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Abstract

In a task-oriented dialogue system, Dialogue001
State Tracking (DST) keeps track of all im-002
portant information by filling slots with values003
given through the conversation. Existing meth-004
ods generally rely on a predefined set of values005
and struggle to generalise to previously unseen006
slots in new domains. In this paper, we propose007
a multi-domain and multi-lingual dialogue state008
tracker in a neural reading comprehension ap-009
proach. Our approach fills the slot values using010
span prediction, where the values are extracted011
from the dialogue itself. With a novel training012
strategy and an independent domain classifier,013
empirical results demonstrate that our model is014
a domain-scalable and open-vocabulary model015
that achieves 53.2% Joint Goal Accuracy (JGA)016
on MultiWOZ 2.1. We show its competitive017
transferability by zero-shot domain-adaptation018
experiments on MultiWOZ 2.1 with an average019
JGA of 31.6% for five domains. In addition,020
it achieves cross-lingual transfer with state-of-021
the-art zero-shot results, 64.9% JGA from En-022
glish to German and 68.6% JGA from English023
to Italian on WOZ 2.0.024

1 Introduction025

Task-oriented dialogue systems are designed to026

provide natural conversation with users and assist027

them in achieving daily goals. With the growth of028

task-oriented dialogue systems, there is an increas-029

ing interest in supporting dialogues among many030

domains and languages to fit the users’ demands.031

However, either modelling a multi-domain or multi-032

lingual dialogue system requires substantial data033

collected in real scenarios. This data acquisition034

procedure is extremely expensive, and it motivates035

us to resolve this challenge by leveraging dialogue036

data in rich-resource domains and languages via037

zero-shot transfer learning.038

DST is crucial for accurately extracting user in-039

tents and goals over multiple turns within the di-040

alogue. Based on the tracked dialogue states, the041

dialogue manager makes corresponding next ac- 042

tions with back-end results, where the accuracy of 043

the DST becomes absolutely vital. With a fully 044

predefined ontology, traditional approaches tackle 045

the DST as a classification problem by enumerat- 046

ing every possible combination of slot-value pairs 047

(Mrkšić et al., 2017; Zhong et al., 2018). Those 048

approaches are strongly limited by their scalability, 049

as some slots (e.g. name) have an unbounded set 050

of slot values. Secondly, they are generally not 051

flexible to unseen slot-value pairs, making them 052

more difficult to adapt for zero-shot transfer learn- 053

ing. Moreover, a completely predefined ontology 054

is hard to acquire and not scalable for task-oriented 055

dialogue systems in real applications. 056

To overcome those challenges, we take inspira- 057

tion from Gao et al. (2019) and Gao et al. (2020) 058

and investigate how DST can be tackled by ex- 059

tracting slot values from user utterances directly. 060

In this paper, we propose a domain-independent 061

and transferable dialogue state tracker with neural 062

reading comprehension. Our model is responsible 063

for filling the slot value by recognising specially 064

designed domain-slot prompts by span prediction, 065

which extracts answers from the input utterance by 066

predicting the token positions. In addition, we in- 067

troduce a novel training strategy for DST in reading 068

comprehension such that we only ask slot questions 069

that appear in the current turn domain. For exam- 070

ple, given hotel as the current turn domain, all slots 071

under the taxi domain are filtered out as there is 072

no overlapping between them. This simple but ef- 073

fective filtering strategy significantly reduces the 074

noise from unnecessary questions in both training 075

and evaluation phases. 076

We call the final model XQA-DST: XLM- 077

R based Dialogue State Tracker in Question 078

Answering. Our main contributions are sum- 079

marised below: 080

• We introduce XQA-DST, a novel domain- 081

independent and transferable dialogue state 082
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tracker inspired by neural reading comprehen-083

sion models. The model is able to recognise084

slot values by reformulating the task as an085

answer to a specially designed domain-slot086

prompt by span prediction, which extracts an-087

swers from the input utterance by predicting088

the token positions.089

• We enable XQA-DST on reading comprehen-090

sion by zero-shot domain adaptation scenarios,091

showing its transferability capabilities. The092

final model shows competitive domain adap-093

tation performance with an average JGA of094

31.6% for five domains on MultiWOZ 2.1.095

• We show that our model is capable of both096

domain adaptation and cross-lingual transfer097

learning. We demonstrate its cross-lingual098

transferability by achieving state-of-the-art099

zero-shot results, 64.9% JGA from English100

to German and 68.6% JGA from English to101

Italian on WOZ 2.0.102

2 Related Work103

Dialogue State Tracking Traditional dialogue104

state tracking approaches mostly rely on hand-105

crafted features and domain lexicons for delexical-106

isation (Wang and Lemon, 2013; Williams, 2014;107

Henderson et al., 2014), which make them difficult108

to scale to new domains. With the assumption of109

a full ontology in advance, classification based ap-110

proaches tackle DST by enumerating through every111

possible combination of slot-value pairs (Mrkšić112

et al., 2017; Liu and Lane, 2017; Ramadan et al.,113

2018; Zhong et al., 2018). Though a performance114

improvement is obtained by using a predefined on-115

tology, their scalability is strongly limited by the116

availability of the ontology, especially for unseen117

slot values in new domains. The performance on118

DST is further improved by utilising the pretrained119

language model BERT (Devlin et al., 2019) as the120

context encoder. Lee et al. (2019) encode the utter-121

ance and slot-value pair separately and implement122

a slot-utterance matching module that computes123

the similarity between them. Lai et al. (2020) use124

BERT to encode the dialogue context concatenated125

with the candidate pair and generate a relevance126

score for every candidate. However, both of them127

rely on a predefined ontology, and none of the ap-128

proaches has resolved the scalability issue above.129

To alleviate this issue, span prediction methods130

are proposed to tackle DST so that the slot can be131

filled by directly addressing values in the context. 132

Chao and Lane (2019) propose BERT-DST that 133

encodes the context by BERT and trains indepen- 134

dent span projection layers for every slot. Zhou 135

and Small (2019) and Gao et al. (2020) formulate 136

the DST as a question answering problem, and it 137

prepares questions for asking the model to answer 138

the value for every slot. However, Span predic- 139

tion methods suffer when the value is not explicitly 140

expressed in the context. Heck et al. (2020) rem- 141

edy this problem by proposing copy mechanisms 142

and achieving competitive results on multi-domain 143

DST. Recent approaches start bringing both the 144

pick-list and span prediction methods into a hybrid 145

architecture. Zhang et al. (2020) split slots into 146

categorical and non-categorical slots. Hence, it 147

benefits from the accuracy brought by the pick-list 148

and the scalability of span prediction methods, but 149

the prediction for categorical slots still relies on a 150

given ontology. 151

Generative approaches provide an alternative 152

way to handle DST without relying on the pre- 153

defined ontology. Xu and Hu (2018) construct a 154

pointer network that has an encoder-decoder ar- 155

chitecture so that the values of slots can be gener- 156

ated by the decoder. Wu et al. (2019) and Kumar 157

et al. (2020) propose similar sequence-to-sequence 158

models with a state generator that gives a value se- 159

quence. However, the main drawback of generative 160

approaches is potentially ill-formatted strings at the 161

output, which can be fatal for the subsequent DST. 162

Zero/Few-shot Transfer Learning for DST 163

TRADE (Wu et al., 2019) focuses on domain adap- 164

tation for DST by transferring prior knowledge 165

of trained domains to an unseen domain. Kumar 166

et al. (2020) propose MA-DST that introduces 167

cross-attention to capture the domain semantics. 168

Campagna et al. (2020) propose a data augmenta- 169

tion approach by synthesising in-domain data from 170

an abstract dialogue model. Li et al. (2021) in- 171

troduce a generative question answering approach, 172

GPT2-m, that leverages an autoregressive language 173

model. Similarly, Lin et al. (2021) propose the 174

T5DST model that bases on the T5 model (Raffel 175

et al., 2020), and they study the impacts of slot 176

descriptions for domain adaptation. 177

Cross-lingual transfer learning for DST is to 178

leverage the labelled data in rich-resource lan- 179

guages and transfer learned knowledge to low- 180

resource languages. Chen et al. (2018) study the 181

problem of cross-lingual DST, and propose the 182
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XL-NBT teacher-student framework. Liu et al.183

(2020) introduce an Attention-informed Mixed-184

Language Training (AMLT) method that uses bilin-185

gual word pairs to build code-switching training186

sentences. Moreover, they study the effectiveness187

of multi-lingual pretrained language models with188

their AMLT approach, including XLM (Conneau189

and Lample, 2019) and mBERT (Devlin et al.,190

2019). Qin et al. (2020) further propose a data191

augmentation framework, which encourages cross-192

lingual alignment by fine-tuning mBERT on gener-193

ated code-switching data. To the best of our knowl-194

edge, we are the first work that studies the effective-195

ness of a multi-lingual pretrained language model,196

XLM-R (Conneau et al., 2020), on DST without197

implementing additional cross-lingual alignment198

strategies.199

3 Multi-Domain and Multi-Lingual DST200

To tackle the task of dialogue state tracking, our201

model reads the current user utterance Ut, preced-202

ing system utterance Mt, dialogue history Ht, and203

the domain-slot prompt Qt as inputs for each turn.204

Followed by that, our model is responsible for205

firstly determining the dialogue domains Dt from206

the input sequence. Then, it predicts the class of207

answers for domain-slot prompts in the predicted208

domains. If an answer is present in utterances, the209

model will predict the value for that domain-slot210

question using span extraction. Otherwise, its value211

will be predicted in accordance with the predicted212

class. Finally, our model tracks the dialogue states213

by a rule-based update mechanism along with the214

progress of the dialogue across turns.215

3.1 Context and Domain-slot Questions216

In neural reading comprehension, the context is217

used to provide the background information, and218

the answer is usually contained in the context.219

When it comes to DST, it is equivalent to model220

the system message and the user response together221

as the context for the current turn. The complete222

context Ct is then collected by concatenating the223

current user utterance Ut and the preceding system224

utterance Mt with dialogue history Ht at turn t.225

We implement XLM-R as the context encoder for226

the purpose of cross-lingual transfer learning.227

Each context is paired with N questions, which228

iterate through every slot that we are interested in.229

We append the domain-slot prompt at the end of the230

context as an analogue question for each domain-231

slot pair. Hence, the model can learn to correlate 232

different questions to the same context and provide 233

corresponding answers to fill the slot values. For 234

the same context with nth question Qn
t at turn t, 235

the input sequence Sn
t can be written as: 236

Sn
t =[CLS]⊕ Ut ⊕ [SEP]⊕Mt ⊕ [SEP]

⊕Ht ⊕ [SEP]⊕Qn
t ⊕ [SEP]

(1) 237

where Ht represents the dialogue history that is 238

collected in a reversed order from turn t − 1 to 239

t = 1, and it is defined as follows: 240

Ht =Ut−1 ⊕Mt−1 ⊕ . . .

⊕ U1 ⊕M1 for t > 1
(2) 241

To utilise the question as a distinct feature for 242

each slot, we propose the analogue question in the 243

format of a domain-slot prompt. Here, additional 244

special tokens are introduced to assist the model in 245

recognising the domain-slot pair as distinct parts. 246

Moreover, they provide clear signals for the start 247

and end positions for each domain-slot pair. The 248

equation for constructing the domain-slot prompt 249

Qn
t is defined below: 250

Qn
t =⟨dom.⟩ ⊕ dnt ⊕ ⟨/dom.⟩

⊕ ⟨slot⟩ ⊕ snt ⊕ ⟨/slot⟩
(3) 251

where dnt refers to the name of the domain and snt 252

is the slot for n-th question at turn t. 253

3.2 Shared Classification Gate 254

Our model contains a shared classification gate 255

θgate for every domain-slot question. This shared 256

gate provides shared knowledge among various 257

domain-slot pairs, as it is neither domain-specific 258

nor slot-specific. 259

For each input sentence St, this shared gate clas- 260

sifies it to one of six classes as described in three 261

main categories. Special cases, none/dontcare, in- 262

dicate that there is either no observable value from 263

the input sequence St or any value that can become 264

the answer for that slot question. Copy mechanism, 265

span, indicates that the answer can be extracted 266

from the current user utterance Ut by the span 267

prediction module. Similarly, Inform is to copy 268

from the system inform memory that tracks values 269

mentioned in the preceding system utterance Mt. 270

Boolean values true/false are used to deal with bi- 271

nary categorical values for Boolean slots where the 272

value cannot be directly extracted from the input 273

utterance. 274
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Figure 1: The model architecture of our XQA-DST for multi-domain and multi-lingual DST, where the right part is
the independent multi-domain classifier that outputs active domains.

With these designed classes, it takes the pooled275

output rCLS
t from the encoder as its only input. It276

generates a probability distribution pgatet ∈ R6 over277

six classes as in the following equation:278

pgatet = softmax(Wgate · rCLS
t + bgate) (4)279

where Wgate represents the weights for our shared280

gate that is achieved by a linear classification layer,281

and bgate is the corresponding bias term. The class282

is then determined by taking the maximal argument283

of argmax(pgatet ).284

3.3 Shared Span Prediction Layer285

If the predicted class for the current input sequence286

St is span, the answer for that domain-slot ques-287

tion Qt will be filled by predicting the start and end288

positions of the value from the input sequence. We289

implement a shared span prediction layer for every290

domain-slot question for the purpose of domain-291

adaptable design. This is achieved by constructing292

a linear layer that takes the entire token representa-293

tions from r1t to r
seqmax
t as inputs, and it generates294

two outputs for each token, the start and end posi-295

tion distribution, pstart
t and pend

t , after the softmax296

layers.297

[pstart
t , pend

t ] = softmax(Wspan · rit + bspan) (5a)298

startt = argmax(pstart
t ) (5b)299

endt = argmax(pend
t ) (5c)300

The start and end positions of the predicted value301

are then determined by picking the largest proba-302

bility from distributions pstart
t and pend

t . Followed303

by that, we sequentially collect the tokens from 304

the predicted startt position to endt position and 305

detokenize them to form the final predicted value 306

for that domain-slot question. 307

3.4 Turn-domain Filtering 308

For a task-oriented dialogue, the user may shift 309

the domain of conversation across turns so that a 310

dialogue can have multiple domains. We introduce 311

a turn-domain filtering strategy that puts a strict 312

constraint and only allows the model to pay atten- 313

tion to the current domain. Turn-domain filtering 314

indicates that only the slots within the current do- 315

mains Dt are used to prepare training features since 316

slots are domain-specific. Hence, turn-domain fil- 317

tering can reduce the potential noises introduced 318

by unnecessary domains. Mathematically, this fil- 319

tering strategy puts an additional constraint for slot 320

domain dnt in Eq. 3: 321

dnt ∈ Dt (6) 322

3.5 Independent Multi-domain Classifier 323

Turn-domain filtering allows the model to answer 324

questions only within the interested domains. How- 325

ever, the domain information is no longer a given 326

feature in the evaluation stage. Here, we propose a 327

multi-domain sequence classifier as shown in Fig. 328

1. The input sequence is the complete dialogue 329

context Ct without domain-slot questions. We then 330

collect the entire sequence representation rCLS
t by 331

the context encoders as XLM-R(Ct). Followed by 332

that, rCLS
t is fed into |D| softmax layers, thereby 333
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allowing a binary prediction that decides whether334

each domain dt is present in the input context or335

not. Finally, we collect the domains that have been336

assigned to the ‘True’ class, which indicates the337

presence of that domain in the context.338

pdt = softmax(W d
MSC · rCLS

t + bdMSC) (7a)339

dt = argmax(pdt ) (7b)340

Dt = {d1, . . . , d|D|} (7c)341

Though this domain classifier is not domain scal-342

able, it is extremely effective when the range of343

domains is given so that we can have fixed weights344

for each domain projection layer.345

3.6 System Inform Memory and Update Rules346

To further reduce the error of our span extractor, we347

have employed the same inform copy mechanism348

as Heck et al. (2020). This memory is a simple349

dictionary that records all values informed by the350

preceding system utterance Mt into a system in-351

form memory It={I1t , ..., INt }. Then, the value352

answer An
t for nth question Qn

t asked at turn t can353

be predicted by the following copy mechanism,354

given that inform = argmax(pgate
t ):355

An
t = Int for Qn

t (8)356

We implement a simple rule-based mechanism357

that is used to update dialogue states across turns358

as same as Chao and Lane (2019). In each turn,359

if the model assigned class for the current input360

sequence Sn
t with Qn

t is not none, the dialogue361

state will be updated by obtaining An
t from our362

value prediction modules. On the other hand, if the363

classification gate predicts that there is no value for364

Sn
t , the dialogue state will be kept unchanged.365

4 Experimental Setup366

4.1 Dataset367

The datasets that we carry out experiments on368

are WOZ 2.0 (Wen et al., 2017) and MultiWOZ369

2.1 (Eric et al., 2020) for single-domain and370

multi-domain task-oriented dialogues, respectively.371

WOZ 2.0 is a restaurant reservation dataset and it372

contains three slots: area, food, and price range.373

Moreover, it provides the conversation in three374

languages: English, German, and Italian, so that375

we can carry out cross-lingual transfer learning376

experiments on this dataset. By contrast, Multi-377

WOZ 2.1 contains multi-domain conversations for378

more than 10000 dialogues over seven domains.379

Moreover, the dialogue domain can change across 380

turns, thereby making MultiWOZ 2.1 the most chal- 381

lenging dataset for task-oriented dialogue systems. 382

There are two domains, hospital and police, that 383

only appear in the train set but not in the valida- 384

tion and test sets. Hence, we exclude these do- 385

mains with very few dialogues, and the remaining 386

dataset contains five domains (hotel, train, attrac- 387

tion, restaurant, and taxi) with 30 slots in total. 388

4.2 Implementation Details 389

We employ the pretrained XLM-RoBERTa-base 390

model from the Huggingface library of Transform- 391

ers (Wolf et al., 2020), which consists of 12 hid- 392

den layers of 768 units. For all implementations, 393

we limit the maximal input sequence length to be 394

180 tokens for saving the cost while keeping a rea- 395

sonable length for including dialogue history. We 396

truncate from the earliest dialogue history when 397

the input sequence length exceeds the limit. The 398

training objective is to minimise the summations of 399

individual loss functions for each module, where 400

each loss is defined as the cross-entropy loss. The 401

coefficients for each part of the joint loss of our 402

question answering model are: 403

Ltotal = 0.8 · Lgate + 0.2 · Lspan (9) 404

During the training process, we implement the 405

Adam optimiser (Kingma and Ba, 2015) with an 406

initial learning rate of 10−5, where the other pa- 407

rameters for Adam are within their default settings. 408

Then, we employ a linear scheduler with a warm- 409

up proportion of 10% so that the learning rate will 410

decay linearly until reaching zero after the warm- 411

up steps. We put a dropout layer with a rate of 412

30% at the output of our context encoders. We use 413

an early stopping strategy by monitoring the accu- 414

racy of the validation dataset until it stops increas- 415

ing for at least 3 epochs. The batch size is fixed 416

at 16 for XLM-R. The multi-domain classifier is 417

trained independently with the same experimental 418

setting, and it is only involved in the evaluation 419

stage. We report the mean of supervised DST and 420

cross-lingual experimental results for three runs 421

with different random seeds. 422

5 Experimental Results 423

5.1 Supervised DST 424

We first rank our XQA-DST model with prior meth- 425

ods capable of zero-shot domain adaptation on Mul- 426

tiWOZ 2.1. Table 1 comprises the JGA for each 427
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method, where the JGA is defined as the ratio of di-428

alogue turns that have been perfectly predicted over429

the number of turns for all dialogues. We imple-430

ment the same label mapping as TripPy (Heck et al.,431

2020) for a fair evaluation. In Table 1, our approach432

has outperformed all prior methods capable of zero-433

shot generalisation, including most generative ap-434

proaches such as TRADE, T5DST, and GPT2-m.435

Moreover, our XQA-DST model is competitive436

with state-of-the-art approaches that only focus on437

supervised DST. It is worth noting that SOM-DST438

(Kim et al., 2020) and SimpleTOD (Hosseini-Asl439

et al., 2020) are generative approaches, but they440

are not designed with domain-slot prompts, which441

make them not naturally domain adaptable. SST442

(Chen et al., 2020) relies on a predefined schema443

to learn slot relations. Since candidate values are444

given, it gives a slightly higher JGA than our ap-445

proach, but it is neither domain-adaptable nor open-446

vocabulary. Lastly, TripPy is not domain scalable447

because it has trained N projection layers for N448

given slots, which makes it completely have no449

knowledge for new slots in new domains.450

Based on the shared span prediction module, our451

model is able to extract values from the dialogue452

context directly, thereby being open-vocabulary453

and domain scalable. At the same time, it has suc-454

cessfully overcome the challenge of an unavailable455

ontology set. Moreover, our model presents as the456

best-performed model in any framework with span457

prediction modules, where it has improved the mar-458

gin of JGA by more than 3.5% from the STARC459

approach. None of the other approaches has ever460

studied their DST with multi-lingual pretrained461

models. By utilising the pretrained XLM-R model462

as the context encoder, our approach is the only463

method with cross-lingual transferability. Given its464

distinct advantages for being domain-adaptable and465

language transferable, a promising result in multi-466

domain DST at 53.2% builds a good foundation467

for zero-shot domain adaptation and cross-lingual468

experiments.469

5.2 Zero-shot Domain Adaptation470

The zero-shot domain adaptation experiment is471

used to evaluate the transfer performance of our472

model when it is tested with dialogues in a com-473

pletely unseen domain. We train our model on474

the other four domains by excluding the target do-475

mains. We strictly follow the experimental steps476

reported by Kumar et al. (2020). Since there is477

Models tested on MultiWOZ 2.1 JGA (%)

TRADE (Wu et al., 2019) 45.60
SUBMT (Lee et al., 2019) 46.70
STARC (Gao et al., 2020) 49.48
MA-DST (Kumar et al., 2020) 51.88
T5DST (Lin et al., 2021) 52.21
GPT2-m (Li et al., 2021) 52.58
XQA-DST 53.21

Table 1: The performance of DST for our proposed
XQA-DST model with prior methods capable of zero-
shot inference on MultiWOZ 2.1.

Models tested on MultiWOZ 2.1 JGA (%)

DSTQA (Zhou and Small, 2019) 51.17
DS-DST (Zhang et al., 2020) 51.21
XQA-DST 53.21
SOM-DST (Kim et al., 2020) 53.68
SST (Chen et al., 2020) 55.23
TripPy (Heck et al., 2020) 55.30
SimpleTOD (Hosseini-Asl et al., 2020) 55.72

Table 2: The performance of DST for our XQA-DST
model against state-of-the-art DST incapable of zero-
shot inference on MultiWOZ 2.1.

a single domain defined in the target domain, the 478

domain classifier is not utilised here because the di- 479

alogue domain is given information. Table 3 shows 480

a comparison of our XQA-DST model to baselines 481

and recent approaches. It is clear that our model 482

has generated more accurate results than both MA- 483

DST (Kumar et al., 2020) and SUMBT (Lee et al., 484

2019) baselines by at least 3.4% JGA on average 485

in domain adaptation. SUMBT tracks the dialogue 486

states by classifying through every slot-value pair. 487

Hence, it is a classification based method, whereas 488

our approach is mainly relying on the value fill- 489

ing by the span prediction module. It can be seen 490

that our model has outperformed baselines by a 491

significant (3-9%) margin on the hotel, restaurant, 492

and taxi domains. This is because the classification 493

based method requires a predefined ontology for 494

its enumeration of values, which inevitably makes 495

it not robust to unseen values in new domains and 496

results in relatively low performance for domain 497

adaptation. 498

There is another class of methods that utilises 499

generative value filling to handle the DST, includ- 500

ing TRADE, GPT2-m, and T5DST. Given GPT2-m 501

as an example, it is in the framework of generative 502
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Models Type Hotel Train Att. Res. Taxi Avg.

MA-DST (Kumar et al., 2020) G 16.3 22.8 22.5 13.6 59.3 26.9
SUMBT (Lee et al., 2019) C 19.8 22.5 22.6 16.5 59.5 28.2
TRADE (Wu et al., 2019) G 19.5 22.9 22.8 16.4 59.2 28.2
SimpleTOD++* (Lin et al., 2021) G 17.7 27.8 28.0 15.6 59.2 29.7
XQA-DST S 22.9 23.2 24.0 25.7 62.2 31.6
GPT2-m (Li et al., 2021) G 24.4 29.1 31.3 26.2 59.6 34.1
T5DST* (Lin et al., 2021) G 21.2 35.4 33.1 21.7 64.6 35.2

Table 3: The joint goal accuracy (%) of zero-shot domain adaptation experiments on each domain with recent models
on MultiWOZ 2.1. The abbreviations for model types are: G: Generative; C: Classification; S: Span prediction.
*Results from MultiWOZ 2.0 are reported by (Lin et al., 2021).

question answering, which also coincides with the503

underlying idea of our XQA-DST model but has a504

decoder to generate candidate values. It provides505

higher accuracy than our approach for about 6% im-506

provement of JGA on train and attraction domains.507

Then, it leads to a higher average JGA at 34.1%,508

which is 2.5% higher than our approach. However,509

our model still achieves higher average JGA than510

MA-DST, TRADE, and SimpleTOD++ (Lin et al.,511

2021), which are also generative approaches.512

Although our approach is less competitive to513

state-of-the-art generative approaches in domain514

adaptation, our model has outperformed both515

GPT2-m and T5DST in multi-domain supervised516

DST as shown in Table 1. Furthermore, our ap-517

proach is designed to be applicable for both do-518

main adaptation and cross-lingual transfer learn-519

ing, whereas all generative methods listed above520

can only do mono-lingual learning. Therefore, our521

XQA-DST model has shown very competitive re-522

sults in the zero-shot domain adaptation, and we523

can conclude that it is able to effectively generalise524

to task-oriented dialogues in new domains by un-525

derstanding the linguistics behind our domain-slot526

questions.527

5.3 Error analysis528

We analyse the individual slot accuracy for every529

domain-slot pair in 5 domains to study the impact530

of shared slots over domains on the performance531

of domain adaptation. The results are obtained by532

computing the slot accuracy on each target domain533

by XQA-DST. The slot accuracy is defined as the534

ratio of dialogue turns where the value for that slot535

is correctly predicted. Fig. 2 shows the slot accu-536

racy for 16 slots over 5 domains, where multiple537

domain bars for the same slot indicate that the slot538

is shared across these domains.539

Figure 2: The categorical plot of slot accuracy (%) for
each slot over 5 domains for the zero-shot domain adap-
tation experiment by XQA-DST.

It is observable that the slots that have been 540

shared among multiple domains lead to a relatively 541

higher domain adaptation performance. By con- 542

trast, it is also distinctive that slots that have not 543

been shared among multiple domains have much 544

lower accuracy. For instance, most slots in the hotel 545

domain are not shared with other domains, so the 546

slot accuracy for ‘internet’ and ‘stars’ slots (64.7% 547

and 63.1%, respectively) are reasonably lower than 548

others. The same rule applies to the ‘time’ and 549

‘food’ slots in the restaurant domain. Therefore, 550

the number of shared domains for the slot is the 551

foremost factor for achieving a good domain adap- 552

tation result on that slot. Secondly, we notice that 553

slots with digital values such as ‘people’ and ‘day’ 554

have very high slot accuracy (89.4% and 87.0% in 555

the restaurant domain) even in the zero-shot set- 556

ting. It validates the effectiveness of our model 557

to domain adaptation for successfully extracting 558

candidate values from the message. Last but not 559

least, it is naturally hard to predict location slots, 560

‘departure’ and ‘destination’, that are not categor- 561

7



ical with unseen values. Hence, even though they562

are shared in both train and taxi domains, they give563

the lowest slot accuracy in the set of shared slots.564

Overall speaking, our XQA-DST model has gen-565

erated reasonably well domain adaptation results566

on most domain-slot pairs and has shown a certain567

level of common knowledge across domains.568

5.4 Zero-shot Cross-lingual Transfer569

Learning570

The zero-shot cross-lingual transfer learning is to571

train our XQA-DST on the source language, En-572

glish. Then, it is sequentially evaluated on the test573

sets in German and Italian with labels that are kept574

in English. Since WOZ 2.0 is a single domain575

dataset with relatively short dialogues, the dialogue576

history is not included as inputs, and the domain577

classifier is deactivated. To provide a fair com-578

parison to the ground truth, we implement Google579

Translator (Wu et al., 2016) to translate the values580

filled by span prediction in the target language back581

to the source language.582

In Table 4, our XQA-DST model gives strong a583

zero-shot performance on both German and Italian584

languages (64.9% and 68.6% JGA, respectively).585

In comparison to recent approaches on zero-shot586

cross-lingual DST, our XQA-DST model has gen-587

erated results that significantly increase the mar-588

gin by an absolute 7% on Italian. It is worth not-589

ing that both XLM+CLCSA and mBERT+CLCSA590

(Qin et al., 2020) are data augmentation based ap-591

proaches on multi-lingual models with the same592

model architecture as XL-NBT (Chen et al., 2018).593

Even without any data augmentation, our model in594

neural reading comprehension still outperforms all595

of them and appears as the state-of-the-art results596

in the zero-shot cross-lingual transfer learning on597

WOZ 2.0.598

Besides the above approaches, we include XLM-599

R-DST as a baseline that we replace the context600

encoder of BERT-DST (Lai et al., 2020) with XLM-601

R. Then, we can study the effectiveness of differ-602

ent model architectures in cross-lingual transfer603

learning. We recall that XLM-R-DST fills the slot604

values by iterating through every candidate slot605

value with a relevance scorer. Table 4 shows a606

huge improvement of our approach by increasing607

the average JGA on target domains from 23.1%608

to 66.8% by more than 40%. It indicates that our609

specially designed reading comprehension frame-610

work has a strong generalisation ability across lan-611

Models Joint Goal Accuracy (%)
EN GE IT

XLM-R-DST 88.46 20.78 25.39
XL-NBT - 30.80 41.20
MUSE + AMLT - 36.51 39.35
XLM+CLCSA - 48.70 -
mBERT+CLCSA - 63.20 61.30
XQA-DST 92.38 64.88 68.63

Table 4: The zero-shot cross-lingual results for target
languages, German (GE) and Italian (IT), on WOZ 2.0,
where the results on English (EN) are only used to indi-
cate the supervised performance on the source language.
There are no results on Italian by XLM due to the ab-
sence of Italian in its pretraining as reported by (Liu
et al., 2020).

guages, whereas the XLM-R-DST appears as only 612

recognising each value as distinct features without 613

understanding the deep semantics behind them. 614

Lastly, we notice that the cross-lingual result 615

on Italian has a slightly higher joint goal accuracy 616

than German in our experiments. We suppose that 617

this is because of the declension in German, which 618

leads to more diverse word forms with the same 619

semantics. Since our cross-lingual experiment re- 620

lies on a back-translation from the target language 621

to the source language, a diverse declension still 622

introduces noises to the translation process. Even 623

with the predefined label dictionary that collects vo- 624

cabulary with similar semantics, it cannot perfectly 625

handle a more flexible word list. 626

6 Conclusion 627

We introduce a new multi-domain and multi-lingual 628

dialogue state tracker, XQA-DST, within a neural 629

reading comprehension framework. It gives dis- 630

tinct advantages for avoiding relying on any prede- 631

fined ontology and being open-vocabulary to new 632

slots with unseen values. We have demonstrated 633

its competitive performance in multi-domain DST 634

with a novel turn domain filtering strategy and a 635

multi-domain classifier in parallel. We have shown 636

a strong domain and cross-lingual transferable abil- 637

ity of our model by outperforming famous base- 638

lines. With the design of an XLM-R based multi- 639

domain classifier, our approach is feasible for track- 640

ing states in multi-domain and multi-lingual sce- 641

narios. Therefore, it holds a strong potential to 642

overcome the challenging data scarcity problem for 643

either domains or languages in the real application 644

of task-oriented dialogue systems. 645
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