanism requires no operations on context, but 498

encounter substantial delays during LLM genera- 499

tion with lengthy input. For compression-based 500

1The generating LLM is prompted to respond "unanswer-
able" if encountering a lack of evidence.
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Method
Average TAT-DQA FINQA Qasper M-FieldQA HotpotQA 2WikiMQA

Score Cost F1 Cost EM Cost F1 Cost F1 Cost F1 Cost F1 Cost

Std-RAG 46.2 2.5 43.3 2.9 45.0 2.8 33.8 2.4 55.6 2.2 47.0 2.2 52.3 2.3
LC 57.8 32.0 54.4 79.8 56.5 74.1 44.9 10.5 56.9 7.2 63.7 12.9 70.1 7.4

Longllmlingua 42.1 2.6 43.5 3.5 41.4 3.4 34.5 2.5 39.5 1.9 54.0 2.4 39.7 1.9
Compact 30.9 0.5 19.0 0.6 11.9 0.6 19.4 0.3 44.3 0.3 45.8 0.5 45.0 0.5
Ada-RAG 48.6 3.9 42.6 5.3 43.9 4.9 36.5 2.7 51.2 2.4 56.3 3.9 60.9 4.2
FLARE 36.4 9.0 31.7 11.2 41.4 10.9 34.8 10.4 45.9 7.4 37.7 6.8 27.0 7.6

OkraLong 51.4 1.9 53.3 1.9 45.3 2.4 36.6 1.8 51.0 1.5 59.5 1.9 62.8 2.2
w/ Precise Mode 57.8 7.2 56.7 9.5 56.1 17.8 44.4 4.3 53.5 1.6 63.4 3.1 72.5 2.8

Table 1: End-to-end question answering performance across six datasets. Evaluation scores (F1/EM) are normalized
to 0-100 scale for clarity, with the cost quantified as token consumption (×103 tokens) for LLM generation.
Performance rankings are indicated with bold (for best) and underline (for second best), where the augmented
OkraLong with Precise-Mode is independently marked.
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Figure 4: Average end-to-end latency results across
various methods. The execution time (per question)
comprises context processing time and LLM generation
time.

methods, the latency increases as they often rely501

on small models for iterative compression. Mean-502

while, dynamic RAG approaches involve iterative503

LLM service calls, extending the generation time.504

Our OkraLong framework adaptively adjusts the505

workflow with a modest overhead for task analysis506

and extended indexing. Given the improvements in507

accuracy and cost efficiency, this marginally extra508

time is justifiable.509

More specific results are shown in Table 2.510

While standard RAG typically achieves the low-511

est latency, its rigid processing causes informa-512

tion loss. The financial reports in TAT-DQA513

and FINQA datasets spanning hundreds of pages,514

which raises the latency overhead across all meth-515

ods due to heavy indexing or lengthy full context.516

For HotpotQA and 2Wikimqa, which require multi-517

step reasoning, OkraLong spends more time than518

Qasper and M-FieldQA due to iterative LLM calls.519

Method TAT FIN Qasper M-Field Hotpot 2Wiki

Std-RAG 7.2 7.2 2.0 1.7 2.0 1.9
LC 55.5 57.4 4.7 3.5 6.6 3.7

L-Lingua 16.5 15.8 8.5 6.1 8.5 6.3
CompAct 29.7 32.9 22.3 17.6 20.1 16.3
Ada-RAG 8.9 7.7 3.2 2.4 3.6 2.8
FLARE 31.3 27.7 14.6 6.9 6.0 7.8

OkraLong 8.9 10.5 2.3 2.3 3.6 3.7

Table 2: End-to-end execution latency of different meth-
ods across six datasets. Performance rankings are in-
dicated with bold (for best) and underline (for second
best).

This also reflects the OkraLong’s capacity to adapt 520

to diverse demanding. 521

5.3 Ablation Study 522

We conduct ablation studies to assess the contribu- 523

tion of various optimizations within OkraLong, us- 524

ing the TAT-DQA dataset for its diverse task charac- 525

teristics. Table 3 displays the performance changes 526

when removing a specific optimization. 527

First, disabling adaptive workflow constructions 528

(i.e., using a fixed retrieval-generation pipeline for 529

all tasks) reduces accuracy by 7.3%. While this 530

may reduce token costs, it critically lacks situa- 531

tional adaptability, leading to inefficient process- 532

ing for diverse tasks. Second, maintaining a fixed 533

moderate retrieval granularity, without dynamically 534

adjusting, results in a 14.1% decrease in accuracy. 535

This significant loss stems from failing to capture 536

critical contextual information. Third, replacing 537

our aggregated retrieval approach with a direct 538

dense retriever causes a 6.4% F1 score drop. This 539

decline is primarily because a single dense retriever 540
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Method F1 Score Cost

Std-RAG (baseline) 43.3 2.94

OkraLong 53.3 1.93
w/o workflow orchestration 49.4 1.59
w/o retrieval adjustment 45.8 1.95
w/o aggregated retrieval 49.9 1.91

Table 3: Ablation studies on the OkraLong framework,
assessing the contributions of diverse optimizations.

struggles to precisely retrieve evidence for specific541

query details.542

These results demonstrate that our synergistic543

approaches each provide different yet complemen-544

tary benefits, collectively enhancing OkraLong’s545

overall performance.546

5.4 Analyzer Performance547

The analyzer forms OkraLong’s cognitive core. In548

this section, we evaluate its performance across549

three terms: question type classification, informa-550

tion pattern prediction, and evidence identification.551

Table 4 shows the analyzer’s prediction results on552

the combined validation datasets (more dataset de-553

tails in A.2).554

Compared to directly prompting the small model,555

supervised fine-tuning significantly improves the556

prediction performance. Question-type classifi-557

cation achieves a high precision of 86.4%, as a558

non-trivial five-class categorization task. This ef-559

ficiency aids in constructing the appropriate work-560

flows, thereby enhancing the overall performance.561

Evidence identification also performs well with an562

exact-match score of 79.4%. This facilitates the ef-563

fective retrieval through dynamic scope adjustment564

and granularity control. However, the prediction on565

information pattern shows reduced effectiveness.566

We attribute this to the inherent complexity to di-567

rectly predict the optimal retrieval pattern (exact,568

semantic or both) from the question and contexts,569

which could exceed the capabilities of a lightweight570

language model. To mitigate potentially biases, we571

adopt conservative fusion-weights when integrat-572

ing the two retrieval strategies (cf. Appendix C.3).573

5.5 Robustness and Generalization574

OkraLong exhibits robustness and generalization575

across several dimensions. First, for the patterns, its576

analyzer is fine-tuned on the heterogeneous dataset577

(combining HotpotQA, TAT-DQA and Qasper),578

mitigating over-fitting to specific patterns. This579

Question Information Evidence

Analyzer 86.4 64.6 79.4
w/o fine-tuning 22.9 15.2 67.5

Table 4: Prediction accuracy (exact-match scores)
across various terms, using fine-tuned analyzer or direct
model answering.

is evidenced by decent end-to-end Q&A perfor- 580

mance, across both in-distribution and three unseen 581

out-of-distribution datasets. Moreover, our com- 582

prehensive evaluation covers a wide range: (1) 583

target fields including finance, academia, govern- 584

ment reports and general knowledge; (2) long-text 585

forms containing varied single document and con- 586

catenated multi-documents; (3) questions ranging 587

from extractive, summarizing, arithmetic, to multi- 588

step reasoning. This extensive range, showcasing 589

its generalization across multiple scenarios. 590

For enhanced robustness, OkraLong offers a pre- 591

cise mode (Section 5.1) where uncertain or un- 592

solved questions fall back to full-context process- 593

ing, improving resilience. Additionally, the modu- 594

lar and plug-in design further enhances general- 595

ization. OkraLong features non-fixed workflow, en- 596

abling seamless integration of new operations and 597

heuristics for various real-world requirements. For 598

example, when a small model with limited math- 599

ematical capabilities is employed, a code-aided 600

generation operator can be easily incorporated for 601

arithmetic tasks. This ensures OkraLong’s extend- 602

ability for diverse real-world application. 603

6 Conclusion 604

In this paper, we propose OkraLong, a flexible and 605

efficient retrieval-augmented framework for long- 606

text question answering. This innovative frame- 607

work adaptively orchestrates the entire workflow 608

through its three synergistic components: analyzer, 609

organizer, and executor. OkraLong characterizes 610

task states, dynamically organize the workflow, and 611

carries out the execution to generate final answers. 612

We conduct comprehensive evaluations across six 613

diverse datasets, spanning multiple domains and 614

task types. The experimental results indicate that 615

OkraLong not only enhances answering quality but 616

also delivers significant cost-effectiveness. Com- 617

pared to pre-existing methods, OkraLong demon- 618

strates superior performance in handling long-text 619

questions, thereby providing a highly efficient so- 620

lution for practical deployment. 621
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Limitations622

While OkraLong demonstrates significant improve-623

ments in long-text question answering, we acknowl-624

edge its limitations: First, to balance accuracy and625

efficiency, the current analyzer employs supervised626

fine-tuning of a lightweight model, which relies on627

annotated training datasets for refinement. Future628

research could explore semi-supervised or weakly629

supervised paradigms to further reduce annotation630

dependence while maintaining effectiveness. Sec-631

ond, while OkraLong efficiently processes textual632

content, some long-form documents may also re-633

quire additional multi-modal integration. We cur-634

rently focus on text-centric workflows, as it remains635

the primary information carrier. Exploring effi-636

cient strategies for querying long-form multi-modal637

content represents a promising direction for future638

work.639
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A Training Details of the Analyzer903

A.1 Question Type904

We classify the questions into five categories, en-905

compassing a wide range of practical situations.906

The detailed descriptions and examples are pre-907

sented in Table 5.908

A.2 Dataset Construction909

The training and validation datasets for the analyzer910

were sampled from the training splits of the Hot-911

potQA, TAT-DQA, and Qasper datasets. Detailed912

statistics are provided in Table 7.913

Each training instance’s input consists of the914

question and relevant document segments, format-915

ted with a specific prompt detailed in Table 8.916

Regarding the output terms: (1) Question types,917

annotated in the original datasets, are standardized918

into five predefined categories. (2) The informa-919

tion pattern guides retrieval policy selection. First,920

retrieval is performed independently using exact921

and semantic methods. Then the context contain-922

ing more pertinent evidence is designated as the923

preferred pattern (exact, semantic, or same). (3) Ev-924

idence containing is directly labeled according to925

the annotated evidence and the provided contexts.926

For datasets without usable evidence annotations927

(e.g., TAT-DQA), evidence identification was la-928

beled using GPT-4o.929

A.3 Training Configuration930

We conduct the supervised fine-tuning on Llama-931

3.2-1B-Instruct model, with LoRA using the fol-932

lowing settings:933

• Gradient accumulation steps: 64934

• Learning rate: 1e-4935

• Training epochs: 5936

• LoRA rank: 8937

• LoRA scaling: 16938

• LoRA dropout: 0.1939

B Detailed Example of OkraLong940

Workflow941

This section provides a detailed illustration of the942

OkraLong workflow using a specific example.943

• The process begins by inputting the long-text944

content and the question (e.g., "Which campus945

is larger, University of New Haven or University946

of West Florida?"). OkraLong first chunks the947

context and primarily retrieves relevant chunks 948

related to the question. 949

• Based on the input question and retrieved chunks, 950

the fine-tuned analyzer outputs the task states, 951

including question type, information pattern, and 952

evidence identification. In this example, the task 953

type is identified as multi-source (requiring in- 954

formation from two separate universities), the 955

information pattern may be semantic-matching, 956

and the initial evidence may be inadequate. 957

• Based on these states, the organizer will heuristi- 958

cally organize the execution pipeline. The multi- 959

source task activates the question splitter, which 960

prompts the LLM to separate two entities for par- 961

allel retrieval. And the semantic-matching pat- 962

tern favors embedding-based semantic retrieval, 963

while inadequate evidence demands the addi- 964

tional retrieval with extended granularity. After 965

the parallel retrieval, the multi-source informa- 966

tional contexts should be processed and merged. 967

Then the LLM should extract the evidence and 968

generate the final answer. 969

• Following the above plans, the executor will ex- 970

ecute the corresponding operations and output 971

the final answer. 972

C More Implementation Details 973

C.1 Experimental Dataset 974

In our experiments, we utilize the datasets origi- 975

nating from the long-form aligned UDA collection 976

(Hui et al., 2024) and LongBench collection (Bai 977

et al., 2024), adhering to their established configu- 978

rations. 979

The UDA collection is released under the CC- 980

BY-SA 4.0 license, while the LongBench collec- 981

tion is covered by the MIT license. Our academic 982

utilization aligns with their designated purposes. 983

These widely-recognized public collections are 984

risk-free without offensive content. 985

UDA preserves the complete, unsegmented doc- 986

uments along with the source question-answering 987

data points. And LongBench aggregates multiple 988

Wikipedia articles to furnish expansive long-form 989

contexts. The statistics of the test datasets is de- 990

tailed in Table 6 , illustrating the distribution across 991

two benchmarks. 992

C.2 Experimental Settings 993

In our experiments, we employ the GPT-4o model 994

through the AzureOpenAI API (AzureOpenAI, 995

12



Question Type Description Example Question

Arithmetic Performing mathematical calculations. What is the percentage increase in interest expanse
and penalties in 2019?

Extractive Extracting specific information directly from the
context.

What crowd-sourcing platform is used?

Summarizing Involving condensing information from large
contexts.

How does the researcher improved the neural
network architectures for image recognition?

Multi-Source Requiring information from various distinct
entities or sources.

Which film has the director who was born first,
Hell Up In Harlem or The Soviet Story?

Multi-Bridge Involving a sequence of interconnected procedural
steps.

Who is the spouse of the director of film
Emergency Wedding?

Table 5: Description of different question types with examples.

Dataset UDA Long Bench

TAT-DQA FIN-QA Qasper M-FieldQA HotpotQA 2WikiMQA

Test Size 210 278 232 150 200 200

Data Source Finance Finance Arxiv papers Multi-field Wikipedia Wikipedia

Avg Word Count 72,041 74,170 6,121 4,559 9,157 4,887

Question Types Arithmetic
Extractive

Summarizing

Arithmetic Extractive
Summarizing

Extractive Multi-Souce
Mult-Bridge

Multi-Souce
Mult-Bridge

Table 6: Detailed characteristics across different datasets. Avg-Word-Count indicates the average number of words
in each long-text input.

Dataset #Train #Valid

TAT-DQA 3.2k 0.3k
HotpotQA 3.6k 0.4k
Qasper 2.6k 0.3k
Total 9.4k 1.0k

Table 7: Statistics of the training dataset for analyzer.
The size of the balanced total dataset is restricted due to
limited records in Qasper.

2025), with the API version of 2024-08-06. When996

evaluate the token cost, we apply a cost-weight to997

output tokens four times higher than input tokens998

(OpenAI, 2025). Other small open-source mod-999

els (serving as the retrieval models or compressing1000

models) are sourced from Huggingface. For our1001

retrieval processes, we utilize ChromaDB (Chroma,1002

2025) as the vector database. The fine-tuning of1003

our analyzer is conducted on an NVIDIA A1001004

GPU for an hour, while small model deployments1005

operate on an NVIDIA A10 GPU. The above setup1006

mirrors the general scenario where average individ-1007

uals deploy lightweight models on limited-capacity1008

GPUs while accessing more powerful LLMs via1009

remote APIs. Following extensive prior works, we1010

conduct experiments with a single run, due to the1011

significant computational cost of LLMs. 1012

When conducting the long-context processing, 1013

issues may raise where the complete context sur- 1014

passes the 128k token limit of the GPT-4o context 1015

window. In such cases, we implement a fallback 1016

strategy that involves retrieving the top 200 most 1017

relevant text chunks with the dense retriever, ap- 1018

proximately aggregating to 100k tokens. 1019

C.3 Supplementary Details of OkraLong 1020

Before the analysis, OkraLong primarily retrieves 1021

three segments, each comprising 150 tokens, to 1022

perform analysis. Subsequent to the analysis, the 1023

organizer assigns extended eight text segments 1024

to contextual tasks (e.g., summarizing questions), 1025

whereas factoid tasks cover five segments. In in- 1026

stances where evidence is analyzed to be absent, 1027

the granularity of retrieval-segments scales to 400 1028

tokens for contextual tasks and 256 tokens for fac- 1029

toid tasks. 1030

The execution module of OkraLong comprises 1031

multiple operators: (1) In the assembled retriever, 1032

we deploy dual retrieval strategies: the semantic 1033

dense retriever and the exact sparse retriever. We 1034

normalize the relevance scores of the top 20 text 1035

chunks using min-max normalization and aggre- 1036
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gate them based on semantic or exact information1037

preferences. These preferences influence the fi-1038

nal scoring, applying a conservative weight to de-1039

termine the top-ranked chunks: 3:2 for preferred1040

aggregation or 1:1 for uniform aggregation. (2)1041

The context processor supports context merging,1042

context extension, and table recovery. It maintains1043

essential metadata such as positions and index num-1044

bers of text chunks. Utilizing this metadata, it1045

merges neighboring chunks and extends their pre-1046

ceding and succeeding contexts if required. Ad-1047

ditionally, it includes a mechanism to detect and1048

recover incomplete tables within the text, lever-1049

aging structural markers such as spacing and line1050

breaks. (3) Inspired by previous works (Trivedi1051

et al., 2023; Jiang et al., 2023b; Ma et al., 2023),1052

we prompt the LLM to perform question splitting1053

and step-wise reasoning. The detailed instructions1054

are shown in Table 9 and Table 10.1055
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System:
Given a question and the document context, please answer three questions:

1. What type of question is being asked? The types include: extractive, abstractive, arithmetic, multi-bridge, and multi-
source. Extractive means the query is directly factoid; summarizing means the query needs large context and conclusion;
arithemtic means the query needs numerical calculation; multi-bridge means the answer requires multiple bridging steps to
get the answer;multi-source means the answer requires information from multiple facts (e.g. comparison questions).

2. Is the key information of the question more exact or semantic (according to both the question and the context)? The
answer should be "exact", "semantic" or "same".

3. Does the provided context contain the enough information to answer the question? The answer should be either "yes" or
"no".

The final answer should be in the format of a dictionary:

{"question-type": "extractive", "info-type": "exact", "containing": "yes"}.

Please strictly follow the format and no explanation is needed.

User:
### Context: {context} ### Question: {question} ### Answer:

Table 8: The instructed prompt for the task analyzer.

System:
Given a question, and this question may need the information from multiple sources.

Please split this question into multiple sub-questions, each of which can be answered by a single source. The final answer
should be several sub-questions separated by the line-breaker.

Demonstration:
User:

Which university has the larger campus, University of New Haven or University of West Florida?

Assistant:

What is the campus size of University of New Haven?

What is the campus size of University of West Florida?

User:
{question}

Table 9: The instructed prompt for the question splitting operator.

System:
Given a question, which may need multiple steps to get the final answer. Please first get the existing evidence for the
question based on the given context, and then generate a next-step query to query additional information. If the question
can already be totally answered, you should output ’### Answer: The answer is: <answer>’ at the end. Otherwise, output
’None’. The answer should be based only on the context. """

Demonstration:
User:

### Context: 100 Rifles is directed by Tom Gries and starring Jim Brown and Raquel Welch. ### Question: 100 Rifles is a
western film, starring an actress of what nationality?

Assistant:

### Evidence: The main actress in 100 Rifles is Raquel Welch. ### Next-Query: What is the nationality of Raquel Welch?
### Answer: None

User:
### Context: {context} ### Question:{question}

Table 10: The instructed prompt for the step-wise reasoning operator.
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