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ABSTRACT

Despite multilingual pretraining, large language models often struggle with non-
English tasks, particularly in language control–the ability to respond in the in-
tended language. We identify and characterize two key failure modes: the mul-
tilingual transfer bottleneck (correct language, incorrect task response) and the
language consistency bottleneck (correct task response, wrong language). To
systematically surface these issues, we design a four-scenario evaluation proto-
col spanning MMLU, MGSM, and XQuAD benchmarks. To probe these issues
with interpretability, we extend logit lens analysis to track language probabili-
ties layer by layer and compute cross-lingual semantic similarity of hidden states.
The results reveal a three-phase internal structure: early layers align inputs into
shared semantic space, middle layers perform task reasoning, and late layers drive
language-specific generation. Guided by these insights, we introduce selective
fine-tuning of only the final layers responsible for language control. On Qwen-3-
32B and Bloom-7.1B, this method achieves over 98% language consistency across
six languages while fine-tuning only 3–5% of parameters, without sacrificing task
accuracy. Importantly, this result is nearly identical to that of full-scope fine-
tuning (e.g., > 98% language consistency for both methods across all prompt
scenarios) but uses a fraction of the computational resources. To the best of our
knowledge, this is the first approach to leverage layer-localization of language
control for efficient multilingual adaptation.

1 INTRODUCTION

The growing deployment of multilingual large language models (mLLMs) promises to bridge lin-
guistic divides and democratize access to information across the world’s languages. Early models
such as mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020), and mT5 (Xue et al., 2020)
demonstrated impressive cross-lingual generalization, while more recent large-scale LLMs, such
as PaLM-2 (Anil et al., 2023) and GPT-4, have shown even stronger multilingual capabilities, of-
ten without explicit multilingual supervision. Alongside these proprietary models, an expanding
ecosystem of openly available multilingual LLMs has emerged, including BLOOM (Le Scao et al.,
2022), LLaMA (Touvron et al., 2023), and Qwen (Yang et al., 2025). Despite this progress, we find
that these models still exhibit persistent failures in language control, namely, the ability to respond
in the intended language, even when they correctly solve the underlying task.

To systematically characterize multilingual failures, we introduce a targeted evaluation framework
with four zero-shot prompt variants, each isolating a different aspect of language control. (1) Mono-
lingual Direct Prompting tests whether models can follow instructions and respond exclusively in
the target language; (2) Code-Switched Prompting examines robustness to mixed-language input;
(3) Bilingual Answer Prompting probes language preference when correct answers are presented
in both the target language and English; and (4) English Distractor Prompting tests resistance to
incorrect English alternatives.

This evaluation reveals two failure modes: (1) language consistency bottleneck, where a model
generates the correct answer but in the wrong language; (2) multilingual transfer bottleneck, where
a model generates output in the correct language but fails tasks it can solve in English. These failures
highlight a deeper disconnect between task competence and language control in mLLMs, suggesting
that they are governed by distinct internal mechanisms.
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Figure 1: Overview of Selective Finetuning for Language Control: Early layers are frozen to pre-
serve semantic alignment, mid layers maintain task reasoning, and only upper layers are finetuned to
introduce language-specific output control, enabling efficient multilingual adaptation with minimal
disruption to core model capabilities.

Failures in language control often stem from Anglocentric pretraining, limitations in shared multi-
lingual representations, and interference across typologically diverse languages (Huang et al., 2024;
Zhao et al., 2024; Papadimitriou et al., 2023). While prior work has explored fine-tuning (Artetxe
et al., 2020b), language-specific embeddings (Cao et al., 2020), prompt engineering (Shi et al., 2023;
Vatsal et al., 2025), and monolingual specialization (Dobler & de Melo, 2023), these approaches of-
ten face trade-offs in scalability and coverage. Understanding how internal representations shape
cross-lingual behavior still remains an open challenge. We ask: Where in the model do language-
specific behaviors–such as language consistency, dominance bias, and multilingual interference–
reside, and can they be isolated to enable efficient and effective multilingual adaptation?

We answer this by taking a structural, mechanistic view. We apply logit lens analysis of language
token probabilities and semantic similarity evaluation of multilingual hidden states. Both analyses
converge on a three-space structure, a semantic alignment phase, a reasoning phase, and a language
output phase, previously hypothesized in recent studies (Zhao et al., 2024; Wendler et al., 2024;
Etxaniz et al., 2024; Schut et al., 2025; Lindsey et al., 2025): (i) Early layers gradually normalize
language inputs into a shared semantic space, (ii) mid layers perform task reasoning, and (iii) late
layers control language-specific output.

Building on this understanding, we introduce layer-wise selective fine-tuning, a lightweight method
that targets only the final output layers responsible for language control. Applied to models like
Qwen-3-32B and Bloom-7.1B, this approach improves language consistency from <20% to 98+%
across six languages, while preserving task performance and training far fewer parameters than full-
model fine-tuning.

Main contributions. This work (1) introduces a framework for evaluating language control in
mLLMs, incorporating systematic prompt variation to diagnose multilingual failure modes, (2) un-
covers and validates a three-space structure in mLLMs, where distinct layers specialize in semantic
alignment, reasoning, and language generation, and (3) proposes and validates layer-wise selective
fine-tuning as an efficient and effective method to correct language consistency failures without
compromising performance.

2 RELATED WORK

Recent advances in multilingual language models have revealed deep structural asymmetries favor-
ing English, even in models trained across diverse linguistic corpora.

2.1 LATENT ENGLISH DOMINANCE IN MLLMS

Multiple studies reveal that state-of-the-art multilingual transformers often process non-English in-
puts via internal English representations. Schut et al. (2025) and Wendler et al. (2024) empirically

2
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confirm models like LLaMA-2 implicitly reason in intermediate English-based latent spaces, even
when inputs and outputs are in other languages. Wendler et al. (2024) formalize this through their
multilingual workflow hypothesis, showing that multilingual reasoning commonly pivots through
English representations in intermediate layers. Complementing these findings, Lindsey et al. (2025)
introduces the concept of multilingual circuits and further highlight that multilingual models often
use English as the default internal representation, implying asymmetrical semantic spaces biased
toward English. These findings collectively indicate an internal ”English-thinking” phenomenon,
contrasting the apparent multilingual capabilities observed externally.

2.2 LANGUAGE LOCALIZATION AND NEURON INSIGHTS

Building on the interpretability tradition, Tang et al. (2024) demonstrate that multilingual mod-
els contain distinct clusters of neurons selectively responsive to particular languages. Wang et al.
(2024) further confirm that input/output layers exhibit stronger language-specific activation, whereas
middle layers encode language-agnostic concepts. Zhao et al. (2024) confirm this belief through par-
allel language-neuron detection and conclude that there are three spaces: input, conceptual and out-
put spaces. These interpretability insights sparked research in language adaptability. Pfeiffer et al.
(2020) introduce an invertible adapter architecture for adapting a pre-trained multilingual model to
a new language. Huo et al. (2025) propose deep supervision fine-tuning, explicitly aligning internal
representations across layers, significantly reducing latent English bias. Similarly, Liu & Niehues
(2025) emphasize explicit representational alignment during fine-tuning at intermediate layers, pro-
moting cross-lingual semantic consistency and improving zero-shot transfer. Kew et al. (2024) ex-
plores how much multilingual finetuning is needed to turn English-centric models into “polyglots,”
and Zhong et al. (2025) investigates which internal language representations non-English-centric
models use during inference.

Collectively, these works suggest that multilingualism in LLMs is not uniformly supported at all
representational layers. While embedding layers may provide aligned token representations across
languages, deeper layers exhibit emergent specialization or drift toward dominant languages. Build-
ing upon these insights, our work further identifies language-specific processing layers and based on
this finding, proposes efficient fine-tuning strategies to enhance multilingual performance.

3 A PROMPT-BASED FRAMEWORK FOR DIAGNOSING LANGUAGE CONTROL

3.1 PROMPT STRUCTURE AND COMPONENT DESIGN

Our framework consists of four zero-shot prompting variants, each probing a distinct aspect of lan-
guage control. We define a prompt as comprising three main input components: Preamble (P)—the
metadata that frames the task; Instruction (I)—the explicit directive describing the task to perform;
and Question (Q)—the task content itself, such as a question or passage. The mLLMs respond with
two output components: Reasoning (R) and Answer (A).

We evaluate performance across three multilingual benchmarks: MMLU Hendrycks et al. (2021),
MGSM Shi et al. (2023), and XQuAD Artetxe et al. (2020a), which cover multiple-choice (MMLU),
generative reasoning (MGSM), and extractive span-based answering (XQuAD). The zero-shot
prompt variants (see Figure 6 in Appendix) include:

• Monolingual Direct Prompting, which tests baseline fidelity when both instructions and
content are in the target language;

• Code-Switched Prompting, where the instruction or metadata is in one language (e.g., En-
glish), while the task content (e.g., the question) is written in the target language, testing
model’s ability to resolve linguistic context under mixed-language input;

• English Distractor Prompting, which includes incorrect English answers to test rejection of
misleading output.

• Bilingual Answer Prompting, which presents correct answers in both the target language
and English to probe language preference;

To isolate linguistic effects, we keep semantic content for the correct answer constant across lan-
guages and measure language consistency—whether responses are in the intended language, re-
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gardless of correctness. We apply each prompt variant to a standardized set of questions across
six typologically and scriptually diverse languages: English, French, Spanish, Arabic, Hindi, and
Japanese.

3.2 MULTILINGUAL BENCHMARK SETUP AND METRICS

To analyze multilingual model behavior more precisely, we decompose performance along two or-
thogonal axes: task accuracy and language consistency. Task accuracy evaluates whether the model
provides the correct answer, regardless of the output language. Language consistency refers to
whether the response is delivered entirely in the intended target language. We focus on the two most
revealing failure modes:

• Multilingual Transfer Bottleneck: The model responds in the correct language but fails
to provide the correct answer, despite likely being capable of solving the task in another
language (e.g. English).

• Language Consistency Bottleneck: The model produces a correct answer but in the wrong
language, indicating difficulty in adhering to the requested linguistic context.

Language consistency is computed as the proportion of responses whose primary language matches
the target language. Let yi be the model output for example i, and Langtarget be the expected out-
put language. Let Lang(yi) be the predicted language of the model output, determined using the
LangDetect language identifier by Shuyo (2010).

Lang. Consistency =
1

N

N∑
i=1

⊮[Lang(yi) = Langtarget] (1)

where ⊮[·] is the indicator function, and N is the number of examples in the evaluation set.

3.3 FINDINGS: WHEN AND HOW MLLMS FAIL

We evaluate two multilingual LLMs, Qwen-3-32B, and BLOOM-7.1B, on MMLU, XQuAD, and
MGSM under zero-shot settings, focusing on two core dimensions: task performance and language
consistency, as presented in Table 1. These benchmarks collectively span factual knowledge, multi-
lingual reasoning, and mathematical problem solving across diverse languages.

Table 1 reports average scores across all evaluated languages for each dataset, MMLU (6: en, es, fr,
ar, hi, ja), MGSM (3: en, fr, ja), and XQuAD (4: en, es, ar, hi). Switching from monolingual to code-
switched prompts often leaves average task accuracy largely intact but can sharply degrade language
consistency. For example, Qwen-3-32B maintains strong average MMLU accuracy (60.5% under
code-switched prompts vs. 51.77% monolingual) yet its average language consistency drops from
45.17% to just 8.35%. BLOOM-7.1B shows the same pattern, the language consistency across all
three datasets drop while the task performance remain comparable or slightly better.

When averaged across languages and prompt types, Qwen-3-32B consistently achieves the high-
est task scores (e.g., 66.6% MGSM monolingual, 55.54 F1 on XQuAD monolingual) but suffers
severe language consistency losses, often into single digits, whenever prompts mix languages or in-
clude English distractors. BLOOM-7.1B, in contrast, underperforms on both metrics, with average
MGSM accuracies ≤0.67% and XQuAD F1 scores frequently under 7%, despite occasionally high
consistency in certain monolingual conditions.These trends suggest that Qwen-3-32B is optimized
for multilingual task utility, and BLOOM, despite moderate language control, fails to engage with
task semantics.

Stress tests expose finer-grained weaknesses. Under English-distractor prompting (MMLU; aver-
aged across languages), Qwen-3-32B’s language consistency drops from 45.17% to 23.54%, while
accuracy declines from 51.77% to 36.93%. Across prompt types, damage often correlates with lan-
guage distance in per-language breakdowns (Appendix Tables 4, 5, 6), suggesting that shared sub-
word inventory may cushion losses. BLOOM’s scores remain uniformly low, with average MGSM
accuracies ≤0.67% and XQuAD F1 scores frequently under 7%, reinforcing that its limitations are
capacity-driven rather than prompt-specific.
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Table 1: Multilingual Trade-offs Across Prompting Strategies: Evaluated MMLU (6 languages: en,
es, fr, ar, hi, ja), MGSM (3: en, fr, ja), and XQuAD (4: en, es, ar, hi), Qwen-3-32B achieves the
highest task performance but suffers major drops in language consistency; Bloom-7.1B lags on both.
Overall, robustness to cross-lingual prompt perturbations often comes at the expense of peak task
accuracy. Complete breakdowns for all datasets are provided in Appendix Tables 4, 5, 6.

Prompting Dataset Bloom 7.1B Qwen-3 32B

Language
Consistency (%)

Task
Performance (%)

Language
Consistency (%)

Task
Performance (%)

Monolingual
P, I, Q - (X)

MMLU 67.98 15.83 45.17 51.77
MGSM 34.00 0.67 65.56 66.60
XQuAD 98.32 4.18 81.05 55.54

Code-Switched
P, I - (EN), Q(X)

MMLU 29.49 22.31 8.35 60.50
MGSM 18.41 0.40 6.84 57.00
XQuAD 71.23 6.58 11.01 52.65

English-Distractor
I - (X), Q(X & EN)

MMLU 40.00 10.51 23.54 36.93
XQuAD 69.44 0.67 41.99 15.81

Bilingual-Answer
I - (X), Q(X & EN) MMLU 59.61 9.36 23.50 35.76

These results reflect differing model priorities: some architectures, like Qwen, favor task success
even at the cost of language control, while others, like BLOOM, attempt to enforce language control
more strictly. Qwen-3-32B consistently achieves high accuracy across domains and languages but
struggles with stable language control, particularly under mixed prompt languages. BLOOM-7.1B,
despite its fluent output, lacks the semantic depth required for effective multilingual reasoning.

4 WHERE LANGUAGE CONTROL EMERGES: LAYER-WISE
INTERPRETABILITY

Prompt-level behavior shows failures in language control, particularly under code-switching, but
the mechanisms driving output language choice in multilingual LLMs remain unclear. We use inter-
pretability tools to probe internal activations, identifying where language control emerges and how
inconsistencies are encoded in hidden representations.

4.1 METHODS FOR PROBING INTERNAL REPRESENTATION

4.1.1 DECODING INTERNAL LANGUAGE PROBABILITIES WITH THE LOGIT LENS

To trace the evolution of language preferences in multilingual LLMs, we use logit lens decoding
(nostalgebraist et al., 2021), which projects intermediate hidden states onto the output vocabulary
via the model’s language modeling head. At each layer l, we compute pseudo-logits by projecting
the intermediate state h

(l)
i through the unembedding matrix U ∈ R|V |×d:

z
(l)
i,t =

[
Uh

(l)
i

]
t
= u⊤

t h
(l)
i , (2)

where ut ∈ Rd is the embedding of vocabulary token t. These pseudo-logits approximate the
model’s next-token distribution at each layer.

For each position i in the generation, we decode the most likely token from the pseudo-logits at
every layer, yielding an M -length intermediate sequence per layer when the model generates M
tokens. After reconstructing full words from subword tokens, we compute language probabilities
using the langdetect language identifier library (Shuyo, 2010). Operating at the word level avoids
the ambiguity introduced by multilingual subword overlap. The identifier compares each recon-
structed word against pre-trained language profiles derived from character-distribution statistics and
returns normalized probabilities over languages:

p
(l)
j (ℓ) =

exp
(
s(ŷ

(l)
j , ℓ)

)∑
ℓ′∈L exp

(
s(ŷ

(l)
j , ℓ′)

) , (3)
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where p(l)j (ℓ) denotes the probability that decoded word ŷ
(l)
j belongs to language ℓ. This word-level

approach ensures that language identification relies on words from full decoded sequences, provid-
ing a more stable and robust signal than subword-level in multilingual settings. By aggregating
word-level language predictions, we estimate the language probability mass at each layer and track
shifts in preference between the target language and dominant alternatives (typically English).

P (l)(ℓ) =
1

M

M∑
j=1

p
(l)
j (ℓ), (4)

which represents the average probability mass assigned to language ℓ at layer l. Tracking P (l)(ℓ)
across layers yields the trajectory of language drift during generation.

4.1.2 HIDDEN STATE SIMILARITY ANALYSIS

We perform a layer-wise analysis of hidden state similarity across language pairs using cosine sim-
ilarity. Given a set of aligned prompts {(x(E)

n , x
(A)
n )}Nn=1, where each pair consists of semantically

equivalent inputs in English and another language A (e.g., Spanish), we pass each prompt through
the model and extract hidden states at each layer ℓ ∈ {0, . . . , L}, including the embedding layer.
We compare the internal representations layer-by-layer to determine where they begin to diverge.

For each input, the hidden states at layer ℓ are denoted h
(E,n)
ℓ ∈ RT (E)

n ×d and h
(A,n)
ℓ ∈ RT (A)

n ×d,
where d is the hidden size and T is the sequence length. To obtain a fixed-size prompt representation
per layer, we apply mean pooling over all token embeddings in the input sequence:

h̄
(E,n)
ℓ =

1

T
(E)
n

T (E)
n∑
t=1

h
(E,n)
ℓ,t , h̄

(A,n)
ℓ =

1

T
(A)
n

T (A)
n∑
t=1

h
(A,n)
ℓ,t . (5)

We then compute the cosine similarity between the mean-pooled representations:

s
(n)
ℓ =

⟨h̄(E,n)
ℓ , h̄

(A,n)
ℓ ⟩

∥h̄(E,n)
ℓ ∥ · ∥h̄(A,n)

ℓ ∥
. (6)

Aggregating across the dataset yields the average and standard deviation of similarity per layer:

S̄ℓ =
1

N

N∑
n=1

s
(n)
ℓ , σℓ =

√√√√ 1

N

N∑
n=1

(
s
(n)
ℓ − S̄ℓ

)2

. (7)

This mean-pooled prompt similarity analysis offers a high-level but interpretable view of how rep-
resentations evolve across layers. Mean-pooled hidden-state cosine similarity (equation 6 ad equa-
tion 7) robustly captures global, sequence-level semantic alignment, even when cross-lingual tok-
enization differs substantially across languages. Although this abstraction hides token-level diver-
gence in attention or contextual span, token-wise comparisons are highly sensitive to tokenization
mismatch and require non-trivial alignment across sequences of different lengths, often introducing
noise that obscures the underlying conceptual structure.

4.2 FINDINGS ON LAYER LANGUAGE CONTROL AND REPRESENTATION

We apply these interpretability methods across monolingual and code-switched prompting, in five
non-English languages (ES, FR, AR, HI, JA). English is never used as the sole prompt language. Our
analysis compares how much target language control vs. English dominance emerges at different
network depths. Figures 2 and 3 jointly trace how multilingual LLMs control and represent language
across layers. The logit lens analysis shows how word-level language probabilities evolve, while
hidden-state similarity analysis examines the degree to which parallel prompts in different languages
occupy a shared representation space.
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(e) Qwen-3-8B: Code-Switched
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(f) Qwen-3-32B: Code-Switched

Figure 2: Cross-Language Probability by Layer under Monolingual and Code-Switched Prompting
on MMLU. In Qwen, early layers are relatively biased to English, middle layers sustain English
bias, and final layers shift toward language-specific processing. However, code-switching disrupts
this control, especially in Qwen. Bloom exhibits more language-specific layers with no bias.
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Figure 3: Layer-wise hidden-state cosine similarity for monolingual MMLU prompts. Each sub-
figure shows similarity between English and five target languages (ES, FR, JA, AR, HI) across the
embedding output and transformer layers. Similarity rises sharply in early layers, remains stable in
mid-layers where cross-lingual semantic alignment is strongest, and declines in the final layers.

4.2.1 MODEL-SPECIFIC PATTERNS IN LANGUAGE CONTROL AND REPRESENTATION

In Bloom-7.1B, monolingual prompts yield high target-language probabilities for Arabic, Hindi,
and Japanese (0.4–1 up to layer 10), with Spanish and French slightly lower but still exceeding
English. These probabilities weaken in mid-layers but recover strongly after layer 20, while En-
glish remains consistently suppressed (<0.1). The wide shaded regions (standard deviations) reveal
substantial variability across layers, suggesting that Bloom’s intermediate layers mix cross-lingual
features, producing ambiguous intermediate decodings and thus unstable language probability es-
timates. Under code-switching, however, target-language control collapses (probabilities <0.2),
with only partial recovery for Arabic, Hindi, and Spanish. Representation-wise, Bloom shows rapid
increase to high cross-lingual similarity in early layers. Middle layers maintain strong similarity
(0.97–0.99), implying a strongly language-invariant semantic space. Only in late layers (24–30) do
sharp divergences appear, especially for En–Ar (to 0.36) and En–Hi (to 0.42), reflecting linguistic
divergence: language control emerges.

Qwen-3-8B exhibits a consistently English-dominant: its monolingual prompting behavior (Figure
2) shows English dominating generation bias across most layers, while target-language probabilities
(ES, FR, AR, HI, JA) start weak, remain suppressed through the middle layers, and only FR re-
covers partially after layer 25. Similarly, under code-switched prompting (Figure 2), Qwen-3-8B’s
language control collapses fully: target-language probabilities remain suppressed in the final layers
and English becomes the sole generation language.
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In Qwen-3-32B, English dominates early regardless of input language, with target-language proba-
bilities rising only after layer 55. This layer marks the data-driven onset of language-specific gener-
ation, defined operationally by the convergence of two independent and empirically easy-to-identify
indicators: the layer where the target language probability first surpasses English, and the layer
where cross-lingual hidden-state similarity sustains a divergence from the stable, middle-layer align-
ment. Even after this emergence, recovery is incomplete, and under code-switching re-grounding
fails altogether. Hidden-state analysis shows very high similarity across languages in middle layers
6–55 (En–Es/Fr near 0.99, En–Ar/Ja 0.95–0.97, En–Hi just under 0.9). After layer 55, similar-
ity diverges slightly which this does not translate into effective language control: English remains
entrenched as the dominant generation bias.

4.2.2 CROSS-LINGUISTIC DIFFERENCES IN REPRESENTATION AND CONTROL

Across models, we observe a three-phase structure, early convergence to a shared semantic space,
stable middle layers, and late divergence into language-specific generation, but the stability of lan-
guage control differs. Bloom-7.1B shows high early target-language probabilities but with large
variance across layers, reflecting ambiguous intermediate decodings where hidden states straddle
multiple languages. In contrast, Qwen-3-32B is stable but strongly English-biased: English domi-
nates early and mid layers, target-language probabilities rise only after layer 55, and recovery fails
under code-switching. These contrasts suggest that instability in Bloom arises from ambiguous
intermediate representations, while Qwen’s consistency reflects entrenched bias.

5 LAYER-WISE SELECTIVE FINE-TUNING FOR LANGUAGE CONSISTENCY

The analyses in Sections 3 and 4 demonstrate that mLLMs often lose language control under ad-
versarial prompts, a failure linked to unstable late-layer re-grounding. To address this, we propose
layer-wise selective supervised fine-tuning (SFT) that targets language control mechanisms without
full model retraining.

5.1 HOW TO TUNE LANGUAGE CONTROL: SELECTIVE SUPERVISED FINE-TUNING

Our goal is to reinforce language consistency, the model’s ability to produce outputs strictly in the
intended language, while minimizing interference with general task competence coverage.

Consider a pretrained model with parameter set θ = {θ1, θ2, . . . , θL, θhead} where θℓ corresponds
to layer ℓ, and θhead is the embedding and LM head. Rather than tuning all layers, we update only
a subset S ⊆ {1, . . . , L}, typically the last k layers, where language-specific generation behavior
emerges.

We define selective SFT as fine-tuning only a subset of parameters θS , while keeping the remaining
parameters θ−S frozen. Given training data {(xi, yi)}Nn=1, the optimization objective is to minimize:

LSelective-SFT(θS) = −
N∑
i=1

logP (yi | xi; θS), (8)

where gradients are computed only with respect to θS .This formulation isolates adaptation to the
selected components while leveraging the frozen parameters to preserve the pretrained model’s se-
mantic alignment and reasoning capacity.

To evaluate Selective SFT, we fine-tuned on a domain-focused MMLU subset covering five business
subjects (ethics, marketing, management, accounting, public relations) across five languages (Span-
ish, French, Arabic, Hindi, Japanese). From the pool of correctly answered examples (verified with
Claude 3.5 Sonnet), we sampled 500 per subject, yielding 2,500 examples split 80/20 into training
and validation sets. Each instance was augmented with chain-of-thought reasoning traces aligned
with the question’s language. Prompts followed a five-part template (Preamble (P), Instruction (I),
Question (Q), Reasoning (R), Answer (A)), with loss restricted to the Q, R, A tokens while P and I
remained frozen context:

Lmasked
Selective-SFT(θS) = −

N∑
i=1

mi · logP (yi | Qi, Ri, Ai; θS), (9)
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Table 2: Impact of fine-tuning on language consistency and task performance for Qwen-3-32B and
Bloom-7.1B on MGSM, MMLU, and XQuAD. Both models were fine-tuned with code-switched
prompts in the MMLU Business domain across six languages, then evaluated on MMLU non-
Business subjects (52 in total), MGSM, and XQuAD. Values represent averages across all evaluation
languages for each dataset; full per-dataset results appear in the Appendix Tables 7, 8, 9.

Prompting Datasets Model Pre-Finetuning Full scope SFT Random Selective SFT Selective SFT

Language
Cons. (%)

Task
(%)

Language
Cons. (%)

Task
(%)

Language
Cons. (%)

Task
(%)

Language
Cons. (%)

Task
(%)

# Trainable Param Qwen-3-32B NA 32B 1.5B 1.5B
Bloom-7.1B NA 7.1B 0.5B 0.5B

Monolingual
P, I, Q - (X)

MGSM (Avg) Qwen-3-32B 65.56 66.60 99.47 90.53 65.87 0.13 99.20 86.80
Bloom-7.1B 34.00 0.67 100 1.47 69.47 0.00 100.00 3.60

XQuAD (Avg) Qwen-3-32B 81.05 55.54 100.00 57.60 47.44 0.42 99.83 55.86
Bloom-7.1B 98.32 4.18 99.91 16.85 54.10 0.00 99.85 20.83

Code Switched
P, I - (EN), Q(X)

MMLU (Avg) Qwen-3-32B 8.35 60.51 99.87 78.84 98.30 1.67 99.62 74.44
Bloom-7.1B 29.49 22.31 99.87 33.72 55.56 0.00 98.66 21.14

MGSM (Avg) Qwen-3-32B 6.80 57.00 95.00 87.00 53.80 0.00 98.60 84.60
Bloom-7.1B 18.40 0.40 100 2.20 68.00 0.00 99.60 2.00

XQuAD (Avg) Qwen-3-32B 11.01 52.65 100.00 51.87 97.93 1.10 100.00 53.53
Bloom-7.1B 71.23 6.58 99.89 21.03 43.11 0.00 99.80 21.02

English Distractor
I - (X), Q(X & EN) XQuAD (Avg) Qwen-3-32B 41.99 15.81 75.99 17.77 37.78 0.00 97.62 18.05

Bloom-7.1B 69.44 0.67 97.03 6.96 26.16 0.00 98.23 6.95

where mi ∈ {0, 1} masks tokens outside the Q, R, A, and gradients are applied only to θS .

An ablation varying tuned last layers (1, . . . , n) and epochs (1–5) (see Appendix Tables 10, 11)
showed that the optimal configuration was the last layer at 5 epochs for Bloom-7.1B and the last two
layers at 5 epochs for Qwen-3-32B.

5.2 RESULTS AND FINDINGS

Table 2 indicates that, before fine-tuning, Qwen-3-32B shows moderate task accuracy but poor lan-
guage control, achieving 66.6% on MGSM and 55.5% on XQuAD for monolingual prompts, while
collapsing under code-switching with only 6–11% language consistency. Bloom-7.1B maintains
higher consistency (34–98%) but is far weaker in task accuracy (0.4–15.8%), often producing text in
the target language without solving the task. Full-scope SFT substantially improves Qwen, raising
consistency to nearly 100% across all regimes and boosting task accuracy (e.g., MGSM from 66.6%
to 90.5%). Code-switched settings, initially unstable, are restored above 95% language consistency
with 78–87% task accuracy. Bloom also reaches near-perfect language consistency after full-scope
SFT, though without comparable reasoning gains. Overall, full-scope SFT enforces consistent lan-
guage use in both models, with Qwen uniquely leveraging this for improved task performance.

When tuning on a random subset of layers, both models collapse in task performance, despite retain-
ing some language consistency. For example, Qwen’s monolingual MGSM language consistency
falls from nearly 100% (selective-sft) to 65.9% under random selective SFT, and Bloom shows a
similar decline (from 100% to 69%). In contrast, Selective SFT recovers near-perfect language
consistency across datasets. Both Qwen and Bloom maintain 99% language consistency in mono-
lingual, code-switched, and English-distractor prompts. These results demonstrate that targeted
layer adaptation preserves language consistency, whereas random selection destabilizes generation
and erodes cross-lingual consistency. Selective SFT achieves nearly the same performance as full-
scope SFT for both Qwen and Bloom, while requiring updates to only 3–5% of the parameters,
compared to full-scope SFT. Random selective SFT is catastrophic, reinforcing the importance of
principled parameter selection. Under English distractor prompts, selective SFT substantially im-
proves language consistency, yet task performance remains weak, highlighting the need for more
explicit reasoning-level disambiguation strategies in future work.

A critical diagnostic concern for our Selective SFT approach is whether the language control ad-
justments propagate backward, altering the semantic and reasoning alignments in the frozen middle
layers. To address this, we conducted a full post-fine-tuning analysis using our original interpretabil-
ity tools. As shown in Figure 4, the substantial increase in target-language probability is confined
strictly to the late layers (the tuned region), confirming the successful localization of the interven-
tion. Furthermore, Figure 5 provides direct empirical evidence of invariance: the high cross-lingual
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(c) Qwen-3-32B: Monolingual
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(d) Bloom-7.1B: Code Switched
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(e) Qwen-3-8B: Code-Switched
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(f) Qwen-3-32B: Code-Switched

Figure 4: Post-Selective SFT Layer-wise Language Probability Trajectories. The plots, shown un-
der Monolingual and Code-Switched prompting, confirm the localization of the intervention: non-
English target-language probabilities substantially increase and dominate only in the late layers (the
tuned region), with minimal change observed in the early and middle layers.
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(b) Qwen-3-8B: Monolingual
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Figure 5: Post-Selective SFT Hidden State Cosine Similarity Across Layers. The results demon-
strate the stability of the frozen layers, maintaining the high cross-lingual similarity signature in
the language-invariant middle layers and confirming that the language control adjustments did not
propagate backward to alter the semantic alignment.

alignment signature in the semantically-aligned middle layers is fully preserved, remaining virtually
identical to the pre-fine-tuning state. This analysis validates that Selective SFT successfully iso-
lates the language control mechanism in the final layers without compromising the integrity of the
model’s core, language-invariant reasoning capabilities.

6 CONCLUSION

LinguaMap details how multilingual language control is distributed across layers in LLMs. By
uncovering a robust three-phase structure, from shared semantic grounding to language-specific de-
coding, we pinpoint where models “think” versus where they “speak”. This insight exposes distinct
model tradeoffs: Qwen-3-32B excels at multilingual accurate task completion but often sacrifices
language control; and Bloom-7.1B, while consistent in adhering to the intended language, strug-
gles to reason reliably across languages. Guided by this structural lens, we introduce a selective
fine-tuning strategy that focuses exclusively on the final layers responsible for language control. As
LLMs continue scaling across cultures and scripts, LinguaMap offers both a diagnostic lens and a
tool for aligning them with the world’s linguistic diversity.
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7 REPRODUCIBILITY STATEMENT

Below we summarize the key aspects of reproducibility, drawing on our study design and the sup-
porting materials.

Conceptual and Theoretical Transparency

The paper provides a clear conceptual outline and prompt template used in multilingual stress tests,
enabling readers to understand and replicate our approach. While the paper does not introduce
fundamentally new theory, it extends established theoretical tools with appropriate formal statements
and proofs, and cites all relevant theoretical references.

Dataset Usage

Our experiments rely on publicly available datasets. We explain the motivation for choosing each
dataset and provide proper citations to all external data sources. No new datasets are introduced,
and all datasets used are already accessible to the research community, allowing others to replicate
the experimental results without restrictions.

Computational Experiments

Table 3 specifies the number and range of hyperparameters explored during development and the
criteria for selecting final parameter settings. We describe the computing infrastructure, including
hardware specifications (CPU/GPU models, memory). Evaluation metrics are formally defined, and
their selection is motivated.
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A APPENDIX

A.1 LLMS USAGE

Large Language Models (LLMs) were used solely as general-purpose assistive tools to help pol-
ish the manuscript’s language and to refine instructions within our multilingual prompt templates.
Specifically, LLMs aided in improving grammar, clarity, and style, and in suggesting alternative
phrasings for prompt templates. All scientific ideas, experimental design, and key arguments were
conceived and written by the authors, and all factual statements were independently verified. Fi-
nal prompt templates in English, French, Spanish, Arabic, Hindi, and Japanese were reviewed and
validated by native speakers of each language to ensure accuracy and cultural appropriateness.

A.2 PROMPTING VARIANTS AND DETAILED ANALYSIS BY DATASET AND LANGUAGE

Despite impressive gains in cross-lingual generalization, multilingual LLMs often struggle with
language control, the ability to produce responses in the intended language of the task. To sys-
tematically assess this underexplored failure mode, we use our targeted evaluation framework to
isolate and stress-test different dimensions of language consistency across diverse multilingual set-
tings (Figure 6).

Tables 4, 5 6 present per-language results for each dataset, revealing patterns that are averaged
in Table 1. The fine-grained breakdown shows that the trade-off between reasoning ability and
language consistency varies sharply by language, script, and prompt type.

For XQuAD (Table 4), Qwen-3-32B shows strong reasoning ability but is highly sensitive to prompt
perturbations. Bloom-7.1B maintains moderate to high language consistency (>70%) across all
languages and prompting styles, though its task performance remains limited (<12%), especially in
non-English settings. In contrast, Qwen-3-32B exhibits strong task performance, but its language
consistency varies significantly depending on the language and prompt type. Notably, Spanish shows
the lowest language control across all prompting variants for Qwen-3-32B, suggesting a heightened
susceptibility to interference; language consistency at 41.68% in the monolingual setting and col-
lapses to near 1% (1.60%) in the code-switched variant. The presence of English leads to severe
language collapse, particularly for Spanish and Hindi, despite relatively preserved task performance.
Overall, while Bloom displays moderate to high language stability regardless of prompt structure,
Qwen-3-32B’s strong multilingual reasoning capabilities come with a trade-off in maintaining lan-
guage control, especially when English is introduced.

In math tasks, Table 5 reveals that Bloom 7.1B consistently underperforms, showing both poor
language control and very low task accuracy, particularly under multilingual conditions. In contrast,
Qwen-3-32B exhibits a clear trade-off between language consistency and performance: it achieves
high task accuracy across all prompting styles and languages, even as language consistency drops
drastically, especially under code-switched prompts. For instance, under English code-switched
prompts with French questions, language consistency falls to just 7.6%, while task accuracy remains
high at 59.6%.

In MMLU, Table 6 reinforces the language-task trade-off seen in Qwen-3-32B: it delivers strong
task accuracy across most languages, but language consistency sharply degrades under multilin-
gual or mixed-language prompting. The problem is especially acute for Spanish and French, where
language consistency drops below 1% in code-switched and distractor settings, despite task accu-
racy remaining above 75%. This pattern suggests that Qwen-3 32B frequently defaults to English
when handling closely related languages, prioritizing task accuracy over maintaining language con-
sistency. This behavior is further supported by Figure 2, which reveals that across all layers, the
model performs reasoning in representations that are closely aligned with English, regardless of the
input language. In contrast, Bloom-7.1B shows stronger language control, particularly for distant
languages like Hindi and Arabic, but at the cost of much lower task performance, particularly in
non-English scenarios. These trends indicate that language similarity with English leads to higher
interference and loss of control in multilingual models like Qwen-3-32B.

Overall, Qwen-3-32B delivers the strongest reasoning performance but is prone to severe language
drift under mixed-language prompts. While Bloom 7.1B maintains moderate to high language con-
trol across languages and prompting formats, its task accuracy remains low, highlighting its limited
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multilingual reasoning capabilities. Qwen-3-32B often answers accurately even when it fails to pre-
serve the intended output language. This suggests that Qwen-3-32B prioritizes internal alignment
with English representations. The degradation is especially pronounced for languages typologically
closer to English (like Spanish and French), which appear more prone to collapse under English
interference.

A.3 FINE-TUNING AND INFERENCE SETTINGS

We perform full scope and selective fine-tuning on specific layers of large pre-trained language
models. In the training setup, all model parameters are initially frozen, ensuring only selected layers
are updated during fine-tuning. The layers to be fine-tuned are chosen from the output space. We
use the AdamW optimizer with a learning rate of 1e−5 and the OneCycleLR scheduler to adjust the
learning rate during training, starting from a small value and gradually increasing before decaying.
After each batch, the loss is computed, and only the parameters in the selected layers are updated
via backpropagation.

As part of the ablation study, we perform a grid search over two hyperparameters: the number of
epochs (from 1 to 5) and the number of output space layers (from 1 to 5) fine-tuned. Table 10 .
Table 11 shows that the best configuration for Qwen-3-32B is finetuning the last three layers. For
all epochs, finetuning only the last three layers always achieves near-perfect language consistency
100% when tested on a subset (150) of non-business MMLU topics. The epoch number varies the
task performance.

Table 3: Fine-tuning and Inference Parameters

Hyperparameters Values
Train Languages ES, FR, AR, HI, JA

Train sample per Language 500
Train-Validation Split 0.8/0.2

Learning Rate 1e−5

Batch Size 16
Training Epochs 1 to 5

Number of Layers to Fine-Tune 1 to 5
Temperature 1e−5

Top k 50
Top p 0.9

Max New Tokens 512
Optimizer AdamW

Learning Rate Scheduler OneCycleLR
GPUs 8x NVIDIA H100
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Table 4: Language consistency and task performance (F1) on XQuAD across prompting condi-
tions for Bloom-7B and Qwen-3-32B. Bloom maintains moderate to high language consistency
(58 - 99%) but fails catastrophically in task performance (F1 <5% on average under monolingual
prompting), revealing a disconnect between staying in-language and solving the task. In contrast,
Qwen demonstrates stronger task ability but with uneven and unstable language control: high con-
sistency in Arabic and English, but near-total collapse under Spanish and code-switched prompts.

Prompting Language Bloom 7.1B Qwen-3 32B
Language

Consistency (%)
F1

Score (%)
Language

Consistency (%)
F1

Score (%)

Monolingual
Direct

P, I, Q - (EN) 99.42 11.67 100 71.47
P, I, Q - (ES) 98.24 3.50 41.68 56.17
P, I, Q - (AR) 97.23 0.31 97.05 64.99
P, I, Q - (HI) 98.40 1.24 85.46 29.51

Average 98.32 4.18 81.05 55.54

Code
Switched

P, I -(EN), Q(ES) 86.63 10.82 1.60 65.42
P, I -(EN), Q(AR) 58.57 3.42 30.08 46.31
P, I -(EN), Q(HI) 68.49 5.50 1.34 46.23

Average 71.23 6.58 11.01 52.65

English
Distractor

I -(ES), Q(ES & EN) 70.08 1.37 16.05 27.54
I -(AR), Q(AR & EN) 69.41 0.36 62.27 9.81
I -(HI), Q(HI & EN) 68.82 0.28 47.65 10.09

Average 69.44 0.67 41.99 15.81

Table 5: Language consistency and task accuracy (%) on MGSM across different prompt variants for
Bloom-7B and Qwen-3-32B. Bloom collapses on both axes, moderate to low language consistency,
and near-zero task accuracy, indicating failure to maintain the target language and to solve the task.
Qwen, by contrast, answers well, but its language control is brittle: perfect consistency in English
and moderate in Japanese, yet severe collapse for French and under code-switching.

Prompting Language Bloom 7.1B Qwen-3 32B
Language

Consistency (%)
Task

Accuracy (%)
Language

Consistency (%)
Task

Accuracy (%)

Monolingual
Direct

P, I, Q - (EN) 61.20 1.20 100 66.00
P, I, Q - (FR) 22.80 0.40 31.08 72.80
P, I, Q - (JA) 18.00 0.40 65.60 60.99

Average 34.00 0.67 65.56 66.60

Code
Switched

P, I -(EN), Q(FR) 22.80 0.40 7.60 59.60
P, I -(EN), Q(JA) 14.01 0.40 6.08 54.40

Average 18.41 0.40 6.84 57.00
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(a) Monolingual Direct Prompting (b) Code-Switched Prompting

(c) Bilingual Answer Prompting (d) English Distractor Prompting

<thinking> La pregunta se refiere a los principios que se utilizan para 
determinar quiénes son las partes interesadas en una situación específica … 
no se ajustan a esta teoría o están en inglés, lo cual no es coherente con el 
idioma de la pregunta. </thinking> <answer> A</answer> 

<thinking> Let's analyze each statement: Statement 1: "R is a splitting field 
of some polynomial over Q." … Statement 2: "There is a field with 60 
elements." - A field with 60 elements would be a finite field, also known as 
a …. Therefore, this statement is false. Since both statements are false, the 
correct answer is B. False, False. </thinking> <answer>B</answer> 

<thinking> 1. $%न को )यानपूव/क पढ़1।\n2. संदभ/ को पढ़1 और $%न का उ;र 
देने के =लए संभा@वत वाBयांशD कE पहचान कर1।\n3. $%न का सबसे सटJक 
और $ासंKगक उ;र Mनधा/Oरत कर1। </thinking> <answer> 118 </answer> 

<thinking> 迅速な輸⾎が必要な患者には、⾎液の流れを促進するため
に⼩さなカニューレサ… 18ゲージのカニューレを使⽤する必要があり
ます。</thinking> <answer>A</answer>

You are given a multiple-choice question with four answer options: 
A,B,C, and D…
Response guidelines:
- …
Question:
1 | R is a splitting field of some polynomial over Q. 2 | There is a field 
with 60 elements.
Answer choices:
A. True, True B. False, False C. True, False D. False, True

De acuerdo con Evan y Freeman (1993), el Principio de ________ y el 
Principio de _______ pueden utilizarse en una situación específica 
para determinar quién constituye un(a) _______.
Opciones de respuesta:
A. Derechos corporativos, efecto corporativo, parte interesada
B. Negabilidad corporativa, efecto corporativo, parte interesada
C. Derechos corporativos, responsabilidad corporativa, interesada
D. Corporate rights, Corporate effect, Stakeholder

आपको एक $%न और उसका उ;र देने वाला एक अशं Rदया गया है। 
आपका काय/ अशं को )यानपूव/क पढ़ना और Rदए …
उ;र RदशाMनदTश: 
- …
- $%न कE भाषा म1 <thinking></thinking> के अदंर चरण-दर-चरण …
$%न: [यकू कुएBलJ ने ]कतने टैकल रिज`टर ]कए? 
संदभ/: The Panthers defense gave up just 308 points, ranking sixth in 
… and had four interceptions, two of which were returned for 
touchdowns. 

You are given a multiple-choice question with four answer options: 
A,B,C, and D…
Response guidelines: 
- …
- Think step-by-step in the language of the question inside 

<thinking></thinking> and give your final answer in the language 
of the question inside <answer></answer>. 

Question: 迅速な輸⾎が必要な患者にはどのサイズのカニューレ
を使⽤しますか（2020年時点の医学的知⾒）？
Answer choices: 
A. 18ゲージ B. 20ゲージ C. 22ゲージ D. 24ゲージ

Figure 6: Overview of Multilingual Prompt Variants. Each variant isolates a specific aspect of
multilingual generation: (a) Monolingual Direct Prompting tests baseline language adherence; (b)
Code-Switched Prompting mixes instruction and task language to test robustness; (c) Bilingual An-
swer Prompting probes language preference by offering correct answers in both the target language
and English; and (d) English Distractor Prompting tests resistance to dominant-language bias.

Table 6: Language consistency and task accuracy (%) on MMLU across different prompt variants for
Bloom-7B and Qwen-3-32B. Bloom exhibits high language consistency in many settings but fails
catastrophically at task accuracy, sometimes near zero, even when language consistency is high.
Qwen flips the pattern: strong task performance in English, Spanish, and French (≥70%), but frag-
ile language control, collapsing almost completely in French, Spanish, and code-switched inputs.
Under distractors and bilingual prompts, Bloom “sticks to the language but cannot answer,” while
Qwen “answers well but drifts in and out of the target language.” The results expose a fundamental
tension between being in-language and being correct in current multilingual LLMs.

Prompting Language Bloom 7.1B Qwen-3 32B
Language

Consistency (%)
Task

Accuracy (%)
Language

Consistency (%)
Task

Accuracy (%)

Monolingual
Direct

P, I, Q - (EN) 99.51 21.24 100 77.08
P, I, Q - (ES) 50.22 16.59 0.31 76.33
P, I, Q - (AR) 85.89 11.34 48.39 6.38
P, I, Q - (HI) 96.79 10.76 69.09 34.23
P, I, Q - (FR) 17.16 19.23 0.91 72.92
P, I, Q - (JA) 58.33 – 52.32 43.68

Code
Switched

P, I -(EN), Q(ES) 33.34 27.56 0.29 75.98
P, I -(EN), Q(AR) 32.05 10.26 1.28 43.59
P, I -(EN), Q(HI) 29.49 14.74 14.10 49.36
P, I -(EN), Q(FR) 35.26 30.13 1.09 72.66
P, I -(EN), Q(JA) 17.31 28.85 25.00 60.90

English
Distractor

I -(ES), Q(ES&EN) 67.31 15.38 5.33 77.40
I -(AR), Q(AR&EN) 37.82 6.41 18.58 4.05
I -(HI), Q(HI&EN) 41.03 3.85 47.38 14.54
I -(FR), Q(FR&EN) 25.64 26.92 0.24 75.84
I -(JA), Q(JA&EN) 28.21 0.00 13.69 15.23

Bilingual
Answer

I -(ES), Q(ES&EN) 44.87 19.87 15.96 55.69
I -(FR), Q(FR&EN) 14.74 21.15 47.27 52.89
I -(AR), Q(AR&EN) 85.26 0.00 12.77 6.31
I -(HI), Q(HI&EN) 96.15 1.92 31.00 23.04
I -(JA), Q(JA&EN) 57.05 3.85 10.50 40.85
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Table 7: Performance comparison of Qwen-3-32B and Bloom-7.1B on the MMLU dataset. Models
were trained using code-switched prompts in the Business domain across six languages and evalu-
ated on a subset of non-Business domains.

Language Model Pre-Finetuning Full scope SFT Selective SFT
Language
Cons. (%)

Acc.
(%)

Language
Cons. (%)

Acc.
(%)

Language
Cons. (%)

Acc.
(%)

P, I -(EN), Q(ES) Qwen-3-32B 1.28 76.92 100 87.18 99.04 88.46
Bloom-7.1B 33.34 27.56 99.36 35.90 98.08 26.92

P, I -(EN), Q(FR) Qwen-3-32B 1.92 71.79 100 90.38 100 85.58
Bloom-7.1B 35.26 30.13 100 35.90 98.08 23.08

P, I -(EN), Q(HI) Qwen-3-32B 14.10 49.36 99.36 46.15 100 47.12
Bloom-7.1B 29.49 14.74 100 33.97 98.08 20.19

P, I -(EN), Q(AR) Qwen-3-32B 1.28 43.59 100 83.33 99.04 67.31
Bloom-7.1B 32.05 10.26 100 32.05 100 17.31

P, I -(EN), Q(JA) Qwen-3-32B 25.00 60.90 100 87.18 100 81.73
Bloom-7.1B 17.31 28.85 100 30.77 99.04 18.27

Code-Switched
Average

Qwen-3-32B 8.32 60.51 99.87 78.84 99.62 74.44
Bloom-7.1B 29.49 22.31 99.87 33.72 98.66 21.14

Table 8: Comparison of Qwen-3-32B and Bloom-7.1B across monolingual and code-switched set-
tings in English, French, and Japanese for pre-finetuning, full-scope SFT, random selective SFT,
and targeted selective SFT. Qwen-3-32B shows strong gains from Selective SFT, especially in
cross-lingual settings, while Bloom-7.1B remains fragile despite perfect language consistency post-
finetuning, highlighting its limitations in multilingual task generalization. Selective SFT achieves
near-parity with full-scope SFT in both consistency and accuracy, despite modifying fewer parame-
ters.

Language Model Pre-Finetuning Full scope SFT Random Selective SFT Selective SFT
Language
Cons. (%)

Acc.
(%)

Language
Cons. (%)

Acc.
(%)

Language
Cons. (%)

Acc.
(%)

Language
Cons. (%)

Acc.
(%)

P, I, Q - (EN) Qwen-3-32B 100 66.00 98.80 97.20 1.20 0.40 99.60 95.60
Bloom-7.1B 61.20 1.20 100 1.60 98.0 0.0 100 3.2

P, I, Q - (FR) Qwen-3-32B 31.08 72.80 99.60 89.20 98.40 0.0 98.0 84.80
Bloom-7.1B 22.80 0.4 100 2.00 29.20 0.0 100 6

P, I, Q - (JA) Qwen-3-32B 65.60 60.99 100 85.20 98.0 0.0 100 80.0
Bloom-7.1B 18.00 0.40 100 0.80 81.20 0.0 100 1.6

Monolingual
Average

Qwen-3-32B 65.56 66.60 99.47 90.53 65.87 0.13 99.20 86.80
Bloom-7.1B 34.00 0.67 100 1.47 69.47 0.00 100.00 3.60

P, I -(EN), Q(FR) Qwen-3-32B 7.60 59.60 99.60 87.20 7.60 0.0 97.2 86
Bloom-7.1B 22.8 0.4 100 3.20 37.6 0.0 100 2.4

P, I -(EN), Q(JA) Qwen-3-32B 6.08 54.40 90.40 86.80 100 0.0 100 83.20
Bloom-7.1B 14.01 0.4 100 1.20 98.40 0.0 99.20 1.6

Code-Switched
Average

Qwen-3-32B 6.80 57.00 95.00 87.00 53.80 0.00 98.60 84.60
Bloom-7.1B 18.40 0.40 100 2.20 68.00 0.00 99.60 2.00
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Table 9: Performance comparison of Qwen-3-32B and Bloom-7.1B on the XQuAD dataset in four
languages (EN, ES, AR, HI). Qwen-3-32B exhibits high generalization and minimal performance
degradation across SFT modes. In contrast, Bloom-7.1B struggles especially under zero-shot and
random SFT, with F1 scores near zero in low-resource and distractor-heavy settings.

Language Model Pre-Finetuning Full scope SFT Random Selective SFT Selective SFT
Language
Cons. (%)

F1 Score
(%)

Language
Cons. (%)

F1 Score
(%)

Language
Cons. (%)

F1 Score
(%)

Language
Cons. (%)

F1 Score
(%)

P, I, Q, C - (EN) Qwen-3-32B 100 71.47 100 73.55 2.27 1.21 98.40 77.06
Bloom-7.1B 99.42 11.67 100 25.08 61.76 0.0 100 24.06

P, I, Q, C - (ES) Qwen-3-32B 41.68 56.17 100 69.27 22.61 0.45 100 62.09
Bloom-7.1B 98.24 3.50 99.66 18.59 0.67 0.0 99.66 24.9

P, I, Q, C - (AR) Qwen-3-32B 97.06 64.99 100 67.37 71.09 0.0 99.91 65.21
Bloom-7.1B 97.23 0.31 100 11.92 72.86 0.0 100 16.58

P, I, Q, C - (HI) Qwen-3-32B 85.46 29.51 100 18.22 95.80 0.0 100 17.09
Bloom-7.1B 98.40 1.24 100 9.81 83.11 0.0 99.75 15.77

Monolingual
Average

Qwen-3-32B 81.05 55.64 100.00 57.60 47.44 0.42 99.83 55.86
Bloom-7.1B 98.32 4.18 99.91 16.85 54.10 0.00 99.85 20.83

P, I - (EN), Q, C - (ES) Qwen-3-32B 1.60 65.42 100 68.23 97.06 2.53 100 66.19
Bloom-7.1B 86.63 10.82 100 25.02 15.13 0.0 99.83 23.53

P, I - (EN), Q, C - (AR) Qwen-3-32B 30.08 46.31 100 68.77 96.72 0.76 100 63.55
Bloom-7.1B 58.57 3.42 100 19.60 17.31 0.0 99.91 19.01

P, I - (EN), Q, C - (HI) Qwen-3-32B 1.34 46.23 100 18.60 100 0.0 100 30.85
Bloom-7.1B 68.49 5.50 99.66 18.46 96.89 0.0 99.66 20.53

Code-Switched
Average

Qwen-3-32B 11.01 52.65 100.00 51.87 97.93 1.10 100.00 53.53
Bloom-7.1B 71.23 6.58 99.89 21.03 43.11 0.00 99.80 21.02

P, I, Q - (ES), C - (EN) Qwen-3-32B 16.05 27.54 98.66 31.98 1.08 0.0 98.99 31.86
Bloom-7.1B 70.08 1.37 97.56 12.58 0.67 0.0 98.99 9.24

P, I, Q - (AR), C - (EN) Qwen-3-32B 62.27 9.81 30.84 13.25 20.67 0.0 97.73 14.88
Bloom-7.1B 69.41 0.36 95.46 3.82 22.69 0.0 98.32 6.73

P, I, Q - (HI), C - (EN) Qwen-3-32B 47.65 10.09 98.49 8.07 91.59 0.0 96.13 7.41
Bloom-7.1B 68.82 0.28 98.06 4.47 55.13 0.0 97.39 4.87

English Distractor
Average

Qwen-3-32B 41.99 15.81 75.99 17.77 37.78 0.00 97.62 18.05
Bloom-7.1B 69.44 0.67 97.03 6.96 26.16 0.00 98.23 6.95

Table 10: Bloom-7.1B Layer-wise Ablation across num epochs and num layers to analyze the
effect on language consistency (LC), task accuracy (TA). Models are fine-tuned on the MMLU busi-
ness domain and evaluated on non-business domains under code-switched conditions. Varying the
number of last layers (1–5) and training epochs (1–5) shows that fine-tuning just 3–5% of parameters
yields high LC (>95%) with stable TA. The best combined scores emerge with 1–3 layers and 4–5
epochs, demonstrating that robust cross-domain, code-switched language control can be achieved
with minimal parameter updates.

Epochs # of Last
Layers

Lang Consistency (%) Task Accuracy (%) Avg-LC Avg-TA Combined
ES FR EN HI AR JA ES FR EN HI AR JA

Baseline → 48.08 26.92 99.04 34.62 41.35 32.69 25.96 27.88 22.12 18.27 7.69 27.88 47.12 21.63 34.37

1 1 99.04 99.04 85.58 100 100 99.04 23.08 23.08 13.46 12.50 3.85 12.50 97.12 14.74 55.93
1 2 99.04 100 74.04 100 100 100 25.00 22.12 10.58 12.50 0.96 17.31 95.51 14.74 55.13
1 3 100 99.04 40.38 99.04 100 98.08 20.19 21.15 11.54 12.50 9.62 12.50 89.42 14.58 52.00
1 4 98.08 99.04 73.08 99.04 100 98.08 18.27 13.46 9.62 12.50 3.85 16.35 94.55 12.34 53.45
1 5 100 99.04 82.69 100 100 98.08 17.31 22.12 15.38 16.35 6.73 12.50 96.63 15.06 55.85

2 1 99.04 99.04 79.81 99.04 98.08 99.04 16.35 28.85 17.31 13.46 8.65 12.50 95.67 16.19 55.93
2 2 100 100 67.31 99.04 100 100 24.04 27.88 13.46 8.65 7.69 16.35 94.39 16.35 55.37
2 3 98.08 98.08 69.23 99.04 99.04 98.08 31.73 16.35 12.50 16.35 5.77 14.42 93.59 16.19 54.89
2 4 98.08 99.04 34.62 99.04 99.04 97.12 27.88 23.08 6.73 24.04 13.46 19.23 87.82 19.07 53.45
2 5 99.04 99.04 60.58 100 100 97.12 26.92 20.19 15.38 18.27 12.50 14.42 92.63 17.95 55.29

3 1 99.04 100 84.62 98.08 100 97.12 25.96 23.08 12.50 12.50 7.69 12.50 96.47 15.71 56.09
3 2 98.08 97.12 69.23 99.04 100 97.12 28.85 25.00 14.42 18.27 14.42 14.42 93.43 19.23 56.33
3 3 99.04 97.12 58.65 100 100 98.08 26.92 24.04 12.50 19.23 13.46 15.38 92.15 18.59 55.37
3 4 99.04 99.04 51.92 99.04 100 100 24.04 25.96 10.58 15.38 14.42 16.35 91.51 17.79 54.65
3 5 100 100 62.50 100 99.04 98.08 30.77 20.19 10.58 20.19 18.27 17.31 93.27 19.55 56.41

4 1 98.08 97.12 86.54 99.04 100 98.08 25.00 20.19 11.54 15.38 8.65 13.46 96.47 15.71 56.09
4 2 99.04 100 64.42 100 100 98.08 30.77 23.08 18.27 25.00 16.35 15.38 93.59 21.47 57.53
4 3 97.12 98.08 58.65 98.08 99.04 99.04 28.85 30.77 9.62 17.31 17.31 11.54 91.67 19.23 55.45
4 4 100 99.04 50.00 100 99.04 99.04 24.04 26.92 15.38 17.31 16.35 14.42 91.19 19.07 55.13
4 5 99.04 99.04 47.12 98.08 99.04 97.12 28.85 28.85 11.54 21.15 12.50 21.15 89.90 20.67 55.29

5 1 98.08 98.08 87.50 98.08 100 99.04 26.92 23.08 15.38 20.19 17.31 18.27 96.79 20.19 58.49
5 2 98.08 99.04 75.96 98.08 99.04 98.08 32.69 20.19 15.38 18.27 13.46 13.46 94.71 18.91 56.81
5 3 100 97.12 73.08 99.04 99.04 100 29.81 24.04 13.46 15.38 20.19 21.15 94.71 20.67 57.69
5 4 99.04 99.04 71.15 100 97.12 100 23.08 29.81 13.46 16.35 22.12 18.27 94.39 20.51 57.45
5 5 99.04 100 53.85 99.04 99.04 99.04 21.15 25.96 10.58 21.15 21.15 19.23 91.67 19.87 55.77
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Table 11: Layer-wise Selective SFT analysis of Qwen-3-32B on language consistency (LC) and
task accuracy (TA) across six languages. The model is fine-tuned on the MMLU business do-
main and evaluated on non-business domains under code-switched conditions. Unlike the baseline,
which shows strong TA (65.38%) but poor LC (24.52%), fine-tuning just 3–5% of the parameters
quickly boosts LC to near-perfect levels (>99%) while preserving high TA. The best combined
scores emerge with 2–3 layers and 4–5 epochs, indicating that minimal parameter updates are suffi-
cient to reconcile Qwen’s trade-off between task performance and language consistency.

Epochs # of Last
Layers

Lang Consistency (%) Task Accuracy (%) Avg-LC Avg-TA Combined
ES FR EN HI AR JA ES FR EN HI AR JA

Baseline → 1.92 3.85 100 11.54 0.96 28.85 80.77 74.04 77.88 49.04 49.04 61.54 24.52 65.38 44.95

1 1 99.04 100 99.04 100 100 100 77.88 78.85 80.77 23.08 66.35 73.08 99.68 66.67 83.17
1 2 100 100 97.12 100 100 100 78.85 75.96 89.42 27.88 68.27 75.96 99.52 69.39 84.46
1 3 100 100 100 100 100 100 76.92 77.88 80.77 20.19 69.23 75.96 100 66.83 83.41
1 4 99.04 100 100 100 100 99.04 78.85 75.00 85.58 23.08 65.38 61.54 99.68 64.90 82.29
1 5 100 100 100 99.04 100 100 77.88 76.92 86.54 17.31 64.42 73.08 99.84 66.03 82.93

2 1 99.04 100 100 100 100 100 80.77 76.92 77.88 24.04 70.19 71.15 99.84 66.83 83.33
2 2 99.04 100 100 100 100 100 82.69 80.77 77.88 20.19 68.27 71.15 99.84 66.83 83.33
2 3 100 100 100 100 100 100 80.77 82.69 83.65 21.15 66.35 74.04 100 68.11 84.05
2 4 100 100 100 99.04 100 100 75.96 77.88 85.58 22.12 70.19 71.15 99.84 67.15 83.49
2 5 99.04 100 85.58 99.04 100 100 72.12 75.00 47.12 13.46 67.31 55.77 97.28 55.13 76.20

3 1 100 100 99.04 100 100 100 80.77 79.81 86.54 20.19 62.50 74.04 99.84 67.31 83.57
3 2 100 98.08 100 99.04 100 100 78.85 78.85 81.73 19.23 71.15 75.96 99.52 67.63 83.57
3 3 100 100 100 100 99.04 100 76.92 73.08 89.42 25.00 68.27 77.88 99.84 68.43 84.13
3 4 100 100 100 100 100 100 77.88 76.92 84.62 27.88 70.19 67.31 100 67.47 83.73
3 5 98.08 100 99.04 100 100 100 80.77 75.00 84.62 17.31 72.12 75.00 99.52 67.47 83.49

4 1 99.04 100 99.04 100 100 100 81.73 80.77 82.69 25.00 70.19 75.96 99.68 69.39 84.54
4 2 99.04 100 100 100 100 100 82.69 81.73 84.62 25.96 67.31 72.12 99.84 69.07 84.46
4 3 100 99.04 100 99.04 100 100 81.73 81.73 84.62 25.00 73.08 75.00 99.68 70.19 84.94
4 4 91.35 81.73 20.19 95.19 97.12 94.23 4.81 5.77 3.85 0.00 0.00 14.42 79.97 4.81 42.39
4 5 100 100 100 100 100 100 82.69 83.65 86.54 35.58 72.12 82.69 100 73.88 86.94

5 1 99.04 100 89.42 100 100 100 84.62 83.65 88.46 37.50 72.12 75.96 98.08 73.72 85.90
5 2 99.04 100 98.08 100 99.04 100 88.46 85.58 90.38 47.12 67.31 81.73 99.36 76.76 88.06
5 3 100 98.08 29.81 98.08 100 98.08 58.65 50.00 31.73 17.31 31.73 54.81 87.34 40.71 64.02
5 4 45.19 48.08 14.42 20.19 74.04 70.19 1.92 0.00 1.92 2.88 0.00 5.77 45.35 2.08 23.72
5 5 97.12 100 8.65 96.15 100 98.08 72.12 75.00 54.81 23.08 58.65 67.31 83.33 58.49 70.91

Prompt: English Monolingual Direct Prompting

You are given a multiple-choice question with four answer options: A, B, C, and D. Please
choose the best answer based on your knowledge and reasoning ability.
Response guidelines:

• Your task is to carefully read the question and all answer choices, then determine
which option best answers the question based on your knowledge and reasoning.

• Please consider the meaning of each choice and eliminate incorrect or less appro-
priate options using logical deduction or factual recall. If multiple answers seem
plausible, select the one that is most accurate or comprehensive.

• Pay close attention to subtle distinctions in wording or concepts, as some questions
may require domain-specific understanding or nuanced interpretation.

• After evaluating all options, select the single best answer and respond with only the
corresponding letter: A, B, C, or D.

• Think step-by-step in the language of the question inside <thinking>< /thinking>
and give your final answer in the language of the question inside <answer><
/answer>.

Question: {question}
Answer choices: {choices}
<thinking>
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Prompt: French Monolingual Direct Prompting

Vous allez recevoir une question à choix multiples avec quatre options de réponse : A, B,
C et D. Veuillez choisir la meilleure réponse en vous basant sur vos connaissances et votre
capacité de raisonnement.
Directives de réponse :

• Votre tâche consiste à lire attentivement la question et toutes les options, puis à
déterminer laquelle répond le mieux en fonction de vos connaissances et de votre
raisonnement.

• Prenez en compte le sens de chaque option et éliminez celles qui sont incorrectes
ou moins appropriées en utilisant la déduction logique ou des faits connus. Si
plusieurs réponses semblent plausibles, choisissez celle qui est la plus précise ou
la plus complète.

• Faites attention aux distinctions subtiles dans le libellé ou les concepts, car certaines
questions peuvent nécessiter une compréhension spécialisée ou une interprétation
nuancée.

• Après avoir évalué toutes les options, sélectionnez une seule réponse et répondez
uniquement avec la lettre correspondante : A, B, C ou D.

• Réfléchis étape par étape dans la langue de la question à l’intérieur de <thinking><
/thinking> et donne ta réponse finale dans la langue de la question à l’intérieur de
<answer></answer>.

Question : {question}
Choix de réponses : {choices}
<thinking>

Prompt: Spanish Monolingual Direct Prompting

Se te presenta una pregunta de opción múltiple con cuatro posibles respuestas: A, B, C
y D. Por favor, elige la mejor respuesta basándote en tus conocimientos y capacidad de
razonamiento.
Instrucciones para la respuesta:

• Tu tarea es leer cuidadosamente la pregunta y todas las opciones, y determinar cuál
responde mejor basándote en tus conocimientos y razonamiento.

• Considera el significado de cada opción y elimina aquellas incorrectas o menos
apropiadas utilizando la deducción lógica o el conocimiento factual. Si varias op-
ciones parecen plausibles, selecciona la más precisa o completa.

• Presta especial atención a las diferencias sutiles en el lenguaje o los conceptos,
ya que algunas preguntas pueden requerir comprensión especı́fica del dominio o
interpretación matizada.

• Después de evaluar todas las opciones, selecciona una sola respuesta y responde
únicamente con la letra correspondiente: A, B, C o D.

• Piensa paso a paso en el idioma de la pregunta dentro de <thinking>< /thinking>
y da tu respuesta final en el idioma de la pregunta dentro de <answer>< /answer>.

Pregunta: {question}
Opciones de respuesta: {choices}
<thinking>

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt: Japanese Monolingual Direct Prompting

多肢選択式の問題で、A、B、C、Dの4つの選択肢から回答してください。
あなたの知識と推論能力に基づき、最適な回答を選択してください。
回答ガイドライン：

• 質問とすべての選択肢をよく読み、あなたの知識と推論能力に基づき、ど
の選択肢が質問に最も適しているかを判断してください。

• 各選択肢の意味を考慮し、論理的推論または事実の想起を用いて、誤った
選択肢や適切でない選択肢を除外してください。複数の回答が考えられる
場合は、最も正確または包括的な選択肢を選択してください。

• 質問によっては、分野特有の理解や微妙な解釈が求められる場合があるの
で、言葉遣いや概念の微妙な違いにも注意してください。

• すべての選択肢を評価した後、最適な回答を1つ選び、対応する文字
（A、B、C、またはD）のみで回答してください。

• <thinking>< /thinking> 内の質問の言語で段階的に考え、<answer><
/answer>内の質問の言語で最終的な回答を記入してください。

質問: {question}
回答の選択肢: {choices}
<thinking>
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Prompt: Arabic Monolingual Direct Prompting
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Prompt: Hindi Monolingual Direct Prompting

aapako ek bahuvikalpiiya prashna diyaa gayaa
hai jisake caar uttar vikalp hai।m: A, B, C, aura
D। kripayaa apane j naana aura tarka ke aadhaar
par sabse upayukt uttar chune।m।
uttar dishaanirdesh:

• sabse pahale prashna aura sabhii uttar
vikalp dhyaan se pa।dhe।m। phir soche।m ki
aapakaa j naana aura tarka kis vikalp ko
sabse sahi banaate hai।m।

• har vikalp kaa matlab samajhe।m aura tarka
yaa jaanakaarii kaa istemaal karake galat
yaa kam upayukt vikalp ha।taa dein। agar kai
vikalp sahi lage।m, to uname।m se sabse sa।tiik
yaa sabse puuraa uttar chune।m।

• shabdon yaa vichaaron ke chho।Te-chho।Te pharka
par dhyaan dein, kyonkii kuchh savaalon me।m
khaas jaanakaarii yaa naazuk vyaakhyaa
caahiye ho sakatii hai।

• sabhii vikalpon par vichaar karane ke baad
sabse sahi vikalp chune।m aura keval samband-
hit ak।sar likhe।m: A, B, C, yaa D।

• <thinking>< /thinking> me।m usii bhaashaa me।m
kadam-dara-kadam apanaa tarka likhe।m aura
<answer>< /answer > me।m usii bhaashaa me।m
apanaa aakhirii uttar dein।

prashna: {question}
uttar vikalp: {choices}
<thinking>
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Prompt: English-French Code-Switched Prompting

You are given a multiple-choice question with four answer options: A, B, C, and D. Please
choose the best answer based on your knowledge and reasoning ability.
Response guidelines:

• Your task is to carefully read the question and all answer choices, then determine
which option best answers the question based on your knowledge and reasoning.

• Please consider the meaning of each choice and eliminate incorrect or less appro-
priate options using logical deduction or factual recall. If multiple answers seem
plausible, select the one that is most accurate or comprehensive.

• Pay close attention to subtle distinctions in wording or concepts, as some questions
may require domain-specific understanding or nuanced interpretation.

• After evaluating all options, select the single best answer and respond with only the
corresponding letter: A, B, C, or D.

• Think step-by-step in the language of the question inside <thinking>< /thinking>
and give your final answer in the language of the question inside <answer><
/answer>.

Question: Lequel des éléments suivants est la voie symplastique qui permet le déplacement
du saccharose du site de photosynthèse des cellules du mésophylle vers le phloème ?
Answer choices:

• A. Les fibres, le parenchyme du phloème, la cellule compagne, le tube criblé
• B. Le parenchyme du phloème, les fibres, la gaine périvasculaire, les trachéides
• C. Les cellules compagnes, le parenchyme du phloème, les fibres, le tube criblé
• D. La gaine périvasculaire, le parenchyme du phloème, la cellule compagne, le tube

criblé
<thinking>
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Prompt: English-Spanish Code-Switched Prompting

You are given a multiple-choice question with four answer options: A, B, C, and D. Please
choose the best answer based on your knowledge and reasoning ability.
Response guidelines:

• Your task is to carefully read the question and all answer choices, then determine
which option best answers the question based on your knowledge and reasoning.

• Please consider the meaning of each choice and eliminate incorrect or less appro-
priate options using logical deduction or factual recall. If multiple answers seem
plausible, select the one that is most accurate or comprehensive.

• Pay close attention to subtle distinctions in wording or concepts, as some questions
may require domain-specific understanding or nuanced interpretation.

• After evaluating all options, select the single best answer and respond with only the
corresponding letter: A, B, C, or D.

• Think step-by-step in the language of the question inside <thinking>< /thinking>
and give your final answer in the language of the question inside <answer><
/answer>.

Question: ¿Cuál de las siguientes es la vı́a simplástica para el movimiento de la sacarosa
desde el lugar de la fotosı́ntesis en las células del mesófilo hasta el floema?
Answer choices:

• A. Fibras, parénquima del floema, célula acompañante, tubo criboso.
• B. Parénquima del floema, fibras, haz vascular, traqueidas.
• C. células acompañantes, parénquima del floema, fibras, tubo criboso
• D. Haz vascular, parénquima del floema, célula acompañante, tubo criboso.

<thinking>

Prompt: French Prompting with English-Distractor

Lequel des éléments suivants est la voie symplastique qui permet le déplacement du saccha-
rose du site de photosynthèse des cellules du mésophylle vers le phloème ?
Choix de réponses :

• A. Fibers, phloem parenchyma, companion cell, sieve tube
• B. Phloem parenchyma, fibers, bundle sheath, tracheids
• C. La gaine périvasculaire, le parenchyme du phloème, la cellule compagne, le tube

criblé
• D. Companion cells, phloem parenchyma, fibers, sieve tube

Répondez en français. Réfléchissez étape par étape dans <thinking>< /thinking> et don-
nez votre réponse finale dans <answer>< /answer>.
<thinking>
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Prompt: Spanish Prompting with English-Distractor

¿Cuál de las siguientes es la vı́a simplástica para el movimiento de la sacarosa desde el lugar
de la fotosı́ntesis en las células del mesófilo hasta el floema?
Opciones de respuesta:

• A. Haz vascular, parénquima del floema, célula acompañante, tubo criboso.
• B. Fibers, phloem parenchyma, companion cell, sieve tube
• C. Phloem parenchyma, fibers, bundle sheath, tracheids
• D. Companion cells, phloem parenchyma, fibers, sieve tube

Responde en español. Piensa paso a paso dentro de <thinking>< /thinking> y da tu re-
spuesta final en <answer>< /answer>.
<thinking>

Prompt: French Prompting with English Bilingual Answer

Lequel des éléments suivants est la voie symplastique qui permet le déplacement du saccha-
rose du site de photosynthèse des cellules du mésophylle vers le phloème ?
Choix de réponses :

• A. Bundle sheath, phloem parenchyma, companion cell, sieve tube
• B. Le parenchyme du phloème, les fibres, la gaine périvasculaire, les trachéides
• C. Les cellules compagnes, le parenchyme du phloème, les fibres, le tube criblé
• D. La gaine périvasculaire, le parenchyme du phloème, la cellule compagne, le tube

criblé
Répondez en français. Réfléchissez étape par étape dans <thinking>< /thinking> et don-
nez votre réponse finale dans <answer>< /answer>.
<thinking>

Prompt: Spanish Prompting with English Bilingual Answer

¿Cuál de las siguientes es la vı́a simplástica para el movimiento de la sacarosa desde el lugar
de la fotosı́ntesis en las células del mesófilo hasta el floema?
Opciones de respuesta:

• A. Fibras, parénquima del floema, célula acompañante, tubo criboso.
• B. Parénquima del floema, fibras, haz vascular, traqueidas.
• C. Bundle sheath, phloem parenchyma, companion cell, sieve tube.
• D. Haz vascular, parénquima del floema, célula acompañante, tubo criboso.

Responde en español. Piensa paso a paso dentro de <thinking>< /thinking> y da tu re-
spuesta final en <answer>< /answer>.
<thinking>
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