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Despite tremendous successes, modern machine learning models oftentimes fail to gen-
eralize for samples out of distributions where the models are trained. Such failure has
been reported as shortcut learning (Geirhos et al., 2020), a phenomenon that ML mod-
els fail to generalize due to taking unintended features in establishing their decision rules.
Notwithstanding that the shortcut learning problem is prevalent in practice, virtually no
formal/unified understandings of notions of shortcut learning problems and approaches for
addressing the biases have been presented. In this document, we provide an understanding
of shortcut learning and present two common approaches for addressing the biases under
the rubric of formal causal languages. Finally, we relate the approaches to the causal invari-
ance property. We hope this document will pave the way toward a unified understanding
of shortcut learning problems.
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1. Introduction

Consider a task of classifying an object in the set of images in Fig. 1. Specifically, tasks of interest are
classifying the objects [boat] and [car] in images in Figs. (1a, 1b, 1c). Obviously, such tasks are not
difficult for humans. However, as reported in many cases as in (Geirhos et al., 2020), if a ML model
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(a) [boat] in the [water] (b) [car ] in the [road] (c) [boat] in the [road]

Figure 1: Classification Tasks.

is trained mostly based on images like [boat in the water] as in Fig. 1a and [car in the road] as in
Fig. 1c, the model may wrongly classify [boat in the road] in Fig. 1c as “car” by taking unintended
features ([water] or [road]) importantly. Such undesirable learning behaviors and induced bias are called
‘shortcut learning’:

Definition 1 ((Informal) shortcut learning (Geirhos et al., 2020)). A shortcut learning is a phe-
nomenon that a ML model fails to be generalized due to taking unintended features, called shortcut
(e.g., background objects), in establishing decision rules.

In this document, we will understand the notion of shortcut learning and the remedy under the rubric
of causality. Specifically,

1. We will formally define the learning problem under the risk of shortcut learning using structural
causal models (Pearl, 2000).

2. We will formalize two approaches for preventing shortcut learning. Specifically, we will show that
natural approaches for shortcut removal will reduce to the ML model trained only using causal
features, a set of features that causes a true label.

3. We will relate the causal features to the invariant features, a set of features whose relations with
the label is invariant. Specifically, we will formalize that invariant features are causal features in
high probability.

2. Problem Setup

2.1. Structural Causal Model

We use the language of structural causal models (SCMs) as our basic semantical framework (Pearl,
2000). A structural causal model (SCM) is a tuple M := ⟨V, U, F, P (u)⟩ where V, U are a sets of
endogenous (observerables) and exogenous variables (latents), F is a set of functions fVi one for each
Vi ∈ V where Vi ← fVi(PAVi , UVi) for some PAVi ⊆ V and UVi ⊆ U , and P (u) is a strictly positive
probability measure for U. Each SCM M induces a semi-Markovian causal graph G over the node set
V here Vi → Vj if Vi is an argument of fVj , and Vi ↔ Vj if UVi and UVj are correlated. Performing an
intervention X = x is represented through the do-operator, do(X = x) (shortly, do(x)), which encodes
the operation of replacing the original equations of X by the constant x in the SCM M , inducing a
submodel Mx and an interventional distribution PM(V = v|do(x)) (shortly, P (v|do(x))).
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2.2. Problem Setup

We assume that an SCM M is a data generating process for a set of variables V and a true label Y .
For example, we assume that there are possibly unknown functions that generate the target objects
(e.g., [boat]) and background objects (e.g., [water]).

We assume that there is a set of submodels E = E({vi}Ni=1) := {Mvi}Ni=1∪{M} induced by intervening
do(Vi = vi), where each Mvi ∈ E generates samples that a ML model could neglect in training. We
will call E , a set of data generating processes, as an environment. We permit that the intervened sets
Vi are possible unknown. For example, we assumed that the image of [boat in the water] in Fig. 1a is
generated by some SCM M, and in contrast, [boat in the road] in Fig. 1c is generated by some SCM
Mvi where Vi is a set of features corresponding to the background, and vi is a set of realized values
corresponding to [road]. If the ML model neglects the sample [boat in the road] in training, then the
model could fall into the shortcut learning pitfalls.

Presented nomenclatures provide informational interpretation of the shortcut learning in Def. 1 – a
phenomenon when a ML model doesn’t perform well in some submodels in E . Then, our task is to
design a ML model that works well in all environments. Specifically,

Task 1. Assume that the data generating process is an environment set E. Our task is to construct the
performant ML model for predicting the true label Y for all environment in E from samples generated
by submodels in E.

3. Preventing shortcut learning

3.1. Two Approaches for Preventing shortcut learning

We present two approaches to achieve Task 1.

Approach 1. Our first approach is motivated by the fact that human’s classification rule is robust
to the shortcut learning. For example, we note that classifying [boat] and [car] in Fig. 1 is an easy
classification even for babies. Specifically, humans will classify the [boat] objects in Figs. (1a, 1c)
successfully regardless of their different background objects (e.g., [water], [road]), because humans will
only use the [boat] object to produce a label (human label or true label) “boat”. We will call such
objects that causes a human to produce the true labels as causal features:

Unlike humans, a ML model trained from images of (1) [boat] in the [water] as in Fig. 1a and (2)
[car] in the [road] as in Fig. 1b may fail for correctly classifying Fig. 1c. Such failures happen because,
unlike humans, ML models take unintended or causally-irrelevant features (e.g., background features
like [water] and [road]) other than causal features (e.g., [boat] and [car]) in establishing their decision
rules. This observation motivates a learning approach that avoids to take non-causal features as much
as possible:

Principle 1 (Avoidance of causally-irrelevant features). To prevent shortcut learning, the ML
model must be designed without using causally-irrelevant features as much as possible.

Approach 2. Our second approach is motivated by the fact that a ML model working well for all
environment is a robust model to the shortcut learning, since the bias occurs when there exists environ-
ments that the model could fail. For example, if the model works well in classifying [boats] in different
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environments [water] or [road], then we can say that the model is robust to the shortcut learning. This
observation motivates a learning approach that design a ML model working well for all environments:

Principle 2 (Performant ML models for all environments). To prevent shortcut learning, the
ML model must work well for all possible environments.

We will show that two approaches commonly encourage that the ML predictors must be trained only
using a set of features that directly causes the true label. Throughout this section, we assume the
existence of causal graphs G induced by an SCM M.

3.2. Approach 1. Avoidance of Causally-Irrelevant Features

We first provide the formal definition for the notion of causal irrelevance. A causal irrelevance between
a pair of sets of variables in V is invariance of one set of variables even if other sets of variables are
changed. Formally,

Definition 2 (Causal Irrelevance (Pearl, 2000, Def. 7.3.7)). For disjoint sets (X, Y, W) ⊆ V, a set
of variables X is said to be causally irrelevant to Y given W if

P (y|do(x), do(w)) = P (y|do(x′), do(w)),

for all possible realizations of Y, X, W denoted as y, x, w and x′, a realization of X s.t. x ̸= x′.

Remark 1 (Causal Irrelevance Set). We will say that X is causally irrelevant set to Y iff

P (y|do(x), do(v\x)) = P (y|do(x′), do(v\x)).

For the example of Fig. 1, we note that the background label B ∈ {[water], [road]} is causally irrele-
vant to the true label Y (“boat”) given the target object T ∈ {[boat, car]} since perturbing the data
generating process to generate an perturbed samples like [boat in the road] doesn’t affect the label.

Under the assumption that the data generating process is an SCM, the meaning of the causal irrelevance
becomes inferrentially clearer:

Lemma 1 (Graphical Interpretation of Causal Irrelevance). Let G denote the graph induced by
M. For (X, Y, W) ⊆ V, a set of variables X is causally irrelevant to Y given W if

(Y ⊥⊥ X|W)GX,W
,

where GX,W is a graph induced from G by cutting all incoming edges to the variables in X, W. Also,
X is causally irrelevant set to Y iff

(Y ⊥⊥ X|V\X)GV
.

Equipped with the notion of causally irrelevance, we now formalize our learning strategy in Principle 1.
We translate Principle 1, avoiding the causally irrelevant variables as much as possible, as a strategy of
identifying the largest sets of causally irrelevant variables and ruling out these variables when training
ML models.

A following result presents that a ML model agreeing with Principle 1 can be derived by learning the
model with a parental set of the true label, denoted PAY . Formally,
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Theorem 1 (Identification of the Largest Causally Irrelevant Sets). Let PAY denote the
parents of the true label Y in G. Then, the largest sets of variables that is causally irrelevant features
to Y is V\PAY . Formally, V\PAY is the unique solution of the following optimization problem

max
X⊆V

|X| subject to P (y|do(v\x), do(x)) = P (y|do(v\x), do(x′)),

for any arbitrary realizations y, v\x, x, x′ s.t. x ̸= x′.

Obviously, the only remaining variables after ruling out the largest causally irrelevant sets V\PAY is
PAY , a parental set of the true label Y . Therefore, Thm. 1 engenders the following principles, which
particularizes Principle 1:

Principle 3 (ML models with causal predictors). To prevent shortcut learning, the ML model
must be trained with a set of variables PAY , a causal predictor for Y .

3.3. Approach 2. Performant ML models for all environments

We translate the Principle 2 as the problem of finding the best ML predictor even in the most perturbed
example (“worst environment”). Then, the learning problem can be rewritten as a problem of finding
the solution function for the following problem:

min
f∈F

max
P ∈P(E)

EP [ℓ(Y, f(Y))] , (1)

where F is a ML model class, P(E) is a set of distributions induced by submodels in E , and ℓ(Y, f(V))
is a predefined loss function of f(V). Then, following result formalizes that one of the solution function
is the ML predictor that is only dependent on the causal predictors PAY :

Theorem 2 (The ML models learned with causal features work well for all environments
– Regression (Rojas-Carulla et al., 2018, Theorem 4)). Let f0(V) := E [Y |PAY ]. Then,

f0 ∈ arg min
f∈C0

max
Q∈P(E)

EQ [ℓ(Y, f(V))] , (2)

where P(E) is a set of distributions induced by a set of environments E, and C0 is a set of continuous
functions.

Theorem 3 (The ML models learned with causal features work well for all environments
– Classification.). Suppose Y is a discrete variable. f0(V) := arg maxy P (Y = y|PAY ). Then,

f0 ∈ arg min
f∈C0

max
Q∈P(E)

EQ [1(f(V) ̸= Y )] , (3)

Therefore, for making the ML system that works well (minimizes statistical risks) in all environment,
one must design the prediction model based on the causal predictors, which agrees with Principle 3.

4. Identification of Causal Features through Invariance

So far, we shows that ML models trained using causal predictors PAY will be robust to the shortcut
learning since they agree with Principles (1, 2). If we have a causal graph G induced by M, then
the problem of identifying causal predictors become trivial. In practical settings, however, such causal
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graphs are oftentimes absent. Therefore, a strategy for identifying causal features from samples gener-
ated by multiple heterogeneous environment in E is required. In this section, we present such strategy
by finding features whose relation with the true label Y invariant in all environments. Throughout
the section, we assume that there are no bidirected edges connected to Y in G(M); equivalently,
Y = fY (PAY , UY ) and (UY ⊥⊥ V) where fY is an arbitrary structural function.

We first define the test function checking whether relation between a set X ⊆ V and Y is invariant:

Definition 3 (Test function). TE(X, Y ) is called a test function if it satisfies the follow: TE(X, Y ) = 1
if, for all environment in Mvi ∈ E , the relation between a pair (Y i, Xi) (which denotes a pair (X, Y )
generated by the environment Mvi) remains the same; and TE(X, Y ) = 0 otherwise.

Examples of test functions are the following:

Example 1 (Peters et al., 2016) TE(X, Y ) = 1 if, for any pairs of environments (Mvi ,Mvj ) ∈ E ,
P (Y i|Xi) = P (Y j |Xj).

Example 2 (Heinze-Deml et al., 2018) TE(X, Y ) = 1 if, for any environment Mvi ∈ E , P (Y i|Xi) =
P (Y i|Vi) (equivalently, Y i ⊥⊥ Vi\Xi|Xi).

Remark 2 (Sufficient Condition for the test function). By modularity property of the SCM and
the assumption that there are no bidirected edges connected to Y , a function gE(X, Y ) is a valid test
function if gE(X, Y ) = 1 whenever PAY ⊆ X, and 0 otherwise, because the relation between (Y, X)
remains invariant if PAY ⊆ X.

Now, we will use this test function for identifying causal features. We relax Def. 3 and consider a
high-probability test function T (X, Y ), which can identify the invariant features with high probability;
i.e., for some α ∈ (0, 1),

P (TE(X, Y ) = 1) > 1− α if the relation (X, Y ) is invariant over environments in E . (4)

Equipped with such oracle function, we can identify causal features in high probability. Formally,

Theorem 4 (Identifying causal features with high probability). Let TE(X, Y ) denote the high-
probability test function in Eq. (4). Let

P̂AY :=
⋂

X⊆V
{X ⊆ V such that TE(X, Y ) = 1}.

Then, with high probability, P̂AY identifies the causal features; i.e.,

P
(
P̂AY ⊆ PAY

)
> 1− α.

We note that Thm. 4 implies that invariance over environments implies causal features. Therefore,
Thm. 4 justifies the approach of using the invariance property for identifying the causal features.

5. Summary

In this document, we introduce the task of preventing the shortcut learning in Task 1. We then present
two approaches for achieving Task 1:

Approach 1. Avoid causally irrelevant features in training the ML predictors as much as possible.
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Approach 2. Design the estimator that works best in the ‘worst’ environment w.r.t. prediction.

We then formalize Approaches (1,2) as Theorems (1, 2, 3), and show that both approaches imply that
the ML model must be trained with causal features to prevent the shortcut learning, as presented in
Principle 3. Finally, we relate the task of identifying causal features with identifying features invariant
over environments in Theorem 4. This result justifies the approa, ch of establishing a ML model with
invariant features.
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Appendix

A. Proofs

Proof of Lemma 1. By do-calculus (Pearl, 2000) Rule 3.

Proof of Theorem 1. Let Wa := PAY in this proof. Let Wb := V\W. We first note that V\W
satisfies the constraints; i.e.,

P (y|do(wa, wb)) = P (y|do(wa, w′
b)).

This is obvious by Lemma 1 and do-calculus (Pearl, 2000) Rule 3.

We now show that Wb is a maximizer. To witness, consider Wb ∪ Vk for Vk ∈ PAY . This set doesn’t
satisfy the constraints since

E [Y |do(wa\vk, wb, vk)] ̸= E
[
Y |do(wa\vk, w′

b, v′
k)

]
,

since Vk is causally relevant to Y . This concludes the proof.

Proof of Theorem 2 It suffices to show that, for any distribution P ∈ P(E) and a function f , there
exists Q ∈ P(E) s.t.

EP

[
(Y − f0(V))2

]
≤ EQ

[
(Y − f(V))2

]
.

Choose Q(V, Y ) := P (PAY , Y )P (V\PAY ). Then, Y and V\PAY is independent conditioned on PAY

in the distribution Q. Then,

EP

[
(Y − f0(V))2

]
= EQ

[
(Y − f0(V))2

]
≤ EQ

[
(Y − f(V))2

]
.

To witness the second inequality, it suffices to show that f0(V) = EQ [Y |V] since the minimizer of the
mean squared loss is its conditional expectation. Since

EQ [Y |V] = EQ [Y |PAY ] = EP [Y |PAY ] ,

it concludes the proof.

Proof of Corollary 3. It suffices to show that, for any distribution P ∈ P(E) and a function f , there
exists Q ∈ P(E) s.t.

EP [1(f0(V) ̸= Y )] ≤ EQ [1(f(V) ̸= Y )] .

Choose Q(V, Y ) := P (PAY , Y )P (V\PAY ). Then, Y and V\PAY is independent conditioned on PAY

in the distribution Q. Then,

EP [1(f0(V) ̸= Y )] = EQ [1(f0(V) ̸= Y )] ≤ EQ [1(f0(V) ̸= Y )]
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To witness the second inequality, it suffices to show that f0(V) = arg maxy Q(Y = y|V) since the
minimizer of the mean squared loss is the Bayes optimal classifier. Since

Q(Y = y|V) = Q(Y = y|PAY ) = P (Y = y|PAY ),

it concludes the proof.

Proof of Theorem 4. The following holds:

P
(
P̂AY ⊆ PAY

)
≥ P (TE(PAY , Y ) = 1) > 1− α.

The second inequality is obvious since the relation (Y, PAY ) is invariant, and the test function fails w/
probability α. To show the first inequality, it suffices to show that the event TE(PAY , Y ) = 1 implies
the event P̂AY ⊆ PAY . Suppose TE(PAY , Y ) = 1. Note,

PAY =
⋂

X⊆V
{X ⊆ V such that TE(X, Y ) = 1},

since no set of variables missing variables in PAY is invariant to Y ; i.e., P (Y |X) is invariant if X misses
a variable in PAY . Therefore, if TE(PAY , Y ) = 1 then P

(
P̂AY ⊆ PAY

)
. This completes the proof.

9


	Introduction
	Problem Setup
	Structural Causal Model
	Problem Setup

	Preventing shortcut learning
	Two Approaches for Preventing shortcut learning
	Approach 1. Avoidance of Causally-Irrelevant Features
	Approach 2. Performant ML models for all environments

	Identification of Causal Features through Invariance
	Summary
	Proofs

