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Abstract

Self-supervised learning (SSL) has recently achieved tremendous empirical advancements in
learning image representation. However, our understanding of the principle behind learning
such a representation is still limited. This work shows that joint-embedding SSL approaches
learn a representation of image patches, which reflects their co-occurrence. Such a connection
to co-occurrence modeling can be established formally, and it supplements the prevailing
invariance perspective. We empirically show that learning a representation for fixed-scale
patches and aggregating local patch representations as the image representation achieves
similar or even better results than the baseline methods. We denote this process as BagSSL.
Even with 32 x 32 patch representation, BagSSL achieves 62% top-1 linear probing accuracy
on ImageNet. On the other hand, with a multi-scale pretrained model, we show that the
whole image embedding is approximately the average of local patch embeddings. While
the SSL representation is relatively invariant at the global scale, we show that locality is
preserved when we zoom into local patch-level representation. Further, we show that patch
representation aggregation can improve various SOTA baseline methods by a large margin.
The patch representation is considerably easier to understand, and this work makes a step
to demystify self-supervised representation learning.

1 Introduction

In many application domains, self-supervised representation learning experienced tremendous advancements
in the past few years. In terms of the quality of learned features, unsupervised learning has caught up with
supervised learning or even surpassed the latter in many cases. This trend promises unparalleled scalability
for data-driven machine learning in the future. One of the most successful self-supervised learning paradigms
is joint-embedding SSL (Wu et al., 2018; Chen et al., 2020a; Grill et al., 2020; Chen et al., 2020b; Bardes
et al., 2021; Zbontar et al., 2021; Yeh et al., 2022; Li et al., 2022), which uses a Siamese network architecture
(Bromley et al., 1993). These methods follow a general goal: to transform different views (augmentation) of
the same instance (image) closer in the representation space, and meanwhile, the new space is not collapsed,
or in other words, important geometric and stochastic structures are preserved.

While we celebrate the empirical success of SSL, our understanding of this learning process still needs to
be improved. This work shows that joint-embedding SSL approaches are learning a representation
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of image patches, which reflects their co-occurrence. To demonstrate this, we first establish a
formal connection between joint-embedding SSL and co-occurrence modeling. Then, we show that learning
a representation for fixed-scale patches and linearly aggregating patch representations (bag-of-local-features)
as the image representation achieves similar or even better results than learning the representation with
multi-scale crops. Empirical results are shown with several SSL methods(Chen et al., 2020a; Bardes et al.,
2021; Li et al., 2022; Grill et al., 2020) on CIFAR10, CIFAR100, ImageNet100, and ImageNet-1K datasets.
Even with 32 x 32 patch representation, we can achieve 62% top-1 linear probing accuracy on ImageNet-1K.
And KNN classifier also works surprisingly well with the aggregated patch feature. These findings resonate
with recent works in supervised learning based on local features (Brendel & Bethge, 2018; Dosovitskiy et al.,
2021; Trockman & Kolter, 2023). We further show that for baseline SSL methods pretrained with multi-
scale crops, the whole-image representation is approximately a linear aggregation of local patch embeddings.
The local patch representation is considerably easier to understand, and we provide visualization to show
that the representation space preserves locality when we zoom into the local patch representation. These
discoveries supplement the prevailing invariance perspective, provide a useful understanding of the success
of joint-embedding SSL, and make a step to demystify self-supervised representation learning.

2 Related Works

Joint-embedding SSL: Invariance without Collapse. Joint-embedding SSL (or instance-based SSL)
(Wu et al., 2018) views each of the images as a different class and uses data augmentation (Dosovitskiy et al.,
2016) to generate different views from the same image. As the number of classes equals the number of images,
it is formulated as a massive classification problem, which may require a huge buffer or memory bank. Later,
SimCLR (Chen et al., 2020a) simplifies the technique significantly and uses an InfoNCE-based formulation to
restrict the classification within an individual batch. At the same time, it’s widely perceived that contrastive
learning needs the “bag of tricks,” e.g., large batches, hyperparameter tuning, momentum encoding, memory
queues, etc. Later works (Chen & He, 2021; Yeh et al., 2022; HaoChen et al., 2021) show that many of these
issues can be easily fixed. Recently, several even simpler non-contrastive learning methods(Bardes et al.,
2021; Zbontar et al., 2021; Li et al., 2022) are proposed, where one directly pushes the representation of
different views from the same instance closer while maintaining a non-collapsing representation space. Joint-
embedding SSL methods mostly differ in their means of achieving a non-collapsing solution. This include
classification versus negative samples(Chen et al., 2020a), Siamese networks (He et al., 2020; Grill et al.,
2020) and more recently, covariance regularization (Ermolov et al., 2021; Zbontar et al., 2021; Bardes et al.,
2021; HaoChen et al., 2021; Li et al., 2022; Bardes et al., 2022). The covariance regularization has also long
been used in many classical unsupervised learning methods (Roweis & Saul, 2000; Tenenbaum et al., 2000;
Wiskott & Sejnowski, 2002; Chen et al., 2018), also to enforce a non-collapsing solution. There is a duality
between the spectral contrastive loss(HaoChen et al., 2021) and the non-contrastive loss, which we briefly
discuss the intuition in Appendix B.

All previously mentioned joint-embedding SSI. methods pull together representations of different views of
the same instance. Intuitively, the representation would eventually be invariant to the transformation that
generates those views. We would like to provide further insight into this learning process: The learning
objective can be understood as using the inner product to capture the co-occurrence statistics of local image
patches. We also provide visualization to study whether the learned representation truly has this invariance
property.

Patch-Based Representation. Many works have explored the effectiveness of path-based image features.
In the supervised setting, Bagnet(Brendel & Bethge, 2018) and Thiry et al. (2021) showed that aggregation
of patch-based features could achieve most of the performance of supervised learning on image datasets. In
the unsupervised setting, Gidaris et al. (2020) performs SSL by requiring a bag-of-patches representation
to be invariant between different views. Due to architectural constraints, vision transformer-based methods
also naturally use a patch-based representation (He et al., 2022; Bao et al.).

Learning Representation by Modeling the Co-Occurrence Statistics. The use of word vector
representation has a long history in NLP, which dates back to the 80s (Rumelhart et al., 1986; Dumais,
2004). Perhaps one of the most famous word embedding results, the word vector arithmetic operation,
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was introduced in Mikolov et al. (2013a). Particularly, to learn this embedding, a task called “skip-gram”
was used, where one uses the latent embedding of a word to predict the latent embedding of the word
vectors in a context. A refinement was proposed in Mikolov et al. (2013b), where a simplified variant of
Noise Contrastive Estimation (NCE) was introduced for training the “Skip-gram” model. The task and loss
are deeply connected to the SimCLR and its InfoNCE loss. Later, a matrix factorization formulation was
proposed in Pennington et al. (2014), which uses a carefully reprocessed concurrence matrix compared to
latent semantic analysis. While the task in Word2Vec and SimCLR is apparently similar, the underlying
interpretations are quite different. In joint-embedding SSL methods, one pervasive perception is that the
encoding network is trying to build invariance, i.e., different views of the same instance shall be mapped to the
same latent embedding. This work supplements this classical opinion and shows that similar to Word2Vec,
joint-embedding SSL methods can be understood as building a distributed representation of image patches
by modeling the co-occurrence statistics.

3 Joint-Embedding SSL Models Image Patch Co-Occurrence

As we discussed earlier, recent works show that there exists a duality Garrido et al. (2023) between contrastive
SSL and non-contrastive SSL methods, and these methods are essentially solving the same problem. So we
only need to establish the connection between co-occurrence statistics modeling and one joint-embedding SSL
method. In the following, we show that the spectral contrastive learning HaoChen et al. (2021) loss function
models the co-occurrence statistics. We also replace multi-scale crop augmentation with fixed-scale image
patches during SSL training. Thus the learning process is precisely modeling the patch-level co-occurrence
statistics. After training, SSL has learned a representation for fixed-scale image patches. The whole-image
representation is a linear aggregation of local patch representations.

Joint-embedding SSL and Co-Occurrence. Let’s assume 7 and 75 are two color-augmented patches
sampled from the dataset. We denote their marginal distribution by p(#1) and p(Z2), which includes variation
due to sampling different images, spatial locations within an image, and random color augmentation. We
denote their joint distribution by p(#1, #2), which is the probability that they co-occur within the same image.
7 and Z5 are corresponding embedding vectors of 1 and &5 in the representation space. The representation
transform is parameterized by a neural network. The next proposition shows that the spectral contrastive
loss function is equivalent to co-occurrence statistics modeling.

Proposition 3.1. The spectral contrastive loss function Lg:
T = ST > \2
Ly = Ep(, ) [-21 2] + ABpap(as) (21 22) (1)

is equivalent to the co-occurrence statistics modeling loss function Lo :
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where A = 5, and w is a constant weighting factor.

The proof is rather straightforward and is presented in Appendix A. The first term in Lg ensures that co-
occurring image patches are embedded closer in the embedding space, and the second term in Lg uniformly
pushes the patch embeddings away from each other so that the representation space does not collapse.

Bag-of-Local-Feature Evaluation. After we have learned a representation of fix-scale image patches,
we can embed all of the image patches {Z11,...,Zgw} within an image into the embedding space. Then,
we can obtain the representation R;,g for the whole image by linearly aggregating (averaging) all patch
embeddings. The pipeline is shown in Figure 1. 2 = g(lj;; ¥) and h= f(#;0). We call h the embedding and
Z the projection of an image patch, . {Z} are fixed-scale. The function f(-;6) is a deep neural network
with parameters ¢, and g is typically a much simpler neural network with only one or a few fully connected
layers and parameters . Following a convention in joint- embedding SSL, we use h as patch representation
rather than Z for slightly better accuracy, i.e. leg = meaunm/y(ml7 hHW) During SSL training, given
an image patch Z;, the objective tries to pull 1ts projection Zz; closer to the projections of other co-occurring
image patches and to push away non-co-occurring image patches’ projections. For easier reference, we denote
this process as BagSSL.
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Figure 1: BagSSL pipeline. From each image, fixed-size image patches are extracted, color-augmented,
and encoded to embedding and projection space. During training, patch projections of co-occurring patches
(from the same image) are pulled together while an anti-collapse regularization is applied to push non-co-
occurring patch projections away. After training, patch embeddings {i_i} from the same image are averaged
to form the image representation ﬁimg.

4 Empirical Results

In this section, we present a series of empirical results and test BagSSL with several representative joint-
embedding SSL methods (SimCLR(Chen et al., 2020a), VICReg(Bardes et al., 2021), TCR(Li et al., 2022),
and BYOL(Grill et al., 2020)) on four standard benchmarks (CIFAR10, CIFAR100, ImageNet-100, and
ImageNet-1K). Through experiments, we have the following observations:

e BagSSL achieves similar or even better results than baseline methods. Even with 32 x 32 patch
representation, BagSSL achieves 62% top-1 linear probing accuracy on ImageNet.

e The aggregated patch embedding approximately converges to the whole-image representation in
baseline SSL methods with respect to the number of patches aggregated.

e Through visualization, we show that the smaller-scale patch representation preserves locality better.

e We can leverage BagSSL to further improve the representation quality of the baseline methods.

The first two observations show from two different angles that a patch-based SSL representation can po-
tentially explains the performance of the baseline methods. The third observation shows how patch repre-
sentation supplements the prevailing invariance perspective. And the fourth observation provides practical
benefits in addition to understanding.

4.1 BagSSL Versus Baseline Methods

We first test BagSSL with four baseline methods. The only difference between BagSSL and the baselines
during training is that we replace multi-scale cropping augmentation with fixed-scale image patches. Simi-
larly, two image patches are randomly selected from each image in the batch. While we mainly present linear
probing accuracy, Figure 2 shows that k-NN evaluation is consistent with linear probing evaluation. During
the evaluation, we show standard central crop evaluation results for both BagSSL and baselines. Further,
we show the multi-patch aggregated evaluation and multi-crop aggregated evaluation. In the tables, “patch”
means that fixed-scale patch embeddings are aggregated, and “crop” means that multi-scale crop embeddings
are aggregated. All implementation details can be found in Appendix C. The main results are highlighted
in Table 1, Table 2, Table 3, where BagSSL matches the baselines or surpass them on CIFAR10, CIFAR100,
and ImageNet-100 datasets. In Figure 3, we show the results on ImageNet-1K. Interestingly, with 32 x 32
patch representation, BagSSL achieves 62% top-1 linear probing accuracy. There is a 5.3% performance gap
between BagSSL and VICReg on ImageNet-1K, possibly due to the engineering issue.
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Figure 2: Linear probing and kNN evaluation on CIFAR-10 are consistent. We evaluate the perfor-
mance of a linear classifier (a) and a k-NN classifier (b) for pretraining with various patch sizes and various
evaluation setups. During pretraining, BagSSL uses fixed-scale patches, and baseline methods use multi-scale
augmentation RandomResizedCrop(min_scale, max_scale). For example, RandomResizedCrop(0.08,
1.0) corresponds to randomly and uniformly select crops ranging from 9 x 9 to 32 x 32. The patch size and
augmentation crop size range are marked in the figure. The “Central” evaluation is the standard evaluation
protocol where the classifier is trained and evaluated on single fixed central patches of the image, which
is the entire image for CIFAR-10. For the n patch evaluation, the classifier is trained and evaluated on
the linearly-aggregated embedding of n patches, sampled with the same scale factor as during pretraining.
Please note that the “central” evaluation is expected to perform poorly on fix-scale pretraining as the model
has never seen the entire image during pretraining.

Table 1: Performance on CIFAR-10 with patch-based and standard multi-Scale SSL pre-
training. We evaluate the performance of a linear classifier with BagSSL and baseline SSL methods.
BagSSL uses patch-based training, where 14 x 14 image patches are sampled during pretraining. Baseline
methods use multi-scale training, where the patch scale is uniformly sampled between scale 0.08 and 1.0,
which means that multi-scale crops are sampled uniformly from 9 x 9 to 32 x 32 patches.

Method Patch-based training evaluation Multi-scale training evaluation
Central crop 1 patch 16 patches 256 patches Central crop 1 crop 16 crops 256 crops
SimCLR 46.2 82.1 90.5 90.8 90.2 86.4 91.6 91.8
TCR 46.0 82.2 90.4 90.8 90.1 86.5 91.5 91.8
VICReg 471 83.1 90.9 91.2 90.7 87.3 91.9 92.0
BYOL 47.3 83.6 91.3 91.5 90.9 87.8 92.3 92.4

CIFAR. We first provide experimental results on the standard CIFAR-10 and CIFAR-100 datasets
(Krizhevsky et al., 2009) using ResNet-34. During training, fixed-scale image patches are used for BagSSL,
and baseline methods RandomResizedCrop(0.08, 1.0) augmentation, which means that we randomly choose
to sample from 9 x 9 to 32 x 32 patches as the crops. Sampled patches and crops are upsampled to a uniform
32 x 32 resolution before embedding by ResNet-34. The standard evaluation method generates the embedding
using the entire image, both during training of the linear classifier and at final evaluation, and it is denoted
as (Central). An alternative evaluation is that an image embedding is generated by inputting a certain
number of patches (same scale as training time and upsampled) into the neural network and aggregating the
patch embeddings by averaging. The number of aggregated patches is marked in the Figures and Tables.
In Figure 2, we show that linear probing and k-NN evaluations are consistent. In the following, we mainly
present linear probing evaluation. The results on CIFAR-10 and CIFAR-100 are shown in Tables 1 and 2
respectively. The main observation is that pretraining on small patches and evaluating with the averaged
embedding performs on par or better than the baseline methods, as highlighted. The central crop evaluation
performs significantly worse for patch-based training is expected since the network has never seen a whole
image during training.
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Table 2: Performance on CIFAR-100 with patch-based and standard multi-scale SSL pre-
training. We evaluate the performance of a linear classifier with BagSSL and baseline SSL methods.
BagSSL uses patch-based training, where 14 x 14 image patches are sampled during pretraining. Baseline
methods use multi-scale training, where the patch scale is uniformly sampled between scale 0.08 and 1.0,
which means that multi-scale crops are sampled uniformly from 9 x 9 to 32 x 32 patches.

Method Patch-based training evaluation Multi-scale training evaluation
Central crop 1 patch 16 patches 256 patches Central crop 1 crop 16 crops 256 crops
SimCLR 34.7 59.4 67.2 67.4 66.8 60.5 68.2 68.3
TCR 34.6 59.2 67.1 67.3 66.8 60.5 68.1 68.3
VICReg 35.5 60.1 68.0 68.3 67.6 61.4 69.0 69.3
BYOL 37.4 60.9 68.9 69.2 68.8 62.3 69.7 69.9

Table 3: Performance on ImageNet-100 with patch-based and standard multi-scale SSL pre-
training. We evaluate the performance of a linear classifier with BagSSL and baseline SSL methods. BagSSL
uses patch-based training, where 100 x 100 patches are sampled during pretraining. Baseline methods use
multi-scale training, where the patch scale is uniformly sampled between scale 0.08 and 1.0, which means
that multi-scale crops are sampled uniformly from 64 x 64 to 224 x 224 patches.

Method Patch-based training evaluation Multi-scale training evaluation
Central crop 1 patch 16 patches 48 patches Central crop 1 crop 16 crops 48 crops
SimCLR 414 45.7 76.1 76.2 77.5 70.3 78.6 79.0
TCR 41.3 45.6 76.1 76.3 77.3 70.1 78.5 78.8
VICReg 42.1 46.1 76.8 76.9 77.8 70.7 79.1 79.4
BYOL 42.9 47.3 77.9 7.7 78.0 71.1 79.4 80.1

ImageNet. We also provide experimental results on ImageNet-100 and ImageNet datasets Deng et al. (2009)
with ResNet-50 and linear probing evaluation protocol. ImageNet-100 and ImageNet results are shown in
Table 3 and Figure 3(b) respectively. The behavior observed on CIFAR-10 generalizes to ImageNet-100.
Averaging embeddings of small patches produced by the patch-based pretrained models perform comparably
to standard “central” evaluation of the embedding produced by the baseline models, as highlighted in Table 3.
In Figure 3(b), we show the results on ImageNet. The patch-based pretrained model achieves 67.9% top-1
accuracy with 16 patch embedding averaged, whereas the baseline method VICReg achieves 73.2% top-1
accuracy. This 5.3% performance gap might be due to sub-optimal hyperparameters as we did not optimize
the hyperparameters for patch-based training pretraining. Interestingly, with 32 x 32 patch representation,
BagSSL achieves 62% top-1 linear probing accuracy.

4.2 Patch Embedding Aggregation Approximately Converges to the Whole-lmage Embedding

In this experiment, we show that for a multi-scale pretrained baseline SSL model, VICReg, linearly aggre-
gating the patch embedding approximately converges to the whole-image embedding. This baseline VICReg
network checkpoint has been trained on image crops ranging from 64 x 64 to 224 x 224. We randomly select
512 images from the ImageNet dataset. For each image, we first get the 224 x 224 center crop embedding.
We also average embeddings of N random 100 x 100 patches for each image. Then we calculate the cosine
similarity between the patch-aggregated and center-crop embedding. Figure 3(a) shows that the aggregated
embedding approximately converges to the whole-image embedding as N increases from 1 to 16 to all the
image patches'.
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Figure 3: (a) Patch embedding approximate convergence to the instance embedding. For a
baseline multi-scale pretrained VICReg model, we show that the patch embedding aggregation approximately
converges to the whole-image embedding as the number of aggregated patches increases. We evaluate the
cosine similarity between the aggregation of N patch embeddings and the whole-image embedding. N is
selected from 1,2,4, 8,16 and all possible patches in the image. (b) Linear evaluation on ImageNet for
various RandomResizedCrop scales. We show the performance of a linear classifier for various pretraining
and evaluation settings. BagSSL uses fixed-scale patches, and the baseline method, VICReg, uses multi-scale
augmentation RandomResizedCrop(0.08, 1.0), which corresponds to randomly and uniformly select crop
scale ranging from 64 x 64 to 224 x 224. For each pretraining setting, we provide three different evaluations:
1) “Central”: the standard evaluation, which takes a 224 x 224 crop; 2) “1 patch”: this evaluation takes
1 patch or crop following the corresponding pretraining setting; 3) “16 patches”: this evaluation takes 16
randomly selected patches or crops following the corresponding pretraining setting.

Projection Embedding . v ‘. Projection Embedding

(@) 71x71 Patch (b) 100x100 Patch

Figure 4: Visualization of cosine similarity in the projection space and the embedding space.
Query patch is indicated by red dash. Projection and Embedding cosine-similarity heatmaps use the same
color scaling. The projection vectors are significantly more invariant compared to the embedding ones, and
the embedding space contains localized information that is shared among similar patches, when the size of
the patches is small enough. We can see that the embedding space tends to preserve more locality compared
to the projection space.

4.3 Patch Representation Preserves Locality

Joint-embedding SSL methods are primarily motivated from an invariance perspective. While this perspec-
tive is relatively accurate globally, we show that locality is preserved when we zoom into local patch-level
representation. In this section, we provide nearest neighbor visualization on CIFAR-10 and cosine-similarity

1«All”: extracting overlapped patches with stride 4 and totally aggregate about 1000 patches’ embeddings per image.
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Figure 5: Visualization of kNN in the projection space and the embedding space for CIFAR10.
Distance is calculated by cosine similarity. The query patch is in the top left corner encircled by red-dash
box, the green box indicates patches from other images of the same class. Patches without surrounding box
is from the same image as the query. While the nearest neighbors are both from same-category instances,
we can see that the embedding space tends to preserve the local part information, whereas the projection
space may collapse different parts of the same category.

heatmap visualization on ImageNet to show this point and provide a deeper understanding of the learned
representation.

First, we take a baseline VICReg model pretrained on ImageNet, for a given image patch (e.g., circled by
red dash boxes in Figure 4), we visualize the cosine-similarity between embedding from this patch and that
from the other same-size patches from the same image. The heatmap visualization is normalized to the
same scale. While the cosine-similarity heatmap for large (100 x 100) patches is more invariant, as shown in
Figure 4(b), the heatmap for smaller (71 x 71) patches preserves the locality relatively well as demonstrated
in Figure 4(a).

Next, we pre-train a model with only 14 x 14 image patches on CIFAR-10 and calculate the projection and
embedding vectors of all different image patches from the training set. Then for a given 14 x 14 image
patch (e.g., the ones circled by red dash boxes Fig 5), we visualize its k nearest neighbors in terms of cosine-
similarity in both the projection and the embedding space. Figure 5 shows the results for two image patches.
The patches circled by green boxes are image patches from another image of the same category, whereas the
uncircled patches are from the same image.

Overall, we observe that the projection vectors are significantly more invariant than the embedding vectors.
This is apparent from Figure 4 and Figure 5. For the CIFAR kNN patches, NNs in the embedding space
are visually much more similar than NNs in the projection space. In the embedding space, the nearest NNs
are mostly locally shifted patches of similar “part” information. For projection space, however, many NNs
are patches of different “part” information from the same class. E.g., we can see in Figure 5 that an NN of
a “wheel” in the projection space might be a “door” or a “window”. However, the NNs in the embedding
space all contain “wheel” information. In the second example, the NNs of a “horse legs” patch may have
different “horse” body parts, whereas the NNs in the embedding space are all “horse leg”.

The heatmap visualization on ImageNet also illustrates the same phenomenon. The projection vector from
a patch is highly similar to that from the query patch whenever the patch has enough information to infer
the class of the image. For embedding vectors, the similarity area is much more localized to the query patch
or other patches with similar features (the other leg of the dog in Figure 4). This general observation is
consistent with the results of the visualizations in Bordes et al. (2022). A more thorough visualization is
provided in Appendix E.
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Table 4: Linear evaluation with aggregated embedding on ImageNet with models trained with
state-of-the-art SSL methods. Using aggregated embedding outperforms embedding from the center
crop. Central: Embedding from the center cropped image is used in training and testing using the standard
linear evaluation protocol. 1, 16, and 48 crops: The linear classifier is trained and evaluated on the aggregated
embedding of 1, 16, and 48 crops, respectively, sampled with the same scale factor range as during pretraining
(0.08, 1.0).

Method  Central crop 1 crop 16 crops 48 crops

SimCLR 69.3 54.3 71.0 71.3
TCR 69.0 54.1 70.7 71.1
VICReg 73.2 57.6 74.2 74.4
BYOL 74.3 59.3 75.4 75.6

Table 5: Evaluation of SOTA SSL models and these models with linearly-aggregated patches
embedding enhancement. All the baseline SSL. model uses ResNet-18 as the backbone. We apply
spatial average pooling on the last layer output of ResNet-18 and treat it as feature. We evaluate the
performance of these checkpoints with both a linear classifier and a K-nearest-neighbor (KNN) classifier.
For the “Enhancement” evaluation, the KNN classifier is evaluated on the linearly-aggregated embedding of
25 patches with size 16 x 16. These patches are sampled using a sliding window with stride 4.

Method  Baseline (KNN) Baseline (Linear) Local Aggregation (KNN)  Local Aggregation (Linear)

SimCLR 90.2 90.7 93.1 92.7
VICReg 90.8 91.2 93.1 92.2
BYOL 91.5 92.6 93.5 94.0

4.4 Patch-Based Evaluation Enhances the SSL Baselines

Global Aggregation. The results in Section 4.1 show that the best performance is obtained when the
pretraining step uses multi-scale crops and the evaluation step uses the aggregated patch embeddings. Here,
we evaluate the patch-aggregated representation with four baseline methods pretrained on ImageNet to
further confirm this performance boost. All models are downloaded from their original repository. Table 4
shows the linear evaluation performance on the validation set of ImageNet using the whole-image embedding
and patch-aggregated embedding. For all these models, aggregated embedding outperforms whole-image
evaluation, often by more than 1%. Also, increasing the number of patches averaged in the aggregation
process improves the performance. We do not go beyond 48 patches due to engineering limits on memory and
runtime. Still, we hypothesize that a further increase in the number of patches will improve the performance,
as demonstrated on CIFAR-10, where 256 patches significantly outperform 16 patches.

Local Aggregation. In this work, the embedding aggregation is global or uses bag-of-local features.
The drawback of doing so is that spatial information can be lost. An alternative way to aggregate patch
embeddings is local averaging and concatenating locally averaged embeddings into a single long vector.
Empirically, such a method tends to outperform the global average significantly. To show the results, we
use the checkpoints of the SOTA SSL model pretrained on the CIFAR10 dataset from SoloLearn (da Costa
et al., 2022) and tested linear and kNN accuracy with local concatenation aggregation. As shown in Table 5,
concatenation aggregation further improve the performance of these SOTA SSL model. Even with only 25
patches, the k-NN accuracy of the aggregated embedding outperforms the baseline linear evaluation accuracy
by a larger margin compared to global aggregation results shown in Table 1.
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5 Discussion

In this paper, we seek to understand the success of joint-embedding SSL methods. We establish a formal
connection between joint-embedding SSL and the co-occurrence of image patches. We demonstrate learning
an embedding for fixed-size image patches and linear aggregating the local patch embeddings can achieve
similar or even better performance than the baseline models pretrained with multi-scale crops. On the
other hand, with a multi-scale pretrained model, we show that the whole image embedding is approximately
the average of local patch embeddings. Given this, invariance is expected at the global scale. Through
visualization, we show that the locality is preserved when we zoom into local patch-level representation. These
findings supplement the prevailing invariance perspective and show that there is a distributed representation
of local image patches behind the success of joint-embedding SSL. The insights from this angle also help us
enhance the representation quality from the baseline methods.

During training, the computational cost for BagSSL and the corresponding baseline is almost exactly the
same. During inference, the computational cost for BagSSL is N time larger than the baseline (central crop
eval), where N is the number of aggregated patches. Although the eval computation is much higher, this
disadvantage is somewhat tangential to the goal of this work, which is to provide an understanding of self-
supervised learning. One might question whether BagSSL increases the representation capacity by having
much computation during evaluation. Though BagSSL has much more computation during evaluation, it
does not necessarily have much more capacity since we linearly aggregate the patch representation, which
is essentially a bag-of-local-feature approach. For example, Table 1 shows that for multi-scale training
evaluation, linear aggregating of the crop representations outperforms the default evaluation for the baseline
methods. However, the capacity improvement is limited.

There are a few limitations to this work. First, we still use the commonly used projector head, whose role
is yet to be fully understood. Second, we adopted the convention of two-crop training for BagSSL. If joint-
embedding SSL aims to model the co-occurrence of patches, two local patches would be relatively inefficient
and create a disadvantage during training. Third, we haven’t optimized the hyperparameters thoroughly for
BagSSL on ImageNet-1K due to engineering resource limitations. Fourth, the results from this work only
provides a potential explanation to the SSL baselines, and it does not decisively show that the SSL. methods
is only learning a patch-based representation. Given the second and third limitations, BagSSL results may
be further improved, given better engineering. We leave these to our future work.
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