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Abstract

Knowledge graphs (KGs) are vital for enabling knowledge reasoning across vari-
ous domains. Recent KG reasoning methods that integrate both global and local
information have achieved promising results. However, existing methods often
suffer from score over-smoothing, which blurs the distinction between correct and
incorrect answers and hinders reasoning effectiveness. To address this, we pro-
pose DuetGraph, a coarse-to-fine KG reasoning mechanism with dual-pathway
global-local fusion. DuetGraph tackles over-smoothing by segregating—rather
than stacking—the processing of local (via message passing) and global (via atten-
tion) information into two distinct pathways, preventing mutual interference and
preserving representational discrimination. In addition, DuetGraph introduces a
coarse-to-fine optimization, which partitions entities into high- and low-score sub-
sets. This strategy narrows the candidate space and sharpens the score gap be-
tween the two subsets, which alleviates over-smoothing and enhances inference
quality. Extensive experiments on various datasets demonstrate that DuetGraph
achieves state-of-the-art (SOTA) performance, with up to an 8.7% improvement in
reasoning quality and a 1.8× acceleration in training efficiency. Our code is avail-
able at https://github.com/USTC-DataDarknessLab/DuetGraph.git.

1 Introduction

Knowledge graphs (KGs) are structured representations of real-world entities and their relationships,
widely applied in domains such as information retrieval [1, 2], logical reasoning [3, 4], recommenda-
tion systems [5, 6], materials science [7, 8], and biomedical research [9, 10]. However, existing KGs
are often incomplete, missing certain factual information [11, 12], which limits their effectiveness in
downstream applications. As a result, inferring and completing missing entity information through
KG reasoning is essential.

KG reasoning faces two fundamental challenges. Firstly, it requires effective aggregation and propa-
gation of local neighborhood information to capture multi-hop and subgraph patterns among entities.
Secondly, it must capture global structure and long-range dependencies across large-scale graphs to
understand complex relationships that span multiple intermediate nodes. To address these chal-
lenges, a substantial line of previous research has been dedicated to developing methods to capture
local neighborhood and global structure for KG reasoning. These methods can be categorized into
two types: message passing-based methods and transformer-based methods.

Message passing-based KG reasoning methods [13, 14, 5] effectively capture local structural infor-
mation via message passing mechanism [15], but often fail to model long-range dependencies and
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global structural patterns [16, 17]. In contrast, transformer-based KG reasoning methods excel at
capturing global KG information and long-range dependencies but tend to overlook important local
structures or short-range dependencies between neighboring entities [18]. To address these limita-
tions, recent state-of-the-art (SOTA) studies [19, 20] have shifted to integrate both local and global
information by stacking message-passing networks and attention layers in a single stage.

However, such a single stage stacking ap-
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Figure 1: Discriminative ability of KG reason-
ing models: HousE [21], SAttLE [22], and RED-
GNN [5] show limited discrimination, with many
incorrect answers scoring close to the correct one.
In contrast, our DuetGraph achieves clearer score
separation, with far fewer incorrect answers near
the correct score.

proach tends to result in the problem of score
over-smoothing, where incorrect answers re-
ceive scores similar to correct ones (Figure 12),
making them hard to distinguish. Accordingly,
we summarize the problem into two core chal-
lenges. Challenge 1: Existing studies [23,
24] have shown that stacking either message-
passing or attention layers individually deep-
ens information propagation and aggravates
the over-smoothing problem. When message-
passing and attention layers are stacked to-
gether, these effects accumulate. Challenge
2: The discriminative capacity of single stage
models is typically limited [25], as they gen-
erate the answer directly based on a one-shot
reasoning. This deficiency in discrimination
further exacerbates the over-smoothing phe-
nomenon [26].

To address these challenges, we propose Duet-
Graph, a coarse-to-fine KG reasoning mechanism with dual-pathway global-local fusion. To ad-
dress Challenge 1, we propose a dual-pathway fusion model (Section 3.1) that separately processes
global and local information before adaptively fusing them. By segregating message-passing and
attention layers, rather than stacking them, our model alleviates over-smoothing and improves rea-
soning quality. For Challenge 2, we propose the coarse-to-fine reasoning optimization (Section 3.2),
which first employs a coarse model to predict and partition candidate entities into high- and low-
score subsets, and then applies a fine model to predict the final answer based on the subsets. It en-
hances robustness against over-smoothing and improves reasoning quality. We theoretically demon-
strate the effectiveness of coarse-to-fine optimization by mitigating over-smoothing in Section 3.2.
Furthermore, we demonstrate the effectiveness of this optimization in improving inference in Sec-
tion 4.4.

Our contributions can be summarized as follows. 1) We propose DuetGraph, a novel KG reasoning
framework to alleviate score over-smoothing in KG reasoning. Specifically, DuetGraph: a) utilizes
a dual-pathway fusion of local and global information instead of a single-pathway method, and b)
adopts a coarse-to-fine design rather than one stage design. 2) We theoretically demonstrate that
our proposed dual-pathway reasoning model and coarse-to-fine optimization can both alleviate over-
smoothing, thus effectively enhancing inference quality. 3) DuetGraph achieves SOTA performance
on both inductive and transductive KG reasoning tasks, with up to an 8.7% improvement in quality
and a 1.8× acceleration in training efficiency.

2 Background

Knowledge Graph. A knowledge graph (KG) is a structured representation of information where
entities are represented as nodes, and the relationships between these entities are represented as
edges. Typically, a KG G = {V, E ,R} is composed of: a set of entities V , a set of relations R, and
a set of triplets E = {(hi, ri, ti) | hi, ti ∈ V , ri ∈ R}, where each triplet represents a directed edge
hi

ri−→ ti between a head entity hi and a tail entity ti.

Knowledge Graph Completion. Given a KG G = (V, E ,R), KG completion is to infer and
predict missing elements within triplets to enrich the knowledge graph. Depending on the missing
component, the task can be categorized into three subtypes: head entity completion (?, r, t), tail
entity completion (h, r, ?), and relation completion (h, ?, t). In this paper, we primarily focus on

2The x-axis denotes normalized score gap ( |Scorecorrect−Scoreincorrect|
std(Score) ) and y-axis indicates entity count per inter-
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tail entity completion, following the setting of recent KG works [19, 20], as the other tasks can be
reformulated into this one (See Appendix D.2).

Related Works. KG reasoning methods can be classified based on their use of structural informa-
tion: message passing-based methods, which primarily leverage local structures, and transformer-
based methods, which mainly exploit global structures. Message passing-based methods, such as
[5, 27, 28], suffer from well-known limitations of message-passing networks, including incomplete-
ness [29] and over-squashing [30]. Transformer-based methods, such as [31, 32], also have draw-
backs. For example, they typically transform graph structures into sequential representations during
knowledge encoding, potentially losing critical structural information inherent to KGs [33, 34]. Hy-
brid approaches that combine message-passing and transformers, such as [19, 20], leverage the
strengths of both paradigms. However, they still face key challenges in effectively integrating and
balancing local features learned via message passing with global KG information captured by self-
attention. Besides, there are also triplet-based methods, such as TransE [35], ComplEx [36], Dist-
Mult [37], and RotatE [38], which treat triples as independent instances and often ignore graphs’
topological structure. Beyond these categories, other approaches include meta-learning methods
like MetaSD [31], rule pathbased models like RNNLogic [39], and tensor decomposition methods
such as TuckER-IVR [40]. However, the optimization process of these methods does not directly
take into account the issue of score over-smoothing. In response, we propose DuetGraph, explicitly
addressing the challenge of score over-smoothing in KG reasoning.

3 DuetGraph

This section introduces DuetGraph, as shown in Figure 23. The core architecture of DuetGraph
consists of two components: a dual-pathway model for training (Steps ¬-¯), and a coarse-to-fine
reasoning optimization for inference (Steps °-³). Section 3.1 presents the dual-pathway global-
local fusion model, and Section 3.2 details the coarse-to-fine reasoning optimization.
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Figure 2: Overview of DuetGraph: ¬ Input KG to GNN encoder (e.g., GCN [15]) and output
entity and relation representations; ­ Employ a simple global attention mechanism [43] to compute
the global weight; ® Use the query-aware message passing networks [19] to compute the local
weight; ¯ Fuse the local and global weight using a multi-layer perceptron (MLP); ° Use the coarse
model (e.g., HousE [21] and RED-GNN [5]) to get the initial entity-to-score table; ± Split the
entity-to-score table into two subtables (i.e., high-score subtable and low-score subtable) based on
Top-k selector; ² Update the two subtables based on the refined entity-to-score table predicted by
dual-pathway global-local fusion model; ³ Output the answer based on the relationship between the
maximum score gap of the two subsets and a predefined threshold ∆.

3In dual-pathway model, after obtaining the representations in Step ¯, we employ an MLP to transform each
representation into a score. Loss function is defined for each training triplet (h, r, t): L = −log(σ(t|h, r)) −∑

t′ log(1 − σ(t′|h, r)), where σ(·|h, r) denotes the score of a candidate triplet, t′ denotes negative samples.
Negative samples are generated by masking the correct answer and uniformly sampling with replacement from
the remaining unmasked entities [41]. Finally, we update model parameters by optimizing negative sampling
loss [38] with the Adam optimizer [42].
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3.1 Dual-Pathway Global-Local Fusion Model

As previously mentioned, a single-pathway design is more likely to cause score over-smoothing,
thereby impairing KG reasoning quality. Therefore, we decouple the message-passing networks
and the transformer-based mechanism into two separate pathways, i.e., local pathway (Step ®) and
global pathway (Step ­). Then, we fuse their outputs through an adaptive fusion model (Step ¯).
We detail the dual-pathway fusion model in the following paragraphs.

Adaptive Global-Local Fusion. A straightforward approach to achieve global-local information
fusion is to simply sum the local and global weights. However, this method may fail to fully capture
the complex interactions between local and global features, potentially hurting the model perfor-
mance [44]. To address it, we introduce a learnable parameter α to adaptively assign weights to
local and global information, enabling a more effective weighted fusion of the two components.
Therefore, the final entity representation matrix Z is computed as :

Z = α · Zlocal + (1− α) · Zglobal, (1)

where Zlocal denotes the local weight matrix, obtained through local pathway (Step ­), and Zglobal
denotes the global weight matrix, obtained through global pathway (Step ®).

Then, the representation matrix Z can be used for predicting the entity scores by an MLP (Step ¯) .

Theoretical Analysis. Here, we theoretically show that our proposed dual-pathway fusion model
offers superior alleviation of score over-smoothing compared to the single-pathway approach. To
begin with, we give the upper bounds on entity score gap for both single-pathway and dual-pathway
models in Lemma 1.
Lemma 1 (Upper Bounds on Score Gap for Different Models). Let MO denotes the weight
matrix [45] of single-pathway model stacked with message passing and transformer, MD denotes
the weight matrix of our dual-pathway model. For any two entities u, v ∈ V , the gap in their scores
after ℓ layers of iteration can be bounded by:

|Su − Sv| ≤ 2Lf (σmax(M))ℓ∥X(0)∥2, M ∈ {MO,MD}, (2)

where σmax(M) denotes the largest singular value of M, X(0) denotes initial entity feature matrix,
Lf is the Lipschitz constant [46], and ∥ · ∥2 is Euclidean norm operation.

We provide a detailed proof of Lemma 1 in Appendix A.1. Based on Theorem 1, we theoretically
establish the relationship between the score gap and the weight matrix for each respective model.
Specifically, we can get that the upper bound on score gap is related to the largest singular value of
the weight matrix M. To further scale the inequality in Equation 2, we derive the largest singular
value upper bound of the weight matrix in Lemma 2.
Lemma 2 (Upper Bounds on Largest Singular Value). For a weight matrix M ∈ {MO,MD},
its largest singular value satisfies

σmax(M) < 1. (3)

We provide a detailed proof of Lemma 2 in Appendix A.1. Based on Lemmas 1 and 2, as the
number ℓ of iteration layers increases, the upper bound on score gaps decrease exponentially with
respect to σmax(M) because of the exponential functions properties. A larger σmax(M) results in
a greater upper bound and a slower decrease of it, suggesting that the model is more resistant to
over-smoothing. Based on this, we further give the quantitative relationship between σmax(MO)
and σmax(MD) in Lemma 3.
Lemma 3 (Relationship between σmax(MO) and σmax(MD) ). Give the the learnable parameter
α in Equation 1, the relationship between σmax(MO) and σmax(MD) is:

σmax(MD) > α− (1− α)σmax(MO). (4)

We provide a detailed proof of Lemma 3 in Appendix A.1. Based on Lemmas 1, 2, and 3, we can
derive the relationship between the learnable parameter α and the upper bound of the score gap, as
shown in Theorem 1.
Theorem 1 (Relationship between α and Score Gap). If α < σmax(MD)+σmax(MO)

1+σmax(MO) , the score gap
upper bound of the the dual-pathway model is greater than that of the single-pathway model and the
dual-pathway model shows a slower decrease of the score gap upper bound.
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We provide a detailed proof of Theorem 1 in Appendix A.1. Our adaptive fusion approach drives α
below the theoretical threshold in Theorem 1 via parameter update with gradient descent. According
to Theorem 1, the dual-pathway model outperforms the single-pathway model in mitigating over-
smoothing.

Complexity Analysis. In this paragraph, we compare the time complexity of our dual-pathway
fusion model with single-pathway approach. For a fair comparison, we assume both models have the
same number of layers, including Lm message passing layers and Lt transformer layers. Under this
setting, the overall time complexity of our dual-pathway fusion model and single-pathway approach
is O(max(Lm(|E| d + |V| d2), Lt |V| d2)) and O(Lm |E| d + (Lm + Lt) |V| d2) respectively (we
provide details in Appendix B.1.). Here, |V| and |E| respectively denote the number of entities and
triplets and d is the dimension of entity representation. In single-pathway approach, the message
passing and transformer run sequentially, so their time complexity add together. By contrast, our
dual-pathway fusion model processes them in parallel, so the overall complexity is only determined
by the more expensive pathway. As a result, the dual-pathway model yields better time efficiency.

3.2 Coarse-to-Fine Reasoning Optimization

To address the over-smoothing issue caused by the one-stage approach as discussed in Section 1,
we decompose the KG reasoning into two sequential stages: coarse stage and fine stage, as shown
in Steps °, ±, ², and ³. We detail the design and implementation of each stage in the following
paragraphs.

Stage 1: Coarse-grained Reasoning. In this stage, we first obtain an entity-to-score table by
using the coarse model (Step °). Then, the table is split into two subtables based on their rankings
(Step ±): a high-score subtable made up of the topk entities, and a low-score subtable containing
the remaining ones. The formal description of this process is as follows. Given a query (h, r, ?),
let T = {(v, sv) | v ∈ V , sv} denote the full entity-to-score table, where sv is the score of entity
v. Rank(v) denotes the rank of entity v in descending order of the scores. Accordingly, we split T
into two subtables as follows:

T high = {(v, sv) ∈ T : Rank(v) ≤ k}, T low = {(v, sv) ∈ T : Rank(v) > k},

where k is a hyperparameter controlling the cutoff rank. T high is the high-score subtable and T low

is the low-score subtable.

Stage 2: Fine-grained Reasoning. At this stage, we firstly update T high and T low with the fine
model (i.e., the dual-pathway model introduced in Section 3). Then, we extract the entities with the
highest score from each subtables, denoted as (eh, seh) for T high and (el, sel) for T low. After that,
we compute the difference γ = sel − seh based on the pre-defined threshold ∆. If γ exceeds ∆, this
indicates that the highest-score entity in the low-score subtable clearly surpasses the highest-score
entity in the high-score subtable. Therefore, we select the highest-score entity from T low as the final
answer; otherwise, we select that from T high.

By introducing this adjustable threshold ∆, we enable entities from both the high-score and low-
score subtables to be dynamically selected as the answer. This design enhances flexibility and re-
duces selection bias in the decision process.

Theoretical Analysis. In coarse-to-fine optimization, since the final prediction is made based on
comparing the highest scores from the high-score and low-score subtables. Thus, the score gap is
particularly crucial for mitigating over-smoothing and we theoretically demonstrate how the coarse-
to-fine optimization mitigates over-smoothing by amplifying the gap between the highest scores in
the two subtables, as shown in Theorem 2.
Theorem 2 (Lower Bound on Score Gap Between High-score and Low-score Subtables). The
lower bound on the expected gap between the top scores of the two subtables (seh and sel ) is:

E[|seh − sel |] >
∣∣∣∣( 1

N2
h + 1

− 1

(N2
l + 1)

) · σ
∣∣∣∣ , (5)

where Nh and Nl denote the number of entities in high-score and low-score subtables respectively.
σ is the standard deviation of the entity score.
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We provide a detailed proof of Theorem 2 in Appendix A.2. Based on Theorem 2, we establish the
relationship between the score gap and the number of entities. In our setup, the ratio of the number of
entities in the low-score subtable to those in the high-score subtable exceeds 1,000. Therefore, based
on Theorem 2, we can derive that the lower bound on the expected gap between the top scores of
the two subtables is more than 0.1σ (Detailed proof of this in Appendix A.2). In comparision, other
baseline methods (as shown in Figure 1) exhibit score gaps between correct and incorrect answers
are typically less than 0.02σ. This demonstrates that our optimization can amplifying the score gap,
thus mitigating over-smoothing. Building on this, we additionally present Theorem 3 to theoretically
demonstrate that coarse-to-fine optimization also improves the quality of KG reasoning.

Theorem 3 (Effectiveness of Coarse-to-Fine Optimization). Let P and P ′ denotes the probabil-
ities of correctly identifying the answer with and without coarse-to-fine optimization, respectively.
Then, we have P > P ′.

We provide a detailed proof of Theorem 3 in Appendix A.3.

Complexity Analysis. In this paragraph, we compare the complexity of our coarse-to-fine
stage with one-stage approach. The time complexities of coarse-to-fine stage and one-stage are
O(max(Lm(|E| d + |V| d2), Lt |V| d2) + |V| log |V|) and O(max(Lm(|E| d + |V| d2), Lt |V| d2)) ,
respectively. We provide detail proof of these in Appendix B.2. Here, |V| and |E| denote the number
of entities and triplets, respectively. Lm and Lt represent the number of message passing layers
and transformer layers. d is the dimension of the entity representation. In practice, |V| log |V| is
much smaller than |V| d2. For example, in FB15k-237 dataset [47], the number of entities is 14,541,
and the representation dimension is 32. Accordingly, |V| log |V| is approximately 105 and |V| d2 is
approximately 107. Therefore, the time complexity of the coarse-to-fine stage remains comparable
to that of the one-stage.

4 Empirical Evaluation

In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
Can DuetGraph effectively improve the performance of inductive KG reasoning tasks? (RQ2) Can
DuetGraph effectively improve the performance of transductive KG reasoning tasks? (RQ3) Can
DuetGraph demonstrate strong scalability in KG reasoning tasks by achieving high training effi-
ciency? (RQ4) How is the effectiveness of the components of DuetGraph? (RQ5) In the coarse-to-
fine reasoning, what is the standard of the coarse model? (RQ6) Is DuetGraph sensitive to hyperpa-
rameter k, where k denotes the number of entities in a high-score subset? (RQ7) How generalizable
is DuetGraph across tasks on knowledge graphs?

4.1 Experiments setup

Inductive Datasets. For inductive reasoning, following Liu et al. [19], we use the same data divi-
sions of FB15k-237 [47], WN18RR [48], and NELL-995 [49]. Each division consists of 4 versions,
resulting in 12 subsets in total. Notably, in each subset, the training and test sets contain disjoint sets
of entities while sharing the same set of relations.

Transductive Datasets. For transductive reasoning, we conduct experiments on four widely uti-
lized KG reasoning datasets: FB15k-237 [47], WN18RR [48], NELL-995 [49], and YAGO3-10
[50], adopting the standard data splits provided by prior works [28, 51].

Triple Classification Datasets. For the triple classification task, we conduct experiments on three
widely used knowledge graph datasets: UMLS[52], FB13[53] and WN11[53].

Triple Classification Baselines. The following four categories of SOTA models are adopted as
baselines for comparison with DuetGraph in triple classification: triplet-based (HousE [21]), mes-
sage passing-based (AdaProp [51]), transformer-based (HittER [54]), and hybrid message passing-
transformer (KnowFormer [19]) models (SOTA methods for comprehensive comparison).
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Table 1: Inductive KG reasoning performance for various methods on 12 subsets. (The best results
are bolded in red with a yellow highlight. Second-best results are with a blue highlight. Results
are either sourced directly from original papers or reproduced based on available code.)

Method v1 v2 v3 v4
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

FB15k-237
DRUM [55] 0.333 24.7 47.4 0.395 28.4 59.5 0.402 30.8 57.1 0.410 30.9 59.3
NBFNet [28] 0.442 33.5 57.4 0.514 42.1 68.5 0.476 38.4 63.7 0.453 36.0 62.7
RED-GNN [5] 0.369 30.2 48.3 0.469 38.1 62.9 0.445 35.1 50.3 0.442 34.0 62.1
A*Net [13] 0.457 38.1 58.9 0.510 41.9 67.2 0.476 38.9 62.9 0.466 36.5 64.5
AdaProp [51] 0.310 19.1 55.1 0.471 37.2 65.9 0.471 37.7 63.7 0.454 35.3 63.8
Ingram [56] 0.293 16.7 49.3 0.274 16.3 48.2 0.233 14.0 40.8 0.214 11.4 39.7
KnowFormer [19] 0.466 37.8 60.6 0.532 43.3 70.3 0.494 40.0 65.9 0.480 38.3 65.3

DuetGraph (Ours) 0.507 42.7 63.2 0.549 44.8 72.9 0.518 42.3 69.9 0.501 39.8 67.0

WN18RR
DRUM [55] 0.666 61.3 77.7 0.646 59.5 74.7 0.380 33.0 47.7 0.627 58.6 70.2
NBFNet [28] 0.741 69.5 82.6 0.704 65.1 79.8 0.452 39.2 56.8 0.641 60.8 69.4
RED-GNN [5] 0.701 65.3 79.9 0.690 63.3 78.0 0.427 36.8 52.4 0.651 60.6 72.1
A*Net [13] 0.727 68.2 81.0 0.704 64.9 80.3 0.441 38.6 54.4 0.661 61.6 74.3
AdaProp [51] 0.733 66.8 80.6 0.715 64.2 82.6 0.474 39.6 58.8 0.662 61.1 75.5
Ingram [56] 0.277 13.0 60.6 0.236 11.2 48.0 0.230 11.6 46.6 0.118 4.1 25.9
SimKGC [57] 0.315 19.2 56.7 0.378 23.9 65.0 0.303 18.6 54.3 0.308 17.5 57.7
KnowFormer [19] 0.752 71.5 81.9 0.709 65.6 81.7 0.467 40.6 57.1 0.646 60.9 72.7

DuetGraph (Ours) 0.758 72.1 81.7 0.719 66.7 81.1 0.501 44.3 62.2 0.662 62.1 73.1

NELL-995
NBFNet [28] 0.584 50.0 79.5 0.410 27.1 63.5 0.425 26.2 60.6 0.287 25.3 59.1
RED-GNN [5] 0.637 52.2 86.6 0.419 31.9 60.1 0.436 34.5 59.4 0.363 25.9 60.7
AdaProp [51] 0.644 52.2 88.6 0.452 34.4 65.2 0.435 33.7 61.8 0.366 24.7 60.7
Ingram [56] 0.697 57.5 86.5 0.358 25.3 59.6 0.308 19.9 50.9 0.221 12.4 44.0
KnowFormer [19] 0.827 77.0 93.0 0.465 35.7 65.7 0.478 37.8 65.7 0.378 26.7 59.8

DuetGraph (Ours) 0.850 78.5 96.5 0.543 44.4 69.1 0.535 43.2 72.6 0.464 35.4 68.4

Inductive Baselines. We compare DuetGraph with 8 baseline methods for inductive KG reasoning
as shown in Table 1. For completeness, we note that some baselines do not support certain datasets
due to limitations in their released code. Details are provided in Appendix C.2.

Transductive Baselines. The following four categories of SOTA models are adopted as base-
lines for comparison with DuetGraph in transductive KG reasoning: triplet-based models, message
passing-based models, transformer-based models, hybrid message passing-transformer models (in-
cluding our proposed method and KnowFormer [19]) and other approaches, as shown in Table 2.

Evaluations Metrics. The model performance is measured by Mean Reciprocal Rank (MRR)
[35] and Hit Rate at k (Hits@k, where k ∈ {1, 10}) [35]. Hits@k assesses whether the true
entity of a triplet appears within the top-k ranked candidate entities. If the true entity is ranked k or
higher, the result is recorded as 1: otherwise, it is recorded as 0. Metrics are formalized as follows.

Hits@k = 1
|Ttest|

∑
ti∈Ttest

f(ranki), where f(x) =

{
1, x ≤ k

0, x > k
and Ttest is the test set containing

|Ttest| triplets. Each ti is the i-th test triplet, and ranki represents the position of the correct entity
in the ranked list of candidates. MRR is calculated as the average of the reciprocals of the ranks
assigned to the correct entities in the prediction results. MRR = 1

|Ttest|
∑

ti∈Ttest

(
1

ranki

)
, where Ttest

is the test set, and ranki represents the rank of the true entity in the candidate list for ti.

4.2 Performance

To answer (RQ1), we evaluate DuetGraph on 12 datasets. The results, shown in Table 1, demonstrate
the strong performance of DuetGraph compared to baseline models. Specifically, DuetGraph surpass
SOTA methods by up to 8.6% improvement in MRR, 8.7% improvement in Hits@1, and 7.7%
improvement in Hits@10. It ranks first in Hits@1 on every evaluated version (v1–v4) of the FB15k-
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Table 2: Transductive KG reasoning performance for various methods on 4 datasets. (The best
results are bolded in red with a yellow highlight. Second-best results are with a blue highlight.
Results are either sourced directly from original papers or reproduced based on publicly available
code. “-” indicates unavailable results due to insufficient information for reproduction. )

Method FB15k-237 WN18RR NELL-995 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Triplet-based
TransE [35] 0.330 23.2 52.6 0.222 1.4 52.8 0.507 42.4 64.8 0.510 41.3 68.1
DistMult [37] 0.358 26.4 55.0 0.455 41.0 54.4 0.510 43.8 63.6 0.566 49.1 70.4
RotatE [38] 0.337 24.1 53.0 0.477 42.8 57.1 0.508 44.8 60.8 0.495 40.2 67.0
HousE [21] 0.361 26.6 55.1 0.511 46.5 60.2 0.519 45.8 61.8 0.571 49.1 71.4

Message passing-based
CompGCN [14] 0.355 26.4 53.5 0.479 44.3 54.6 0.463 38.3 59.6 0.421 39.2 57.7
NBFNet [28] 0.415 32.1 59.9 0.551 49.7 66.6 0.525 45.1 63.9 0.563 48.0 70.8
RED-GNN [5] 0.374 28.3 55.8 0.533 48.5 62.4 0.543 47.6 65.1 0.556 48.3 68.9
A*Net [13] 0.411 32.1 58.6 0.549 49.5 65.9 0.521 44.7 63.1 0.556 47.0 70.7
AdaProp [51] 0.417 33.1 58.5 0.562 49.9 67.1 0.554 49.3 65.5 0.573 51.0 68.5
ULTRA [58] 0.368 27.2 56.4 0.480 41.4 61.4 0.509 44.1 66.0 0.557 47.1 71.0

Transformer-based
HittER [54] 0.373 27.9 55.8 0.503 46.2 58.4 0.518 43.7 65.9 0.339 25.1 50.8
KGT5 [59] 0.276 21.0 41.4 0.508 48.7 54.4 - - - 0.426 36.8 52.8
N-Former [60] 0.373 27.9 55.6 0.489 44.6 58.1 - - - - - -
SAttLE [22] 0.360 26.8 54.5 0.491 45.4 55.8 0.512 42.2 66.0 0.475 36.7 68.2

Others
MetaSD [31] 0.391 30.0 57.1 0.491 44.7 57.0 0.516 45.5 61.5 OOM OOM OOM
RNNLogic [39] 0.344 25.2 53.0 0.483 44.6 55.8 0.516 46.3 57.8 0.554 50.9 62.2
TuckeER-IVR [40] 0.368 27.4 55.5 0.501 46.0 57.9 0.505 42.8 63.7 0.581 50.8 71.2

Hybrid
KnowFormer [19] 0.430 34.3 60.8 0.579 52.8 68.7 0.566 50.2 67.5 0.615 54.7 73.4
DuetGraph (Ours) 0.453 36.1 62.4 0.593 54.2 69.9 0.590 52.1 71.2 0.631 56.1 74.8

237, WN18RR, and NELL-995 datasets, indicating its strong ability to accurately predict the correct
entity at the top rank. Importantly, our method relies solely on the structural information of the KG,
without relying on external textual features, highlighting its strong generalization capability.

To answer (RQ2), we evaluate the performance of DuetGraph on four widely utilized transductive
KG reasoning datasets. Table 2 demonstrates the impressive performance of DuetGraph compared to
baseline models. Specifically, DuetGraph demonstrates substantial performance gains over baseline
methods, with improvements of up to 37.1% in MRR, 52.8% in Hits@1, and 24.0% in Hits@10.

It is worth noting that in inductive KG reasoning, the entities to be predicted are unseen during train-
ing, which not only aligns more closely with real-world scenarios but also poses a greater challenge.
Based on these results, DuetGraph exhibits remarkable generalization and adaptability.

4.3 Efficiency

To answer (RQ3), we evaluate Hits@1 throughout training on the FB15k-237 and YAGO3-10, the
latter being a large-scale dataset with millions of training triples. We compare DuetGraph with
the best models in each category—AdaProp (message passing-based), SAttLE (transformer-based),
and KnowFormer (hybrid). As shown in Figure 3, DuetGraph finally achieves SOTA performance
on FB15k-237 while reducing training time by nearly 50% compared to the second-best method.
We also observe from Figure 3 that DuetGraph achieves SOTA performance on YAGO3-10 while
requiring less training time compared to other methods. These results show that DuetGraph achieves
scalability through high training efficiency. The observed improvement is primarily attributable to
this dual-pathway design, which enables parallel training of both local and global pathways.

Furthermore, to demonstrate the efficiency of DuetGraph on very large KGs, we conduct experi-
ments on Wikidata5M [61] and Freebase [62], and compare DuetGraph with highly efficient rule-
based methods (e.g., AnyBURL [63]). It is worth noting that for the Wikidata5M and Freebase
datasets, the AnyBURL paper [63] does not explicitly specify under which data split the results in
Table 2 of [63] were obtained. For a fair comparison, we use the same data split as in [62].
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Figure 3: Hits@1 and MRR w.r.t. time on FB15k-237 and YAGO3-10.

Table 3: Comparison of different methods across very large knowledge graphs. (The best results are
bolded in red with a yellow highlight.)

Method Wikidata5M Freebase
MRR H@1 H@10 Learning Inference MRR H@1 H@10 Learning Inference

AnyBURL (Rule-based) 0.350 30.9 42.9 10,000s 4,462s 0.588 53.6 68.2 10,000s 3,142s
KnowFormer (Emb-based) 0.332 26.7 46.3 31,436s 105s 0.684 65.7 73.6 32,109s 176s
DuetGraph (Emb-based) 0.363 32.7 49.5 28,866s 80s 0.697 69.3 73.8 30,158s 141s

As shown in Table 3, DuetGraph achieves SOTA quality performance with a learning time in the
same order of magnitude as AnyBURL [63], and it demonstrates a significant reduction in inference
time compared to AnyBURL [63]. It demonstrates that DuetGraph maintains high efficiency and
strong quality even when applied to extremely large knowledge graphs.

4.4 Ablation Study

To address (RQ4), we perform an ablation study by removing key components of DuetGraph: (1) the
local pathway, (2) the global pathway, (3) the coarse-to-fine reasoning optimization (i.e., reducing
DuetGraph model to the dual-pathway fusion alone), (4) the dual-pathway fusion model (i.e., leaving
only the coarse-grained reasoning), and (5) the threshold ∆ in the fine-grained stage, which prevents
correction for low-score predictions.

As shown in Table 4, removing either the local or global pathway degrades performance, confirm-
ing the necessity of both information types. Eliminating coarse-to-fine reasoning leads to a notable
drop in Hits@1, demonstrating its effectiveness in refining predictions. Excluding the dual-pathway
module results in the largest performance loss, which underscores its crucial role in reasoning per-
formance. Finally, removing the threshold ∆ reduces accuracy due to uncorrected errors in cases
where the correct entity is excluded from the high-score subset during coarse reasoning.

To answer (RQ5), we additionally evaluate the performance of DuetGraph on four transductive
KG reasoning datasets using three different types of coarse-grained reasoning models: a triplet-
based model (HousE [21]), a message passing-based model (RED-GNN [5]), and a hybrid message
passing-transformer model (KnowFormer [19]). The triplet-based model focuses exclusively on
local triple-level patterns. The message passing model captures neighborhood-level information,
and the transformer model handles global patterns (like our fine model).

As shown in Table 5, DuetGraph, when integrated with any of the three coarse-grained models,
consistently outperforms its competitors. Among them, the triplet-based model achieves the best
performance as a coarse model. This aligns with prior work [64], which shows that maximizing
architectural diversity between coarse and fine models leads to better overall performance; in this
case, the triplet-based model benefits from its maximal architectural difference from our global-
information-focused fine model.

4.5 Parameter Analysis

To answer (RQ6), we conduct experiments by varying the hyperparameter k introduced in Sec-
tion 3.2 across four different transductive datasets. As shown in Figure 4, DuetGraph is insensitive
to the parameter k, suggesting stable performance. We further conduct hyperparameter experiments
on inductive datasets, as presented in Appendix D.4, and obtain consistent results.
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Table 4: Different components ablation study of DuetGraph on 4 transductive KG reasoning datasets.
(The best results are bolded in red with a yellow highlight.)

Method FB15k-237 WN18RR NELL-995 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

DuetGraph 0.453 36.1 62.4 0.593 54.2 69.9 0.590 52.1 71.2 0.631 56.1 74.8
w/o local 0.445 35.1 61.2 0.584 54.1 69.0 0.582 51.0 70.3 0.617 54.2 73.7
w/o global 0.441 34.9 61.4 0.565 51.7 66.6 0.586 51.0 69.8 0.614 53.8 74.4
w/o Coarse-to-Fine reasoning 0.437 34.8 61.1 0.580 53.0 68.9 0.567 50.5 67.7 0.616 54.8 73.5
w/o Dual-Pathway fusion model 0.355 25.9 54.7 0.512 46.6 60.6 0.534 46.6 51.2 0.563 48.4 70.7
w/o threshold value ∆ 0.395 31.7 55.8 0.551 48.9 66.1 0.544 49.8 66.5 0.595 53.4 70.9

Table 5: Different coarse-grained model ablation study of DuetGraph on 4 transductive KG reason-
ing datasets. (The best results are bolded in red with a yellow highlight.)

Method FB15k-237 WN18RR NELL-995 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

DuetGraph (w/ triplets-based model as coarse model) 0.453 36.1 62.4 0.593 54.2 69.9 0.590 52.1 71.2 0.631 56.1 74.8
DuetGraph (w/ message passing-based model as coarse model) 0.446 35.4 61.3 0.589 53.5 69.0 0.584 51.7 70.2 0.622 55.4 73.9
DuetGraph (w/ transformer-based model as coarse model) 0.445 34.8 62.4 0.586 53.2 69.4 0.579 50.8 70.5 0.624 55.7 74.2
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Figure 4: Effect of k on the performance metrics of KG reasoning for different datasets (Transduc-
tive).

4.6 Generalization

To answer (RQ7), we evaluate DuetGraph’s performance on the triple classification task. The exper-
imental results in Table 6 demonstrate that DuetGraph consistently outperforms all baseline methods
across all datasets, achieving new SOTA performance on the triple classification task, which further
highlights the task generality of our proposed DuetGraph framework.

Table 6: Comparison of triple classification accuracy on different datasets. (The best results are
bolded in red with a yellow highlight.)

Method UMLS Acc (%) FB13 Acc (%) WN11 Acc (%)
HousE [21] 83.1 69.8 65.3
HittER [54] 59.4 62.2 69.6
AdaProp [51] 77.0 71.9 67.1
KnowFormer [19] 83.1 77.3 70.2
DuetGraph 84.3 80.0 71.9

5 Conclusion

This paper proposes DuetGraph, a coarse-to-fine KG reasoning mechanism with dual-pathway
global-local fusion to alleviate score over-smoothing in KG reasoning. DuetGraph mitigates over-
smoothing by allocating the processing of local (via message passing) and global (via attention)
information to two distinct pathways, rather than stacking them. This design prevents mutual inter-
ference and preserves representational discrimination. Experimental results show that DuetGraph
outpeforms SOTA baselines on both quality and training efficiency.

Acknowledgements: This work was supported by the National Natural Science Foundation of
China (NSFC) under Grant 62472400.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
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A Proofs of Theorems

In this section, we provide the theorem proofs in method part, including 1) why our proposed dual-
pathway global-local fusion model can alleviate the over-smoothing in KG; 2) why our proposed
coarse-to-fine reasoning optimization can alleviate the over-smoothing in KG; 3) why our proposed
coarse-to-fine reasoning optimization can improve the quality of KG reasoning.

A.1 Dual-Pathway Global-Local Fusion Model Effecitively Alleviating Over-Smoothing.

Proof. Let entity initial representation be denoted as X(0) ∈ Rn×d, symmetrically normalized adja-
cency matrix in message passing networks is denoted as A ∈ Rn×n. The attention matrix computed
by a single layer of global attention is denoted as P ∈ Rn×n. We construct a weight matrix of
one-pathway model stacked with L message passing layers and a transformer layer defined as:

MO = PAL (6)
We construct a weight matrix of dual-pathway fusion model defined as:

MD = αAL + (1− α)P (7)
where α is the learnable parameter in Equation 1. We first focus on the entity representation obtained
after ℓ iterations:

X(ℓ) = MℓX(0),M ∈ {MO,MD} (8)
According to basic properties of the matrix paradigm, we can get spectral norm of X(m) satisfies

∥X(ℓ)∥2 = ∥MℓX(0)∥F ≤ ∥Mℓ∥2∥X(0)∥2 ≤ (σmax(M))
ℓ ∥X(0)∥2 (9)

The representation discrepancy between any two entities u and v satisfies

∥x(ℓ)
u − x(ℓ)

v ∥2 ≤ ∥x(ℓ)
u ∥2 + ∥x(ℓ)

v ∥2 ≤ 2∥X(ℓ)∥2 ≤ 2 (σmax(M))
ℓ ∥X(0)∥2 (10)

Then, entity representations are mapped to scalar scores through a multilayer perceptron (MLP).
According to the principle of Lipschitz continuity, the score gap between any two entities can be
bounded by

|Su − Sv| ≤ Lf · ∥x(ℓ)
u − x(ℓ)

v ∥2 ≤ 2Lf (σmax(M))ℓ∥X(0)∥2 (11)
where f : Rd → R denotes the MLP and Lf is the Lipschitz constant [46]. Since A is a sym-
metrically normalized adjacency matrix, spectral theory ensures that its eigenvalues {λi}ni=1 satisfy
1 = λ1 > λ2 ≥ · · · ≥ λn > −1. Hence, we conclude that largest eigenvalue of AL is equal to 1,
and its largest singular value σmax(A

L) is equal to 1.

Since the attention matrix P is row-stochastic, its largest eigenvalue is 1, and all other eigenvalues
satisfy |µi| < 1. According to the definition of singular values, it follows that the largest singular
value σmax(P ) of P is less than 1.

Therefore, we can get
σmax(MO) = σmax(PAL) ≤ σmax(P ) · σmax(A

L) = σmax(P ) < 1 (12)
and since the spectral norm and the maximum singular value are equal we can get
σmax(MD) = ∥αAL+(1−α)P∥2 ≤ ∥αAL∥2+∥(1−α)P∥2 ≤ α∥AL∥2+(1−α)∥P∥2 < 1 (13)

Then, we have
σmax(M) < 1, M ∈ {MO,MD} (14)

Since the spectral norm and the maximum singular value are equal, we can use the inverse triangle
inequality to derive the following:
σmax(MD) = ∥αAL+(1−α)P∥2 ≥ |∥αAL∥2−∥(1−α)P∥2| = |α ·1− (1−α)σmax(P )| (15)

According to Equation 12, we have
σmax(MD) ≥ α− (1− α)σmax(P ) ≥ α− (1− α)σmax(MO) (16)

Therefore, as long as the learnable parameter α is less than σmax(MD)+σmax(MO)
1+σmax(MO) , σmax(MD) will

necessarily be greater than σmax(MO). The result of Equation 11 indicates that as the number of
iterations ℓ increases, the score gap between any two entities will decrease exponentially with respect
σmax(M). This implies that If α < σmax(MD)+σmax(MO)

1+σmax(MO) , the score gap upper bound of the dual-
pathway model is greater than that of the one-pathway model and the dual-pathway model shows
a slower decrease in the score gap upper bound. Consequently, dual-pathway model effectively
mitigates the oversmoothing.
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A.2 Coarse-to-Fine Reasoning Optimization Alleviates the over-smoothing in KG.

Proof. For a set of scores {s1, s2, ..., sk}, set a score threshold t = µ′ + σ′

k , where µ′ is the mean
of this set of scores and σ′ is the standard deviation of this set of scores. Using Cantelli inequality,

P (si ≥ t) = P (si ≥ µ′ +
σ′

k
) ≥

(σ
′

k )2

σ′2 + (σ
′

k )2
=

1

k2 + 1
(17)

The probability that at least one si of the k scores is more than t is

P (max
i

si ≥ t) ≥ 1−
(
1− 1

k2 + 1

)k

≈ k

k2 + 1
(18)

Therefore,

E[max si] ≥ t · P (max
i

si ≥ t) ≥ (µ′ +
σ′

k
) · P (max

i
si ≥ t) = (µ′ +

σ′

k
) · k

k2 + 1
(19)

Let the scores of candidate entities in fine-stage follow a distribution with mean µ and standard
deviation σ. Let the total number of entiities be N , with the high-score subset containing Nh entities
and low-confidence subset containing Nl entities. Denote the maximum score within the high-score
subset as

Seh = max
i=1,...,Nh

si (20)

Denote the maximum score within the low-score subset as

Sel = max
i=Nh+1,...,N

si (21)

According to Eqn 19, then the expectation of the maximum of the two subsets satisfies

E[Seh ] ≥ (µ+
σ

Nh
) · Nh

N2
h + 1

E[Sel ] ≥ (µ+
σ

Nl
) · Nl

N2
l + 1

(22)

The gap between the two is

|E[Seh ]− E[Sel ]| ≥
∣∣∣∣(µ+

σ

Nh
) · Nh

N2
h + 1

− (µ+
σ

Nl
) · Nl

N2
l + 1

∣∣∣∣
=

∣∣∣∣( Nh

N2
h + 1

− Nl

N2
l + 1

) · µ− (
1

N2
h + 1

− 1

N2
l + 1

) · σ
∣∣∣∣ (23)

In our implementation, Nh is less than 10 and the number of entities in all datasets is more than
10000. Then, we have Nl

Nh
> 1000, and the function f(x) = x

x2+1 is monotonically decreasing for
x > 1. Therefore,

|E[Seh ]− E[Sel ]| ≥
∣∣∣∣( 1

N2
h + 1

− 1

N2
l + 1

) · σ
∣∣∣∣

≥
∣∣∣∣( 1

N2
h + 1

− 1

(1000Nh)2 + 1
) · σ

∣∣∣∣
≈ 1

N2
h + 1

· σ > 0.1 · σ

(24)

By Jensen’s inequality, we have

E[|Seh − Sel |] > |E[Seh ]− E[Sel ]| > 0.1 · σ (25)

We have demonstrated that, in our coarse-to-fine reasoning optimization, the expected score gap
between the high-score and low-score subsets is at least 0.1 times the standard deviation. In compar-
ision, other baseline methods (as shown in Figure 1) exhibit score gaps between correct and incorrect
answers are typically less than 0.02σ. This demonstrates that our optimization can amplify the score
gap, thus mitigating over-smoothing.
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A.3 Coarse-to-Fine Reasoning Optimization Improves the Quality of KG Reasoning.

Proof. In coarse-grained reasoning, the candidate entities are divided into two subsets, the high-
score subset is denoted as T high. The highest-score entity in each subset, as computed by our
proposed dual-pathway fusion model, is denoted as:

eh = argmax
e∈T high

s(e), el = argmax
e/∈T high

s(e). (26)

where the s(·) denotes score computing by dual-pathway fusion model. Let P∆ denote the probabil-
ity that the difference between eh and el is less than or equal to ∆, i.e. P∆ = P (el − eh ≤ ∆).

Let P and P ′ denotes the probabilities of correctly identifying the answer with and without coarse-
to-fine optimization, respectively. Let event A denote that the HousE model assigns the ground-truth
answer a score that ranks within the top-k among all candidate entities, and event B denote that our
proposed dual-pathway model correctly infers the ground-truth answer. Therefore, the probability
that coarse-to-fine reasoning accurately infers the correct answer is:

P = P∆ · P (B | A) + (1− P∆) · P ′

= P∆ · P (B | A) + P ′ − P∆ · P ′

= (P (B | A)− P ′) · P∆ + P ′
(27)

In the following, we compare the magnitude relationship between P (B | A) and P ′. P (B | A)
represents the probability of event B occurring given that event A has occurred. Specifically, the
probability that the dual-pathway fusion model correctly infers the correct answer given that the
correct answer is ranked within the high-score subset by coarse-grained reasoning. Evidently, the
probability of the dual-pathway fusion model correctly inferring the correct answer is higher when
the correct answer is already ranked within the high-score subset by coarse stage, compared to the
unconditional probability of the dual-pathway fusion model’s correct inference. This is because the
high-score subset from coarse provides the dual-pathway fusion model with a more focused and
promising subset.

Therefore, we can obtain that P (B | A) ≥ P ′ which leads to P ≥ P ′, thus demonstrating that the
probability that coarse-to-fine reasoning optimization accurately infers the correct answer is more
than the probability that dual-pathway fusion model without coarse-to-fine optimization correctly
infers the correct answer.

B Time Complexity Computation

In this section, we provide details of time complexity computation in Section 3.1 and Section 3.2

B.1 Time Complexity Computation of Dual-Pathway Global-Local Fusion Model.

Time complexity of dual-pathway fusion model. We assume dual-pathway fusion model includs
Lm message passing layers and Lt transformer layers. Here, |V| and |E| respectively denote the
number of entities and triplets and d is the dimension of entity representation. For each message
passing layer, its time complexity is O(|E|d + |Vd2|). For each transformer layer, its time com-
plexity is O(|Vd2|). Because of message passing layer and transformer in parallel, the overall time
complexity of our dual-pathway fusion model is O(max(Lm(|E| d+ |V| d2), Lt |V| d2)).

Time complexity of one-pathway model. We assume one-pathway fusion model includs Lm

message passing layers and Lt transformer layers. For each message passing layer, its time com-
plexity is O(|E|d+ |Vd2|). Here, |V| and |E| respectively denote the number of entities and triplets
and d is the dimension of entity representation. For each transformer layer, its time complexity is
O(|Vd2|). Because message passing layer and transformer is sequntial, the overall time complexity
of our dual-pathway fusion model are O(Lm |E| d+ (Lm + Lt) |V| d2).

B.2 Time Complexity Computation of Coarse-to-Fine Stage.

The coarse-to-fine reasoning stage has two additional operations of coarse-grained reasoning and
sorting all entities compared to one-stage. In coarse-to-fine reasoning, parallel reasoning with coarse
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Table 7: Transductive KG reasoning performance for DuetGraph, SimKGC and MoCoKGC on
FB15k-237 and WN18RR. (The best results are bolded in red with a yellow highlight. )

Value FB15k-237 WN18RR
MRR H@1 H@10 MRR H@1 H@10

SimKGC[57] 0.336 24.9 51.1 0.666 58.5 80.0
MoCoKGC[65] 0.391 29.6 43.1 0.742 66.5 79.2
DuetGraph(ours) 0.456 36.1 62.8 0.594 54.2 70.0

model and fine model. Moreover, the time complexity of the coarse model we employ is O(|E|d)
where |E| denote the number of triplets and d is the dimension of entity representation. The time
complexity of this sorting process is O(|V|log|V|), where |V| denote the number of entities. The one-
stage reasoning only includes dual-pathway fusion model. Therefore, the overall time complexity
of the coarse-to-fine reasoning stage is O(max(Lm(|E| d+ |V| d2), Lt |V| d2) + |V| log |V|).

C Additional Baseline Discussion

C.1 DuetGraph vs. Methods based on pre-trained language models.

We observe that language model-based reasoning methods such as SimKGC [57] and Mo-
CoKGC [65] achieve unusually high results on WN18RR, but perform poorly on other datasets,
as shown in Table 7. To better understand this phenomenon, we take these two methods as represen-
tative examples for further analysis. We note that WN18RR is derived from WordNet, a large lexical
database of English that naturally encodes rich semantic relations between words. Pre-trained lan-
guage models are well-suited to capturing such general semantic information, which may explain
their strong performance on WN18RR. In contrast, FB15k-237 involves more domain-specific rela-
tional knowledge, which poses greater challenges for these models, leading to weaker performance
(as shown in Table 7).

Additionally, we consider the possibility that the textual descriptions of entities in WN18RR may
have appeared in the pretraining corpus of language models, potentially leading to data leakage.
Therefore, we adopt the detection method proposed by [66] to estimate the proportion of WN18RR
entity texts that are likely included in the pretraining data of the language model used by SimKGC
and MoCoKGC (i.e., bert-base-uncased).

Specifically, for an entity text, select the ϵ of tokens with the lowest predicted probabilities from
the language model. Then, compute the average log-likelihood of these low-probability tokens. If
the average log-likelihood exceeds a certain threshold, we consider that the text is likely to have
appeared in the language models pre-training data.

The detailed results are presented in Table 8. We observe that even under smaller ϵ (e.g.,10% and
20%) that means selecting the ϵ of tokens that are most difficult to be recognized by the language
model, over 70% of the entity texts in WN18RR appear to be memorized by the language model,
suggesting a significant potential for data leakage.

Table 8: Pre-training overlap rate under varying ϵ, where ϵ represents the proportion of low proba-
bility tokens predicted by language model.

ϵ Pretraining Overlap Rate
10.0% 70.11%
20.0% 77.46%
50.0% 82.60%
60.0% 81.92%
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C.2 Baseline Details.

In this section, we explain the reasons for not comparing with some baseline methods on certain
datasets. SimKGC [57] requires additional textual information as part of its input data. Since the
public repository does not provide textual information for some datasets (e.g., NELL-995), compar-
isons on those datasets are not conducted. DRUM [55] and A*Net [13] do not provide the specific
parameters required to construct the inductive datasets as described in their papers. Therefore, they
cannot be applied to certain datasets (e.g., NELL-995v1).

D Experimental Details

D.1 Transductive and Inductive Reasoning.

Following the formal definition in [67], transductive reasoning assumes that all test entities appear
during training, while inductive reasoning handles completely unseen entities during testing. This
difference is fundamental to evaluating model generalization capabilities.

Therefore, following the methodology in [68], we construct our inductive evaluation datasets by
ensuring complete separation between training and test entities. This strict partitioning, where test
entities are excluded from training, enables a reliable assessment of the model’s generalization ca-
pability to unseen knowledge.

D.2 Relation Prediction Task.

The relation prediction task (h, ?, t) can indeed be transformed to fit our tail completion paradigm
through the approach in [69]:

• Scoring Mechanism: For relation prediction, we fix head (h) and tail (t) entities, then
score all candidate relations. For tail prediction, we fix the head (h) and relation (r), then
score all candidate tails. Both tasks use the same underlying scoring function.

• Implementation: For relation prediction, we compute a score for each candidate relation
and select the one with the highest score as the prediction.

This approach maintains fundamental consistency with tail entity prediction. While the surface-level
structures differ, both tasks share the same underlying computational paradigm: evaluating possible
completions against fixed components of the triple using a unified scoring mechanism.

D.3 Dataset Statistics.

We conduct experiments on four knowledge graph reasoning datasets, and the statistics of these
datasets are summarized in Table 9. The specific dataset details are as follows:

• The FB15k-237 [47] dataset is a subset of FB15k [35]. Toutanova and Chen [47] pointed
out that WN18 and FB15k have a test set leakage problem. Therefore, they extracted
FB15k-237 from FB15k.

• The WN18RR [48] dataset is a subset of WN18 [35]. All inverse relations in the WN18
dataset were removed by Dettmers et al. [48] to obtain the WN18RR dataset.

• NELL-995 [49] is a refined subset of the NELL knowledge base, curated for multi-hop
reasoning tasks by filtering out low-value relations and retaining only the top 200 most
frequent ones.

• YAGO3-10 [70] is a subset of YAGO3, containing 123,182 entities and 37 relations,
where most relations provide descriptions of people. Some relationships have a hierar-
chical structure such as playsFor or actedIn, while others induce logical patterns, like
isMarriedTo.

Additionally, we perform experiments on three inductive knowledge graph reasoning datasets, each
of which contains four different splits. The statistics of the inductive datasets are summarized in
Table 10.
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Table 9: Dataset Statistics for Tranductive Knowledge Graph Reasoning Datasets.

Dataset Relation Entity Triplet

Train Valid Test
FB15k-237 [47] 237 14,541 272,115 17,535 20,466
WN18RR [48] 11 40,943 86,835 3,034 3,134
NELL-995 [49] 200 74,536 149,678 543 2,818
YAGO3-10 [70] 37 123,182 1,079,040 5,000 5,000

Table 10: Dataset Statistics for Inductive Knowledge Graph Reasoning Datasets. In each split, one
needs to infer Query triplets based Fact triplets.

Dataset Relation Entity Train Valid Test

Entity Query Fact Entity Query Fact Entity Query Fact

FB15k-237 [47]

180 (v1) 1,594 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
200 (v2) 2,608 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
215 (v3) 3,668 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
219 (v4) 4,707 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR [48]

9 (v1) 2,746 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
10 (v2) 6,954 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011

9 (v3) 12,078 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
9 (v4) 3,861 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

NELL-995 [49]

14 (v1) 3,103 3,103 4,687 4,687 3,103 414 4,687 225 100 833
86 (v2) 2,564 2,564 15,262 8,219 2,564 922 8,219 2,086 476 4,586

142 (v3) 4,647 4,647 16,393 16,393 4,647 1,851 16,393 3,566 809 8,048
76 (v4) 2,092 2,092 7,546 7,546 2,092 876 7,546 2,795 7,073 731

D.4 Hyperparameters Setup.

Coarse-to-Fine reasoning model. In the coarse-grained reasoning stage, we directly adopt exist-
ing models without any modifications to their original hyperparameter settings.

Dual-Pathway fusion model. For each dataset, we perform hyperparameter tuning on the valida-
tion set. We conduct grid search over the following hyperparameters:

• Learning rate: {10−4, 5× 10−4, 10−3, 5× 10−3, 10−2}
• Weight decay: {10−5, 10−4}
• Hidden dimension: {16, 32, 64, 128}
• Negative sampling size: {128, 256, 512}
• Message passing layers in input encoder: {1, 2, 3}
• Message passing layers in local pathway: {1, 2, 3}
• Transformer layers in global pathway: {1, 2, 3}

In addition, we initialize the value of α randomly within the range (0, 1). Since we use the same ran-
dom seed for all datasets, the initial value of α is identical across different datasets and is 0.549. And
we report the range of α values observed during training across different datasets, as shown in the Ta-
ble11, Table12 and Table13. The results show that α consistently converges to a stable value during
training, with negligible fluctuations afterward (less than 0.001). Across all datasets, α converges
reliably as expected. Moreover, α remains below the theoretical threshold σmax(MD)+σmax(MO)

1+σmax(MO) as
stated in Theorem 1.

Coarse-to-Fine Optimization. In the coarse-to-fine optimization, two key hyperparameters are
involved: the number of entities in the high-confidence subset k, and the decision threshold ∆.

We analyze the impact of the hyperparameter k, which denotes the number of entities in the high-
score subset. We conduct experiments on the validation sets of all transductive datasets using our
model. We set k to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. See Table 15. We ultimately
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Table 11: The range of α values observed during training on FB15k-237.
Datasets FB15k-237v1 FB15k-237v2 FB15k-237v3 FB15k-237v4

Theoretical threshold 2.27 2.44 2.40 2.46
α (Epoch=0) 0.549 0.549 0.549 0.549
α (Epoch=2) 0.538 0.518 0.513 0.507
α (Epoch=4) 0.531 0.501 0.498 0.486
α (Epoch=6) 0.522 0.485 0.477 0.465
α (Epoch=8) 0.514 0.468 0.460 0.450
α (Epoch=10) 0.508 0.457 0.445 0.437
α (Epoch=12) 0.509 0.458 0.445 0.439
α (Epoch=14) 0.511 0.460 0.447 0.440
α (Epoch=16) 0.512 0.461 0.448 0.441
α (Epoch=18) 0.512 0.461 0.449 0.441
α (Epoch=20) 0.512 0.461 0.449 0.441

Table 12: The range of α values observed during training on WN18RR.
Datasets WN18RRv1 WN18RRv2 WN18RRv3 WN18RRv4

Theoretical threshold 2.17 2.00 2.03 2.10
α (Epoch=0) 0.549 0.549 0.549 0.549
α (Epoch=2) 0.539 0.543 0.546 0.543
α (Epoch=4) 0.534 0.531 0.534 0.540
α (Epoch=6) 0.533 0.524 0.536 0.537
α (Epoch=8) 0.532 0.512 0.523 0.536
α (Epoch=10) 0.531 0.504 0.511 0.532
α (Epoch=12) 0.531 0.505 0.511 0.532
α (Epoch=14) 0.533 0.505 0.510 0.533
α (Epoch=16) 0.533 0.505 0.511 0.533
α (Epoch=18) 0.533 0.505 0.511 0.533
α (Epoch=20) 0.533 0.505 0.511 0.533

Table 13: The range of α values observed during training on NELL-995.
Datasets NELL-995v1 NELL-995v2 NELL-995v3 NELL995v4

Theoretical threshold 2.49 2.58 2.54 2.42
α (Epoch=0) 0.549 0.549 0.549 0.549
α (Epoch=2) 0.544 0.536 0.526 0.536
α (Epoch=4) 0.539 0.532 0.496 0.516
α (Epoch=6) 0.523 0.525 0.474 0.500
α (Epoch=8) 0.514 0.517 0.447 0.487
α (Epoch=10) 0.514 0.509 0.424 0.477
α (Epoch=12) 0.514 0.509 0.425 0.475
α (Epoch=14) 0.512 0.510 0.425 0.476
α (Epoch=16) 0.512 0.510 0.426 0.476
α (Epoch=18) 0.512 0.510 0.427 0.476
α (Epoch=20) 0.512 0.510 0.427 0.476

select k = 4 for all the datasets, as these settings yield relatively high and stable results across three
key metrics MRR, Hits@1, and Hits@10 rather than optimizing a single metric in isolation. We also
conduct the same experiments on 4 inductive datasets (As shown in Figure 5).

Additionally, We analyze the impact of the hyperparameter, the decision threshold ∆. We run exper-
iments on all transductive datasets with our model. We set ∆ to {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10}. For FB15k-237 and WN18RR, we set ∆ to 8 and set ∆ to 5
for NELL-995 and YAGO3-10. The results are shown in Table 14.
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Figure 5: Effect of hyperparameter k on the performance metrics of KG reasoning for different
datasets (inductive).

Table 14: The results on transductive knowledge graph reasoning datasets with different ∆.
Value FB15k-237 WN18RR NELL-995 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
0.0 0.411 31.9 58.0 0.581 52.5 68.7 0.553 48.1 66.5 0.600 53.0 72.3
0.5 0.423 33.0 59.2 0.584 53.0 68.9 0.572 50.1 69.3 0.613 54.3 73.0
1.0 0.436 34.1 60.6 0.588 53.4 69.0 0.579 50.8 69.8 0.619 54.8 73.5
1.5 0.443 34.7 61.3 0.589 53.6 69.0 0.585 51.4 70.5 0.623 55.2 74.0
2.0 0.447 35.2 61.7 0.590 53.7 69.1 0.589 51.7 71.1 0.626 55.5 74.4
2.5 0.448 35.3 61.7 0.591 53.8 69.1 0.590 51.8 71.2 0.628 55.7 74.6
3.0 0.450 35.5 61.8 0.591 53.8 69.1 0.592 52.0 71.2 0.630 55.8 74.7
3.5 0.451 35.6 61.9 0.591 53.8 69.2 0.592 52.1 71.2 0.631 56.0 74.8
4.0 0.452 35.7 62.0 0.591 53.9 69.2 0.592 52.1 71.2 0.632 55.1 74.8
4.5 0.452 35.7 62.1 0.591 53.9 69.2 0.592 52.1 71.2 0.632 56.1 74.9
5.0 0.453 35.8 62.2 0.592 53.9 69.2 0.593 52.2 71.2 0.632 56.1 74.9
5.5 0.453 35.8 62.2 0.592 53.9 69.2 0.593 52.2 71.1 0.632 56.1 74.9
6.0 0.454 35.9 62.2 0.592 53.9 69.2 0.593 52.2 71.1 0.632 56.1 74.8
6.5 0.454 35.9 62.3 0.592 53.9 69.2 0.592 52.2 71.1 0.632 56.1 74.8
7.0 0.455 36.0 62.4 0.592 54.0 69.2 0.592 52.2 71.0 0.632 56.1 74.9
7.5 0.456 36.1 62.5 0.593 54.2 69.9 0.592 52.2 71.0 0.632 56.1 74.9
8.0 0.456 36.1 62.8 0.594 54.0 70.0 0.592 52.1 71.0 0.632 56.1 74.9
8.5 0.457 36.1 62.7 0.593 54.0 69.9 0.592 52.1 69.9 0.632 56.0 74.9
9.0 0.456 35.9 62.6 0.593 54.0 69.9 0.592 52.1 69.9 0.632 56.0 74.9
9.5 0.454 35.9 62.6 0.593 54.0 69.2 0.592 52.1 69.9 0.632 56.0 74.9
10.0 0.454 35.9 62.2 0.593 54.1 69.3 0.592 52.1 69.9 0.632 56.0 74.9

Computational Environment. The experiments are conducted using Python 3.9.21, PyTorch
2.6.0, and CUDA 12.1, with an NVIDIA A100 80GB GPU.

D.5 Random Initialization.

We run each model three times with different random seeds and report the mean results. We do not
report the error bars because our model has very small errors with respect to random initialization.
The standard deviations of the results are very small. For example, the standard deviations of MRR,
H@1 and H@10 of DuetGraph are 9.8× 10−7, 5.6× 10−7 and 1.95× 10−5 on FB15k-237 dataset,
respectively. On WN18RR dataset, the standard deviations of MRR, H@1 and H@10 of DuetGraph
are 1.607× 10−6, 7.77× 10−6 and 8.94× 10−6, respectively. On NELL-995 dataset, the standard
deviations of MRR, H@1 and H@10 of DuetGraph are 5.625 × 10−7, 1.0 × 10−8 and 1.89 ×
10−5, respectively. On YAGO3-10 dataset, the standard deviations of MRR, H@1 and H@10 of
DuetGraph are 2.64× 10−6, 4.3× 10−7 and 2.5× 10−5, respectively. This indicates that our model
is not sensitive to the random initialization.

D.6 Ranking Protocol.

Following previous work [19], we conducted experiments on DuetGraph using the strictest ranking
protocol (m+ n+ 1), where m is the number of entities with higher scores than the correct answer
and n is the number of entities that receive the same score as the correct answer. We also conducted
experiments using a widely used but more lenient ranking protocols, namely (m + 1) adopted in
[71, 36, 72, 73], as shown in Table 16 and Table 17.

Based on the experimental results, we can draw the following conclusions.
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Table 15: The results on transductive knowledge graph reasoning datasets with different k.
Value FB15k-237 WN18RR NELL-995 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
1 0.455 37.7 61.6 0.602 55.0 70.4 0.592 54.6 68.1 0.638 58.3 74.2
2 0.457 37.0 61.9 0.599 53.6 70.6 0.594 54.6 68.2 0.636 57.0 74.4
3 0.456 36.4 62.3 0.595 52.4 70.9 0.592 54.1 68.4 0.634 56.5 74.6
4 0.456 36.1 62.8 0.593 52.2 71.2 0.592 54.1 68.5 0.632 56.1 74.9
5 0.454 35.8 63.0 0.591 52.0 71.4 0.593 54.1 68.7 0.631 55.9 75.2
6 0.452 35.5 63.4 0.589 51.9 71.5 0.593 54.1 69.0 0.629 55.7 75.4
7 0.452 35.4 63.9 0.589 51.8 71.7 0.594 54.2 69.3 0.628 55.5 75.6
8 0.451 35.4 64.2 0.588 51.7 71.9 0.593 54.1 69.5 0.627 55.4 75.8
9 0.451 35.4 64.6 0.588 51.7 72.1 0.594 54.2 69.8 0.626 55.3 75.9
10 0.450 35.3 65.1 0.587 51.6 72.4 0.594 54.2 70.0 0.626 55.3 76.2
11 0.450 35.3 65.2 0.587 51.5 72.1 0.595 54.1 70.1 0.625 55.2 76.2
12 0.450 35.3 65.2 0.584 51.0 72.1 0.593 53.9 70.0 0.624 55.1 76.2
13 0.449 35.2 65.1 0.583 50.9 72.2 0.592 53.9 69.9 0.624 55.0 76.1
14 0.449 35.2 65.0 0.583 50.9 72.1 0.592 53.9 69.9 0.623 55.0 76.0
15 0.447 35.0 64.9 0.582 50.9 72.0 0.591 53.8 69.8 0.623 54.9 75.8

Table 16: Comparision of different under ranking protocols across four datasets.

Method FB15k-237 WN18RR NELL-995 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

KnowFormer (m+ n+ 1) 0.430 34.3 60.8 0.579 52.8 68.7 0.566 50.2 67.5 0.615 54.7 73.4
DuetGraph (m+ n+ 1) 0.453 36.1 62.4 0.593 54.2 69.9 0.590 52.1 71.2 0.631 56.1 74.8
DuetGraph (m+ 1) 0.456 36.1 62.8 0.594 54.2 70.0 0.593 52.2 71.2 0.632 56.1 74.9

• First, switching to the strictest ranking protocol has little impact on DuetGraphs quality. As
shown in the tables above, when switching the ranking protocol from (m+1) to (m+n+1),
DuetGraphs quality is virtually unaffected, with at most a 0.3% drop in MRR, a 0.1% drop
in Hits@1, and a 0.4% drop in Hits@10. This is because, n is 0 in almost all the cases. As
shown in the table above, the number of test triplets impacted when replacing (m+1) with
(m+ n+ 1) is less than 1%.

• Second, DuetGraph achieves SOTA results even under the strictest ranking protocol. As
shown above, it surpasses AnyBURL and KnowFormer across all datasets in MRR, Hits@1,
and Hits@10. For the other baselines, as shown in Table 2 used the official code from their
original papers, all of which employ protocols no stricter than (m + n + 1). As shown in
[76], increasing the strictness of ranking protocol yields quality that is no higher (and often
lower). Even under this tough setting, DuetGraph consistently outperforms all of them,
providing strong evidence of its SOTA performance.

E More Experimental Results

E.1 Model Size and Inference Time.

Despite employing a two-stage reasoning strategy, DuetGraph exhibits significantly superior infer-
ence efficiency compared to KnowFormer[19]. This advantage is primarily attributed to our inno-
vative parallel processing architecture and a lightweight coarse-grained model selection mechanism.
These components work synergistically, enabling DuetGraph to achieve this higher efficiency at a
comparable model scale, as detailed in Table 18.

As shown in Table 18, the inference efficiency improvement is especially notable on large-scale
knowledge graphs, such as YAGO3-10, where our method achieves a 34.2% increase in inference
efficiency compared to the SOTA model KnowFormer[19].

E.2 The difference between α and graph attention.

The main differences are reflected in the following three perspectives:
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Table 17: Comparison of different ranking protocols across very large knowledge graphs. (Non-
deterministic ranking [74, 63, 75] means that when two entities share the same score, their original
order is preserved in the ranking. Compared with the m + n + 1 ranking protocol, this is more
lenient.)

Method Wikidata5M Freebase
MRR H@1 H@10 MRR H@1 H@10

AnyBURL (Non-Deterministic Ranking) 0.350 30.9 42.9 0.588 53.6 68.2
KnowFormer (m+ n+ 1) 0.332 26.7 46.3 0.684 65.7 73.6
DuetGraph (m+ n+ 1) 0.363 32.7 49.5 0.697 69.3 73.8
DuetGraph (m+ 1) 0.363 32.7 49.5 0.699 69.4 73.9

Table 18: Comparison of Model Size and Inference Time across different datasets.

Datasets FB15k-237 WN18RR NELL-995 YAGO3-10
Metrics Size (M) Time (ms) Size (M) Time (ms) Size (M) Time (ms) Size (M) Time (ms)

DuetGraph 6.5
(Coarse: 0.6, Fine: 5.9)

347.07 1.3
(Coarse: 0.9, Fine: 0.4)

292.49 7.2
(Coarse: 2.3, Fine: 4.9)

261.32 3.4
(Coarse: 2.3, Fine: 1.1)

597.22

KnowFormer[19] 6.1 499.71 0.4 392.40 5.2 360.40 1.0 905.22

• Technical Role.: As illustrated in Figure 2, the graph attention mechanism (Step 2) first
learns global weights, which subsequently inform the learning of the control parameter
α (Step 4). The attention weights serve as intermediate representations that enable α to
effectively balance local and global information.

• Theoretical Advantage.: Introducing α allows for better fusion of the global weights cap-
tured by the attention mechanism (Step 2) and the local weights acquired via message
passing (Step 3), which helps mitigate over-smoothing and enhances the models quality, as
shown in Theorem 1.

• Experimental Study.: Incorporating α achieves better performance compared to using
attention mechanism alone, as shown in Table 19.

Table 19: Results comparing the model with and without the α parameter.
Metrics FB15k-237 WN18RR NELL-995 YAGO3-10

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

w/ α 0.456 36.1 62.8 0.594 54.2 70.0 0.593 52.2 71.2 0.632 56.1 74.9
only w/ attention 0.445 35.1 61.2 0.584 54.1 69.0 0.582 51.0 70.3 0.617 54.2 73.7

F Limitations and Broader Impacts

F.1 Limitations

Although DuetGraph has demonstrated its effectiveness in improving reasoning performance on
several public benchmarks, many challenges remain to be addressed. For instance, its black-box
decision process poses challenges for domains such as biomedicine, where expert interpretability
and traceability are essential. Future work may incorporate explainability modules along with in-
teractive visualization tools to help users understand the reasoning process of the model, thereby
improving its trustworthiness and applicability in real-world scenarios such as clinical diagnosis
and drug discovery [77].

F.2 Broader Impacts

DuetGraph is a framework for knowledge graph reasoning that offers strong support for predicting
missing information in real-world social networks. And DuetGraph holds great potential for accel-
erating discovery in biomedical domains, such as drug repurposing and disease-gene association
prediction.
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