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Abstract

In a task-oriented dialogue system, Dialogue
State Tracking (DST) keeps track of all im-
portant information by filling slots with values
given through the conversation. Existing meth-
ods generally rely on a predefined set of values
and struggle to generalise to previously unseen
slots in new domains. In this paper, we propose
a multi-domain and multi-lingual dialogue state
tracker in a neural reading comprehension ap-
proach. Our approach fills the slot values using
span prediction, where the values are extracted
from the dialogue itself. With a novel training
strategy and an independent domain classifier,
empirical results demonstrate that our model is
a domain-scalable and open-vocabulary model
that achieves 53.2% Joint Goal Accuracy (JGA)
on MultiwOZ 2.1. We show its competitive
transferability by zero-shot domain-adaptation
experiments on MultiWOZ 2.1 with an average
JGA of 31.6% for five domains. In addition,
it achieves cross-lingual transfer with state-of-
the-art zero-shot results, 64.9% JGA from En-
glish to German and 68.6% JGA from English
to Italian on WOZ 2.0.

1 Introduction

Task-oriented dialogue systems are designed to
provide natural conversation with users and assist
them in achieving daily goals. With the growth of
task-oriented dialogue systems, there is an increas-
ing interest in supporting dialogues among many
domains and languages to fit the users’ demands.
However, either modelling a multi-domain or multi-
lingual dialogue system requires substantial data
collected in real scenarios. This data acquisition
procedure is extremely expensive, and it motivates
us to resolve this challenge by leveraging dialogue
data in rich-resource domains and languages via
zero-shot transfer learning.

DST is crucial for accurately extracting user in-
tents and goals over multiple turns within the di-
alogue. Based on the tracked dialogue states, the

dialogue manager makes corresponding next ac-
tions with back-end results, where the accuracy of
the DST becomes absolutely vital. With a fully
predefined ontology, traditional approaches tackle
the DST as a classification problem by enumerat-
ing every possible combination of slot-value pairs
(MrkSic et al., 2017; Zhong et al., 2018). Those
approaches are strongly limited by their scalability,
as some slots (e.g. name) have an unbounded set
of slot values. Secondly, they are generally not
flexible to unseen slot-value pairs, making them
more difficult to adapt for zero-shot transfer learn-
ing. Moreover, a completely predefined ontology
is hard to acquire and not scalable for task-oriented
dialogue systems in real applications.

To overcome those challenges, we take inspira-
tion from Gao et al. (2019) and Gao et al. (2020)
and investigate how DST can be tackled by ex-
tracting slot values from user utterances directly.
In this paper, we propose a domain-independent
and transferable dialogue state tracker with neural
reading comprehension. Our model is responsible
for filling the slot value by recognising specially
designed domain-slot prompts by span prediction,
which extracts answers from the input utterance by
predicting the token positions. In addition, we in-
troduce a novel training strategy for DST in reading
comprehension such that we only ask slot questions
that appear in the current turn domain. For exam-
ple, given hotel as the current turn domain, all slots
under the faxi domain are filtered out as there is
no overlapping between them. This simple but ef-
fective filtering strategy significantly reduces the
noise from unnecessary questions in both training
and evaluation phases.

We call the final model XQA-DST: XLM-
R based Dialogue State Tracker in Question
Answering. Our main contributions are sum-
marised below:

¢ We introduce XQA-DST, a novel domain-
independent and transferable dialogue state



tracker inspired by neural reading comprehen-
sion models. The model is able to recognise
slot values by reformulating the task as an
answer to a specially designed domain-slot
prompt by span prediction, which extracts an-
swers from the input utterance by predicting
the token positions.

* We enable XQA-DST on reading comprehen-
sion by zero-shot domain adaptation scenarios,
showing its transferability capabilities. The
final model shows competitive domain adap-
tation performance with an average JGA of
31.6% for five domains on MultiwOZ 2.1.

* We show that our model is capable of both
domain adaptation and cross-lingual transfer
learning. We demonstrate its cross-lingual
transferability by achieving state-of-the-art
zero-shot results, 64.9% JGA from English
to German and 68.6% JGA from English to
Italian on WOZ 2.0.

2 Related Work

Dialogue State Tracking Traditional dialogue
state tracking approaches mostly rely on hand-
crafted features and domain lexicons for delexical-
isation (Wang and Lemon, 2013; Williams, 2014;
Henderson et al., 2014), which make them difficult
to scale to new domains. With the assumption of
a full ontology in advance, classification based ap-
proaches tackle DST by enumerating through every
possible combination of slot-value pairs (Mrksic¢
et al., 2017; Liu and Lane, 2017; Ramadan et al.,
2018; Zhong et al., 2018). Though a performance
improvement is obtained by using a predefined on-
tology, their scalability is strongly limited by the
availability of the ontology, especially for unseen
slot values in new domains. The performance on
DST is further improved by utilising the pretrained
language model BERT (Devlin et al., 2019) as the
context encoder. Lee et al. (2019) encode the utter-
ance and slot-value pair separately and implement
a slot-utterance matching module that computes
the similarity between them. Lai et al. (2020) use
BERT to encode the dialogue context concatenated
with the candidate pair and generate a relevance
score for every candidate. However, both of them
rely on a predefined ontology, and none of the ap-
proaches has resolved the scalability issue above.
To alleviate this issue, span prediction methods
are proposed to tackle DST so that the slot can be

filled by directly addressing values in the context.
Chao and Lane (2019) propose BERT-DST that
encodes the context by BERT and trains indepen-
dent span projection layers for every slot. Zhou
and Small (2019) and Gao et al. (2020) formulate
the DST as a question answering problem, and it
prepares questions for asking the model to answer
the value for every slot. However, Span predic-
tion methods suffer when the value is not explicitly
expressed in the context. Heck et al. (2020) rem-
edy this problem by proposing copy mechanisms
and achieving competitive results on multi-domain
DST. Recent approaches start bringing both the
pick-list and span prediction methods into a hybrid
architecture. Zhang et al. (2020) split slots into
categorical and non-categorical slots. Hence, it
benefits from the accuracy brought by the pick-list
and the scalability of span prediction methods, but
the prediction for categorical slots still relies on a
given ontology.

Generative approaches provide an alternative
way to handle DST without relying on the pre-
defined ontology. Xu and Hu (2018) construct a
pointer network that has an encoder-decoder ar-
chitecture so that the values of slots can be gener-
ated by the decoder. Wu et al. (2019) and Kumar
et al. (2020) propose similar sequence-to-sequence
models with a state generator that gives a value se-
quence. However, the main drawback of generative
approaches is potentially ill-formatted strings at the
output, which can be fatal for the subsequent DST.

Zero/Few-shot Transfer Learning for DST
TRADE (Wu et al., 2019) focuses on domain adap-
tation for DST by transferring prior knowledge
of trained domains to an unseen domain. Kumar
et al. (2020) propose MA-DST that introduces
cross-attention to capture the domain semantics.
Campagna et al. (2020) propose a data augmenta-
tion approach by synthesising in-domain data from
an abstract dialogue model. Li et al. (2021) in-
troduce a generative question answering approach,
GPT2-m, that leverages an autoregressive language
model. Similarly, Lin et al. (2021) propose the
T5DST model that bases on the T5 model (Raffel
et al., 2020), and they study the impacts of slot
descriptions for domain adaptation.

Cross-lingual transfer learning for DST is to
leverage the labelled data in rich-resource lan-
guages and transfer learned knowledge to low-
resource languages. Chen et al. (2018) study the
problem of cross-lingual DST, and propose the



XL-NBT teacher-student framework. Liu et al.
(2020) introduce an Attention-informed Mixed-
Language Training (AMLT) method that uses bilin-
gual word pairs to build code-switching training
sentences. Moreover, they study the effectiveness
of multi-lingual pretrained language models with
their AMLT approach, including XLLM (Conneau
and Lample, 2019) and mBERT (Devlin et al.,
2019). Qin et al. (2020) further propose a data
augmentation framework, which encourages cross-
lingual alignment by fine-tuning mBERT on gener-
ated code-switching data. To the best of our knowl-
edge, we are the first work that studies the effective-
ness of a multi-lingual pretrained language model,
XLM-R (Conneau et al., 2020), on DST without
implementing additional cross-lingual alignment
strategies.

3 Multi-Domain and Multi-Lingual DST

To tackle the task of dialogue state tracking, our
model reads the current user utterance Uy, preced-
ing system utterance M, dialogue history Hy, and
the domain-slot prompt (); as inputs for each turn.
Followed by that, our model is responsible for
firstly determining the dialogue domains D; from
the input sequence. Then, it predicts the class of
answers for domain-slot prompts in the predicted
domains. If an answer is present in utterances, the
model will predict the value for that domain-slot
question using span extraction. Otherwise, its value
will be predicted in accordance with the predicted
class. Finally, our model tracks the dialogue states
by a rule-based update mechanism along with the
progress of the dialogue across turns.

3.1 Context and Domain-slot Questions

In neural reading comprehension, the context is
used to provide the background information, and
the answer is usually contained in the context.
When it comes to DST, it is equivalent to model
the system message and the user response together
as the context for the current turn. The complete
context C} is then collected by concatenating the
current user utterance U; and the preceding system
utterance M; with dialogue history H; at turn {.
We implement XLLM-R as the context encoder for
the purpose of cross-lingual transfer learning.
Each context is paired with N questions, which
iterate through every slot that we are interested in.
We append the domain-slot prompt at the end of the
context as an analogue question for each domain-

slot pair. Hence, the model can learn to correlate
different questions to the same context and provide
corresponding answers to fill the slot values. For
the same context with nth question () at turn ¢,
the input sequence S}* can be written as:

" =[CLS] & U; & [SEP] & M, & [SEP]

1
& H; @ [SEP| & Q} @ [SEP] )

where H; represents the dialogue history that is
collected in a reversed order from turn ¢ — 1 to
t = 1, and it is defined as follows:

H =U_1®M_1®...

()
UL ® M fort >1

To utilise the question as a distinct feature for
each slot, we propose the analogue question in the
format of a domain-slot prompt. Here, additional
special tokens are introduced to assist the model in
recognising the domain-slot pair as distinct parts.
Moreover, they provide clear signals for the start
and end positions for each domain-slot pair. The
equation for constructing the domain-slot prompt
Q7 is defined below:

Q7 =(dom.) @ di’ ® (/dom.)

@ (slot) @ s @ (/slot) ©)

where d} refers to the name of the domain and s}
is the slot for n-th question at turn ¢.

3.2 Shared Classification Gate

Our model contains a shared classification gate
Ogate for every domain-slot question. This shared
gate provides shared knowledge among various
domain-slot pairs, as it is neither domain-specific
nor slot-specific.

For each input sentence S, this shared gate clas-
sifies it to one of six classes as described in three
main categories. Special cases, none/dontcare, in-
dicate that there is either no observable value from
the input sequence .Sy or any value that can become
the answer for that slot question. Copy mechanism,
span, indicates that the answer can be extracted
from the current user utterance U; by the span
prediction module. Similarly, Inform is to copy
from the system inform memory that tracks values
mentioned in the preceding system utterance M;.
Boolean values true/false are used to deal with bi-
nary categorical values for Boolean slots where the
value cannot be directly extracted from the input
utterance.
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Figure 1: The model architecture of our XQA-DST for multi-domain and multi-lingual DST, where the right part is
the independent multi-domain classifier that outputs active domains.

With these designed classes, it takes the pooled
output 7S from the encoder as its only input. It
generates a probability distribution ptgate € RO over

six classes as in the following equation:

ptgate = softmax(Wate - TSLS + bgate)

4

where Wate represents the weights for our shared
gate that is achieved by a linear classification layer,
and bgate is the corresponding bias term. The class
is then determined by taking the maximal argument

of argmax(p¥**°).

3.3 Shared Span Prediction Layer

If the predicted class for the current input sequence
St is span, the answer for that domain-slot ques-
tion @)y will be filled by predicting the start and end
positions of the value from the input sequence. We
implement a shared span prediction layer for every
domain-slot question for the purpose of domain-
adaptable design. This is achieved by constructing
a linear layer that takes the entire token representa-
tions from r} to rieqm as inputs, and it generates
two outputs for each token, the start and end posi-
tion distribution, p{* and pt™!, after the softmax

layers.

[pitart7 pgnd] _ softl’naX(Wspan . 7“% + bspan) (5a)

start; = argmax (p;™") (5b)
end; = argmax (pS™?) (5¢)

The start and end positions of the predicted value
are then determined by picking the largest proba-

bility from distributions p{'** and p™. Followed

by that, we sequentially collect the tokens from
the predicted start; position to end; position and
detokenize them to form the final predicted value
for that domain-slot question.

3.4 Turn-domain Filtering

For a task-oriented dialogue, the user may shift
the domain of conversation across turns so that a
dialogue can have multiple domains. We introduce
a turn-domain filtering strategy that puts a strict
constraint and only allows the model to pay atten-
tion to the current domain. Turn-domain filtering
indicates that only the slots within the current do-
mains Dy are used to prepare training features since
slots are domain-specific. Hence, turn-domain fil-
tering can reduce the potential noises introduced
by unnecessary domains. Mathematically, this fil-
tering strategy puts an additional constraint for slot
domain dj in Eq. 3:

d? S Dt (6)

3.5 Independent Multi-domain Classifier

Turn-domain filtering allows the model to answer
questions only within the interested domains. How-
ever, the domain information is no longer a given
feature in the evaluation stage. Here, we propose a
multi-domain sequence classifier as shown in Fig.
1. The input sequence is the complete dialogue
context Cy without domain-slot questions. We then
collect the entire sequence representation r5 by
the context encoders as XLM-R(C}). Followed by
that, 1S is fed into | D| softmax layers, thereby



allowing a binary prediction that decides whether
each domain d; is present in the input context or
not. Finally, we collect the domains that have been
assigned to the ‘True’ class, which indicates the
presence of that domain in the context.

pé = softmax(Wiksc - 55 + bige) (7a)
d; = argmax(p) (7b)
Dy = {dlv"'vd\D\} (7c)

Though this domain classifier is not domain scal-
able, it is extremely effective when the range of
domains is given so that we can have fixed weights
for each domain projection layer.

3.6 System Inform Memory and Update Rules

To further reduce the error of our span extractor, we
have employed the same inform copy mechanism
as Heck et al. (2020). This memory is a simple
dictionary that records all values informed by the
preceding system utterance M; into a system in-
form memory I;={I}, ..., I}'}. Then, the value
answer A} for nth question ()} asked at turn ¢ can
be predicted by the following copy mechanism,

given that inform = argmax(pfate):

i = I for Qf ®)

We implement a simple rule-based mechanism
that is used to update dialogue states across turns
as same as Chao and Lane (2019). In each turn,
if the model assigned class for the current input
sequence S;' with )} is not none, the dialogue
state will be updated by obtaining A} from our
value prediction modules. On the other hand, if the
classification gate predicts that there is no value for
S7, the dialogue state will be kept unchanged.

4 Experimental Setup
4.1 Dataset

The datasets that we carry out experiments on
are WOZ 2.0 (Wen et al., 2017) and MultiwOZ
2.1 (Eric et al., 2020) for single-domain and
multi-domain task-oriented dialogues, respectively.
WOZ 2.0 is a restaurant reservation dataset and it
contains three slots: area, food, and price range.
Moreover, it provides the conversation in three
languages: English, German, and Italian, so that
we can carry out cross-lingual transfer learning
experiments on this dataset. By contrast, Multi-
WOZ 2.1 contains multi-domain conversations for
more than 10000 dialogues over seven domains.

Moreover, the dialogue domain can change across
turns, thereby making MultiWwOZ 2.1 the most chal-
lenging dataset for task-oriented dialogue systems.
There are two domains, hospital and police, that
only appear in the train set but not in the valida-
tion and test sets. Hence, we exclude these do-
mains with very few dialogues, and the remaining
dataset contains five domains (hotel, train, attrac-
tion, restaurant, and taxi) with 30 slots in total.

4.2 Implementation Details

We employ the pretrained XLM-RoBERTa-base
model from the Huggingface library of Transform-
ers (Wolf et al., 2020), which consists of 12 hid-
den layers of 768 units. For all implementations,
we limit the maximal input sequence length to be
180 tokens for saving the cost while keeping a rea-
sonable length for including dialogue history. We
truncate from the earliest dialogue history when
the input sequence length exceeds the limit. The
training objective is to minimise the summations of
individual loss functions for each module, where
each loss is defined as the cross-entropy loss. The
coefficients for each part of the joint loss of our
question answering model are:

ﬁtotal =038 £gate +0.2- Espan (9)

During the training process, we implement the
Adam optimiser (Kingma and Ba, 2015) with an
initial learning rate of 10~°, where the other pa-
rameters for Adam are within their default settings.
Then, we employ a linear scheduler with a warm-
up proportion of 10% so that the learning rate will
decay linearly until reaching zero after the warm-
up steps. We put a dropout layer with a rate of
30% at the output of our context encoders. We use
an early stopping strategy by monitoring the accu-
racy of the validation dataset until it stops increas-
ing for at least 3 epochs. The batch size is fixed
at 16 for XLM-R. The multi-domain classifier is
trained independently with the same experimental
setting, and it is only involved in the evaluation
stage. We report the mean of supervised DST and
cross-lingual experimental results for three runs
with different random seeds.

5 Experimental Results

5.1 Supervised DST

We first rank our XQA-DST model with prior meth-
ods capable of zero-shot domain adaptation on Mul-
tiWwOZ 2.1. Table 1 comprises the JGA for each



method, where the JGA is defined as the ratio of di-
alogue turns that have been perfectly predicted over
the number of turns for all dialogues. We imple-
ment the same label mapping as TripPy (Heck et al.,
2020) for a fair evaluation. In Table 1, our approach
has outperformed all prior methods capable of zero-
shot generalisation, including most generative ap-
proaches such as TRADE, TSDST, and GPT2-m.
Moreover, our XQA-DST model is competitive
with state-of-the-art approaches that only focus on
supervised DST. It is worth noting that SOM-DST
(Kim et al., 2020) and SimpleTOD (Hosseini-Asl
et al., 2020) are generative approaches, but they
are not designed with domain-slot prompts, which
make them not naturally domain adaptable. SST
(Chen et al., 2020) relies on a predefined schema
to learn slot relations. Since candidate values are
given, it gives a slightly higher JGA than our ap-
proach, but it is neither domain-adaptable nor open-
vocabulary. Lastly, TripPy is not domain scalable
because it has trained N projection layers for N
given slots, which makes it completely have no
knowledge for new slots in new domains.

Based on the shared span prediction module, our
model is able to extract values from the dialogue
context directly, thereby being open-vocabulary
and domain scalable. At the same time, it has suc-
cessfully overcome the challenge of an unavailable
ontology set. Moreover, our model presents as the
best-performed model in any framework with span
prediction modules, where it has improved the mar-
gin of JGA by more than 3.5% from the STARC
approach. None of the other approaches has ever
studied their DST with multi-lingual pretrained
models. By utilising the pretrained XLLM-R model
as the context encoder, our approach is the only
method with cross-lingual transferability. Given its
distinct advantages for being domain-adaptable and
language transferable, a promising result in multi-
domain DST at 53.2% builds a good foundation
for zero-shot domain adaptation and cross-lingual
experiments.

5.2 Zero-shot Domain Adaptation

The zero-shot domain adaptation experiment is
used to evaluate the transfer performance of our
model when it is tested with dialogues in a com-
pletely unseen domain. We train our model on
the other four domains by excluding the target do-
mains. We strictly follow the experimental steps
reported by Kumar et al. (2020). Since there is

Models tested on MultiwWOZ 2.1 JGA (%)

TRADE (Wu et al., 2019) 45.60
SUBMT (Lee et al., 2019) 46.70
STARC (Gao et al., 2020) 49.48
MA-DST (Kumar et al., 2020) 51.88
T5DST (Lin et al., 2021) 52.21
GPT2-m (Li et al., 2021) 52.58
XQA-DST 53.21

Table 1: The performance of DST for our proposed
XQA-DST model with prior methods capable of zero-
shot inference on MultiwOZ 2.1.

Models tested on MultiwOZ 2.1 JGA (%)
DSTQA (Zhou and Small, 2019) 51.17
DS-DST (Zhang et al., 2020) 51.21
XQA-DST 53.21
SOM-DST (Kim et al., 2020) 53.68
SST (Chen et al., 2020) 55.23
TripPy (Heck et al., 2020) 55.30
SimpleTOD (Hosseini-Asl et al., 2020) 55.72

Table 2: The performance of DST for our XQA-DST
model against state-of-the-art DST incapable of zero-
shot inference on MultiwOZ 2.1.

a single domain defined in the target domain, the
domain classifier is not utilised here because the di-
alogue domain is given information. Table 3 shows
a comparison of our XQA-DST model to baselines
and recent approaches. It is clear that our model
has generated more accurate results than both MA-
DST (Kumar et al., 2020) and SUMBT (Lee et al.,
2019) baselines by at least 3.4% JGA on average
in domain adaptation. SUMBT tracks the dialogue
states by classifying through every slot-value pair.
Hence, it is a classification based method, whereas
our approach is mainly relying on the value fill-
ing by the span prediction module. It can be seen
that our model has outperformed baselines by a
significant (3-9%) margin on the hotel, restaurant,
and taxi domains. This is because the classification
based method requires a predefined ontology for
its enumeration of values, which inevitably makes
it not robust to unseen values in new domains and
results in relatively low performance for domain
adaptation.

There is another class of methods that utilises
generative value filling to handle the DST, includ-
ing TRADE, GPT2-m, and TSDST. Given GPT2-m
as an example, it is in the framework of generative



Models Type Hotel Train Att. Res. Taxi Avg.
MA-DST (Kumar et al., 2020) G 16.3 228 225 13.6 593 269
SUMBT (Lee et al., 2019) C 19.8 225 226 165 595 282
TRADE (Wu et al., 2019) G 19.5 229 228 164 592 282
SimpleTOD++* (Lin et al., 2021) G 177 27.8 280 156 592 29.7
XQA-DST S 229 232 24.0 257 622 31.6
GPT2-m (Li et al., 2021) G 244 291 313 262 59.6 34.1
TSDST* (Lin et al., 2021) G 212 354 3311 21.7 646 352

Table 3: The joint goal accuracy (%) of zero-shot domain adaptation experiments on each domain with recent models
on MultiWOZ 2.1. The abbreviations for model types are: G: Generative; C: Classification; S: Span prediction.
*Results from MultiWOZ 2.0 are reported by (Lin et al., 2021).

question answering, which also coincides with the
underlying idea of our XQA-DST model but has a
decoder to generate candidate values. It provides
higher accuracy than our approach for about 6% im-
provement of JGA on train and attraction domains.
Then, it leads to a higher average JGA at 34.1%,
which is 2.5% higher than our approach. However,
our model still achieves higher average JGA than
MA-DST, TRADE, and SimpleTOD++ (Lin et al.,
2021), which are also generative approaches.

Although our approach is less competitive to
state-of-the-art generative approaches in domain
adaptation, our model has outperformed both
GPT2-m and T5DST in multi-domain supervised
DST as shown in Table 1. Furthermore, our ap-
proach is designed to be applicable for both do-
main adaptation and cross-lingual transfer learn-
ing, whereas all generative methods listed above
can only do mono-lingual learning. Therefore, our
XQA-DST model has shown very competitive re-
sults in the zero-shot domain adaptation, and we
can conclude that it is able to effectively generalise
to task-oriented dialogues in new domains by un-
derstanding the linguistics behind our domain-slot
questions.

5.3 Error analysis

We analyse the individual slot accuracy for every
domain-slot pair in 5 domains to study the impact
of shared slots over domains on the performance
of domain adaptation. The results are obtained by
computing the slot accuracy on each target domain
by XQA-DST. The slot accuracy is defined as the
ratio of dialogue turns where the value for that slot
is correctly predicted. Fig. 2 shows the slot accu-
racy for 16 slots over 5 domains, where multiple
domain bars for the same slot indicate that the slot
is shared across these domains.
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Figure 2: The categorical plot of slot accuracy (%) for
each slot over 5 domains for the zero-shot domain adap-
tation experiment by XQA-DST.

It is observable that the slots that have been
shared among multiple domains lead to a relatively
higher domain adaptation performance. By con-
trast, it is also distinctive that slots that have not
been shared among multiple domains have much
lower accuracy. For instance, most slots in the hotel
domain are not shared with other domains, so the
slot accuracy for ‘internet’ and ‘stars’ slots (64.7%
and 63.1%, respectively) are reasonably lower than
others. The same rule applies to the ‘time’ and
‘food’ slots in the restaurant domain. Therefore,
the number of shared domains for the slot is the
foremost factor for achieving a good domain adap-
tation result on that slot. Secondly, we notice that
slots with digital values such as ‘people’ and ‘day’
have very high slot accuracy (89.4% and 87.0% in
the restaurant domain) even in the zero-shot set-
ting. It validates the effectiveness of our model
to domain adaptation for successfully extracting
candidate values from the message. Last but not
least, it is naturally hard to predict location slots,
‘departure’ and ‘destination’, that are not categor-



ical with unseen values. Hence, even though they
are shared in both train and taxi domains, they give
the lowest slot accuracy in the set of shared slots.
Overall speaking, our XQA-DST model has gen-
erated reasonably well domain adaptation results
on most domain-slot pairs and has shown a certain
level of common knowledge across domains.

5.4 Zero-shot Cross-lingual Transfer
Learning

The zero-shot cross-lingual transfer learning is to
train our XQA-DST on the source language, En-
glish. Then, it is sequentially evaluated on the test
sets in German and Italian with labels that are kept
in English. Since WOZ 2.0 is a single domain
dataset with relatively short dialogues, the dialogue
history is not included as inputs, and the domain
classifier is deactivated. To provide a fair com-
parison to the ground truth, we implement Google
Translator (Wu et al., 2016) to translate the values
filled by span prediction in the target language back
to the source language.

In Table 4, our XQA-DST model gives strong a
zero-shot performance on both German and Italian
languages (64.9% and 68.6% JGA, respectively).
In comparison to recent approaches on zero-shot
cross-lingual DST, our XQA-DST model has gen-
erated results that significantly increase the mar-
gin by an absolute 7% on Italian. It is worth not-
ing that both XLM+CLCSA and mBERT+CLCSA
(Qin et al., 2020) are data augmentation based ap-
proaches on multi-lingual models with the same
model architecture as XL-NBT (Chen et al., 2018).
Even without any data augmentation, our model in
neural reading comprehension still outperforms all
of them and appears as the state-of-the-art results
in the zero-shot cross-lingual transfer learning on
WOZ 2.0.

Besides the above approaches, we include XLLM-
R-DST as a baseline that we replace the context
encoder of BERT-DST (Lai et al., 2020) with XLM-
R. Then, we can study the effectiveness of differ-
ent model architectures in cross-lingual transfer
learning. We recall that XLM-R-DST fills the slot
values by iterating through every candidate slot
value with a relevance scorer. Table 4 shows a
huge improvement of our approach by increasing
the average JGA on target domains from 23.1%
to 66.8% by more than 40%. It indicates that our
specially designed reading comprehension frame-
work has a strong generalisation ability across lan-

Joint Goal Accuracy (%)

Models EN GE IT
XLM-R-DST 88.46 | 20.78 25.39
XL-NBT - 30.80 41.20
MUSE + AMLT - 36.51 39.35
XLM+CLCSA - 48.70 -
mBERT+CLCSA - 63.20 61.30
XQA-DST 92.38 | 64.88 68.63

Table 4: The zero-shot cross-lingual results for target
languages, German (GE) and Italian (IT), on WOZ 2.0,
where the results on English (EN) are only used to indi-
cate the supervised performance on the source language.
There are no results on Italian by XLM due to the ab-
sence of Italian in its pretraining as reported by (Liu
et al., 2020).

guages, whereas the XLM-R-DST appears as only
recognising each value as distinct features without
understanding the deep semantics behind them.

Lastly, we notice that the cross-lingual result
on Italian has a slightly higher joint goal accuracy
than German in our experiments. We suppose that
this is because of the declension in German, which
leads to more diverse word forms with the same
semantics. Since our cross-lingual experiment re-
lies on a back-translation from the target language
to the source language, a diverse declension still
introduces noises to the translation process. Even
with the predefined label dictionary that collects vo-
cabulary with similar semantics, it cannot perfectly
handle a more flexible word list.

6 Conclusion

We introduce a new multi-domain and multi-lingual
dialogue state tracker, XQA-DST, within a neural
reading comprehension framework. It gives dis-
tinct advantages for avoiding relying on any prede-
fined ontology and being open-vocabulary to new
slots with unseen values. We have demonstrated
its competitive performance in multi-domain DST
with a novel turn domain filtering strategy and a
multi-domain classifier in parallel. We have shown
a strong domain and cross-lingual transferable abil-
ity of our model by outperforming famous base-
lines. With the design of an XLM-R based multi-
domain classifier, our approach is feasible for track-
ing states in multi-domain and multi-lingual sce-
narios. Therefore, it holds a strong potential to
overcome the challenging data scarcity problem for
either domains or languages in the real application
of task-oriented dialogue systems.
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