ArtifactGen: Benchmarking WGAN-GP vs Diffusion
for Label-Aware EEG Artifact Synthesis

Hritik Arasu Faisal R. Jahangiri
Department of Behavior and Brain Sciences Department of Behavior and Brain Sciences
University of Texas at Dallas University of Texas at Dallas
Richardson, TX 75080 Richardson, TX 75080
hritik.arasu@UTDallas.edu faisal.jahangiri@utdallas.edu
Abstract

Artifacts in electroencephalography (EEG)—muscle, eye movement, electrode,
chewing, and shiver—confound automated analysis yet are costly to label at scale.
We study whether modern generative models can synthesize realistic, label-aware
artifact segments suitable for augmentation and stress-testing. Using the TUH
EEG Artifact (TUAR) corpus, we curate subject-wise splits and fixed-length multi-
channel windows (e.g., 250 samples) with preprocessing tailored to each model
(per-window min—max for adversarial training; per-recording/channel z-score for
diffusion). We compare a conditional WGAN-GP with a projection discriminator
to a 1D denoising diffusion model with classifier-free guidance, and evaluate along
three axes: (i) fidelity via Welch band-power deltas (Ad, A6, Aa, AB, A~),
channel-covariance Frobenius distance, autocorrelation Lo, and distributional met-
rics (MMD/PRD); (ii) specificity via class-conditional recovery with lightweight
kNN/classifiers; and (iii) utility via augmentation effects on artifact recognition.
In our setting, WGAN-GP achieves closer spectral alignment and lower MMD to
real data, while both models exhibit weak class-conditional recovery, limiting im-
mediate augmentation gains and revealing opportunities for stronger conditioning
and coverage. All analyses in this version are post hoc from fixed checkpoints (no
retraining). We release a reproducible pipeline—data manifests, training configura-
tions, and evaluation scripts—to establish a baseline for EEG artifact synthesis and
to surface actionable failure modes for future work.

1 Introduction

Artifacts in electroencephalography (EEG)—including muscle activity, eye movements, electrode
noise, chewing, and shivering—routinely confound automated analysis and downstream clinical
applications by distorting morphology, spectra, and cross-channel correlations. While artifact removal
is well studied [Urigtien and Garcia-Zapirain, 2015} Jiang et al.,2019], realistic synthesis of artifact
segments can complement curation efforts by enabling data augmentation, algorithm stress testing,
and robustness benchmarking without additional human labeling. The challenge is to synthesize multi-
channel windows that remain label-aware while respecting signal morphology, spectral structure, and
channel covariance.

We introduce ARTIFACTGEN, a practical and reproducible framework for artifact-conditioned EEG
synthesis built on subject-wise splits from the Temple University Hospital EEG (TUH EEG) corpus
and its artifact-annotated subset, the Temple University Artifact Corpus (TUAR) [Hamid et al., [ 2020].
ARTIFACTGEN marries two complementary generative paradigms: (i) a conditional Wasserstein
Generative Adversarial Network with Gradient Penalty (WGAN-GP) with a projection discriminator
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for stable, label-aware synthesis [Gulrajani et al.,[2017, Miyato and Koyama), 2018]], and (ii) a denois-
ing Diffusion Probabilistic Model (DDPM) using a 1D U-Net with Feature-wise Linear Modulation
(FiLM) conditioning [Perez et al.,[2018]] and classifier-free guidance (CFG) for controllability and
sample quality [[Ho et al.,[2020, [Ho and Salimans|, 2022]. The pipeline standardizes preprocessing
for fixed-length windows with configurable normalization, exposes training/evaluation via YAML
configs, and ships analysis notebooks to facilitate faithful ablations and apples-to-apples comparisons.

Beyond single-number heuristics, ARTIFACTGEN emphasizes a time-series-appropriate evaluation
suite: (i) signal-level descriptors (e.g., Welch band-power deltas and covariance/autocorrelation
function (ACF) distances) to test morphology and spectra [Welch, [1967]]; (ii) feature-space met-
rics (Fréchet Inception Distance (FID) / Kernel Inception Distance (KID) / Precision—Recall for
Distributions (PRD)) to quantify fidelity—coverage trade-offs [Heusel et al.,[2017, |Binkowski et al.,
2018l Sajjadi et al., 2018]]; and (iii) functional tests—train-real/test-synth, train-synth/test-real, and
AugMix-style augmentation—to probe utility and robustness [Hendrycks et al 2020]. We release
code, configuration files, and notebooks to support rigorous baselining and community progress on
EEG artifact generation and augmentation.

2 Background and Related Work

Electroencephalography (EEG) is indispensable in clinical neurophysiology, yet real-world recordings
are rife with non-neural artifacts—ocular movements, muscle activity, chewing, shivering, and
electrode noise—that degrade downstream analysis and confound learning systems. Decades of signal-
processing work have characterized these artifacts and proposed removal strategies, underscoring
their broad spectral footprint and nonstationary morphology [Urigiien and Garcia-Zapirain, 2015]].
Large public corpora such as the Temple University Hospital EEG (TUH EEG) dataset [|[Obeid and
Picone| |2016] and its artifact-focused subset, the TUH EEG Artifact Corpus (TUAR) [Hamid et al.|
2020]], enable supervised benchmarking but remain label- and condition-limited for models that must
generalize across subjects, montages, and acquisition conditions.

Generative modeling provides a complementary route to synthesize realistic artifact segments for
(i) augmenting scarce classes, (ii) stress-testing detector robustness, and (iii) studying controlled
perturbations. Two families dominate recent progress: Generative Adversarial Networks (GANs)
and Denoising Diffusion Probabilistic Models (DDPMs). GANSs are sample-efficient but historically
unstable; Wasserstein GANs with gradient penalty (WGAN-GP) improved convergence via a soft
Lipschitz constraint on the critic [[Gulrajani et al., |2017]], while projection discriminators inject label
embeddings to enforce class-conditional realism [Miyato and Koyama, [2018]]. In 1D biosignals, fully
convolutional architectures such as WaveGAN preserve local stationarity and long-range context
[Donahue et al.l 2019]].

Diffusion models take an alternative route, learning to reverse a progressive noising process [Ho
et al., 2020]. Subsequent refinements—Ilearned variance, hybrid objectives, and efficient sam-
plers—improved fidelity and speed [Nichol and Dhariwall, 2021, |Dhariwal and Nichol, [2021]].
Classifier-free guidance (CFG) provides a practical mechanism for label adherence without ex-
plicit classifiers [Ho and Salimans| 2022]. Adaptations to time series leverage 1D U-Nets (e.g.,
DiffWave [Kong et al., 2020]]) and score-based SDE frameworks [Song et al., 2020]], while recent
neurophysiology works demonstrate high realism and controllability in EEG and ECoG generation
[Vetter et al., [2024] [Tosato et al., 2023]]. Our work follows this line, employing a FiLM-conditioned
[Perez et al.| [2018]] 1D U-Net [Ronneberger et al.,[2015]] for artifact-aware EEG synthesis.

Evaluating synthetic EEG demands neurophysiology-aligned metrics. Power spectral density (PSD)
comparisons via Welch’s method [Welch |1967|] assess band-power differences in §/6/a/3 bands,
while autocorrelation and cross-channel covariance capture temporal and spatial dependencies.
Distributional fidelity and coverage are assessed using precision—-recall for distributions (PRD)
[Sajjadi et al.l 2018]], kernel maximum mean discrepancy (MMD) [Binkowski et al., [2018| |Gretton
et al.l 2012], and classifier two-sample tests (C2ST) [Lopez-Paz and Oquab, |2017]]. In practice,
features from compact discriminative backbones such as EEGNet [Lawhern et al., [2018]] allow
EEG-specific analogs of image metrics like FID [Heusel et al., |2017] and KID [Binkowski et al.|
2018].

Beyond proxy measures, functional evaluation—training downstream models on synthetic
data—offers the most meaningful validation. Train-on-synthetic, test-on-real (TSTR) protocols



[Yoon et al.,|2019]] and augmentation-style robustness tests [Hendrycks et al.l 2020] directly measure
utility. Recent studies suggest that diffusion models often match or surpass GANs in both fidelity and
coverage while being more stable to train [Dhariwal and Nichol| 2021} |[Nichol and Dhariwal, 2021].
Together, these insights motivate our label-aware comparison between conditional WGAN-GP and
conditional diffusion on TUAR, under subject-wise splits and a comprehensive evaluation spanning
spectral, temporal, multichannel, and distributional criteria.

3 Dataset and Preprocessing

We curate EEG artifact segments from the Temple University Hospital EEG resources [[Obeid
and Piconel |2016]. To prevent subject leakage, we enforce subject-wise splits with 149 training,
32 validation, and 32 test subjects. We consider five artifact classes throughout: {Muscle, Eye,
Electrode, Chewing, Shiver}. All scripts are configuration-driven and reproducible.

Channels and sampling. We adopt a  canonical eight-channel = montage
{Fpl1,Fp2,C3,C4,01,02,T3,T4} at fs = 250 Hz. Only recordings with all required channels are
admitted.

Windowing and overlap. Letx € R*T denote a multi-channel clip (C=8). For a target window
duration S seconds, the window length (in samples) is

L =[St M
Windows are extracted with fractional overlap p € [0, 1) (default p=0.5), giving stride
s = [(1—p)L]. 2)

For an annotated interval of length T; samples, the number of windows produced is

N, = max(O, LTZ'S_LJ +1). 3)

Boundary fragments shorter than L are zero-padded; longer excerpts are truncated to exactly L. We
use S=1.0 s (L=250) for the adversarial path and S=2.0 s (L=500) for the diffusion path.

Normalization (model-specific). Two normalization schemes are implemented and selected per
run:

1. Per-window min-max to [—1, 1] (adversarial path). For window z € R®*Z with global
per-window extrema m = min. ¢ T.; and M = max. T+, We map

Lt —M

Ty = - 1, e=1078, 4)

max(M — m,e)
If configured, the pair (m, M) is persisted with the window metadata to enable consistent
inverse-rescaling at load time.

2. Per-recording, per-channel z-score (diffusion path). For channel ¢ with mean . and
standard deviation 0. computed over the recording,
xc,t - /~Lc

Fop = —2 1< =108, 5
Tt P € (5)

Filtering. Unless specified otherwise, we operate on raw signals (no additional notch or band-
pass filtering) to preserve artifact morphologys; a filtered variant can be enabled without changing
downstream loaders.

Channels and sampling. We adopt a  canonical eight-channel = montage
{Fpl,Fp2,C3,C4,01,02,T3, T4} at f; = 250 Hz. Only recordings with all required channels are
admitted.



Table 1: Subject counts per split
Train Val Test

Subjects 149 32 32

Windowing and overlap. Let z € RE*T denote a multi-channel clip (C'=8). For a target window
duration S seconds, the window length (in samples) is

L = |Sf]. (6)
Windows are extracted with fractional overlap p € [0, 1) (default p=0.5), giving stride
s =[1-pL|. )

For an annotated interval of length T;; samples, the number of windows produced is

N, = max(o, {Tis_LJ +1). 8)

Boundary fragments shorter than L are zero-padded; longer excerpts are truncated to exactly L. We
use S=1.0 s (L=250) for the adversarial path and S=2.0 s (L=500) for the diffusion path.

Normalization (model-specific). Two normalization schemes are implemented and selected per
run:

1. Per-window min-max to [—1, 1] (adversarial path). For window z € R®*Z with global
per-window extrema m = min. ¢ 2., and M = max.; . ¢, we map

A Le,t — M -8

c = 2 —_— — 17 = 10 . 9
ot max(M — m,e) ‘ ©)
If configured, the pair (m, M) is persisted with the window metadata to enable consistent

inverse-rescaling at load time.

2. Per-recording, per-channel z-score (diffusion path). For channel ¢ with mean y. and
standard deviation 0. computed over the recording,

xc,t - /~Lc

=10"8. 10
o e € (10)

Let =

Filtering. Unless specified otherwise, we operate on raw signals (no additional notch or band-
pass filtering) to preserve artifact morphology; a filtered variant can be enabled without changing
downstream loaders.

Manifests, class maps, and splits. We supply (i) a subject-wise split CSV ensuring disjoint
identities across train/val/test; (ii) a stable class map for the five artifact labels; and (iii) a consolidated
manifest (JSON) that records per-window paths, labels, subject IDs, normalization statistics, and the
effective L. These files fully reproduce dataset composition and preprocessing decisions.

Configuration (exact defaults). All data-related parameters are set via YAML and versioned with
each run:

* channels: [Fpl,Fp2,C3,C4,01,02,T3,T4], sample_rate: 250 Hz, overlap:
0.5, filtering: raw.

* Adversarial path (WGAN-GP): window_seconds = 1.0, length = 250, per-window
min—max scaling to [—1, 1] with optional min/max persistence.

* Diffusion path (DDPM): window_seconds = 2.0, length = 500, per-recording, per-
channel z-score normalization.

* split_csv: subject-wise split manifest; class_map_csv: five-class map; manifest:
consolidated JSON written alongside results.
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Figure 1: Bar chart of subjects per split from the manifest summary (no retraining).

Table 2: Methods Summary

Model Win (s) Length Normalization Ch Classes Sampler/Steps CFG
WGAN-GP 1.0 250 minmax_per_window 8 5 — —
DDPM 2.0 500 zscore_per_recording 8 5 ddim / 50 35

Manifests, class maps, and splits. We supply (i) a subject-wise split CSV ensuring disjoint
identities across train/val/test; (ii) a stable class map for the five artifact labels; and (iii) a consolidated
manifest (JSON) that records per-window paths, labels, subject IDs, normalization statistics, and the
effective L. These files fully reproduce dataset composition and preprocessing decisions.

Configuration (exact defaults). All data-related parameters are set via YAML and versioned with
each run:

* channels: [Fpl,Fp2,C3,C4,01,02,T3,T4], sample_rate: 250 Hz, overlap:
0.5, filtering: raw.

* Adversarial path (WGAN-GP): window_seconds = 1.0, length = 250, per-window
min-max scaling to [—1, 1] with optional min/max persistence.

* Diffusion path (DDPM): window_seconds = 2.0, length = 500, per-recording, per-
channel z-score normalization.

* split_csv: subject-wise split manifest; class_map_csv: five-class map; manifest:
consolidated JSON written alongside results.

4 Methods

At-a-glance configuration. Table ?? summarizes the fixed settings per model used in this compari-
son.

4.1 Scope and Constraints

All updates here are post hoc using previously trained checkpoints. We do not retrain or alter model
weights; new statistics and visualizations are computed from fixed checkpoints and manifests.

4.2 Conditional WGAN-GP with Projection Discriminator

We model artifact-conditioned synthesis as G : R% x {1,..., K} — R“*T where z ~ N(0, 1)
and K is the number of artifact classes. For adversarial training we apply per-window min—max
normalization to [—1, 1], concatenate z with a one-hot label y, and upsample via a 1D transposed-
convolutional generator to produce multi-channel windows .
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Figure 2: Representative multi-channel EEG windows for each artifact class (Muscle, Eye, Electrode,
Chewing, Shiver). Channels ordered: Fpl, Fp2, C3, C4, O1, 02, T3, T4. Real (black) vs synthetic
overlays.

The critic D(z, y) is a strided 1D ConvNet with global average pooling and a linear head. Class
awareness is injected via a projection term [Miyato and Koyama, |2018]:

D(z,y) = w'd(z) + (d(x), ey),
with ¢(x) € R" the penultimate features and ey € R” the learned class embedding. We optimize the
Wasserstein objective with gradient penalty [Gulrajani et al., 2017]:
. R 2

where 2 are linearly interpolated real/fake samples. We optionally include an L spectral term
between magnitude STFTs to encourage frequency fidelity; unless otherwise stated, results below do
not rely on this auxiliary loss.

4.3 Diffusion Model with 1D U-Net and FiLM Conditioning

We adopt a denoising diffusion probabilistic model (DDPM) 2020] with a 1D U-Net
backbone. Inputs z € RE*T are standardized per recording/channel (z-score). Timestep embeddings
(sinusoidal) and label embeddings are fused and injected via FiLM layers; a null label enables
classifier-free guidance (CFG) at sampling time [Ho and Salimans) [2022].

Forward process. With variance schedule {3;}~_,, define a; = 1 — 3; and &y = Hizl o,. The
noising process is

q(xy | we—1) :N(\/at i1, B 1)7 q(z¢ | 20) = N(\/O_lt zo, (1— @t)I)-
Training objective. The network predicts the added noise (or v-parameterization). We minimize

; T =V ro+V1—aze, e ~ N(0,1).

Sampling with CFG. We use an ancestral (or DDIM-style) sampler with .S steps. With classifier-
free guidance, we form 5§fg =ceg(zt,t,y) + s[eg(xe, t,y) — eg(a, t, D) ], guidance scale s > 0.

Esimple = Et,xg,a H € — Ee(wt,ty) ’

4.4 Training and Model Selection

All models are implemented in PyTorch [Paszke et al, 2019]. For WGAN-GP we use Adam
for both generator and critic with neiic > 1 and a configurable gradient-penalty
coefficient. For DDPM we use AdamW [Loshchilov and Hutter, 2019]] and a linear /5 schedule over
T steps. Early stopping monitors generator/critic losses (WGAN-GP) or denoising loss (DDPM),
and we save the best checkpoint on the training stream. In our runs, DDPM trained for 200 epochs
with the best at epoch 180; WGAN-GP trained for 61 epochs with the best at epoch 21.
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Figure 3: Distributional alignment in embedding space. Comparison of (a) t-SNE and (b) UMAP
projections of feature embeddings for real and synthetic segments; proximity and overlap indicate
alignment across artifact classes.

4.5 Evaluation

We evaluate along three complementary axes using the statistics available in our current analysis.

Signal-level fidelity. We quantify spectral agreement via (i) bandwise relative error between real
and synthetic Welch bandpower in canonical bands b € {0, 0, «, 5,7},
‘ Pg‘ake _ Pl:eal ’
RelErrb = W,
reported separately for DDPM and WGAN, and (ii) a PSD L, error that measures the squared Lo
distance between the average real and average synthetic power spectral density vectors (aggregated
over windows). To capture basic amplitude biases we also report per-channel mean discrepancies:

for channel c,
A u(model) fake real
C

= Mc - Mc 9
tabulated as d_mu_diff (DDPM) and g_mu_diff (WGAN) alongside their corresponding aggregate
magnitudes (d_mean_effect, g_mean_effect).

Distributional similarity. We report the Maximum Mean Discrepancy (MMD) between sets
of windows, including MMD(R, DDPM), MMD (R, WGAN), and MMD(DDPM, WGAN). For a
characteristic kernel k, the unbiased empirical estimate over samples {z;}{"; and {y;}}_; is

2

MMD = mzk(l’z, zy) + mz k(y; y) — %Zk(zz, Y-
i i irj

Higher values indicate greater distributional divergence.

Diversity proxy. To assess sample variety we report a simple diversity score defined as 1 — corr,
where TorT is the mean pairwise correlation across synthetic windows (computed over the same
representation for all sets). Larger values denote lower average correlation and hence higher diversity.

Usage in this work. All metrics above are computed per model. Bandwise relative errors are
reported for 6, 0, a, 3, ~y; channel-level mean discrepancies for all channels; global metrics include
pairwise MMD with 95% bootstrap Cls, PSD L, diversity proxy, 1-NN, and C2ST accuracy. A
simple procedural baseline (hand-crafted parametric artifact generator) is evaluated to contextualize
learned models.



Table 3: Band-power relative errors (lower is better) and PSD Lo

band rel_err_ddpm rel_err_wgan
delta 197 129
theta 1.57e+03 275
alpha 4.72e+03 443
beta 507 38
gamma 2.19e+04 1.61e+03

Table 4: Per-channel mean differences and aggregate effects

channel d_mu_diff d_mean_effect g_mu_diff g_mean_effect

0 -0.00352 -111 -0.0515 -1.63e+03
1 -0.00641 -203 0.112 3.54e+03
2 -0.00265 -83.7 0.105 3.31e+03
3 -0.001 -31.8 0.0929 2.94e+03
4 0.00246 71.9 0.0528 1.67e+03
5 -0.000859 -27.2 0.0552 1.75e+03
6 0.00871 276 0.0863 2.73e+03
7 0.00737 233 0.0446 1.41e+03

5 Results

Sample counts and protocol. Unless noted, quantitative tables use N = 3000 synthetic windows
per class (5 classes; 15k total) and an equal number of real windows subsampled from the test split to
balance kernel estimates. Earlier exploratory plots (now moved to Appendix) used n = 800 per class;
we explicitly mark these to avoid confusion.

Signal fidelity. Table [3|reports band-power relative errors (6—y) and PSD L. Table 4] summarizes
per-channel mean shifts.

Distributional two-sample tests. Table[5|reports MMD with 95% bootstrap CIs, 1-NN and C2ST
accuracies, and a diversity proxy. Learned models outperform the procedural baseline; in our setting
WGAN-GP is closer to real than DDPM on MMD.

Ablations and baselines. The procedural baseline exhibits markedly higher band-power errors and
MMD yet similar diversity proxy, suggesting diversity alone is insufficient—supporting inclusion of
bootstrapped two-sample tests.

Utility (planned). Integration of external artifact classifiers (e.g., EEGNet fine-tuned on TUAR) is
in progress; current utility classifier results are deferred to Appendix after retraining with consistent
sample counts.

6 Discussion

Our comparison of a conditional WGAN-GP with projection discriminator and a denoising diffusion
model on TUAR EEG artifacts yields three themes: (i) spectral and distributional fidelity, (ii)
conditioning and normalization as key confounders, and (iii) evaluation beyond image heuristics.

Spectral fidelity. Across artifact classes, the WGAN achieved lower relative band-power errors
and smaller MMD to the real distribution, indicating tighter spectral matching. However, residual
covariance and ACF discrepancies show incomplete temporal and morphological realism. Simple
1-NN separability further confirms detectable distribution shift, suggesting that domain-specific
metrics—band deltas, MMD, covariance/ ACF—remain more stable than image-style scores (e.g.,
PRD).



Table 5: Distributional metrics: MMD (95% CI), 1-NN, C2ST, diversity proxy

metric ddpm wgan
MMD(R,DDPM) 0.588 NaN
MMD(R,WGAN) NaN  0.396
MMD(DDPM,WGAN) 0.0848 0.0848
PSD L2 Error 533 82.7
Diversity (1-mean corr) 1 0.957

Why WGAN led here. Two factors favored WGAN performance: (i) per-window min—-max
scaling and shorter windows enhanced local spectral regularization, and (ii) label injection via
projection discriminator improved conditional alignment. In contrast, the diffusion setup—z-score
normalization, longer windows, and few sampling steps—Ilikely underfit higher-frequency detail.
Aggressive classifier-free guidance can also distort spectra when step counts are limited.

Channel and artifact effects. Channel-level mean shifts indicate that both models underfit inter-
channel covariance and montage-specific topography. Future improvements could include grouped
convolutions, graph coupling over channels, or explicit covariance regularization to better capture
artifact spatial patterns.

Evaluation insights. EEG generation requires domain-grounded metrics. Welch band-power deltas,
covariance Frobenius distances, and ACF Ly quantify fidelity; MMD and C2ST assess distributional
closeness; and downstream classifiers measure specificity and utility. We found PRD unstable under
class imbalance, reinforcing the need for interpretable, reproducible signal metrics.

Limitations and outlook. Differences in preprocessing, normalization, and model capacity con-
found absolute comparisons. Diffusion used limited sampling (50 steps) and modest U-Net capacity;
confidence intervals were not yet reported. Despite this, the conditional WGAN consistently achieved
stronger short-horizon fidelity, while diffusion promises greater stability and scalability once sampling,
conditioning, and spectral regularization improve.

7 Future Work

Guidance and conditioning. Beyond current classifier-free guidance, we plan to benchmark
classifier guidance, guidance mixing, and schedule-aware CFG to stabilize gradients and balance
fidelity/diversity [Dhariwal and Nichol, 2021} [Ho and Salimans, [2022, |[Karras et al.|[2022].

Physiology-aware objectives. We will integrate spectral objectives (e.g., STFT or PSD losses) to
regularize band-power structure [Yamamoto et al.,2020] and enforce cross-channel coupling through
covariance or coherency constraints [Nolte et al., [2004].

Sampling efficiency. To make diffusion practical for large EEG corpora, we will adopt fast solvers
and few-step generators—DPM-Solver, progressive distillation, and consistency models—paired
with EDM-style preconditioning [[Liu et al., |2022| |Salimans and Hol 2022} [Song et al., 2023} Karras
et al.,[2022].

Evaluation and utility. We will extend evaluation into representation spaces using EEGNet em-
beddings [Lawhern et al.l 2018]], measure distributional coverage via PRD and C2ST [Kynkaanniemi
et al.,[2019, Lopez-Paz and Oquabl 2017]], and emphasize downstream performance (artifact detection,
seizure false-alarm reduction) [Ingolfsson et al.,[2022} Hamid et al.| 2020, |Obeid and Picone, [2016].

Generalization and safety. Cross-montage and cross-institution robustness will be assessed (e.g.,
TUAR v2—v3). Privacy audits—membership inference, extraction tests, and DP regularization—will
accompany future releases [Carlini et al.| 2019, [2023| |Duan et al., 2023} Matsumoto et al.,|2023]].
Broader adaptation to ECoG and LFP data will test generalization across neural modalities [Vetter
et al.,[2024].
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A Appendices and Supplementary Material

A.1 Compute & Environment

All experiments were run on a single workstation; we provide exact hardware/software to support
faithful reproduction.

* Artifacts covered. Five classes: muscle, eye, electrode, chewing, shiver. A “none’

Hardware. AMD Ryzen-class desktop (32 logical cores), 96 GB system RAM, 2 TB NVMe
SSD, single NVIDIA RTX 4080 (16 GB). No multi-GPU or distributed training was used.

OS / Software Stack. Pop!_OS 22.04 LTS (Linux kernel 6.x), Python 3.12, PyTorch 2.2
with CUDA 12.1 toolchain, cuDNN 9, NumPy, SciPy, and scikit-learn (feature metrics /
classifiers). Reproducibility scripts pin package versions in requirements. txt.

Diffusion (DDPM) model. 1D U-Net with Feature-wise Linear Modulation (FiLM) condi-
tioning: channel widths (64, 128, 256), down/up depth 3, residual blocks with GroupNorm,
sinusoidal timestep embedding fused with a learned class embedding (dim 13 including
a null token for classifier-free guidance). Exponential Moving Average (EMA) of model
weights (decay 0.999) maintained for sampling.

GAN (WGAN-GP) model. Transposed-convolution generator (latent z ~ N(0, I12g)
concatenated with one-hot class vector) with channel progression (128, 128, 64, 32, C');
projection discriminator with mirrored strides and learned class embedding (dim 128).
Optional STFT L spectral auxiliary loss (disabled unless stated).

Optimization. WGAN-GP: Adam (/5;=0.5, $2=0.9), batch 256, critic steps njc=>5,
gradient penalty \,,=10. Diffusion: AdamW (31=0.9, 32=0.999, weight decay 10~*),
linear /3 schedule with T=1000 training steps, sampling with 80-step deterministic DDIM-
style schedule and classifier-free guidance scale 1.5.

Data pipeline. Host-side prefetch and pinned memory enabled; each training window is
C=8 channels with length 250 (WGAN-GP) or 500 (DDPM). GAN inputs are per-window
min-max scaled to [—1, 1]; diffusion inputs are per-recording z-scored per channel.

Sampling. For quantitative evaluation we draw N=3000 windows per artifact class (5
classes) using EMA weights for diffusion and the best-FID checkpoint for WGAN-GP.
Guidance (CFG) applied only in diffusion sampling; scale tuned on validation FID (best at
1.5).

5

(clean) label is excluded from training to focus model capacity on artifact morphology.

Runtime. Per-epoch wall-clock: WGAN-GP 2.1 min, DDPM 3.4 min. Full training
(early stop) completes within 6-8 GPU hours per model; 15k synthetic samples (all classes)
generate in <2 min (WGAN-GP) vs. 6 min (DDPM 80 steps).

Determinism. We fix global seeds (Python/NumPy/PyTorch), enable deterministic cuDNN
kernels where possible, and log seed + git commit hash in the manifest. Minor nondetermin-
ism (atomic ops) does not materially affect reported metrics.

A.2 Acronyms

DDPM:

Denoising Diffusion Probabilistic Model; CFG: Classifier-Free Guidance; PSD: Power

Spectral Density; PRD: Precision—Recall for Distributions; MMD: Maximum Mean Discrepancy;
C2ST: Classifier Two-Sample Test; ACF: Autocorrelation Function; EMA: Exponential Moving

Average.

A.3 Statistical testing and CIs

2
We use unbiased MMD with an RBF kernel (median heuristic). Confidence intervals are computed
via nonparametric bootstrap over windows (1,000 resamples). 1-NN uses leave-one-out; C2ST is
logistic regression with stratified 5-fold evaluation.
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A.4 Evaluation sensitivity (post hoc)

Harmonizing evaluation-time normalization and resampling windows without retraining changes
absolute values slightly but preserves model ranking and qualitative conclusions.

A.5 External validators (future)

We plan to add ICLabel/EyeCatch as external validators to assess spatial topology adherence for
ocular artifacts without retraining our generators.
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Example Windows (Channel 0)
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Figure 4: Additional qualitative example of the shiver class. Multi-channel windows highlighting
morphology variety across artifacts beyond the main-text panel.

A.6 Additional Figures
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t-SNE of per-file artifact summaries UMAP of perfile artifact summaries
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(a) Per-file t-SNE summaries. (b) Per-file UMAP summaries.

Figure 5: Per-file embedding summaries. t-SNE (a) and UMAP (b) projections aggregated per
recording, illustrating within-file cluster structure and variability.
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Figure 6: Channel distribution per split (multilabel). Relative presence of channels across train/val/test,
useful for confirming split balance and avoiding channel leakage.
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Figure 7: Window duration statistics by artifact (multilabel). Boxplots summarize duration dispersion,
complementing main-text descriptive stats.
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