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Abstract:
Neural fields can be trained from scratch to represent the shape and appearance of
3D scenes efficiently. It has also been shown that they can densely map correlated
properties such as semantics, via sparse interactions from a human labeller. In
this work, we show that a robot can densely annotate a scene with arbitrary dis-
crete or continuous physical properties via its own fully-autonomous experimental
interactions, as it simultaneously scans and maps it with an RGB-D camera. A
variety of scene interactions are possible, including poking with force sensing to
determine rigidity, measuring local material type with single-pixel spectroscopy
or predicting force distributions by pushing. Sparse experimental interactions are
guided by entropy to enable high efficiency, with tabletop scene properties densely
mapped from scratch in a few minutes from a few tens of interactions.
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Figure 1: Over a few minutes our robot makes sparse, automatic physical scene interactions, such as touching to
test rigidity, sampling local material type with spectroscopy or pushing to determine frictional force distribution.
The interaction results are used as sparse labels to the output channels of a joint neural-field model of 3D shape
and appearance, trained in real-time. Model coherence allows the measured physical properties to be efficiently
and densely propagated to the whole scene, without the need for prior training data.

1 Introduction

An autonomous agent performing complex tasks in unpredictable environments (e.g. tidying a
home), must build a rich internal representation of its environment. This representation should extend
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beyond geometry, colour and traditional semantics to include physical properties from which robotic
affordances may be inferred. Like its biological counterparts, a robotic agent cannot infer these
properties from vision alone [1]. In this work, we present a real-world robot that learns about its
environment by autonomous exploration and experimentation. The robot incrementally discovers
physical scene properties by performing targeted physical interactions with the scene, measuring
their effects and feeding the results into a jointly-optimised neural-field MLP. With only a handful of
these autonomous robotic experiments, a task-driven internal representation of the scene is built from
scratch, without any pre-training or external guidance.

We build upon the observation that the joint internal representation of shape and appearance learned
by implicit scene representation models, and the smoothness and compactness priors present in these
models, allow for ultra-efficient, scene-wide propagation of user-provided labels [2]. We remove
the human from the loop entirely, presenting the first fully-autonomous, 3D scene understanding
robot that combines active exploration and physical experimentation with a unified neural-field
representation as its underlying computational model.

The robot explores a scene with an RGB-D camera and simultaneously builds a map of semantic
entropy, representing confidence in its current predictions. Considering this entropy, as well as
kinematic feasibility and collision avoidance, the robot selects the optimal point of interaction and
proceeds to take a physical measurement used for optimising the semantic head of the underlying MLP.
The real-time rendering of entropy guides the robot in selecting efficient and beneficial interactions,
allowing for dense scene labelling with only a handful of experiments. In contrast to iLabel [2],
which assumes a static scene, and can therefore rely on a growing collection of keyframes over
which to optimise semantics, the interactive nature of our framework results in a dynamic scene. In
addressing this, we make the observation that neural representations possess temporal memory, and
thus propose a new strategy that uses only the latest keyframe during optimisation. In this way, the
neural representation remains current, allowing for continuous exploration in scenes with limited
dynamics.

Autonomous discovery of physical scene properties potentially facilitates a broad range of practical
downstream robotic tasks. For example, automated tool exchange in a surface-cleaning robot; object
and material sorting for automated sorting of recycling or laundry; improved task planning enabled
by understanding object affordances and physical properties of objects; and improving the safety of
autonomous robots by mitigating interactions with potentially hazardous objects or materials.

In summary, the key contributions of this paper are: 1) the first fully-autonomous, neural-scene
labelling robot, trained from scratch, in real-time, and capable of operating in the real-world; 2)
active robotic experimentation achieved using a single MLP to drive entropy-guided automatic query
generation, kinematic feasibility checking, collision avoidance and physical interaction planning and
execution; 3) demonstration of the temporal memory characteristics of neural field representations via
single-frame optimisation and robustness to small temporal scene changes and 4) prediction of dense,
continuous-valued semantics using a neural-field model optimised with respect to sparse ground
truths. We substantiate these contributions with a series of real-world experiments, demonstrating the
capability of our system to produce a variety of perceptual maps or scene labellings, based on the
chosen sensor and action primitives.

2 Related work

We address the problem of fully-autonomous, unsupervised scene understanding via active experimen-
tation. Our solution operates at the intersection of several research domains: instance segmentation,
interactive perception, affordance learning, and online scene understanding.

Instance segmentation: Unseen Object Instance Segmentation (UOIS) is a necessary capability
for robots operating in unstructured environments. Xie et al. [3] propose a class-agnostic RGB-
D instance segmentation method, using only simulated training data with reasonable sim-to-real
generalisation. Xiang et al. [4] improve sim-to-real transfer by learning RGB-D feature embeddings
from synthetic data using a contrastive loss, which allows their Unseen Clustering Network (UCN) to
capitalise on both synthetic depth and non-photorealistic RGB data. Gouda et al. [5] fine-tune a Mask
R-CNN [6] model to perform class-agnostic instance segmentation. The current state-of-the-art in
UOIS is achieved by refining the outputs of the UCN method with the graph-based RICE method [7].
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Interactive object segmentation: Bohg et al. [8] first provided a detailed definition of Interactive
Perception (IP) and an analysis of its benefits in solving robotic perception tasks. A common
approach in interactive object segmentation is to exploit motion cues induced by physical interactions
[9, 10, 11, 12]. While our work shares the broad objective of segmentation through interaction, it
is not limited to rigid objects or segmenting based on geometric extent. Instead, we demonstrate
segmentations that are optimised for given downstream tasks, dictated by the chosen action primitive
and sensor.

Interactive affordance learning: Le Goff et al. [13] learn affordance-specific relevance maps,
describing which actions can be applied at which locations. The method relies on an off-the-
shelf point-cloud segmentation [14] and an online classifier [15]. Nagarajan and Graumann [16]
simultaneously train an interaction exploration policy and an image-based affordance segmentation
model mapping image regions to the likelihood that they permit an action. Both these prior works
limit experimentation to simulated environments. Although we do not consider affordances explicitly
in this work, it is the ultimate objective of performing task-driven segmentation in the way that we do.

Online scene understanding and labelling: The iLabel framework [2] (built upon iMAP [17]),
demonstrated that online, scene-specific training of a compact MLP model, which jointly encodes
scene geometry, appearance and semantics allows for ultra-sparse interactive labelling and produces
accurate dense semantic segmentations — outperforming existing pre-trained methods. We remove
the human-in-the-loop entirely, demonstrating the first fully-autonomous neural-scene labelling robot.
To achieve this, we introduce several significant contributions to allow for operation on a real-world
robot, where scene dynamics, kinematics, constraints and interaction feasibility must be considered.

3 Method

We represent 3D scenes similarly to iMAP [17], with an MLP that maps a 3D coordinate to colour
and volume density. We build a sparse set of keyframes, selected incrementally based on information
gain, and whose viewpoints span the scene. The MLP parameters and camera poses are jointly and
continually optimised via differential volume rendering of actively-sampled sparse pixels in this set
of keyframes. iLabel [2] adds a semantic head to the neural scene MLP in iMAP, allowing users to
provide pixel-level annotations in the keyframes. The joint optimisation in iMAP is then extended to
include scene semantics, which are optimised through semantic rendering of the user annotations.
Both models are trained from scratch, in real-time and without any prior data and have demonstrated
the power of the joint internal representations learnt by the neural-field MLP.

3.1 Autonomous robot experimentation

The robot builds an internal representation of its environment via a series of autonomous experiments.
First, it actively selects interaction locations that are both feasible and information-rich (based on
semantic entropy). Second, the selected 2D image locations are mapped to the real-world coordinate
system of the robot, and a physical interaction with the scene is planned and executed. Third, the
resulting measurement is processed and/or classified (see specifics in Section 3.5) to obtain the
ground-truth semantic label (akin to the user-provided object class in [2]). Finally, using the labels
obtained in this manner, scene semantics are optimised through semantic rendering of the robot-
selected keyframe pixels. As demonstrated previously [2], the resulting joint internal representation
of shape, appearance and semantics of the neural-field allows for the sparsely-annotated semantics to
be propagated efficiently and densely throughout the scene.

3.2 Modes of interaction

Our framework facilitates the autonomous discovery and mapping of any measurable characteristic
of a scene, provided that a suitable measurement sensor and interaction protocol can be defined.
We demonstrate three particular interaction types: 1) predicting rigidity by top-down poking; 2)
predicting material type using a single-pixel multiband spectrometer 1; and 3) predicting frictional
force distributions by lateral pushing. These modes constitute the basis of our fully automatic system
described in the following sections.

1SparkFun Triad Spectroscopy Sensor - AS7265x (Qwiic)
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3.3 Entropy-guided interactions

In [2], qualitative experiments demonstrated that well-placed user clicks, especially in regions where
the model is performing poorly, are the most beneficial in terms of improving segmentation quality.
This observation was exploited in an automatic query generation framework, whereby an uncertainty-
based sampling was used to actively propose pixel positions for the user to label. Similarly, we utilise
softmax entropy to guide the physical interactions that the robot makes with the scene, encouraging
interactions that are optimal in terms of information gain and thereby minimising the number of
interactions required to produce optimal segmentations. Softmax entropy, uS , is defined as [18]:

uS = −
C∑

c=1

Ŝc [u, v] log
(

Ŝc [u, v]
)

, (1)

with Ŝc[u, v] the rendered semantic distribution and C the number of categories.

3.4 Interaction feasibility

In order to integrate uncertainty-based sampling into fully-autonomous robotic behaviour, kine-
matic feasibility and the particular mode of interaction have to be considered. Queries deemed to
be kinematically infeasible and/or unsuitable given the mode of interaction, are added to a query
mask, preventing repeated testing. For example, top-down interactions require masking of candidate
points not approximately perpendicular to the surface normal, while the converse is true for lateral
interactions. Similarly, sensor type impacts interaction feasibility. For example, when performing
spectroscopic measurements, we mask regions of high curvature to encourage measurements perpen-
dicular to the target surface. More generally, we have found that interactions at object boundaries are
generally undesirable, owing to a higher incidence of failures associated with misclassifications and
object tipping. We have therefore investigated two approaches to reduce the probability of bound-
ary interactions: 1) Gaussian filtering of the uncertainty maps and 2) uncertainty clipping. While
Gaussian filtering yields reliable behaviour in scenes containing coherent objects, it performs poorly
with overlapping objects (e.g. fabrics/clothing). In contrast, clipping the uncertainty map by setting
values above a threshold to zero produces more reliable results. The robot focuses on regions of high
uncertainty but ignores problematic regions of maximal uncertainty. There is a trade-off between the
degree of boundary suppression and uncertainty map degradation. We determined empirically an
optimal clipping threshold of 0.7 and kernel size of 41.

3.5 Semantic representation

In contrast to [2], the inputs to the semantic head of our neural-field MLP can be one of several
physical properties, measured via apposite affordances and modes of interaction. Raw sensor
measurements acquired by the robot need to be post-processed or converted into the target variable
being predicted by the semantic head of the MLP. For binary prediction tasks (e.g. rigidity), this
may be as simple as applying a threshold to the raw measurement. Multi-class target variables may
require additional processing. For example, when predicting material type from a multidimensional
spectrometer reading, we use a pretrained multiclass SVM classifier which outputs predefined material
classes, which are then fed to the semantic head. In both scenarios, as in [19, 2] the semantic head of
the MLP predicts a categorical value and can be optimised using cross-entropy loss.

We additionally demonstrate for the first time the prediction of continuous-valued target variables
in the semantic head of the MLP, where the ground-truths are sparse, in contrast to the dense
ground-truths used in the optimisation of the colour and density heads. For example, when predicting
frictional force distributions, we feed the minimum (stiction) force required to move an object,
directly to the semantic head and optimise using an L1 loss.

3.6 Single frame optimisation

During lateral pushing, interactions between the robot and the scene may introduce object displace-
ments. This violates the static-scene assumption common to prior work in neural radiance fields.
While this assumption allows [17, 2] to optimise over an expanding set of keyframes, a dynamic
scene potentially invalidates historic keyframes, ultimately leading to errors in the reconstruction. We
therefore clear the keyframe history and corresponding labels after each interaction in this mode. Our
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experimentation has suggested that neural radiance representations possess some form of temporal
memory characteristic over the labelled properties, whereby network weights adapt over time and
maintain consistency with the dynamic scene, provided scene changes are comparatively small.

4 Experiments

A fundamental contribution of our work is the realisation of a fully-autonomous robot that operates in
a real-world environment. We demonstrate the ability of our system to perform a series of autonomous
experiments, using the aforementioned interactive modes, to discover and predict a variety of physical
scene properties. We demonstrate the quantitative benefits of entropy-guided experimentation and, in
the case of rigidity and material-type classification, compare segmentation performance against two
state-of-the-art, class-agnostic segmentation techniques (see Sec. 4.2 for details). Finally, we refer
the reader to our supplementary video for additional results.

4.1 Experimental setup

We use a Franka Emika Panda robot, anchored to a table on which a variety of objects are arranged
(Figure 1). The robot is equipped with a Realsense D435 RGB-D sensor [20], tracked using the
forward kinematics of the arm, which is controlled using ROS [21]. Prior to physical experiments,
the robot builds a geometric reconstruction of the scene, to allow for collision-free motion planning.
For this purpose, a set of RGB-D keyframes is captured over a series of random motions in order to
optimise the 3D neural field, and subsequent querying of the network produces a collision mesh and
normal map. All objects of interest are placed within reach of the robot arm and any points located
beyond this range, or on the plane of the table, are automatically labelled ‘table’.

4.2 Quantitative results

Rigidity and material-type prediction may be viewed as segmentation problems. While training any
popular instance segmentation technique (e.g. Mask R-CNN [6]) on the object classes present in our
scenes (e.g. material types), is likely to produce high-quality segmentations, one would need to repeat
this training for each scenario. Therefore, instead of comparing against closed-set segmentation
techniques, we consider two state-of-the-art class-agnostic instance segmentation approaches: 1)
Mask R-CNN trained to perform class-agnostic segmentation [5] and 2) Unseen Clustering Network
(UCN) [3] with RICE refinement [7] (see Sec. 2 for details). For each method, we perform instance
segmentation on the keyframe and use the resulting instance mask to guide the robot-scene interaction.
In particular, the robot takes a single sensor reading as near to the centre of each instance in the
mask as is feasible and propagates the measurement to the rest of the region. The measurements are
converted to categorical labels (binary rigidity or material-type) in the same manner as described in
Sec. 3.5. We report the mean Intersection over Union (mIoU) averaged over the ground-truth labels.

Table 1 shows the quantitative performance comparison against the Mask R-CNN and UCN base-
lines for each scene. As expected, the baselines perform well for scenes 1 and 3, which contain
geometrically-coherent objects and strong colour and depth cues. Scene 2, however, is considerably
more challenging for the colour and/or depth-based baselines, characterised by a significant drop
in performance. In contrast, our autonomous approach performs well for all three scenes, with
comparable results to the baselines in Scenes 1 and 3 and significantly superior results in Scene 2.

4.3 Entropy exploration ablation study

Figure 2 illustrates material discovery in a complex scene containing wool (blue), cotton (yellow)
and synthetic (green/pink) materials. Prior to physical measurements, there is high uncertainty (red)
across the entire scene, while the final uncertainty map has high confidence (blue) throughout. We
show the evolution of the uncertainty map through three consecutive interactions in Figure 3. The
robot is guided to a high-entropy pixel (unfilled circle). On completion of the experiment, there is a
clear, localised uncertainty reduction surrounding the target region (filled circle).

We observe that while the uncertainty in the localised region of measurement decreases, it often
increases in more distant regions. As the model accumulates information, it continuously adapts its
predictions and corresponding confidence, ultimately converging on an accurate representation. This
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observation motivates the use of uncertainty as an exploration metric in neural implicit representations.
To substantiate the benefits of entropy-driven exploration quantitatively, we conducted an ablation
study comparing performance to random exploration. We compare the evolution of mIoU and false-
confidence (where the model produces high-confidence but incorrect predictions) with an increasing
number of interactions for each technique. Figure 5 demonstrates superior convergence rates for
entropy-guided interaction in all three benchmark scenes in Figure 4 across both metrics.

4.4 Force measurement analysis

Figure 6 illustrates the stiction force maps produced by our framework for objects with uniform
(top row) and non-uniform (bottom row) mass and friction distributions. Note that in each scene the
objects are displaced following the pushes performed by the robot. The scene in the top row contains
three cylindrical containers of varying mass and material. As desired, the resulting force renderings
match the varying masses. This is potentially valuable information when planning for downstream
manipulation tasks (e.g. distinguishing between full and empty containers). A key observation in
Figure 6 is that the renderings for objects remain consistent despite displacement, demonstrating for
the first time a memory quality in neural field representations.

In the bottom row of Figure 6, we demonstrate the ability of the robot to predict stiction force
values reliably, even for complex geometries, with non-uniform mass and friction distributions. We
substantiate this quantitatively in Figure 7, where the robot interacts with a non-uniform rectangular
box containing a 5 kg weight at one end. We show that the output of our model, after three pushes, is
comparable to that of a simple analytical physics model [22] with access to privileged information,
including the contact surface area, mass distribution and friction coefficient.

Initial keyframe and uncertainty map Final segmentation and uncertainty map

Figure 2: Example material type segmentations using a spectrometer. 46 interactions were required to separate
the pile of laundry into wool (blue), cotton (yellow) and synthetic (green/pink) materials. Red/blue signifies
high/low uncertainty in the uncertainty map.

Interaction 25 Interaction 26 Interaction 27

Figure 3: Demonstration of autonomous guidance over 3 consecutive interactions in Figure 2. From left to right,
the interactions (unfilled markers) follow the highest uncertainty pixel. After interaction (filled marker), there is
a localised reduction in uncertainty.

Table 1: Classification performance for different types of scene, (examples in Figure 4).

Segmentation Example Ours Mask R-CNN UCN + RICE

Material Scene 1 0.91± 0.02 0.92± 0.02 0.90± 0.02
Material Scene 2 0.89± 0.03 0.56± 0.11 0.56± 0.10
Rigidity Scene 3 0.91± 0.04 0.92± 0.02 0.91± 0.02
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Scene 1 – material Scene 2 – material Scene 3 – rigidity

Figure 4: Our system can interact with and segment a variety of scenes.

Scene 1 Scene 2 Scene 3

Figure 5: Comparisons of mean IoU (top) and false-confidence (bottom) vs. number of interactions for
entropy-based and random exploration approaches.

5 Limitations

Several assumptions are made during the experimentation procedure: 1) rigid objects are never placed
on top of flexible objects; 2) the SVM classifier has been trained on all materials and 3) pushed
objects are both rigid and free to move across the tabletop.

The main limitations of our system relate to its self-awareness of errors. We only include examples in
which all measurements and inferences are correct. In reality, this is not always the case, with each
mode of measurement having an associated accuracy, and incorrect measurements impacting model
performance. We observed that, although the model recovers after an erroneous measurement, it
involves significantly more interactions. An alternate solution would be to associate a likelihood with
each measurement and allow the model to adapt accordingly. Furthermore, with all scene interactions,
there is a possibility of catastrophic disturbance, preventing the model from propagating labels
effectively. This scenario was observed several times during experimentation, requiring a manual
reset. Ideally, failures of this nature should be detected autonomously based on the corresponding
surge in reconstruction loss.

Although several keyframes are captured during robot motion, interaction queries were only ever
generated from the first keyframe, which in our setup was predefined as the initial viewpoint of
the robot. This has the advantage of limiting the attention of the robot to what we deemed to be
the most interesting part of the scene. However, it also meant the robot was unable to conduct
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Scene Normals rendering Force rendering

Figure 6: Stiction force mapping. Top row: three cylindrical objects with uniform mass of (from left to right)
0.5 kg, 1.5 kg and 0.1 kg. Guided by entropy, the robot applies a single push to each object measuring, stiction
forces of 1.0N, 3.0N and 0.2N. Bottom row: power drill with non-uniform mass distribution. The final
rendering was produced after a sequence of 3 pushes.

Crossection Length distribution Width distribution

Figure 7: Rendered stiction force distribution, compared to an analytical approach with privileged information,
along the length (blue) and width (red) of a box with non-uniform density.

wider investigation; in particular, the back surfaces of objects or those regions occluded in the initial
viewpoint. This was most evident in lateral pushing, where pushing from multiple angles could only
be achieved with a careful choice of viewpoint and object positioning. A future improvement would
address this by allowing queries across multiple keyframes, though the robot will still be constrained
by its kinematic limits.

The sensitivity of force measurement is limited by the robot joint torque sensors and subsequent
estimation of external torques and wrenches. This could be improved by using an external force-
torque or tactile sensor. Using a spectrometer with greater bandwidth would allow for enhanced
differentiation between material types. Finally, while we propose that our system facilitates the
discovery of a large variety of physical scene properties, we only consider three specific scenarios in
this paper.

6 Conclusions

By taking advantage of the unsupervised decomposition capabilities of a 3D neural field trained on
a single scene, we have demonstrated a fully-automatic, real-world robotic platform that is able to
build dense, accurate and physically meaningful representations of its environment. The fact that this
can be achieved from scratch and in real-time, without any pre-training or external guidance, gives
the method potentially wide applicability in robotic scene learning and understanding. In the future,
we are excited to extend the system with new interactions, such as probing a scene with a gripper
to build a grasping map, or using alternative sensors to measure properties such as temperature or
surface roughness.
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