
On Provable Benefits of Depth in Training
Graph Convolutional Networks

Weilin Cong
Penn State

wxc272@psu.edu

Morteza Ramezani
Penn State

morteza@cse.psu.edu

Mehrdad Mahdavi
Penn State

mzm616@psu.edu

Abstract

Graph Convolutional Networks (GCNs) are known to suffer from performance
degradation as the number of layers increases, which is usually attributed to over-
smoothing. Despite the apparent consensus, we observe that there exists a discrep-
ancy between the theoretical understanding of over-smoothing and the practical
capabilities of GCNs. Specifically, we argue that over-smoothing does not nec-
essarily happen in practice, a deeper model is provably expressive, can converge
to global optimum with linear convergence rate, and achieve very high training
accuracy as long as properly trained. Despite being capable of achieving high
training accuracy, empirical results show that the deeper models generalize poorly
on the testing stage and existing theoretical understanding of such behavior remains
elusive. To achieve better understanding, we carefully analyze the generalization
capability of GCNs, and show that the training strategies to achieve high training
accuracy significantly deteriorate the generalization capability of GCNs. Motivated
by these findings, we propose a decoupled structure for GCNs that detaches weight
matrices from feature propagation to preserve the expressive power and ensure
good generalization performance. We conduct empirical evaluations on various
synthetic and real-world datasets to validate the correctness of our theory.

1 Introduction

In recent years, Graph Convolutional Networks (GCNs) have achieved state-of-the-art performance
in dealing with graph-structured applications, including social networks [28, 21, 51, 12, 44], traffic
prediction [10, 45, 34, 31], knowledge graphs [52, 53, 43], drug reaction [14, 16] and recommendation
system [2, 60]. Despite the success of GCNs, applying a shallow GCN model that only uses the
information of a very limited neighborhood on a large sparse graph has shown to be not effective [23,
6, 20, 9, 46]. As a result, a deeper GCN model would be desirable to reach and aggregate information
from farther neighbors. The inefficiency of shallow GCNs is exacerbated even further when the
labeled nodes compared to graph size is negligible, as a shallow GCN cannot sufficiently propagate
the label information to the entire graph with only a few available labels [35].

Although a deeper GCN is preferred to perceive more graph structure information, unlike traditional
deep neural networks, it has been pointed out that deeper GCNs potentially suffer from over-
smoothing [35, 41, 26, 4, 58], vanishing/exploding gradients [33], over-squashing [1], and training
difficulties [62, 38], which significantly affect the performance of GCNs as the depth increases.
Among these, the most widely accepted reason is “over-smoothing”, which is referred to as a
phenomenon due to applying multiple graph convolutions such that all node embeddings converge to
a single subspace (or vector) and leads to indistinguishable node representations.

The conventional wisdom is that adding to the number of layers causes over-smoothing, which impairs
the expressiveness power of GCNs and consequently leads to a poor training accuracy. However, we
observe that there exists a discrepancy between theoretical understanding of their inherent capabilities

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Comparison of F1-score for GCN with different depth on Cora dataset, where deeper
models can achieve high training accuracy, but complicate the training by requiring more iterations to
converge and suffer from poor generalization.

and practical performances. According to the definition of over-smoothing that the node representation
becomes indistinguishable as GCNs goes deeper, the classifier has difficulty assigning the correct
label for each node if over-smoothing happens. As a result, the training accuracy is expected to be
decreasing as the number of layers increases. However, as shown in Figure 1, GCNs are capable
of achieving high training accuracy regardless of the number of layers. But, as it can be observed,
deeper GCNs require more training iterations to reach a high training accuracy, and its generalization
performance on evaluation set decreases as the number of layers increases. This observation suggests
that the performance degradation is likely due to inappropriate training rather than the low expressive
power caused by over-smoothing. Otherwise, a low expressiveness model cannot achieve almost
perfect training accuracy simply by proper training tricks alone.1 Indeed, recent years significant
advances have been witnessed on tweaking the model architecture to overcome the training difficulties
in deeper GCN models and achieve good generalization performance [38, 6, 33, 62].

Contributions. Motivated by aforementioned observation, i.e., still achieving high training accuracy
when trained properly but poor generalization performance, we aim at answering two fundamental
questions in this paper:

Q1: Does increasing depth really impair the expressiveness power of GCNs?
In Section 4, we argue that there exists a discrepancy between over-smoothing based theoretical
results and the practical capabilities of deep GCN models, demonstrating that over-smoothing is
not the key factor that leads to the performance degradation in deeper GCNs. In particular, we
mathematically show that over-smoothing [41, 26, 35, 4] is mainly an artifact of theoretical analysis
and simplifications made in analysis. Indeed, by characterizing the representational capacity of GCNs
via Weisfeiler-Lehman (WL) graph isomorphism test [39, 55], we show that deeper GCN model is
at least as expressive as the shallow GCN model, the deeper GCN models can distinguish nodes
with a different neighborhood that the shallow GCN cannot distinguish, as long as the GCNs are
properly trained. Besides, we theoretically show that more training iterations is sufficient (but not
necessary due to the assumptions made in our theoretical analysis) for a deeper model to achieve the
same training error as the shallow ones, which further suggests the poor training error in deep GCN
training is most likely due to inappropriate training.

Q2: If expressive, why then deep GCNs generalize poorly?
In Section 5, in order to understand the performance degradation phenomenon in deep GCNs during
the evaluation phase, we give a novel generalization analysis on GCNs and its variants (e.g., ResGCN,
APPNP, and GCNII) under the semi-supervised setting for the node classification task. We show
that the generalization gap of GCNs is governed by the number of training iterations, largest node
degree, the largest singular value of weight matrices, and the number of layers. In particular, our
result suggests that a deeper GCN model requires more iterations of training and optimization
tricks to converge (e.g., adding skip-connections), which leads to a poor generalization. More
interestingly, our generalization analysis shows that most of the so-called methods to solve over-
smoothing [47, 61, 6, 29] can greatly improve the generalization ability of the model, therefore results
in a deeper model.

1The results in Figure 1 can be reproduced by removing both the dropout and weight decay operation. These
two augmentations are designed to improve the generalization ability (i.e., validation/testing accuracy) of the
model but might hurt the training accuracy, because of the randomness and also an extra regularization term on
the model parameters which are introduced during training. A simple experiment using DGL can be found here.

2

https://github.com/CongWeilin/DGCN/blob/master/DGL_code.ipynb

The aforementioned findings naturally lead to the algorithmic contribution of this paper. In Section 6,
we present a novel framework, Decoupled GCN (DGCN), that is capable of training deeper GCNs and
can significantly improve the generalization performance. The main idea is to isolate the expressive
power from generalization ability by decoupling the weight parameters from feature propagation. In
Section 7, we conduct experiments on the synthetic and real-world datasets to validate the correctness
of the theoretical analysis and the advantages of DGCN over baseline methods.

2 Related works

Expressivity of GCNs. Existing results on expressive power of GCNs are mixed, [39, 37, 7, 5]
argue that deeper model has higher expressive power but [41, 26, 25] have completely opposite
result. On the one hand, [39] shows a deeper GCN is as least as powerful as the shallow one in
terms of distinguishing non-isomorphic graphs. [37] shows that deep and wide GCNs is Turing
universal, however, GCNs lose power when their depth and width are restricted. [7] and [5] measure
the expressive power of GCNs via its subgraph counting capability and attribute walks, and both
show the expressive power of GCNs grows exponentially with the GCN depth. On the other hand,
[25] studies the infinity wide GCNs and shows that the covariance matrix of its outputs converges to
a constant matrix at an exponential rate. [41, 26] characterize the expressive power using the distance
between node embeddings to a node feature agnostic subspace and show the distance is decreasing as
the number of layers increases. Details are deferred to Section 4 and Appendix B. Such contradictory
results motivate us to rethink the role of over-smoothing on expressiveness.

Generalization analysis of GCNs. In recent years, many papers are working on the generalization of
GCNs using uniform stability [50, 63], Neural Tangent Kernel [15], VC-dimension [49], Rademacher
complexity [18, 42], algorithm alignment [56, 57] and PAC-Bayesian [36]. Existing works only focus
on a specific GCN structure, which cannot be used to understand the impact of GCN structures on
its generalization ability. The most closely related to ours is [50], where they analyze the stability
of the single-layer GCN model, and show that the stability of GCN depends on the largest absolute
eigenvalue of its Laplacian matrix. However, their result is under the inductive learning setting and
extending the results to the multi-layer GCNs with different structures is non-trivial.

Literature with similar observations. Most recently, several works have similar observations on
the over-smoothing issue to ours. [62] argues that the main factors to performance degradation are
vanishing gradient, training instability, and over-fitting, rather than over-smoothing, and proposes
a node embedding normalization heuristic to alleviate the aforementioned issues. [38] argues
that the performance degradation is mainly due to the training difficulty, and proposes a different
graph Laplacian formulation, weight parameter initialization, and skip-connections to improve the
training difficulty. [59] argues that deep GCNs can learn to overcome the over-smoothing issue during
training, and the key factor of performance degradation is over-fitting, and proposes a node embedding
normalization method to help deep GCNs overcome the over-smoothing issue. [30] improves the
generalization ability of GCNs by using adversarial training and results in a consistent improvement
than all GCNs baseline models without adversarial training. All aforementioned literature only gives
heuristic explanations based on the empirical results, and do not provide theoretical arguments.

3 Preliminaries

Notations and setup. We consider the semi-supervised node classification problem, where a self-
connected graph G = (V, E) withN = |V| nodes is given in which each node i ∈ V is associated with
a feature vector xi ∈ Rd0 , and only a subset of nodes Vtrain ⊂ V are labeled, i.e., yi ∈ {1, . . . , |C|}
for each i ∈ Vtrain and C is the set of all candidate classes. Let A ∈ RN×N denote the adjacency
matrix and D ∈ RN×N denote the corresponding degree matrix with Di,i = deg(i) and Di,j = 0
if i 6= j. Then, the propagation matrix (using the Laplacian matrix defined in [28]) is computed
as P = D−1/2AD−1/2. Our goal is to learn a GCN model using the node features for all nodes
{xi}i∈V and node labels for the training set nodes {yi}i∈Vtrain , and expect it generalizes well on the
unlabeled node set Vtest = V \ Vtrain.

GCN architectures. In this paper, we consider the following architectures for training GCNs:

3

There exist a fully connected layer after node feature

No fully connected layer after node feature

𝐇(ℓ) = 𝐋𝐇(ℓ$%), 𝐇(&) = 𝐗 𝐇(ℓ) = 𝜎(𝐋𝐇 ℓ$% 𝐖(ℓ)), 𝐇(&) = 𝐗

Cora

Figure 2: Comparison of intra- and inter-class normalized node embeddings H(`)/‖H(`)‖F pairwise
distance on Cora dataset. See Appendix A for more evidences.

• Vanilla GCN [28] computes node embeddings by H(`) = σ(PH(`−1)W(`)), where H(`) =

{h(`)
i }Ni=1 is the `th layer node embedding matrix, h(`)

i ∈ Rd` is the embedding of ith node,
W(`) ∈ Rd`×d`−1 is the `th layer weight matrix, and σ(·) is the ReLU activation.

• ResGCN [33] solves the vanishing gradient issue by adding skip-connections between adjacency
layers. More specifically, ResGCN computes node embeddings by H(`) = σ(PH(`−1)W(`)) +
H(`−1), where node embeddings of the previous layer is added to the output of the current layer
to facilitate the training of deeper GCN models.

• APPNP [29] adds skip-connections from the input layer to each hidden layer to preserve the fea-
ture information. APPNP computes node embeddings by H(`) = α`PH(`−1) +(1−α`)H(0)W,
where α` ∈ [0, 1] balances the amount of information preserved at each layer. By decoupling fea-
ture transformation and propagation, APPNP can aggregate information from multi-hop neighbors
without significantly increasing the computation complexity.

• GCNII [6] improves the capacity of APPNP by adding non-linearty and weight matrix at
each individual layer. GCNII computes node embeddings by H(`) = σ

(
(α`PH(`−1) + (1 −

α`)H
(0))W̄(`)

)
, where W̄(`) = β`W

(`) + (1− β`)I, constant α` same as APPNP, and constant
β` ∈ [0, 1] restricts the power of `th layer parameters.

4 On true expressiveness and optimization landscape of deep GCNs

Empirical validation of over-smoothing. In this section, we aim at answering the following
fundamental question: “Does over-smoothing really cause the performance degradation in deeper
GCNs?” As first defined in [35], over-smoothing is referred to as a phenomenon where all node
embeddings converge to a single vector after applying multiple graph convolution operations to the
node features. However, [35] only considers the graph convolution operation without non-linearity and
the per-layer weight matrices. To verify whether over-smoothing exists in normal GCNs, we measure
the pairwise distance between the normalized node embeddings with varying the model depth.2 As
shown in Figure 2, without the weight matrices and non-linear activation functions, the pairwise
distance between node embeddings indeed decreases as the number of layers increases. However, by
considering the weight matrices and non-linearity, the pairwise distances are actually increasing after
a certain depth which contradicts the definition of over-smoothing that node embeddings become
indistinguishable when the model becomes deeper. That is, graph convolution makes adjacent
node embeddings get closer, then non-linearity and weight matrices help node embeddings preserve
distinguishing-ability after convolution.

Most recently, [41, 26] generalize the idea of over-smoothing by taking both the non-linearity and
weight matrices into considerations. More specifically, the expressive power of the `th layer node
embeddings H(`) is measured using dM(H(`)), which is defined as the distance of node embeddings
to a subspace M that only has node degree information. Let denote λL as the second largest
eigenvalue of graph Laplacian and λW as the largest singular value of weight matrices. [41, 26]
show that the expressive power dM(H(`)) is bounded by dM(H(`)) ≤ (λWλL)` · dM(X), i.e., the
expressive power of node embeddings will be exponentially decreasing or increasing as the number

2The pairwise distances are computed on the normalized node embeddings H(`)/‖H(`)‖2F to eliminate the
effect of node embedding norms.

4

Figure 3: Compare dM(H(`)) and λW (W(`)) on both trained- (using 500 gradient update) and
untrained-GCN models on Cora dataset.

of layers increases, depending on whether λWλL < 1 or λWλL > 1. They conclude that deeper
GCN exponentially loss expressive power by assuming λWλL < 1. However, we argue that this
assumption does not always hold. To see this, let suppose W(`) ∈ Rd`−1×d` is initialized by uniform
distribution N (0,

√
1/d`−1). By the Gordon’s theorem for Gaussian matrices [11], we know its

expected largest singular value is bounded by E[λW] ≤ 1 +
√
d`/d`−1, which is strictly greater than

1 and λW usually increases during training. The above discussion also holds for other commonly used
initialization methods [19, 22]. Furthermore, since most real world graphs are sparse with λL close
to 1, e.g., Cora has λL = 0.9964, Citeseer has λL = 0.9987, and Pubmed has λL = 0.9905, making
assumption on λWλL < 1 is not realistic. As shown in Figure 3, when increasing the number of
layers, we observe that the distance dM(H(`)) is decreasing on untrained-GCN models, however, the
distance dM(H(`)) is increasing on trained-GCN models, which contradicts the conclusion in [41].
Due to the space limit, we defer the more empirical evidence to Appendix B. Through these findings,
we cast doubt on the power of over-smoothing based analysis to provide a complete picture of why
deep GCNs perform badly.

Definition 1. Let T Li denote the L-layer computation tree of node i, which represents the structured
L-hop neighbors of node i, where the children of any node j in the tree are the nodes in N (i).

Exponentially growing expressieness without strong assumptions. Indeed, we argue that deeper
GCNs have stronger expressive power than the shallow GCNs. To prove this, we employ the connec-
tion between WL test3 [32] and GCNs. Recently, [39] shows that GCNs have the same expressiveness
as the WL-test for graph isomorphism if they are appropriately trained, i.e., a properly trained
L-layer GCN computes different node representations for two nodes if their L-layer computation tree
(Definition 1) have different structure or different features on the corresponding nodes. Since L-GCN
can encode any different computation tree into different representations, it is natural to characterize
the expressiveness of L-GCN by the number of computation graph it can encode.

Theorem 1. Suppose T L is a computation tree with binary node features and node degree at least
d. Then, by assuming the computation tree of two nodes are disjoint, the richness (i.e., the number
of computation graphs a model can encode) of the output of L-GCN defined on T L is at least
|L-GCN(T L)| ≥ 2(d− 1)L−1.

The proof is deferred to Appendix C. The above theorem implies that the richness of L-GCN grows
at least exponentially with respect to the number of layers.

Comparison of expressiveness metrics. Although distance-based expressiveness metric [41, 26] is
strong than WL-based metric in the sense that node embeddings can be distinct but close to each other,
the distance-based metric requires explicit assumptions on the GCN structures, weight matrices, and
graph structures comparing to the WL-based metric, which has been shown that are not likely hold.
On the other hand, WL-based metric has been widely used in characterizing the expressive power of
GCNs in graph-level task [39, 37, 7, 5]. More details are deferred to related works (Section 2).

3WL test is a recursive algorithm where the label of a node depends on its own label and neighbors from
the previous iterations, i.e., c(`)i = Hash(c(`−1)

i , {c(`−1)
j |j ∈ N (i)}), where Hash(·) bijectively maps a set of

values to a unique value that has not been used in the previous iterations. After L-iterations, the WL test will
assign two nodes with a different label if the L-hop neighborhood of two nodes are non-isomorphic.

5

Although expressive, it is still unclear why the deeper GCN requires more training iterations to
achieve small training error and reach the properly trained status. To understand this, we show in
Theorem 2 that under assumptions on the width of the final layer, the deeper GCN can converge
to its global optimal with linear convergence rate. More specifically, the theorem claims that if the
dimension of the last layer of GCN dL is larger than the number of data N 4, then we can guarantee
the loss L(θT) ≤ ε after T = O(1/ε) iterations of the gradient updates. Besides, more training
iterations is sufficient (but not necessary due to the assumptions made in our theoretical analysis) for
a deeper model to achieve the same training error as the shallow ones.

Theorem 2. Let θt = {W(`)
t ∈ Rd`−1×d`}L+1

`=1 be the model parameter at the t-th iteration and
using square loss L(θ) = 1

2‖H
(L)W(L+1)−Y‖2F, H(`) = σ(PH(`−1)W(`)) as objective function.

Then, under the condition that dL ≥ N we can obtain L(θT) ≤ ε if T ≥ C(L) log(L(θ0)/ε), where
ε is the desired error and C(L) is a function of GCN depth L that grows as GCN becomes deeper.

A formal statement of Theorem 2 and its proof are deferred to Appendix D. Besides, gradient
stability also provides an alternative way of empirically understanding why deeper GCN requires
more iterations: deeper neural networks are prone to exploding/vanishing gradient, which results
in a very noisy gradient and requires small learning rate to stabilize the training. This issue can be
significantly alleviated by adding skip-connections (Appendix E.5). When training with adaptive
learning rate mechanisms, such as Adam [27]5, noisy gradient will result in a much smaller update
on current model compared to a stabilized gradient, therefore more training iterations are required.

5 A different view from generalization

In the previous section, we provided evidence that a well-trained deep GCN is at least as powerful as
a shallow one. However, it is still unclear why a deeper GCN has worse performance than a shallow
GCN during the evaluation phase. To answer this question, we provide a different view by analyzing
the impact of GCN structures on the generalization.

Transductive uniform stability. In the following, we study the generalization ability of GCNs via
transductive uniform stability [17], where the generalization gap is defined as the difference between
the training and testing errors for the random partition of a full dataset into training and testing sets.
Transductive uniform stability is defined under the notation that the output of a classifier does not
change much if the input is perturbed a bit, which is an extension of uniform stability [3] from the
inductive to the transductive setting. The previous analysis on the uniform stability of GCNs [50]
only shows the result of GCN with one graph convolutional layer under inductive learning setting,
which cannot explain the effect of depth, model structure, and training data size on the generalization,
and its extension to multi-layer GCNs and other GCN structures are non-trivial.

Problem setup. Letm = |Vtrain| and u = |Vtest| denote the training and test dataset sizes, respectively.
Under the transductive learning setting, we start with a fixed set of points Xm+u = {x1, . . . , xm+u}.
For notational convenience, we assume Xm are the first m data points and Xu are the last u data
points of Xm+u. We randomly select a subset Xm ⊂ Xm+u uniformly at random and reveal
the labels Ym for the selected subset for training, but the labels for the remaining u data points
Yu = Ym+u \ Ym are not available during the training phase. Let Sm = ((x1, y1), . . . , (xm, ym))
denotes the labeled set and Xu = (xm+1, . . . , xm+u) denotes the unlabeled set. Our goal is to learn
a model to label the remaining unlabeled set as accurately as possible.

For the analysis purpose, we assume a binary classifier is applied to the final layer node representation
f(h

(L)
i) = σ̃(v>h

(L)
i) with σ̃(·) denotes the sigmoid function. We predict ŷi = 1 if f(h

(L)
i) > 1/2

and ŷi = 0 otherwise, with ground truth label yi ∈ {0, 1}. Let denote the perturbed dataset as
Sijm , (Sm \{(xi, yi)})∪{(xj , yj)} and Xij

u , (Xu \{xj})∪{xi}, which is obtained by replacing
the ith example in training set Sm with the jth example from the testing set Xu. Let θ and θij denote
the weight parameters trained on the original dataset (Sm, Xu) and the perturbed dataset (Sijm, X

ij
u),

4This type of over-parameterization assumptions are required and commonly used in other neural network
convergence analysis to guarantee that the model parameters do not change significantly during training.

5In the Adam optimizer, the contribution of bias correction of moments varies exponentially over epochs
completed. Although the learning rate hyper-parameter is a constant, the contribution of gradients to updated
weight varies over epochs, hence adaptive. Please refer to the Chapter 8.5 of [48] for more details.

6

respectively. Then, we say transductive learner f is ε-uniformly stable if the outputs change less than
ε when we exchange two examples from the training set and testing set, i.e., for any Sm ⊂ Sm+u and
any i, j ∈ [m+ u] it holds that supi∈[m+u] |f(h

(L)
i)− f̃(h̃

(L)
i))| ≤ ε, where f(h

(L)
i) and f̃(h̃

(L)
i)

denote the prediction of node i using parameters θ and θij respectively.

To define testing error and training error in our setting, let us introduce the difference in probability
between the correct and the incorrect label as p(z, y) , y(2z−1)+(1−y)(1−2z) with p(z, y) ≤ 0 if
there exists a classification error. Let denote the γ-margin loss as Φγ(x) = min(1,max(0, 1−x/γ)).
Then, the testing error is defined as Ru(f) = 1

u

∑m+u
i=m+1 1

{
p(f(h

(L)
i), yi) ≤ 0

}
and the training

loss is defined asRγm(f) = 1
m

∑m
i=1 Φγ(−p(f(h

(L)
i), yi)). 6

Theorem 3 (Transductive uniform stability bound [17]). Let f be a ε-uniformly stable transductive
learner and γ, δ > 0, and define Q = mu/(m+ u). Then, with probability at least 1− δ over all

training and testing partitions, we haveRu(f) ≤ Rγm(f) + 2
γO
(
ε
√
Q ln(δ−1)

)
+O

(
ln(δ−1)√

Q

)
.

Recall that as we discussed in Section 4, deeper GCN is provable more expressive and can achieve
very low training error Rγm(f) if properly training. Then, if the dataset size is sufficiently large,
the testing errorRu(f) will be dominated by the generalization gap, which is mainly controlled by
uniformly stable constant ε. In the following, we explore the impact of GCN structures on ε. Our key
idea is to decompose the ε into three terms: the Lipschitz continuous constant ρf , upper bound on
gradient Gf , and the smoothness constant Lf of GCNs. Please refer to Lemma 1 for details.

Lemma 1. Suppose function f(h(L)) is ρf -Lipschitz continuous, Lf -smooth, and the gradient of
loss w.r.t. the parameter is bounded by Gf . After T steps of full-batch gradient descent, we have
ε =

2ηρfGf

m

∑T
t=1(1 + ηLf)t−1.

The proof is deferred to Appendix K. By using Lemma 1, we can derive constant ε of different model
structures by comparing the Lipschitz continuity, smoothness, and gradient scale.

Before proceeding to our result, we make the following standard assumption on the node feature
vectors and weight matrices, which are previously used in generalization analysis of GCNs [18, 36].
Assumption 1. We assume the norm of node feature vectors, weight parameters are bounded, i.e.,
‖xi‖2 ≤ Bx, ‖W(`)‖2 ≤ Bw, and ‖v‖2 ≤ 1.

In Theorem 4, we show that the generalization bounds of GCN and its variants are dominated by
the following terms: maximum node degree d, model depth L, training/validation set size (m,u),
training iterations T , and spectral norm of the weight matrices Bw. The larger the aforementioned
variables are, the larger the generalization gap is. We defer the formal statements and proofs to
Appendices F, G, H, and I.

Theorem 4 (Informal). We say model is ε-uniformly stable with ε =
2ηρfGf

m

∑T
t=1(1 + ηLf)t−1

where the result of ρf , Gf , Lf are summarized in Table 1, and other related constants as

Bαd = (1− α)
∑L
`=1(α

√
d)`−1 + (α

√
d)L, Bβw = βBw + (1− β),

Bα,β`,d = max
{
β
(
(1− α)L+ α

√
d
)
, (1− α)LBβw + 1

}
.

(1)

In the following, we provide intuitions and discussions on the generalization bound of each algorithm:

• Deep GCN requires iterations T to achieve small training error. Since the generalization bound
increases with T , more iterations significantly hurt its generalization power. Note that our results
considers bothBw ≤ 1 andBw > 1, where increasing model depth will not hurt the generalization
if Bw ≤ 1, and the generalization gap becomes sensitive to the model depth if Bw > 1. Notice
that Bw > 1 is more likely to happen during training as we discussed in Section 4.

• ResGCN resolves the training difficulties by adding skip-connections between hidden layers.
Although it requires less training iterations T , adding skip-connections enlarges the dependency

6Notice that a different loss function is used in convergence analysis (i.e., L(θ) in Theorem 7) and gener-
alization analysis (Rγm(f) in Theorem 4). We do this because current understanding on the convergence of
deep neural networks is still mostly limited to the square loss, but the margin loss is a more suitable and widely
accepted loss function for generalization analysis.

7

Table 1: Comparison of uniform stability constant ε of GCN variants, where O(·) is used to hide
constants that shared between all bounds.

ρf and Gf Lf C1 and C2

εGCN O(CL1 C2) O
(
CL1 C2

(
(L+ 2)CL1 C2 + 2

))
C1 = max{1,

√
dBw}, C2 =

√
d(1 +Bx)

εResGCN O(CL1 C2) O
(
CL1 C2

(
(L+ 2)CL1 C2 + 2

))
C1 = 1 +

√
dBw, C2 =

√
d(1 +Bx)

εAPPNP O(C1) O
(
C1

(
C1C2

)
+ 1
)

C1 = BαdBx, C2 = max{1, Bw}
εGCNII O(βCL1 C2) O

(
αβCL1 C2

(
(αβL+ 2)CL1 C2 + 2β

))
C1 = max{1, α

√
dBβw}, C2 =

√
d+Bα,β`,d Bx

εDGCN O(C1) O(C1(C1C2) + 1) C1 = (
√
d)LBx, C2 = max{1, Bw}

on the number of layers L and the spectral norm of weight matrices Bw, therefore results in a
larger generalization gap and a poor generalization performance..

• APPNP alleviates the aforementioned dependency by decoupling the weight parameters and
feature propagation. As a result, its generalization gap does not significantly change as L and Bw
increase. The optimal α that minimizes the generalization gap can be obtained by finding the α
that minimize the term Bαd . Although APPNP can significantly reduce the generalization gap,
because a single weight matrix is shared between all layers, its expressive power is not enough
for large-scale challenging graph datasets [24].

• To gain expressiveness, GCNII proposes to add the weight matrices back and add another
hyper-parameter that explicitly controls the dependency on Bw. Although GCNII achieves the
state-of-the-art performances on several graph datasets, the selection of hyper-parameters is
non-trivial compared to APPNP because α, β are coupled with L,Bw, and d. In practice, [6]
builds a very deep GCNII by choosing β dynamically decreases as the number of layers and
different α values for different datasets.

• By property chosen hyper-parameters, we have the following order on the generalization gap
given the same training iteration T : APPNP ≤ GCNII ≤ GCN ≤ ResGCN, which exactly match
our empirical evaluation on the generalization gap in Section 7 and Appendix E.

Remark 1. It is worthy to provide an alternative view of DropEdge [47] and PairNorm [61]
algorithms from a generalization perspective. To improve the generalization power of standard GCNs,
DropEdge randomly drops edges in the training phase, which leads to a smaller maximum node
degree ds < d. PairNorm applies normalization on intermediate node embeddings to ensure that the
total pairwise feature distances remain constant across layers, which leads to less dependency on
d and Bw. However, since deep GCN requires significantly more iterations to achieve low training
error than shallow one, the performance of applying DropEdge and PairNorm on GCNs is still
degrading as the number of layers increases. Most importantly, our empirical results in Appendix E.3
and E.4 suggest that applying Dropout and PairNorm is hurting the training accuracy (i.e., not
alleviating over-smoothing) but reducing the generalization gap.

6 Decoupled GCN

We propose to decouple the expressive power from generalization ability with Decoupled GCN
(DGCN). The DGCN model can be mathematically formulated as Z =

∑L
`=1 α`f

(`)(X) and
f (`)(X) = P`X

(
β`W

(`) + (1 − β`)I
)
, where W(`), α` and β` are the learnable weights for `th

layer function f (`)(X).7 The design of DGCN has the following key ingredients:

• (Decoupling) The generalization gap in GCN grows exponentially with the number of layers. To
overcome this issue, we propose to decouple the weight matrices from propagation by assigning
weight W(`) to each individual layerwise function f (`)(X). DGCN can be thought of as an
ensemble of multiple SGCs [54] with depth from 1 to L. By doing so, the generalization gap
has less dependency on the number of weight matrices, and deep models with large receptive
fields can incorporate information of the global graph structure. Please refer to Theorem 5 for the
details.

• (Learnable α`) After decoupling the weight matrices from feature propagation, the layerwise
function f (`)(X) with more propagation steps can suffer from less expressive power. Therefore,

7A similar architecture has been previously used in [8], where they empirically show that relaxing the layer
weights to negative values can further boost the performance.

8

Figure 4: Comparison of generalization error on synthetic dataset. The curve early stopped at the
largest training accuracy iteration.

we propose to assign a learnable weight α` for each step of feature propagation. Intuitively,
DGCN assigns smaller weight α` to each layerwise function f (`)(X) with more propagation
steps at the beginning of training. Throughout the training, DGCN gradually adjusts the weight to
leverage more useful large receptive field information.

• (Learnable β`) A learnable weight β` ∈ [0, 1] is assigned to each weight matrix to balance the
expressiveness with model complexity, which guarantees a better generalization ability.

Theorem 5. Let suppose α` and β` are pre-selected and fixed during training. We say DGCN is
εDGCN-uniformly stable with εDGCN =

2ηρfGf

m

∑T
t=1(1 + ηLf)t−1 where

ρf = Gf = O
(

(
√
d)LBx

)
, Lf = O

(
(
√
d)LBx

(
(
√
d)LBx max{1, Bw}+ 1)

))
. (2)

The details are deferred to Appendix J, and comparison of bound to other GCN variants are summa-
rized in Table 1. Depending on the automatic selection of α`, β`, the generalization bound of DGCN
is between APPNP and GCN. In the following, we make connection to many GCN structures:

• Connections to APPNP: APPNP can be thought of as a variant of DGCN. More specifically,
the layerwise weight in APPNP is computed as α` = α(1− α)` for ` < L and α` = (1− α)`

for ` = L given some constant α ∈ (0, 1), and the weight matrix is shared between all layers.
Although DGCN has L weight matrices, its generalization is independent of the number of weight
matrices, and thus enjoys a low generalization error with high expressiveness.

• Connections to GCNII: GCNII can be regarded as a variant of DGCN. Compared to GCNII, the
decoupled propagation of DGCN significantly reduces the dependency of generalization error
to the weight matrices. Besides, the learnable weights α` and β` allow DGCN to automatically
adapt to challenging large-scale datasets without time-consuming hyper-parameter selection.

• Connections to ResGCN: By expanding the forward computation of ResGCN, we know
that ResGCN can be think of as training an ensemble of GCNs from 1 to L layer, i.e.,
H(L) =

∑L
`=1 α`σ(PH(`−1)W(`)) with α` = 1. In other word, ResNet can be regarded as

the “summation of the model complexity” of L-layer. However, DGCN is using
∑L
`=1 α` = 1,

which can be thought of as a “weighted average of model complexity”. Therefore, ResGCN is
a special case of DGCN with equal weights α` on each layerwise function. With just a simple
change on the ResNet structure, our model DGCN is both easy to train and good to generalize.

7 Experiments

Synthetic dataset. We empirically compare the generalization error of different GCN structures on
the synthetic dataset. In particular, we create the synthetic dataset by contextual stochastic block
model (CSBM) [13] with two equal-size classes. CSBM is a graph generation algorithm that adds
Gaussian random vectors as node features on top of classical SBM. CSBM allows for smooth control
over the information ratio between node features and graph topology by a pair of hyper-parameter

9

(µ, λ), where µ controls the diversity of the Gaussian distribution and λ controls the number of edges
between intra- and inter-class nodes. We generate random graphs with 1000 nodes, average node
degree as 5, and each node has a Gaussian random vector of dimension 1000 as node features. We
chose 75% nodes as training set, 15% of nodes as validation set for hyper-parameter tuning, and the
remaining nodes as testing set. We conduct an experiment 20 times by randomly selecting (µ, λ)
such that both node feature and graph topology are equally informative.

As shown in Figure 4, we have the following order on the generalization gap given the same training
iteration T : APPNP ≤ GCNII ≤ GCN ≤ ResGCN, which exactly match the theoretical result in
Theorem 4. More specifically, ResGCN has the largest generalization gap due to the skip-connections,
APPNP has the smallest generalization gap by removing the weight matrices in each individual
layer. GCNII achieves a good balance between GCN and APPNP by balancing the expressive and
generalization power. Finally, DGCN enjoys a small generalization error by using the decoupled
GCN structure.

Open graph benchmark dataset. As pointed out by Hu et al. [24], the traditional commonly-used
graph datasets are unable to provide a reliable evaluation due to various factors including dataset size,
leakage of node features and no consensus on data splitting. To truly evaluate the expressive and the
generalization power of existing methods, we evaluate on the open graph benchmark (OGB) dataset.
Experiment setups are based on the default setting for GCN implementation on the leaderboard. We
choose the hidden dimension as 128, learning rate as 0.01, dropout ratio as 0.5 for Arxiv dataset, and
no dropout for Products and Protein datasets. We train 300/1000/500 epochs for Products, Proteins,
and Arxiv dataset respectively. Due to limited GPU memory, the number of layers is selected as the
one with the best performance between 2 to 16 layers for Arxiv dataset, 2 to 8 layers for Protein
dataset, and 2 to 4 for Products dataset. We choose α` from {0.9, 0.8, 0.5} for APPNP and GCNII,
and use β` = 0.5/` for GCNII, and select the setup with the best validation result for comparison.

As shown in Table 2, DGCN achieves a compatible performance to GCNII8 without the
need of manually tuning the hyper-parameters for all settings, and it significantly outperform
APPNP and ResGCN. Due to the space limit, the detailed setups and more results can be
found in Appendix E. Notice that generalization bounds are more valuable when comparing
two models with same training accuracy (therefore we first show in Section 4 that deeper
model can also achieve low training error before our discussion on generalization in Section 5).

Table 2: Comparison of F1-score on OGB dataset.
% Products Proteins Arvix
GCN 75.39± 0.21 71.66± 0.48 71.56± 0.19

ResGCN 75.53± 0.12 74.50± 0.41 72.56± 0.31

APPNP 66.35± 0.10 71.78± 0.29 68.02± 0.55

GCNII 71.93± 0.35† 75.60± 0.47 72.57± 0.23‡

DGCN 76.09± 0.29 75.45± 0.24 72.63± 0.12

In Table 2, because ResGCN has no re-
striction on the weight matrices, it can
achieve lower training error and its test
performance is mainly restricted by its
generalization error. However, because
GCNII and APPNP have restrictions on
the weight matrices, their performance is
mainly restricted by their training error. A
model with small generalization error and
no restriction on the weight (e.g., DGCN)
is preferred as it has higher potential to reach a better test accuracy by reducing its training error.

8 Conclusion

In this work, we show that there exists a discrepancy between over-smoothing based theoretical
results and the practical behavior of deep GCNs. Our theoretical result shows that a deeper GCN
can be as expressive as a shallow GCN, if it is properly trained. To truly understand the performance
decay issue of deep GCNs, we provide the first transductive uniform stability-based generalization
analysis of GCNs and other GCN structures. To improve the optimization issue and benefit from
depth, we propose DGCN that enjoys a provable high expressive power and generalization power. We
conduct empirical evaluations on various synthetic and real-world datasets to validate the correctness
of our theory and advantages over the baselines.

8† GCNII underfits with the default hyper-parameters. ‡ GCNII achieves 72.74 ± 0.16 by using hidden
dimension as 256 and a different design of graph convolution layer. Refer here for details.

10

Acknowledgements

This work was supported in part by NSF grant 2008398.

References

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2020.

[2] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

[3] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning
research, 2(Mar):499–526, 2002.

[4] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[5] Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented
mlps. In International Conference on Learning Representations, 2020.

[6] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1725–1735. PMLR, 2020.

[7] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. 2021.

[9] Weilin Cong, Rana Forsati, Mahmut T. Kandemir, and Mehrdad Mahdavi. Minimal variance
sampling with provable guarantees for fast training of graph neural networks. In KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pages 1393–1403. ACM, 2020.

[10] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEE Transactions on Intelligent Transportation Systems, 2019.

[11] Kenneth R Davidson and Stanislaw J Szarek. Local operator theory, random matrices and
banach spaces. Handbook of the geometry of Banach spaces, 1(317-366):131, 2001.

[12] Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for
predicting social events. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
pages 1007–1016. ACM, 2019.

[13] Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual
stochastic block models. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 8590–8602, 2018.

[14] Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
pages 750–760. ACM, 2019.

[15] Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5724–5734, 2019.

11

[16] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 2224–2232, 2015.

[17] Ran El-Yaniv and Dmitry Pechyony. Stable transductive learning. In Learning Theory, 19th
Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006,
Proceedings, volume 4005 of Lecture Notes in Computer Science, pages 35–49. Springer, 2006.

[18] Vikas K. Garg, Stefanie Jegelka, and Tommi S. Jaakkola. Generalization and representational
limits of graph neural networks. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 3419–3430. PMLR, 2020.

[19] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[20] Shunwang Gong, Mehdi Bahri, Michael M. Bronstein, and Stefanos Zafeiriou. Geometrically
principled connections in graph neural networks. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
11412–11421. IEEE, 2020.

[21] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 1024–1034, 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1026–1034. IEEE Computer Society, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[24] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[25] Wei Huang, Yayong Li, Weitao Du, Richard Yi Da Xu, Jie Yin, and Ling Chen. Wide graph
neural networks: Aggregation provably leads to exponentially trainability loss. arXiv preprint
arXiv:2103.03113, 2021.

[26] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-
smoothing for general graph convolutional networks. arXiv e-prints, pages arXiv–2008, 2020.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[28] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[29] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[30] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. arXiv
preprint arXiv:2010.09891, 2020.

[31] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International

12

Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 1269–1278. ACM, 2019.

[32] AA Leman and B Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

[33] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as
deep as cnns? In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pages 9266–9275. IEEE, 2019.

[34] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan.
Predicting path failure in time-evolving graphs. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019, pages 1279–1289. ACM, 2019.

[35] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 3538–3545. AAAI Press, 2018.

[36] Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization
bounds for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

[37] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[38] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training matters: Unlocking
potentials of deeper graph convolutional neural networks. arXiv preprint arXiv:2008.08838,
2020.

[39] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019.

[40] Quynh Nguyen. On the proof of global convergence of gradient descent for deep relu networks
with linear widths. arXiv preprint arXiv:2101.09612, 2021.

[41] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[42] Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33, 2020.

[43] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos. Estimating
node importance in knowledge graphs using graph neural networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, pages 596–606. ACM, 2019.

[44] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf:
Modeling influence locality in large social networks. In KDD, 2018.

[45] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin. Semi-supervised user geolocation via
graph convolutional networks. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 2009–2019. Association for
Computational Linguistics, 2018.

[46] Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam, and Mahmut
Kandemir. Gcn meets gpu: Decoupling “when to sample” from “how to sample”. Advances in
Neural Information Processing Systems, 33, 2020.

[47] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

13

[48] Ruslan Salakhutdinov. Deep learning. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
page 1973. ACM, 2014.

[49] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis
dimension of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

[50] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 1539–
1548. ACM, 2019.

[51] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, and Wen Su.
MCNE: an end-to-end framework for learning multiple conditional network representations
of social network. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
pages 1064–1072. ACM, 2019.

[52] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and
Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regular-
ization for recommender systems. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 968–977. ACM, 2019.

[53] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. KGAT: knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 950–958. ACM, 2019.

[54] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 6861–6871. PMLR, 2019.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[56] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. What can neural networks reason about? In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[57] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-Ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. In
International Conference on Learning Representations, 2021.

[58] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of
the same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv
preprint arXiv:2102.06462, 2021.

[59] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting"
over-smoothing" in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

[60] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 974–983. ACM, 2018.

[61] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[62] Kuangqi Zhou, Yanfei Dong, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. Effective
training strategies for deep graph neural networks. arXiv preprint arXiv:2006.07107, 2020.

[63] Xianchen Zhou and Hongxia Wang. The generalization error of graph convolutional networks
may enlarge with more layers. Neurocomputing, 424:97–106, 2021.

14

