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Abstract

Dense retrieval approaches can overcome the001
lexical gap and lead to significantly improved002
search results. However, they require large003
amounts of training data which is not avail-004
able for most domains. As shown in previous005
work (Thakur et al., 2021b), the performance006
of dense retrievers severely degrades under a007
domain shift. This limits the usage of dense re-008
trieval approaches to only a few domains with009
large training datasets.010

In this paper, we propose the novel unsuper-011
vised domain adaptation method Generative012
Pseudo Labeling (GPL), which combines a013
query generator with pseudo labeling from a014
cross-encoder. On six representative domain-015
specialized datasets, we find the proposed GPL016
can outperform an out-of-the-box state-of-the-017
art dense retrieval approach by up to 8.9 points018
nDCG@10. GPL requires less (unlabeled) data019
from the target domain and is more robust in020
its training than previous methods.021

We further investigate the role of six recent022
pre-training methods in the scenario of domain023
adaptation for retrieval tasks, where only three024
could yield improved results. The best ap-025
proach, TSDAE (Wang et al., 2021) can be026
combined with GPL, yielding another average027
improvement of 1.0 points nDCG@10 across028
the six tasks. The code is available.1029

1 Introduction030

Information Retrieval (IR) is a central component031

of many natural language applications. Tradition-032

ally, lexical methods (Robertson et al., 1994) have033

been used to search through text content. However,034

these methods suffer from the lexical gap (Berger035

et al., 2000) and are not able to recognize synonyms036

and distinguish between ambiguous words.037

Recently, information retrieval methods based038

on dense vector spaces have become popular to039

address these challenges. These dense retrieval040

1Anonymous link.

methods map queries and passages2 to a shared, 041

dense vector space and retrieve relevant hits by 042

nearest-neighbor search. Significant improvement 043

over traditional approaches has been shown for 044

various tasks (Karpukhin et al., 2020; Xiong et al., 045

2021). This method is also adapted increasingly 046

by industry to enhance the search functionalities 047

of various applications (Choi et al., 2020; Huang 048

et al., 2020). 049

However, as shown in Thakur et al. (2021b), 050

dense retrieval methods require large amounts of 051

training data to work well.3 Most importantly, 052

dense retrieval methods are extremely sensitive to 053

domain shifts: Models trained on MS MARCO 054

perform rather poorly for questions for COVID-19 055

scientific literature (Wang et al., 2020; Voorhees 056

et al., 2021). The MS MARCO dataset was created 057

before COVID-19, hence, it does not include any 058

COVID-19 related topics and models did not learn 059

how to represent this topic well in a vector space. 060

In this work, we present Generative Pseudo 061

Labeling (GPL), an unsupervised domain adap- 062

tation technique for dense retrieval models (see 063

Figure 1). For a collection of paragraphs from the 064

desired domain, we use an existing pre-trained T5 065

encoder-decoder to generate suitable queries. For 066

each generated query, we retrieve the most sim- 067

ilar paragraphs using an existing dense retrieval 068

model which will serve as negative passages. Fi- 069

nally, we use an existing cross-encoder to score 070

each (query, passage)-pair and train a dense re- 071

trieval model on these generated, pseudo-labeled 072

queries using MarginMSE-Loss (Hofstätter et al., 073

2020). 074

We use publicly available models for query gen- 075

eration, negative mining, and the cross-encoder, 076

which have been trained on the MS MARCO 077

2We use passage to refer to text of any length.
3For reference, the popular MS MARCO dataset (Bajaj

et al., 2018) has about 500k training instances; the Natural
Questions dataset (Kwiatkowski et al., 2019) has more than
100k training instances.
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Figure 1: Generative Pseudo Labeling (GPL) for training domain-adapted dense retriever. First, synthetic queries
are generated for each passage from the target corpus. Then, the generated queries are used for mining negative
passages. Finally, the query-passage pairs are labeled by a cross-encoder and used to train the domain-adapted
dense retriever. The output at each step is marked with dashed boxes.

dataset (Nguyen et al., 2016a), a large-scale dataset078

from Bing search logs combined with relevant pas-079

sages from diverse web sources. We evaluate GPL080

on six representative domain-specific datasets from081

the BeIR benchmark (Thakur et al., 2021b). GPL082

improves the performance by up to 8.9 points083

nDCG@10 compared to state-of-the-art model084

trained solely on MS MARCO. Compared to the085

previous state-of-the-art domain-adaption method086

QGen (Ma et al., 2021; Thakur et al., 2021b), GPL087

improves the performance by up to 5.2 nDCG@10088

points. Training with GPL is easy, fast, and data089

efficient.090

We further analyze the role of six recent pre-091

training methods in the scenario of domain adap-092

tation for retrieval tasks. The best approach is093

TSDAE (Wang et al., 2021), that outperforms the094

second best approach (Masked Language Model-095

ing (Devlin et al., 2019)) on average by 2.5 points096

nDCG@10. TSDAE can be combined with GPL,097

yielding another average improvement of 1 point098

nDCG@10.099

2 Related Work100

Pre-Training based Domain Adaptation. The101

most common domain adaption technique for trans-102

former models is domain-adaptive pre-training (Gu-103

rurangan et al., 2020), which continues pre-training104

on in-domain data before fine-tuning with labeled105

data. However, for retrieval it is often difficult106

to get in-domain labeled data and models are be107

applied in a zero-shot setting on a given corpus. Be-108

sides Masked Language Modeling (MLM) (Devlin109

et al., 2019), different pre-trained strategies specif-110

ically for dense retrieval methods have been pro-111

posed. Inverse Cloze Task (ICT) (Lee et al., 2019)112

generates query-passage pair by randomly select-113

ing one sentence from the passage as the query and114

the other part as the paired passage. ConDensor 115

(CD) (Gao and Callan, 2021) applies MLM on top 116

of the CLS token embedding from the final layer 117

and the other context embeddings from a previous 118

layer to force the model to learn meaningful CLS 119

representation. SimCSE (Gao et al., 2021a; Liu 120

et al., 2021) passes the same input twice through 121

the network with different dropout masks and min- 122

imizes the distance of the resulting embeddings, 123

while Contrastive Tension (CT) (Carlsson et al., 124

2021) passes the input through two different mod- 125

els. TSDAE (Wang et al., 2021) uses a denoising 126

auto-encoder architecture with bottleneck: Words 127

from the input text are removed and passed through 128

an encoder to generate a fixed-sized embedding. A 129

decoder must reconstruct the original text without 130

noise. As we show in Appendix D, just using these 131

unsupervised techniques is not sufficient and the 132

resulting models perform poorly. 133

So far, ICT and CD have only been studied on 134

in-domain performance, i.e. a large in-domain la- 135

beled dataset is available which is used for subse- 136

quent supervised fine-tuning. SimCSE, CT, and 137

TSDAE have been only studied for unsupervised 138

sentence embedding learning. As our results show 139

in Appendix D, they do not work at all for purely 140

unsupervised dense retrieval. 141

If these pre-training approaches can be used for 142

unsupervised domain adaptation for dense retrieval 143

was so far unclear. In this work, we transfer the 144

setup from Wang et al. (2021) to dense retrieval 145

and first pre-train on the target corpus, followed 146

by supervised training on labeled data from MS 147

MARCO (Nguyen et al., 2016b). Performance is 148

then measured on the target corpus. 149

Query Generation. Query generation has been 150

used to improve retrieval performances. Doc2query 151

(Nogueira et al., 2019a,b) expands passages with 152
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predicted queries, generated by a trained encoder-153

decoder model, and uses traditional BM25 lexical154

search. This performed well in the zero-shot re-155

trieval benchmark BeIR (Thakur et al., 2021b). Ma156

et al. (2021) propose QGen, that uses a query gen-157

erator trained on general domain data to synthesize158

domain-targeted queries for the target corpus, on159

which a dense retriever is trained from scratch. Fol-160

lowing this idea, Thakur et al. (2021b) views QGen161

as a post-training method to adapt powerful MS162

MARCO retrievers to the target domains.163

Despite the success of QGen, previous methods164

only consider the cross-entropy loss with in-batch165

negatives, which provides coarse-grained relevance166

and thus limits the performance. In this work, we167

show that extending this approach by using pseudo-168

labels from a cross-encoder together with hard neg-169

atives can boost the performance by several points170

nDCG@10.171

Other Methods. Recently, Xin et al. (2021) pro-172

poses MoDIR to use Domain Adversarial Training173

(DAT) (Ganin et al., 2016) for unsupervised do-174

main adaptation of dense retrievers. MoDIR trains175

models by generating domain invariant represen-176

tations to attack a domain classifier. However, as177

argued in Karouzos et al. (2021), DAT trains mod-178

els by minimizing the distance between represen-179

tations from different domains and such learning180

objective can result in bad embedding space and181

unstable performance. For sentiment classification,182

Karouzos et al. (2021) proposes UDALM based on183

multiple stages of training. UDALM first applies184

MLM training on the target domain; and it then ap-185

plies multi-task learning on the target domain with186

MLM and on the source domain with a supervised187

objective. However, as shown in section 5, we find188

this method cannot yield improvement for retrieval189

tasks.190

Pseudo Labeling and Cross-Encoders: Bi-191

Encoders map queries and passage independently192

to a shared vector space from which the query-193

passage similarity is computed. In contrast, cross-194

encoders (Humeau et al., 2020) work on the con-195

catenation of the query and passage and predict196

a relevance score using cross-attention between197

query and passage. This can be used in a re-ranking198

setup (Nogueira and Cho, 2019), where the rele-199

vancy is predicted for all query-passage-pairs for200

a small candidate set. Previous work has shown201

that cross-encoders achieve much higher perfor-202

mances (Thakur et al., 2021a; Hofstätter et al.,203

2020; Ren et al., 2021) and are less prone to domain 204

shifts (Thakur et al., 2021b). But cross-encoders 205

come with an extremely high computational over- 206

head, making them less suited for a production set- 207

ting. Transferring knowledge from cross-encoder 208

to bi-encoders have been shown previous for sen- 209

tence embeddings (Thakur et al., 2021a) and for 210

dense retrieval: Hofstätter et al. (2020) predict 211

cross-encoder scores for (query, positive)-pairs and 212

(query, negative)-pairs and learns a bi-encoder to 213

predict the margin between the two scores. This has 214

been shown highly effective for in-domain dense 215

retrieval. 216

3 Method 217

This section describes our proposed Generative 218

Pseudo Labeling (GPL) method for the unsuper- 219

vised domain adaptation of dense retrievers. Fig- 220

ure 1 illustrates the idea of GPL. 221

For a given target corpus, we generate for each 222

passage three queries (cf. Table 3) using an T5- 223

encoder-decoder model (Raffel et al., 2020). For 224

each of the generated queries, we use an exist- 225

ing retrieval system to retrieve 50 negative pas- 226

sages. Dense retrieval with a pre-existing model 227

was slightly more effective than BM25 lexical re- 228

trieval (cf. Appendix A). For each (query, posi- 229

tive, negative)-tuple we compute the margin δ = 230

CE(Q,P+, )− CE(Q,P−) with CE the score as 231

predicted by a cross-encoder, Q the query and 232

P+/P− the positive / negative passage. 233

We use the synthetic dataset DGPL = 234

{(Qi, Pi, P
−
i , δi)}i with the MarginMSE loss (Hof- 235

stätter et al., 2020) for training a domain-adapted 236

dense retriever that maps queries and passages into 237

the shared vector space. 238

Our method requires from the target domain just 239

an unlabeled collection of passages. Further, we 240

use use pre-existing T5- and cross-encoder models 241

that have been trained on the MS MARCO passages 242

dataset. 243

Query Generation: To enable supervised train- 244

ing on the target corpus, synthetic queries can be 245

generated for the target passages using a query 246

generator trained on a different, existing dataset 247

like MS MARCO. Previous work QGen (Ma et al., 248

2021) used the simple MultipleNegativesRanking 249

(MNRL) loss (Henderson et al., 2017; van den 250

Oord et al., 2018) with in-batch negatives to train 251

the model: 252
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LMNRL(θ) =253

− 1

M

M−1∑
i=0

log
exp

(
τ · σ(fθ(Qi), fθ(Pi))

)∑M−1
j=0 exp

(
τ · σ(fθ(Qi), fθ(Pj))

)254

where Pi is a relevant passage for Qi; σ is a cer-255

tain similarity function for vectors; τ controls the256

sharpness of the softmax normalization; M is the257

batch size.258

MarginMSE loss: MultipleNegativesRanking259

loss considers only the coarse relationship between260

queries and passages, i.e. the matching passage is261

considered as relevant while all other passages are262

considered irrelevant. However, the query encoder263

is not without flaws and might generate queries that264

are not answerable by the passage. Further, other265

passages might actually be relevant as well for a266

given query, which is especially the case if training267

is done with hard negatives as we do it for GPL.268

In contrast, MarginMSE loss (Hofstätter et al.,269

2020) uses a powerful cross-encoder to soft-label270

(query, passage) pairs. It then teaches the dense re-271

triever to mimic the score margin between the pos-272

itive and negative query-passage pairs. Formally,273

274

LMarginMSE(θ) = − 1

M

M−1∑
i=0

|δ̂i − δi|2 (1)275

where δ̂i is the corresponding score margin of the276

student dense retriever, i.e. δ̂i = fθ(Qi)
T fθ(Pi)−277

fθ(Qi)
T fθ(P

−
i ). Here the dot-product is usually278

used due to the infinite range of the cross-encoder279

scores.280

This loss is a critical component of GPL, as it281

solves two major issues from the previous QGen282

method: A badly generated query for a given pas-283

sage will get a low score from the cross-encoder,284

hence, we do not expect the dense retriever to put285

the query and passage close in the vector space. A286

false negative will lead to a high score from the287

cross-encoder, hence, we do not force the dense288

retriever to assign a large distance between the cor-289

responding embeddings. In section 6.3, we show290

that GPL is a lot more robust to badly generated291

queries than the previous QGen method.292

4 Experiments293

In this section, we describe the experimental setup,294

the datasets used and the baselines for comparison.295

4.1 Experimental Setup 296

We use the MS MARCO passage ranking 297

dataset (Bajaj et al., 2018) as the data from the 298

source domain. It has 8.8M passages and 532.8K 299

query-passage pairs labeled as relevant in the train- 300

ing set. As Table 1 shows, a state-of-the-art dense 301

retrieval model, achieving an MRR@10 of 33.2 302

points on the MS MARCO passage ranking dataset, 303

performs poorly on the six selected domain-specific 304

retrieval datasets when compared to simple BM25 305

lexical search. 306

We use the DistilBERT (Sanh et al., 2019) for 307

all the experiments. We use a maximum sequence 308

length of 350 with mean pooling and dot-product 309

similarity. For QGen, we use the default setting 310

in Thakur et al. (2021b): 1-epoch training and 311

batch size 75. For GPL, we train the models 312

with 140k training steps and batch size 32. To 313

generate queries for both QGen and GPL, we use 314

the docT5query (Nogueira et al., 2019a) generator 315

trained on MS MARCO and generate 4 3 queries 316

per passage using nucleus sampling with temper- 317

ature 1.0, k = 25 and p = 0.95. To retrieve hard 318

negatives for both GPL and the zero-shot setting of 319

MS MARCO training, we use two dense retrievers 320

using cosine-similarity trained on MS MARCO: 321

msmarco-distilbert-base-v3 and msmarco-MiniLM- 322

L-6-v3 from Sentence-Transformers5. The zero- 323

shot performance of these two dense retrievers are 324

available in Appendix B. We retrieve 50 negatives 325

using each retriever and uniformly sample one neg- 326

ative passage and one positive passage for each 327

training query to form one training example. For 328

pseudo labeling, we use the ms-marco-MiniLM-L- 329

6-v26 cross-encoder. For TSDAE pre-training, we 330

train the models with 100K training steps and batch 331

size 8. 332

4.2 Evaluation 333

As our methods focus on domain adaptation to 334

specialized domains, we selected six domain- 335

specific text retrieval tasks from the BeIR bench- 336

mark (Thakur et al., 2021b): FiQA (financial do- 337

main) (Maia et al., 2018), SciFact (scientific pa- 338

pers) (Wadden et al., 2020), BioASQ (biomedical 339

Q&A) (Tsatsaronis et al., 2015), TREC-COVID 340

4We use the script from BeIR at https://github.
com/UKPLab/beir.

5https://github.com/UKPLab/
sentence-transformers

6https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-6-v2

4

https://github.com/UKPLab/beir
https://github.com/UKPLab/beir
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2


(scientific papers on COVID-19) (Roberts et al.,341

2020), CQADupStack (12 StackExchange sub-342

forums) (Hoogeveen et al., 2015) and Robust04343

(news articles) (Voorhees, 2005). These selected344

datasets each contain a corpus with a rather specific345

language and can thus act as a suitable test bed for346

domain adaptation.347

The detailed information for all the target348

datasets is available at Appendix C. We make349

modification on BioASQ and TREC-COVID. For350

efficient training and evaluation on BioASQ, we351

randomly remove irrelevant passages to make the352

final corpus size to 1M. In TREC-COVID, the orig-353

inal corpus has many documents with a missing354

abstract. The retrieval systems that were used to355

create the annotation pool for TREC-COVID often356

ignored such documents, leading to a strong annota-357

tion bias for these documents. Hence, we removed358

all documents with a missing abstract from the cor-359

pus. The evaluation results on the original BioASQ360

and TREC-COVID are available at Appendix C.361

Evaluation is done using nDCG@10.362

4.3 Baselines363

Zero-Shot Models: We apply supervised training364

on MS MARCO or PAQ (Lewis et al., 2021) and365

evaluate the trained retrievers on the target datasets.366

(a) MS MARCO represents a distilbert-base dense367

retrieval model trained with MarginMSE on the368

MS MARCO dataset with batch-size 75 for 70k369

steps. (b) PAQ (Oguz et al., 2021) represents370

MNRL training on the PAQ dataset. (c) PAQ + MS371

MARCO represents MNRL training on PAQ fol-372

lowed by MarginMSE training on MS MARCO. (d)373

TSDAEMS MARCO represents TSDAE (Wang et al.,374

2021) pre-training on MS MARCO followed by375

MarginMSE training on MS MARCO. (e) BM25376

system based on lexical matching from Elastic-377

search7.378

Previous Domain Adaptation Methods: We379

include two previous unsupervised domain adapta-380

tion methods, UDALM (Karouzos et al., 2021) and381

MoDIR (Xin et al., 2021). For UDALM, we apply382

MLM training on the target corpus and then apply383

the multi-task training of MarginMSE training on384

MS MARCO and MLM training on the target cor-385

pus. For MoDIR, it starts from the ANCE check-386

point and apply domain adversarial training on MS387

MARCO and the target dataset. As of writing, the388

training code of MoDIR is not public, but domain389

7https://www.elastic.co

adapted models for 5 out of 6 datasets have been 390

released by the authors. 391

Pre-Training based Domain Adaptation: We 392

follow the setup proposed in Wang et al. (2021) 393

on domain-adapted pre-training: We pre-train the 394

dense retrievers with different methods on the tar- 395

get corpus and then continue to train the mod- 396

els on MS MARCO with MarginMSE loss. The 397

pre-training methods consist of: (a) CD (Gao and 398

Callan, 2021) extracts the hidden representations 399

from an intermediate layer and applies MLM on 400

the CLS token representation and these extracted 401

hidden representations8. (b) SimCSE (Gao et al., 402

2021b; Liu et al., 2021) simply encode the same 403

text twice with different dropout masks in combi- 404

nation with MNRL loss. (c) CT (Carlsson et al., 405

2021) is similar to SimCSE but it uses two inde- 406

pendent encoders to encode a pair of text. (d) 407

MLM (Devlin et al., 2019) uses the default set- 408

ting in original paper, where 15% tokens in a text 409

are sampled to be masked and are needed to be 410

predicted. (e) ICT (Lee et al., 2019) uniformly 411

samples one sentence from a passage as the pseudo 412

query to that passage and uses MNRL loss on the 413

synthetic data. We follow the setting in Lee et al. 414

(2019) and masked out the selected sentence 90% 415

of the time. (f) TSDAE (Wang et al., 2021) uses 416

a denoising autoencoder to pre-train the dense re- 417

trievers with 60% random tokens deleted in the 418

input texts. 419

Generation-based Domain Adaptation: We 420

use the training script9 from Thakur et al. (2021b) 421

to train QGen models with the default setting. For 422

each passage, 3 queries are generated using the 423

same sampling strategy as for GPL. Cosine similar- 424

ity is used and the models are fine-tuned for 1 epoch 425

with MNRL. The default QGen is trained with in- 426

batch negatives. For a fair comparison, we also test 427

QGen with hard negatives as used in GPL, noted as 428

QGen (w/ Hard Negatives). Further, We we test 429

the combination of TSDAE and QGen (TSDAE + 430

QGen). 431

Re-Ranking with Cross-Encoders: We also 432

include results of the powerful but inefficient 433

re-ranking methods for reference. Three re- 434

trievers for the first-phrase retrieval are tested: 435

BM25 from Elasticsearch, the zero-shot MS 436

MARCO retriever and the enhanced GPL re- 437

triever by TSDAE pre-training. We use the cross- 438

8CD can only be applied with CLS pooling.
9https://github.com/UKPLab/beir
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Method
Dataset FiQA SciFact BioASQ TRECC. CQADup. Robust04 Avg.

Zero-Shot Models
MS MARCO 26.7 57.1 52.9 66.1 29.6 39.0 45.2
PAQ 15.2 53.3 44.0 23.8 24.5 31.9 32.1
PAQ + MS MARCO 26.7 57.6 53.8 63.4 30.6 37.2 44.9
TSDAEMS MARCO 26.7 55.5 51.4 65.6 30.5 36.6 44.4
BM25 23.9 66.1 70.7 60.1 31.5 38.7 48.5
Previous Domain Adaptation Methods
UDALM 23.3 33.6 33.1 57.1 24.6 26.3 33.0
MoDIR 29.6 50.2 47.9 66.0 29.7 – –
Pre-Training based Domain Adaptation: Target → MS MARCO
CT 28.3 55.6 49.9 63.8 30.5 35.9 44.0
CD 27.0 62.7 47.7 65.4 30.6 34.5 44.7
SimCSE 26.7 55.0 53.2 68.3 29.0 37.9 45.0
ICT 27.0 58.3 55.3 69.7 31.3 37.4 46.5
MLM 30.2 60.0 51.3 69.5 30.4 38.8 46.7
TSDAE 29.3 62.8 55.5 76.1 31.8 39.4 49.2
Generation-based Domain Adaptation (Previous State-of-the-Art)
QGen 28.2 61.7 60.0 72.8 33.6 38.5 49.1
QGen (w/ Hard Negatives) 26.0 59.6 57.7 65.0 33.2 36.5 46.3
TSDAE + QGen (Ours) 30.3 64.7 60.5 73.8 35.1 38.4 50.5
Proposed Method: Generative Pseudo Labeling
GPL 33.1 65.2 61.6 71.7 34.4 42.1 51.4
TSDAE + GPL 33.3 67.3 62.8 74.0 35.1 42.1 52.4
Re-Ranking with Cross-Encoders (Upper Bound, Inefficient at Inference)
BM25 + CE 33.1 67.6 72.8 71.2 36.8 46.7 54.7
MS MARCO + CE 33.0 66.9 57.4 65.1 36.9 44.7 50.7
TSDAE + GPL + CE 36.4 68.1 68.0 71.4 38.1 48.3 55.1

Table 1: Evaluation using nDCG@10. The best results of the single-stage dense retrievers are bold. TRECC. and
CQADup. are short for TREC-COVID and CQADupStack. Our proposed GPL significantly outperforms other
domain adaptation methods. For the first time, we investigate the TSDAE pre-training in domain adaptation for
dense retrieval and find it can significantly improve both QGen and GPL.

encoder ms-marco-MiniLM-L-6-v2 from Sentence-439

Transformers, which is also for pseudo labeling for440

GPL.441

5 Results442

Pre-Training based Domain Adaptation:443

The results are shown in Table 1. Compared444

with the zero-shot MS MARCO model, TSDAE,445

MLM and ICT can improve the performance if we446

first pre-train on the target corpus and then per-447

form supervised training on MS MARCO. Among448

them, TSDAE is the most effective method, out-449

performing the zero-shot baseline by by 4.0 points450

nDCG@10 on average. CD, CT and SimCSE are451

not able to adapt to the domains in a pre-training452

setup and achieve a performance worse than the453

zero-shot model.454

To ensure that TSDAE actually learns domain455

specific terminology, we include TSDAEMS MARCO456

in our experiments: Here, we performed TSDAE457

pre-training on the MS MARCO dataset follow458

by supervised learning on MS MARCO. This 459

performs slightly weaker than the zero-shot MS 460

MARCO model. 461

We also tested the pre-training methods without 462

any supervised training on MS MARCO. We find 463

all of them fail miserably compared as shown in 464

Appendix D . 465

Previous Domain Adaptation Methods: We 466

test MoDIR on the datasets except Robust0410. 467

MoDIR performs on-par with our zero-shot MS 468

MARCO model on FiQA, TREC-COVID and 469

CQADupStack, while it performs much weaker on 470

SciFact and BioASQ. An improved training setup 471

with MoDIR could improve the results. 472

We also test UDALM, which first does MLM 473

pre-training on the target corpus, and then runs 474

multitask learning with MLM objective and super- 475

vised training on MS MARCO. The results show 476

that UDALM in this case greatly harms the perfor- 477

10The original author did not train the model on Robust04
and the code is also not available.
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mance by 12.2 points in average, when compared478

with the MLM-pre-training approach. We suppose479

this is because unlike text classification, the dense480

retrieval models usually do not have an additional481

task head and the direct MLM training conflicts482

with the supervised training.483

Generation-based Domain Adaptation: The484

results show that the previous best method, QGen,485

can successfully adapt the MS MARCO models486

to the new domains, improving the performance487

on average by 3.9 points. It performs on par with488

TSDAE-based domain-adaptive pre-training. Com-489

bining TSDAE with QGen can further improve the490

performance by 1.4 points.491

When using QGen with hard negatives instead492

of random in-batch negatives, the performance de-493

creases by 2.8 points in average. QGen is sensitive494

to false negatives, i.e. negative passage that are ac-495

tually relevant for the query. This is a common496

issue for hard negative mining. GPL solves this497

issue by using the cross-encoder to determine the498

distance between the query and a passage. We give499

more analysis in Appendix F.500

Generative Pseudo Labeling (GPL, proposed501

method): We find GPL is significantly better on502

almost all the datasets compared to the other tested503

method, outperforming QGen by up to 4.9 points504

(on FiQA) and in average by 2.3 points. One ex-505

ception is TREC-COVID, but as this dataset has506

just 50 test queries, so this difference can be due to507

noise.508

As a further enhancement, we find that TSDAE-509

based domain-adaptive pre-training combined with510

GPL (i.e. TSDAE + GPL) can further improve the511

performance on all the datasets, achieving the new512

state-of-the-art result of 52.4 nDCG@10 points513

in average. It outperforms the out-of-the-box MS514

MARCO model 7.2 points on average.515

Re-ranking with Cross-Encoders: Cross-516

encoders perform well in a zero-shot setting and517

outperform dense retrieval approaches significantly518

(Thakur et al., 2021b), but they come with a sig-519

nificant computational cost at inference. TSDAE520

and GPL can narrow but not fully close the perfor-521

mance gap. Due to the much lower computational522

costs at inference, the TSDAE + GPL model would523

be preferable in a production setting.524

6 Analysis525

In this section, we analyze the influence of training526

steps, corpus size, query generation and choices of527

0 25 50 75 100 125
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40

45
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55

60
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GPL + TSDAE
Zero-shot

Figure 2: Influence of the number training steps on the
averaged performance. The performance of GPL begins
to be saturated after 100K steps. TSDAE helps improve
the performance during the whole training stage.

Method
Size 1K 10K 50K 250K 528K

QGen 35.3 36.9 38.3 37.2 38.5
GPL 37.2 41.3 42.6 42.9 42.1
Zero-shot 39.0

Table 2: Influence of corpus size on performance on
Robust04. The full size is 528K. GPL can achieve the
best performance with as little as 50K passages.

starting checkpoints on GPL. 528

6.1 Influence of Training Steps 529

We first analyze the influence of the number of 530

training steps on the model performance. We eval- 531

uate the models every 10K training steps and end 532

the training after 140K steps. The results for the 533

change of averaged performance on all the datasets 534

are shown in Figure 2. We find the performance of 535

GPL begins to be saturated after around 100K steps. 536

With the TSDAE pre-training, the performance can 537

be improved consistently during the whole train- 538

ing stage. For reference, training a distilbert-base 539

model for 100k steps takes about 9.6 hours on a 540

single V100 GPU. 541

6.2 Influence of Corpus Size 542

We next analyze the influence of different corpus 543

sizes. We use Robust04 for this analysis, since it 544

has a relatively large size. We sample 1K, 10K, 545

50K and 250K passages from the whole corpus in- 546

dependently to form small corpora and train QGen 547

and GPL on the same small corpus. The results are 548

shown in Table 2. We find with more than 10K pas- 549

sages, GPL can already significantly outperform 550

the zero-shot baseline by 2.3 NDCG@10 points; 551

with more than 50K passages, the performance be- 552

gins to saturate. On the other hand, QGen falls 553
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Method
QPP 1 2 3 5 10

QGen 57.4 61.6 61.7 62.1 61.3
GPL 60.4 63.0 65.2 64.8 65.6
Zero-shot 57.1

Table 3: Influence of number of generated Queries Per
Passage (QPP) on performance on SciFact. Using a
large QPP (e.g. 5 or 10) cannot further improve the
performance.

behind the zero-shot baseline for each corpus size.554

6.3 Robustness against Query Generation555

Next, we study how the query generation influences556

the model performance. First, we train QGen and557

GPL on SciFact and generate 1 up to 10 queries558

per passage. The results are shown in Table 3.559

Generating 3 queries per passages appears to be560

optimal, generating more queries per passages does561

not yield further improvements.562

The temperature plays an important role in nu-563

cleus sampling, higher values make the generated564

queries more diverse, but of lower quality. We565

train QGen and GPL on FiQA with different tem-566

peratures: 0.1, 1, 1.3, 3, 5 and 10. Examples of567

generated queries are available in Appendix E. We568

generated 3 queries per passage. The results are569

shown in Figure 3. We find the performance of570

QGen and GPL both peaks at 1.0. With a higher571

temperature, the next-token distribution will be flat-572

ter and more diverse queries, but of lower quality,573

will be generated. With high temperatures, the gen-574

erated queries have nearly no relationship to the575

passage. QGen will perform poorly in these cases,576

worse than the zero-shot model. In contrast, GPL577

performs still well even when the generates queries578

are of such low quality.579

6.4 Sensitivity to Starting Checkpoints580

We also analyze the influence of initialization581

on GPL. In the default setting, we start from a582

distilbert-model supervised on MS MARCO us-583

ing MarginMSE loss. We also evaluate to directly584

fine-tune a distilbert-model using QGen, GPL and585

TSDAE + GPL. The performance averaged on all586

the datasets are shown in Table 4. We find the MS587

MARCO training has relatively small effect on the588

performance of GPL (with 0.9-point difference in589

average), while QGen highly relies on the choice590

of the initialization checkpoint (with 3.7-point dif-591

ference in average).592

0.0 2.5 5.0 7.5 10.0
Temperature in generation

20

25

30

35

40

N
D

C
G

@
10

%

GPL
QGen
Zero-shot

Figure 3: Influence of the temperature in generation on
the performance on FiQA. A higher temperature means
more diverse queries but of lower quality. GPL can still
yield around 3.0-point improvement over the zero-shot
baseline with high temperature value of 10.0, where
the generated queries have nearly no connection to the
passages.

Method
Init. Distilbert MS MARCO

QGen 45.4 49.1
GPL 50.5 51.4
TSDAE + GPL 50.9 52.4
Zero-shot – 45.2

Table 4: Influence of initialization checkpoint on per-
formance in average. GPL yields similar performance
when starting from different checkpoints.

7 Conclusion 593

In this work we propose GPL, a novel unsuper- 594

vised domain adaptation method for dense retrieval 595

models. It generates queries for a target corpus and 596

pseudo labels these with a cross-encoders. Pseudo- 597

labeling overcomes two important short-comings 598

of previous methods: Not all generated queries are 599

of high quality and pseudo-labels efficiently detects 600

those. Further, training with mined hard negatives 601

is possible as the pseudo labels performs efficient 602

denoising. 603

We observe GPL performs well on all the 604

datasets and significantly outperforms other ap- 605

proaches. As a limitation, GPL requires a relatively 606

complex training setup and future work can focus 607

on simplify this training pipeline. 608

In this work, we also evaluated different 609

pre-training strategies in a domain-adaptive pre- 610

training setup: We first pre-trained on the target 611

domain, then performed supervised training on MS 612

MARCO. ICT and MLM were able to yield a small 613

improvement, while TSDAE was able to yield a sig- 614

nificant improvement of 4 points. Other approaches 615

degraded the performance. 616
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A Performance of Using Different Retrievers for Negative Mining in GPL910

The performance of using different retrievers (BM25, dense and BM25 + dense) for mining hard negatives911

in GPL is shown in Table 5. The results show GPL performs best when using hard negatives mined by912

dense retrievers.913

Method
Dataset FiQA SciFact BioASQ TRECC. CQADup. Robust04 Avg.

GPL (w/ BM25 + dense) 32.9 64.4 61.1 68.6 33.8 41.3 50.4
GPL (w/ BM25) 31.1 60.9 57.8 67.5 33.5 35.9 47.8
GPL (w/ dense) 33.1 65.2 61.6 71.7 34.4 42.1 51.4
MS MARCO 26.7 57.1 52.9 66.1 29.6 39.0 45.2

Table 5: Performance of using different retrievers for hard-negative mining in GPL. The scores of the baseline MS
MARCO and the scores of GPL with dense retrievers are copied from Table 1.

B Performance of the Zero-Shot Retrievers in Hard-Negative Mining914

The performance of directly using the zero-shot retrievers for hard-negative mining in GPL is shown in915

Table 6. Compared with the strong baseline (MS MARCO in Table 6) trained with MarginMSE, msmarco-916

distilbert-base-v3 and msmarco-MiniLM-L-6-v3 are much worse in terms of zero-shot generalization on917

each dataset. This comparison supports GPL can indeed train powerful domain-adapted dense retrievers918

with minimum reliance on choices of the retrievers for hard-negative mining.919

Method
Dataset FiQA SciFact BioASQ TRECC. CQADup. Robust04 Avg.

msmarco-distilbert-base-v3 24.0 52.3 45.6 61.1 24.3 30.6 39.7
msmarco-MiniLM-L-6-v3 23.3 48.8 41.9 57.9 24.3 28.5 37.5
MS MARCO 26.7 57.1 52.9 66.1 29.6 39.0 45.2

Table 6: Performance of different zero-shot retrievers. msmarco-distilbert-base-v3 and msmarco-MiniLM-L-6-v3
are used in GPL for hard-negative mining. The scores of the baseline MS MARCO are copied from Table 1.

C Target Datasets920

FiQA is for the task of opinion question answering over financial data. It contains 648 queries and 5.8K921

passages from StackExchange posts under the Investment topic in the period between 2009 and 2017. The922

labels are binary (relevant or irrelevant) and there are 2.6 passages in average labeled as relevant for each923

query.924

SciFact is for the task of verifying scientific claims using evidence from the abstracts of the scientific925

papers. It contains 300 queries and 5.2K passages built from S2ORC (Lo et al., 2020), a publicly-available926

corpus of millions of scientific articles. The labels are binary and there are 1.1 passages in average labeled927

as relevant for each query.928

BioASQ is for the task of biomedical question answering. It originally contains 500 queries and 15M929

articles from PubMed11. The labels are binary and it has 4.7 passages in average labeled as relevant for930

each query. For efficient training and evaluation, we randomly remove irrelevant passages to make the931

final corpus size to 1M.932

TREC-COVID is an ad-hoc search challenge for scientific articles related to COVID-19 based on the933

CORD-19 dataset (Wang et al., 2020). It originally contains 50 queries and 171K documents. The original934

corpus has many documents with only a title and an empty body. We remove such documents and the935

final corpus size is 129.2K. The labels in TREC-COVID are 3-level (i.e. 0, 1 and 2) and there are 430.8936

passages in average labeled as 1 or 2 in the clean-up version.937

CQADupStack is a dataset for community question-answering, built from 12 StackExchange subfo-938

rums: Android, English, Gaming, Gis, Mathematica, Physics, Programmers, Stats, Tex, Unix, Webmasters939

11https://pubmed.ncbi.nlm.nih.gov/
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and WordPress. The task is to retrieve duplicate question posts with both a title and a body text given 940

a post title. It has 13.1K queries and 457.2k passages. The labels are binary and there are 1.4 passages 941

in average labeled as relevant for each query. As in Thakur et al. (2021b), the average score of the 12 942

sub-tasks is reported. 943

Robust04 is a dataset for news retrieval focusing on poorly performing topics. It has 249 queries and 944

528.2K passages. The labels are 3-level and there are in average 69.9 passages labeled as relevant for 945

each query. 946

The detailed statistics of these target datasets are shown in Table 7. 947

Dataset
Statistics Domain Title Relevancy #Queries #Passages PPQ Query Len. Passage Len.

FiQA Financial ✗ Binary 648 57.6K 2.6 10.8 132.2
SciFact Scientific ✓ Binary 300 5.2K 1.1 12.4 213.6
BioASQ Bio-Medical ✓ Binary 500 1.0M 4.7 8.1 204.1
BioASQ∗ Bio-Medical ✓ Binary 500 14.9M 4.7 8.1 202.6
TREC-COVID Bio-Medical ✓ 3-Level 50 129.2K 430.8 10.6 210.3
TREC-COVID∗ Bio-Medical ✓ 3-Level 50 171.3K 493.5 10.6 160.8
CQADupStack Forum ✓ Binary 13,145 457.2K 1.4 8.6 129.1
Robust04 News ✗ 3-Level 249 528.2K 69.9 15.3 466.4

Table 7: Statistics of the target datasets used in the experiments. Column Title indicates whether there is (✓) a title
for each passage or not (✗). Column PPQ represents number of Passages Per Query. Query/passage lengths are
counted in words. Symbol ∗ marks the original version from the BeIR benchmark (Thakur et al., 2021b)

We also evaluate the models trained in this work on the original version of BioASQ and TREC-COVID 948

datasets from BeIR (Thakur et al., 2021b). The results are shown in Table 8. 949

Method
Dataset BioASQ∗ TRECC.∗

GPL 42.5 71.8
TSDAE + GPL 42.6 73.7
QGen 37.8 43.1

Table 8: Performance on the original version of BioASQ and TREC-COVID in BeIR (Thakur et al., 2021b).

D Performance of Unsupervised Pre-Training 950

The performance of the unsupervised pre-training methods without access to the MS MARCO data is 951

shown in Table 9. We find ICT is the best method, achieving highest scores on all the datasets. However, 952

all the unsupervised pre-training methods cannot directly yield improvement in performance compared 953

with the zero-shot baseline. 954

Method
Dataset FiQA SciFact BioASQ TRECC. CQADup. Robust04 Avg.

CD 6.6 0.6 0.3 9.8 8.1 3.8 4.9
CT 0.2 0.7 0.0 2.5 0.9 0.0 0.7
MLM 5.4 27.8 4.7 16.0 8.5 6.1 11.4
TSDAE 7.8 37.2 6.9 9.4 14.3 10.1 14.3
SimCSE 5.5 25.0 13.1 26.0 14.6 9.8 15.7
ICT 10.2 42.6 39.0 47.5 23.0 16.5 29.8
MS MARCO 26.7 57.1 52.9 66.1 29.6 39.0 45.2

Table 9: Performance of unsupervised pre-training methods with only access to the target corpus as the training data.
The scores of the zero-shot baseline MS MARCO are copied from Table 1.

E Examples of Generated Queries under Different Temperatures 955

The generation temperature controls the sharpness of the next-token distribution. The examples for one 956

passage from FiQA are shown in Table 10 Higher temperature results in longer and less duplicate queries 957
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under more risk of generating non-sense texts.958

Item Text Pseudo Label

Input Passage

You can never use a health FSA for individual health insurance premiums. Moreover,
FSA plan sponsors can limit what they are will to reimburse. While you can’t use a health
FSA for premiums, you could previously use a 125 cafeteria plan to pay premiums, but it

had to be a separate election from the health FSA. However, under N. 2013-54, even
using a cafeteria plan to pay for indivdiual premiums is effectively prohibited.

–

Temperature 0.1
can you use a cafeteria plan for premiums 9.1
can you use a cafeteria plan for premiums 9.1
can you use a cafeteria plan for premiums 9.1

Temperature 1.0
can i use my fsa to pay for a health plan 9.7

can i use my health fsa for an individual health plan? 9.9
can fsa pay premiums 9.2

Temperature 3.0

cafe a number cafe plan is used by -10.5
what type of benefits do the health savings accounts cover

when applying for medical terms health insurance
-7.2

why can’t an individual file medical premium on their insurance account with an fsa plan
instead of healthcare policy.

6.0

Temperature 5.0
which one does not apply after an emergency medical -11.1

is medicare cafe used exclusively as plan funds (health savings account -7.2
how soon to transfer coffee bean fses to healthcare -11.0

Temperature 10.0

will employer limit premiums reimbursement on healthcare expenses with caeatla
cafetaril and capetarians account on my employer ca. plans and deductible accounts

a.f,haaq and asfrhnta,
-2.5

kfi what is allowed as personal health account or ca -10.2
do people put funds back to buy plan plans before claiming an deductible without the

provider or insurance cover f/f associator funds of the person you elect? healthfin depto
of benefit benefits deduct all oe premiumto payer for individual care

-4.5

Table 10: Examples of generated queries under different temperature value for a passage from FiQA.

Item Text GPL QGen
Query what is futures contract – –

Positive

Futures contracts are a
member of a larger class
of financial assets called

derivatives ...

10.3 1

Negative 1

... Anyway in this one example
the s&p 500 futures contract

has an "initial margin" of
$19,250, meaning ...

2.0 0

Negative 2

... but the moment you exercise
you must have $5,940 in a
margin account to actually
use the futures contract ...

0.3 0

Negative 3

... a futures contract is simply
a contract that requires party A

to buy a given amount of a
commodity from party B at a

specified price...

8.2 0

Negative 4
... A futures contract commits
two parties to a buy/sell of the
underlying securities, but ...

6.9 0

Table 11: Examples of the labels assigned to different query-passage pairs in FiQA by GPL and QGen. The key
term "futures contract" are marked in bold. QGen uses only 0-1 scores. GPL uses raw logits, which can be any
value between positive and negative infinity.

F Case Study: Fine-Grained Labels959

GPL uses continuous pseudo labels from a cross-encoder, which can provide more fine-grained information960

and is more informative than the simple 0-1 labels as in QGen. In this section, we give a more detailed961

insight into it by a case study.962

One example from FiQA is shown in Table 11. The generated query for the positive passage asks for963

the definition of “futures contract”. Negative 1 and 2 only mention futures contract without explaining964
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the term (with low GPL labels below 2.0), while Negative 3 gives the required definition (which high 965

GPL label 8.2). As an interesting case, Negative 4 gives a partial explanation of the term (with medium 966

GPL label 6.9). GPL assigns suitable fine-grained labels to different negative passages. In contrast, QGen 967

simply labels all of them as 0, i.e. as irrelevant. Such difference explains the advantage of GPL over QGen 968

and why using hard negatives harms the performance of QGen in Table 1. 969
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