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Abstract

Recently, the powerful large language models001
(LLMs) have been instrumental in propelling002
the progress of recommender systems (RS).003
However, while these systems have flourished,004
their susceptibility to security threats has been005
largely overlooked. In this work, we reveal006
that the introduction of LLMs into recommen-007
dation models presents new security vulnera-008
bilities due to their emphasis on the textual009
content of items. We demonstrate that attackers010
can significantly boost an item’s exposure by011
merely altering its textual content during the012
testing phase, without requiring direct interfer-013
ence with the model’s training process. Addi-014
tionally, the attack is notably stealthy, as it does015
not affect the overall recommendation perfor-016
mance and the modifications to the text are sub-017
tle, making it difficult for users and platforms to018
detect. Our comprehensive experiments across019
four mainstream LLM-based recommendation020
models demonstrate the superior efficacy and021
stealthiness of our approach. Our work unveils022
a significant security gap in LLM-based rec-023
ommendation systems and paves the way for024
future research on protecting these systems.025

1 Introduction026

Over the past few decades, recommender systems027

(RS) have gained considerable significance across028

various domains. Recently, the powerful large lan-029

guage models (LLMs) have been instrumental in030

propelling the progress of recommender systems.031

There has been a notable upswing of interest dedi-032

cated to developing LLMs tailored for recommen-033

dation task.034

Contrary to traditional recommendation models,035

which rely heavily on abstract and less interpretable036

ID-based information, LLM-based recommenda-037

tion models exploit the semantic understanding038

and strong transferability of LLMs. This approach039

places a heightened focus on the textual content040

of items, such as titles and descriptions (Lin et al.,041
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Figure 1: The proposed text attack paradigm on LLM-
based RS model. Malicious attackers modify the titles
of target items to mislead RS models to rank them higher.
The attack is highly stealthy since the modification is
subtle and overall recommendation performance is al-
most unchanged.

2023; Chen et al., 2023). For instance, many re- 042

searchers (Hou et al., 2022, 2023a; Yuan et al., 043

2023; Li et al., 2023a; Yang et al., 2023; Geng 044

et al., 2022; Cui et al., 2022; Bao et al., 2023a; 045

Zhang et al., 2023a; Li et al., 2023b; Zhang et al., 046

2023b) have explored modeling user preferences 047

and item characteristics through a linguistic lens. 048

This methodology promises a revolutionary shift in 049

the conventional paradigm of recommendations by 050

providing generalization capabilities to novel items 051

and datasets. 052

Despite these advancements, the security of RS 053

remains a largely unaddressed issue. Malicious 054

attacks on these systems can lead to undesirable 055

outcomes, such as the unwarranted promotion of 056

low-quality products in e-commerce platforms or 057

the spread of misinformation in news dissemina- 058

tion contexts. Traditional shilling attack strategies 059

on RS (Wang et al., 2023a, 2024) involve the gen- 060

eration of fake users who are programmed to give 061

high ratings to specific target items. By introducing 062

such cheating data, it aims at influencing the train- 063

ing of the recommender models and subsequently 064

increasing the exposure of the target items. 065

However, the introduction of LLMs into recom- 066

mendation models presents new security vulnera- 067
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bilities. In this paper, to the best of our knowledge,068

we are the first to demonstrate that LLM-based rec-069

ommendation systems are more vulnerable due to070

their emphasis on the textual content of items. We071

demonstrate that attackers can significantly boost072

an item’s exposure by merely altering its tex-073

tual content during the testing phase, utilizing074

simple heuristic re-writing or black-box text attack075

strategies (Morris et al., 2020). Compared with076

traditional shilling attacks, this attack paradigm077

is notably stealthy, as it does not require influ-078

encing the training of the model, and the overall079

recommendation performance is almost unchanged.080

Moreover, the modifications to the title are subtle,081

making it difficult for users and platforms to detect.082

We construct comprehensive experiments on083

four mainstream LLM-based recommendation084

models (Geng et al., 2022; Bao et al., 2023a; Li085

et al., 2023a; Zhang et al., 2023b) as victim models086

to validate the outstanding efficacy and stealthiness087

of the textual attack paradigm compared with tra-088

ditional shilling attacks (Burke et al., 2005a; Kaur089

and Goel, 2016a; Lin et al., 2020). We further delve090

into the effects of model fine-tuning and item popu-091

larity on the attack. Additionally, we investigate the092

transferability of the attack across various victim093

models and recommendation tasks to demonstrate094

its practical applicability and utility in real-world095

scenarios. Finally, we evaluate a simple re-writing096

defense strategy, which also can mitigate the issue097

to some extent.098

To summarize our contributions:099

1. We highlight that LLM-based recommenda-100

tion models, due to their emphasis on textual101

content information, could raise previously102

overlooked security issues.103

2. To the best of our knowledge, we are the first104

to attack LLM-based recommendation mod-105

els and propose the use of textual attacks to106

promote the exposure of target items.107

3. We perform extensive experiments to demon-108

strate the efficacy and stealthiness of the tex-109

tual attack paradigm. Further experiments110

have revealed the impact of item popularity111

and model fine-tuning on attacks, as well as112

explored the transferability of attacks.113

4. Finally, we proposed a simple rewriting de-114

fense strategy. While it cannot fully defend115

against text-based attacks, it can provide some116

Model Prompt

RecFormer <HistoryItemTitleList>

P5
I would like to recommend some items for <UserID>. Is the following

item a good choice? {TargetItemTitle}

TALLRec
A user has given high ratings to the following products: <HistoryItemTitleList>.

Leverage the information to predict whether the user would enjoy
the product titled <TargetItemTitle>? Answer with "Yes" or "No".

CoLLM

A user has given high ratings to the following products: <HistoryItemTitleList>.
Additionally, we have information about the user’s preferences encoded

in the feature <UserID>. Using all available information, make a prediction
about whether the user would enjoy the product titled <TargetItemTitle>

with the feature <TargetItemID>? Answer with "Yes" or "No"

Table 1: Prompts Pu,i of four victim models. P5 unifies
different recommendation tasks with different prompts
and we only show one example.

level of defense and contribute to future re- 117

search. 118

2 Method 119

In this section, we first introduce the LLM-based 120

recommendation model and formulate the objec- 121

tives of the attacks. Then, we present two simple 122

model-agnostic text rewriting approaches. Finally, 123

we provide a detailed introduction of black-box 124

text attacks. 125

2.1 Problem Definition 126

We use the notation I = {i1, · · · , iN} and U = 127

{u1, · · · , uM} to represent the sets of N items and 128

M users, respectively. Each item i ∈ I is associ- 129

ated with textual content ti. Each user u ∈ U has 130

interacted with a number of items Iu, indicating 131

that the preference score yui = 1 for i ∈ Iu. 132

LLM-based RS models user preference and 133

item feature by transforming user historical be- 134

havior sequences Iu and target item i into tex- 135

tual prompt Pu,i = [tu, ti, xu, xi], where tu = 136[
ti1 , · · · , ti|Iu|

]
. xu and xi denotes the ID of i 137

and u which are optional in LLM-based RS. We 138

have listed example prompts of four victim models 139

in Table 1. Please refer to Section 3.1.1 for the de- 140

tails of them. The recommendation process can be 141

formulated as: ŷu,i = fθ(Pu,i) where fθ denotes 142

the LLM-based model. 143

The goal of the attack task is to promote target 144

items I ′ (increasing the exposure or user interac- 145

tion probability) through imperceptibly modifying 146

their textual content (we use title in this work). 147

2.2 Victim Model-Agnostic Attack 148

In this subsection, we first introduce two simple, 149

victim model-agnostic strategies employed for al- 150

tering item textual content to make them more 151

linguistically attractive to users. Our approaches 152
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include trivial attack with word insertion and re-153

writing leveraging Generative Pre-trained Trans-154

formers (GPTs).155

2.2.1 Trivial Attack with Word Insertion156

The core premise of this strategy is founded on157

the assumption that positive or exclamatory words158

can attract users. By infusing item titles with a159

select number of positive words, we aim to increase160

the items’ attractiveness and, consequently, their161

likelihood of being recommended by the system.162

Specifically, we randomly select k words form a163

pre-defined word corpus which is common-used in164

item titles. These selected words are then inserted165

to the end of the original text content to retain the166

overall coherence.167

Positive word corpus: [‘good’, ‘great’,
‘best’, ‘nice’, ‘excellent’, ‘amazing’, ‘awe-
some’, ‘fantastic’, ‘wonderful’, ‘perfect’, ‘ul-
timate’, ‘love’, ‘like’, ‘beautiful’, ‘well’, ‘bet-
ter’, ‘easy’, ‘happy’, ‘recommend’, ‘works’,
‘fine’, ‘fast’, ‘fun’, ‘price’, ‘quality’, ‘product’,
‘value’, ‘bought’, ‘purchase’, ‘top’, ‘popular’,
‘choice’, ‘!!!’ ]

168

2.2.2 Re-writing with GPTs169

While the insertion of positive words offers a170

straightforward means of enhancing content appeal,171

it can sometimes result in awkward or forced phras-172

ings that diminish the content’s natural flow and173

potentially arouse user suspicion. To address these174

shortcomings, we propose to use GPTs to rewrite175

the content of items in a more attractive way by176

leveraging its rich common sense knowledge and177

powerful generation capabilities. Specifically, we178

instruct GPT-3.5-turbo with the following prompts179

to generate attractive and fluency titles.180

Prompt 1: You are a marketing expert that
helps to promote the product selling. Rewrite
the product title in <MaxLen> words to keep
its body the same but more attractive to cus-
tomers: <ItemTitle>.
Prompt 2: Here is a basic title of a prod-
uct. Use your creativity to transform it into a
catchy and unique title in <MaxLen> words
that could attract more attention: <ItemTitle>.
Prompt 3: Rewrite this product’s title by inte-
grating positive and appealing words, making
it more attractive to potential users without
altering its original meaning (in <MaxLen>
words): <ItemTitle>.

181

2.3 Exploring Vulnerabilities in LLM-Based 182

Recommendation Models through 183

Black-Box Text Attacks 184

In this subsection, we present an examination of 185

traditional black-box text attack methods to explore 186

the vulnerabilities within LLM-based recommen- 187

dation models. Black-box text attack methods typi- 188

cally involve manipulating or perturbing text inputs 189

to deceive or mislead a natural language processing 190

(NLP) model while having no access to the model’s 191

internal parameters or gradients. The goal of such 192

attacks is mathematically formulated as: 193

argmax
t′i

Eu∈U ′ fθ(P ′
u,i), (1) 194

where P ′
u,i = [tu, t

′
i, xu, xi] denotes the prompts 195

consisting of the user text tu and the manipulated 196

title of the target item t′i. Following the framework 197

proposed by Morris et al. (2020), text attacks are 198

comprised of four principal components: 199

• Goal Function: This function evaluates the ef- 200

fectiveness of the perturbed input x′ in achiev- 201

ing a specified objective, serving as a heuristic 202

for the search method to identify the optimal 203

solution. In this study, the aim is to promote 204

the target items as in Equation 1. 205

• Constraints: These are conditions that ensure 206

the perturbations remain valid alterations of 207

the original input, emphasizing aspects such 208

as semantic retention and maintaining consis- 209

tency in part-of-speech tags. 210

• Transformation: A process that applies to 211

an input to generate possible perturbations, 212

which could involve strategies like swapping 213

words with similar ones based on word em- 214

beddings, using synonyms from a thesaurus, 215

or substituting characters with homoglyphs. 216

• Search Method: This method involves itera- 217

tively querying the model to select promis- 218

ing perturbations generated through trans- 219

formations, employing techniques such as a 220

greedy approach with word importance rank- 221

ing, beam search, or a genetic algorithm. 222

While the specific components of text attack 223

methodologies may vary, the overarching frame- 224

work remains consistent, as depicted in Algorithm 225

1. In this work, we have implemented four widely- 226

used attacks: DeepwordBug (Gao et al., 2018), 227
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TextFooler (Jin et al., 2020), BertAttack (Li et al.,228

2020), and PuncAttack (Formento et al., 2023).229

DeepwordBug and PuncAttack are character-level230

which manipulate texts by introducing typos and231

inserting punctuation. TextFooler and BertAttack232

are word-level that aim to replace words with syn-233

onyms or contextually similar words. Please re-234

fer to the appendix B for the details of text attack235

paradigm and these four methods.236

Algorithm 1 Text Attack Framework
Require: Original text x, Target model M , Goal

function G, Constraints C, Transformations T ,
Search Method S

Ensure: Adversarial text x′, Adversarial score
G.score(x′)

1: Initialize x′ as a copy of x.
2: while not S.StoppingCriteria() do
3: Select a transformation t from allowable

transformations T .
4: Generate x′ by applying t to x.
5: if C.Satisfied(x′) then
6: if S.AchieveGoal(x′) then
7: return x′, G.score(x′).
8: end if
9: end if

10: end while

3 Experiments237

3.1 Experimental Settings238

3.1.1 Victim Models239

We choose four mainstream LLM-based recom-240

mendation models as our victim models: Rec-241

former (Li et al., 2023a), P5 (Geng et al., 2022),242

TALLRec (Bao et al., 2023a) and CoLLM (Zhang243

et al., 2023b). Please refer to Appendix A.1 for244

more details.245

3.1.2 Compared Shilling Attacks246

Shilling attacks aim to generate fake users that as-247

sign high ratings for a target item, while also rating248

other items to act like normal users for evading. We249

compare our text attack paradigm with white-box250

shilling attacks Random attack (Kaur and Goel,251

2016a), Bandwagon attack (Burke et al., 2005a),252

and gray-box Aush (Lin et al., 2020) and Leg-UP253

(Lin et al., 2024). Please refer to Appendix A.2 for254

more details.255

3.1.3 Datasets 256

We conduct experiments on three categories of 257

widely-used (Li et al., 2023a; Geng et al., 2022; 258

Bao et al., 2023a; Zhang et al., 2023b) Amazon re- 259

view dataset introduced by McAuley et al. (2015): 260

‘Beauty’, ‘Toys and Games’, ’Sports and Outdoors’, 261

which are named as Beauty, Toys and Sports 262

in brief. We use the 5-core version of Amazon 263

datasets where each user and item have 5 interac- 264

tions at least. The statistics of these datasets are 265

summarized in Appendix A.3. 266

3.1.4 Implementation Details 267

All victim models and compared shilling attacks 268

are implemented in PyTorch. We random select 269

10% items as target items. For more implementa- 270

tion details, please refer to Appendix A.3. 271

3.1.5 Evaluation metrics 272

We evaluate the attack from two aspects: effective- 273

ness and stealthiness. 274

Effectiveness. This metric gauges the extent to 275

which our methodology can promote the specified 276

target items. 277

• Exposure. For the victim model RecFormer, 278

which allows for full ranking, we employed 279

a direct metric, exposure rate. We define the 280

exposure rate as expi =
N i

rec
Nu

, where Nu rep- 281

resents the total number of users, and N i
rec 282

denotes the count of users for whom target 283

item i appears in their top-K (K = 50 by 284

default) recommendation list. 285

• Purchasing propensity. For other three victim 286

models which could not conduct full ranking, 287

we define the purchasing propensity of item i 288

as pi = Eu∈U ŷui, where ŷui denotes the pre- 289

dicted probability that user u tends to interact 290

with item i. 291

• # queries. In a black-box scenario, the adver- 292

sary need query the victim model in order to 293

detect any alterations in the output logits. The 294

lower the value, the more effective the attack 295

will be. 296

Stealthiness. The stealthy attack aims to pro- 297

mote target items while maintaining imperceptibil- 298

ity, thereby avoiding detection by users and plat- 299

forms. Therefore, the coherence and authenticity 300

of our generated content are crucial to uphold. 301
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Dataset Method
Effectiveness Stealthiness

Exposure ↑ Rel. Impro. ↑ # queries ↓ NDCG@10 ↑ Cos. ↑ Rouge-l ↑ Perplexity ↓ # pert. words ↓

Sports

Clean 0.00282 - - 0.00780 1.000 1.000 2158.7 -
ChatGPT 0.00293 3.9% - 0.00781 0.794 0.499 1770.9 -

Trivial 0.00242 -14.4% - 0.00782 0.896 0.869 4376.6 -
Deepwordbug 0.01488 427.2% 38.6 0.00757 0.702 0.451 5595.1 4.3

TextFooler 0.01547 448.2% 87.5 0.00780 0.758 0.575 2070.8 3.4
PuncAttack 0.01138 303.3% 52.6 0.00762 0.857 0.635 2410.9 2.9
BertAttack 0.01371 385.8% 141.7 0.00781 0.850 0.679 7760.1 2.8

Beauty

Clean 0.00458 - - 0.01258 1.000 1.000 611.6 -
ChatGPT 0.00583 27.2% - 0.01197 0.822 0.516 501.8 -

Trivial 0.00389 -15.2% - 0.01249 0.939 0.901 1189.5 -
Deepwordbug 0.02134 365.4% 47.0 0.01257 0.806 0.649 2261.5 3.7

TextFooler 0.02844 520.4% 104.1 0.01224 0.816 0.640 960.9 3.7
PuncAttack 0.01654 260.8% 72.7 0.01257 0.881 0.734 1018.3 2.8
BertAttack 0.02705 490.0% 208.8 0.01213 0.863 0.709 1764.4 3.2

Toys

Clean 0.00439 - - 0.02380 1.000 1.000 4060.4 -
ChatGPT 0.00547 24.7% - 0.02369 0.793 0.454 1967.1 -

Trivial 0.00439 0.0% - 0.02366 0.880 0.852 7874.4 -
Deepwordbug 0.01595 263.5% 33.4 0.02365 0.697 0.511 8581.1 3.3

TextFooler 0.02232 408.8% 84.1 0.02366 0.714 0.510 3702.0 3.4
PuncAttack 0.01241 182.9% 41.3 0.02328 0.862 0.675 3747.5 2.2
BertAttack 0.01384 215.6% 120.3 0.02340 0.854 0.693 10363.0 2.4

Table 2: Performance comparison of attacking Recformer where Rel. Impro. denotes relative improvement against
clean setting. The best result is in boldface.

• Overall recommendation performance. An302

ideal stealthy attack should keep the over-303

all recommendation performance unchanged.304

The recommendation performance includes305

Recall@K, NDCG@K and AUC.306

• Text quality. The generated adversarial con-307

tent should be of high quality that are accept-308

able to users. Firstly, it should be consistent309

with the corresponding item. We measure310

the cosine semantic similarity and ROUGE311

scores between the original content and ad-312

versarial content for this purpose. Secondly,313

the adversarial content itself should be read-314

able. We assess the fluency of the adversarial315

title, measured by the perplexity of GPT-Neo316

(Black et al., 2021).317

• # perturbed words. The number of words318

changed on an average to generate an adver-319

sarial content. The lower the value, the more320

imperceptible the attack will be.321

3.2 Performance Comparison322

Table 2 shows the performance of all attacking323

methods on Recformer, P5, TALLRec and CoLLM,324

respectively. The scatter plot and shilling attack325

comparison for RecFormer is in Figure 2 and Table326

3, while those for other victim models are in the327

appendix C. From them we can observe that:328

• Our text attack paradigm can greatly pro- 329

mote the target items, demonstrating the 330

vulnerability of LLM-based RS. Even the 331

simplest word insertion and rewriting using 332

GPT can increase the exposure of the target 333

item to a certain extent. Furthermore, black- 334

box text attack methods could lead to mani- 335

fold increases in the exposure rate of the tar- 336

geted items. 337

• Our text attack strategy is also remarkably 338

stealthy, making it difficult for users and 339

platforms to detect. Primarily, the overall 340

performance of RS remains largely unchanged 341

(even we choose 10% items as target items), 342

signifying that the attack does not disrupt the 343

normal operation of RS. Additionally, the gen- 344

erated adversarial titles exhibit high semantic 345

integrity that they are acceptable (or imper- 346

ceptible) to human comprehension. 347

• Traditional shilling attacks are not effec- 348

tive in LLM-based recommendation mod- 349

els. Even with access to a portion of the train- 350

ing data, they fail to significantly enhance the 351

exposure of the targeted items. This is at- 352

tributed to the fact that LLM-based recommen- 353

dation models prioritize content information 354

primarily in textual form. Additionally, since 355

fake user-generated training data is introduced 356
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Figure 2: Performance comparison of different attacks on RecFormer. The size of the scatter points represents the
cosine semantic similarity with the original title, with larger points indicating better semantic preservation (best
viewed in color).

Attacks
Sports Beauty Toys

NDCG@10 Recall@10 Exposure NDCG@10 Recall@10 Exposure NDCG@10 Recall@10 Exposure

Clean 0.01311 0.02811 0.00289 0.03066 0.06451 0.00449 0.03672 0.07712 0.00422
Random 0.01234 0.02779 0.00295 0.03045 0.06254 0.00402 0.03447 0.07455 0.00422

Bandwagon 0.01232 0.02779 0.00299 0.02914 0.05934 0.00421 0.03508 0.07583 0.00434
Aush 0.01241 0.02740 0.00283 0.03010 0.06239 0.00430 0.03254 0.07336 0.00382

LegUP 0.01219 0.02780 0.00299 0.03029 0.06391 0.00416 0.03411 0.07249 0.00423
TextFooler 0.01228 0.02780 0.01074 0.02926 0.06117 0.01886 0.03596 0.07619 0.01725

Table 3: Performance comparison with shilling attacks when RecFormer serves as victim model.

during the model training phase, they signifi-357

cantly impact the overall performance of the358

victim model, which is easily detectable.359

• Word-level attacks are effective in boosting360

the exposure of target items, albeit demanding361

more queries and higher costs. On the other362

hand, character-level text attacks demonstrate363

superior results compared to shilling attacks,364

even with a reduced number of queries di-365

rected towards victim models.366

3.3 The influence of fine-tuning367

In this subsection, we examined the impact of368

model fine-tuning on attacks. A significant ad-369

vantage of LLM-based recommendation models is370

their zero-shot transferability across datasets; how-371

ever, we have also uncovered the vulnerability of372

such zero-shot models.373

Figure 3 shows a direct comparison between374

zero-shot RecFormer and fine-tuned Recformer.375

The detailed performance of fine-tuned Recformer376

is shown in Appendix C. From these, we observe377

that fine-tuned models are more resilient to at-378

tacks compared to zero-shot models. This is379

manifested in three aspects: attacking fine-tuned380

models requires more queries, yields lesser promot-381

ing of target items, and maintains poorer semantic 382

integrity. 383

3.4 The influence of item popularity 384

In this section, we examined the impact of the ini- 385

tial popularity of target items on attacks. Popular- 386

ity bias in recommendation systems favors popular 387

items over personalized ones, limiting diversity, 388

fairness and potentially dissatisfying users’ prefer- 389

ences (Zhang et al., 2021). We selected the top 150 390

and bottom 150 items in popularity from the dataset 391

as target items and presented the attack results in 392

Table 4. We can observe that items with high pop- 393

ularity experience greater promotion, thereby 394

exacerbating popularity bias. High popularity tar- 395

get items can achieve greater exposure boosts with 396

fewer queries and higher semantic consistency. 397

3.5 Transferability 398

3.5.1 Transferability across tasks. 399

A significant feature of LLM-based recommenda- 400

tion models, like P5, is their capability to unify var- 401

ious recommendation tasks in a shared instruction- 402

based framework. We evaluate the transferability of 403

adversarial content across direct recommendation 404

task and rating prediction task of P5. The results 405
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Figure 3: Performance comparison of different attacks on RecFormer. The size of the scatter points represents the
cosine semantic similarity with the original title, with larger points indicating better semantic preservation. (best
viewed in color).

Dataset Attack
Improved Exp. ↑ # Queries ↓ Cos. ↑
High Low High Low High Low

Toys

Deepwordbug 0.013 0.007 28.9 33.9 0.67 0.72
TextFooler 0.016 0.013 71.1 97.1 0.71 0.70
PuncAttack 0.012 0.008 34.8 47.5 0.84 0.85
BertAttack 0.011 0.008 96.8 107.8 0.84 0.83

Beauty

Deepwordbug 0.014 0.009 45.9 58.3 0.79 0.71
TextFooler 0.024 0.015 151.4 110.3 0.80 0.75
PuncAttack 0.013 0.008 94.7 68.5 0.87 0.85
BertAttack 0.022 0.018 211.8 171.0 0.83 0.81

Sports

Deepwordbug 0.005 0.004 36.8 39.7 0.79 0.77
TextFooler 0.008 0.005 82.5 101.6 0.82 0.72
PuncAttack 0.005 0.003 54.2 74.5 0.85 0.87
BertAttack 0.007 0.005 147.1 161.3 0.83 0.82

Table 4: Performance comparison of target items with
different popularity.

are presented in Table 5. We can observe there406

exists strong transferability between different407

tasks in such unified model. Attacks targeting a408

single task can boost the exposure of target items409

across multiple tasks.

Sports Beauty Toys

Clean 0.42900 0.28336 0.37671
DeepwordBug 0.43947 0.31062 0.39512

TextFooler 0.45076 0.31238 0.41719
PunAttack 0.43502 0.30748 0.38391
BertAttack 0.43350 0.32314 0.39779

Table 5: Results of user propensity scores in transfer-
ability experiments on the P5 model. Attack on direct
recommendation task and apply the obtained adversarial
text to sequence recommendation task.

410

3.5.2 Transferability across victim models.411

Firstly, we evaluate the transferability of the gener-412

ated adversarial content across RecFormer, TALL-413

Rec and CoLLM. We select one model as the414

source model and apply the adversarial content 415

generated from attacking it to two other models to 416

verify if it can similarly boost target items. Experi- 417

mental results of TextFooler are presented in Table 418

6 and similar trends are observed with other attack 419

methods as well . We observe that transferability 420

only exists among recommendation models uti- 421

lizing the same backbone LLMs: there’s strong 422

mutual transferability between CoLLM and TALL- 423

Rec because both models are based on LLaMA 424

(Touvron et al., 2023) as the backbone; whereas, 425

there is no transferability between Recformer (us- 426

ing Longformer (Beltagy et al., 2020) as the back- 427

bone) and either of the former two. 428

3.6 Re-writing Defense 429

In this subsection, we explore potential strategies 430

for addressing the identified vulnerability of LLM- 431

based recommendation models. The most direct 432

strategy is to detect and revise potential adversarial 433

elements in the content, such as spelling errors and 434

potential word substitutions. We utilize GPT-3.5- 435

turbo to accomplish the rewriting of adversarial 436

content to achieve defense. 437

Re-writing Prompt: Correct possible gram-
mar, spelling and word substitution errors in
the product title (dirctly output the revised ti-
tle only): <AdversarialTitle>

438

The exposure rates and recommendation perfor- 439

mance (NDCG@10) before and after defense on 440

RecFormer are shown in Table 7. The results of 441

other victim models are shown in Appendix C. 442

We can observe the defense works well against 443

character-level attacks like DeepwordBug and 444

PuncAttack, but struggles with more complex 445
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Source Target
Sports Beauty Toys

Ori Exp. Att Exp. Ori Exp. Att Exp. Ori Exp. Att Exp.

TALLRec RecFormer 0.00198 0.00086 0.00144 0.00040 0.00408 0.00255
CoLLM 0.00103 0.00064 0.00187

RecFormer TALLRec 0.10430 0.08641 0.15917 0.14881 0.67980 0.65890
CoLLM 0.12237 0.21140 0.72888

RecFormer CoLLM 0.58699 0.58001 0.21619 0.20556 0.35964 0.33338
TALLRec 0.62473 0.27289 0.39666

Table 6: The results of transfer attack across different victim models when using TextFooler as the attack model.
The best result is in boldface.

DeepwordBug PunAttack TextFooler BertAttack
Metrics Attack

Sports Beauty Toys Sports Beauty Toys Sports Beauty Toys Sports Beauty Toys

Clean 0.00282 0.00458 0.00439 0.00282 0.00458 0.00439 0.00282 0.00458 0.00439 0.00282 0.00458 0.00439
Attack 0.01488 0.02134 0.01595 0.01138 0.01654 0.01241 0.01547 0.02844 0.02232 0.01371 0.02705 0.01384Exposure

Defense 0.00349 0.00587 0.00551 0.00399 0.00601 0.00623 0.01510 0.02012 0.01867 0.01065 0.02043 0.01161

Clean 0.00780 0.01258 0.02380 0.00780 0.01258 0.02380 0.00780 0.01258 0.02380 0.00780 0.01258 0.02380
Attack 0.00757 0.01257 0.02365 0.00762 0.01257 0.02328 0.00780 0.01224 0.02366 0.00781 0.01213 0.02340NDCG@10

Defense 0.00769 0.01251 0.02373 0.00771 0.01251 0.02377 0.00778 0.01217 0.02378 0.00774 0.01195 0.02351

Table 7: Defense performance on RecFormer. The red highlighted area indicates effective defense against character-
level attacks, while the blue highlighted area indicates limited defense against word-level attacks.

word substitution attacks such as TextFooler and446

BertAttack, since character-level spelling errors447

and punctuation insertions are relatively easy to448

detect. Moreover, it doesn’t impact overall recom-449

mendation performance.450

4 Related Work451

4.1 LLM-based Recommendation452

The techniques used by LLMs in the recommen-453

dation domain involve translating recommenda-454

tion tasks into natural language tasks and adapt-455

ing LLMs to generate recommendation results di-456

rectly. These generative LLM-based approaches457

can be further divided into two paradigms based458

on whether parameters are tuned: non-tuning and459

tuning paradigms. The non-tuning paradigm as-460

sumes LLMs already have the recommendation461

abilities and attempt to trigger the strong zero/few-462

shot abilities by introducing specific prompts (Liu463

et al., 2023; Dai et al., 2023; Mysore et al., 2023;464

Wang et al., 2023b; Hou et al., 2023b). The tun-465

ing paradigm uses fine-tuning, prompt learning, or466

instruction tuning (Kang et al., 2023; Bao et al.,467

2023b; Wang et al., 2022; Geng et al., 2022; Cui468

et al., 2022) to enhance LLM’s recommendation469

abilities by using LLMs as encoders to extract user470

and item representations and then fine-tuning their471

parameters on specific loss functions.472

4.2 Shilling Attack 473

Shilling attacks aim to interfere with the recom- 474

mendation strategy of a victim recommender sys- 475

tem by injecting fake users into the training ma- 476

trix (Deldjoo et al., 2019; Toyer et al., 2023). 477

This can be implemented through (1) heuristic at- 478

tacks (Burke et al., 2005b; Linden et al., 2003; Kaur 479

and Goel, 2016b), where fake profiles are created 480

based on subjective inference and existing knowl- 481

edge; (2) gradient attacks (Fang et al., 2020; Li 482

et al., 2016; Zhang et al., 2020; Fang et al., 2018; 483

Huang et al., 2021), which optimize the objective 484

function through a continuous space; and neural 485

attacks (Wang and Zhang, 2023; Lin et al., 2020, 486

2024; Song et al., 2020; Zhang et al., 2022), which 487

use deep learning to generate realistic profiles. 488

5 Conclusion 489

In conclusion, our investigation exposes a critical 490

security issue within LLM-based recommendation 491

systems, brought on by their reliance on textual 492

content. By showcasing the ability of attackers 493

to boost item exposure through subtle text modifi- 494

cations, we stress the urgent need for heightened 495

security measures. Our findings not only highlight 496

the vulnerability of these systems but also serve as 497

a call to action for the development of more robust, 498

attack-resistant models. 499
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Limitations500

The main constraints can be summarized in the501

following two aspects: Firstly, although the black-502

box text attack model does not require access to503

the victim model’s parameters and gradients, it504

necessitates multiple queries to the model. And505

it is challenging to query the model in real-world506

large-scale recommendation systems. Secondly,507

this study solely focuses on the content features of508

text modality. In reality, recommendation systems509

encompass other modalities such as images and510

videos. The issue of attacking models based on511

these modalities also represents a worthy direction512

for research.513

Ethics Statement514

The experimental datasets are publicly available515

from some previous works, downloaded via official516

APIs. The information regarding users in the Ama-517

zon dataset has been anonymized, ensuring there518

are no privacy concerns related to the users. We do519

not disclose any non-open-source data, and we en-520

sure that our actions comply with ethical standards.521

We use publicly available pre-trained models, i.e.,522

RecFormer, P5, LLaMA, GPT-Neo. All the check-523

points and datasets are carefully processed by their524

authors to ensure that there are no ethical problems.525

However, it is worth noting that our research526

has uncovered vulnerabilities in LLM-based RS.527

Despite proposing potential defense methods in528

Section 3.6, there still exists a risk of misuse of529

our attack paradigm. Future research based on this530

attack should proceed with caution and consider the531

potential consequences of any proposed methods.532
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Table 8: Statistics of the datasets

Dataset #Users #Items #Interactions Density

Sports 35,598 18,357 256,308 0.00039
Beauty 22,363 12,101 172,188 0.00064
Toys 19,412 11,924 145.004 0.00063

A Experimental Settings 758

A.1 Victim Models 759

We choose four mainstream LLM-based recom- 760

mendation models as our victim models. 761

• Recformer (Li et al., 2023a). Recformer pro- 762

poses to formulate an item as a "sentence" 763

(word sequence) and can effectively recom- 764

mend the next item based on language repre- 765

sentations. 766

• P5 (Geng et al., 2022). P5 presents a flexi- 767

ble and unified text-to-text paradigm called 768

"Pretrain, Personalized Prompt, and Predict 769

Paradigm" (P5) for recommendation, which 770

unifies various recommendation tasks in a 771

shared framework. 772

• TALLRec (Bao et al., 2023a). TALLRec pro- 773

poses to align LLMs with recommendation by 774

tunning LLMs with recommendation data. 775

• CoLLM (Zhang et al., 2023b). CoLLM seam- 776

lessly incorporates collaborative information 777

into LLMs for recommendation by mapping 778

ID embedding to the input token embedding 779

space of LLM. 780

A.2 Compared Shilling Attacks 781

Shilling attacks aim to generate fake users that as- 782

sign high ratings for a target item, while also rating 783

other items to act like normal users for evading. 784

• Heuristic attacks. Heuristic attacks involve 785

selecting items to create fake profiles based 786

on heuristic rules. Random attack (Kaur 787

and Goel, 2016a) selects filler items ran- 788

domly while Bandwagon attack (Burke et al., 789

2005a) selects the popular items as users fake 790

preferences, which is white-box as it requires 791

knowledge of the popularity of items, i.e., the 792

training data. 793

• Neural attacks. Neural attacks utilize neu- 794

ral networks to generate fake users that maxi- 795

mize the objective function. Aush (Lin et al., 796

11
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2020). Aush utilizes Generative Adversarial797

Network (GAN) to generate fake users based798

on known knowledge. Leg-UP (Lin et al.,799

2024). Leg-UP learns user behavior patterns800

from real users in the sampled “templates” and801

constructs fake user profiles. Both of them are802

gray-box attack models, requiring a portion of803

training data.804

A.3 Implementation Details805

The statistics of these datasets are summarized in806

Table 8. All victim models and compared shilling807

attacks are implemented in PyTorch. We random808

select 10% items as target items for each dataset.809

For RecFormer, we use both pre-trained check-810

point1 and also fine-tune it with the three datasets.811

For P5, we directly use the fine-tuned checkpoints2.812

For TALLRec3 and CoLLM4, we fine-tune them813

from scratch. We implement shilling attack meth-814

ods using RecAD5. Both Aush and Leg-UP are815

gray-box and we set them to access 20% of the816

training data.817

B Text Attack818

B.1 Text Attack Components819

A textual attack consists of four main components:820

Goal Function, Constraint, Transformation, and821

Search Method. Here is a breakdown example of822

each component.823

B.1.1 Goal Function824

The Goal Function defines the objective of the at-825

tack. It also scores how ”good” the given manip-826

ulated text is for achieving the desired goal. The827

core part could be simplified as:828

1 def goal_function(target_item_id , original_text ,829
perturbed_text , threshold =0.5):830

2 """831
3 Return the attacked score and determines if the832

attack is successful.833
4834
5 :param target_item_id: The target item's id.835
6 :param original_text: The original text of836

target item.837
7 :param perturbed_text: The perturbed text of838

target item.839
8 :param threshold: The threshold of success840

attack.841
9 :return: attacked_score , is_successful842

10 """843
11 init_score = call_model(original_text ,844

target_item_id)845
12 attacked_score = call_model(perturbed_text ,846

target_item_id)847

1https://github.com/AaronHeee/RecFormer
2https://github.com/jeykigung/P5
3https://github.com/SAI990323/TALLRec
4https://github.com/zyang1580/CoLLM
5https://github.com/gusye1234/recad

13 is_successful = attacked_score - init_score > 848
threshold 849

14 return attacked_score , is_successful 850

B.1.2 Constraint 851

Constraints are conditions that must be met for 852

the perturbed text to be considered valid. These 853

often ensure the perturbed text remains natural and 854

similar to the original text in some aspects (e.g., 855

semantic similarity). Examples are as follows: 856

1 def maintain_semantic(original_text , perturbed_text , 857
threshold =0.8): 858

2 """ 859
3 Checks if the perturbed text maintains semantic 860

similarity. 861
4 862
5 :param original_text: Original text. 863
6 :param perturbed_text: Perturbed version of the 864

text. 865
7 :param threshold: Threshold for semantic 866

similarity. 867
8 :return: True if similarity is above the 868

threshold , False otherwise. 869
9 """ 870

10 similarity = compute_semantic_similarity( 871
input_text , perturbed_text) 872

11 return similarity > threshold 873

B.1.3 Transformation 874

The Transformation component refers to the meth- 875

ods applied to modify the original text to achieve 876

the adversarial goal. This could involve synonym 877

replacement, insertion, or deletion of words. 878

1 def synonym_replacement(original_text): 879
2 """ 880
3 Manipulates the original text by replacing 881

synonyms. 882
4 883
5 :param original_text: The original text to be 884

manipulated. 885
6 :return: A list of manipulated texts. 886
7 """ 887
8 words = original_text.words 888
9 transformed_texts = [] 889

10 for i in range(len(words)): 890
11 replacement_word = get_synonyms(words[i]) 891
12 modified_text = original_text. 892

replace_word_at_index(i, replacement_word) 893
13 transformed_texts.append(modified_text) 894
14 return transformed_texts 895

B.1.4 Search Method 896

The Search Method dictates the strategy used to 897

explore the space of possible perturbations. For 898

example, a greedy search method might iteratively 899

apply transformations that maximally increase the 900

attack’s success likelihood. 901

1 def greedy_search(target_item_id , original_text): 902
2 """ 903
3 Applies greedy search to find successful 904

perturbation. 905
4 906
5 :param target_item_id: The target item's id. 907
6 :param original_text: Original text to be 908

perturbed. 909
7 :return: Best perturbed text. 910
8 """ 911
9 best_score = 0 912

10 best_perturbed_text = original_text 913
11 perturbed_texts = get_transformations( 914

original_text) 915

12



12 for perturbed_text in perturbed_texts:916
13 attacked_score , is_successful =917

goal_function(target_item_id , original_text ,918
perturbed_text)919

14 if satisfy_constraints(original_text ,920
perturbed_text):921

15 if attacked_score > best_score:922
16 best_score = attacked_score923
17 best_perturbed_text = perturbed_text924
18 if is_successful:925
19 return best_perturbed_text926
20 return None927

B.2 Implementations928

The majority of our text attacks have been devel-929

oped by revising strategies from TextAttack6 (Mor-930

ris et al., 2020) and PromptBench7 (Zhu et al.,931

2023).932

All four attack methods, DeepwordBug, PuncAt-933

tack, TextFooler and BertAttack share the same934

Goal Function, where we set the success thresh-935

old to 0.05 increasing exposure rate for RecFormer.936

Since the other three victim models cannot per-937

form full ranking and calculate exposure rates, we938

set an increase in interaction probability as the939

objective. Specifically, we set success threshold940

to 0.3, 0.15, 0.15 increasing interaction probability941

for P5, TALLRec and CoLLM, respectively. Dur-942

ing the attack process, we randomly select 10%943

of users to calculate the average exposure rate or944

interaction probability instead of using all users.945

This approach is lower in cost and more aligned946

with the constraints of practical attacks.947

The recipes of Constraint, Transformation, and948

Search Method of implemented text attacks are as949

follows:950

1 """951
2 Recipes for DeepwordBug952
3 """953
4954
5 transformation = CompositeTransformation(955
6 [956
7 WordSwapNeighboringCharacterSwap (),957
8 WordSwapRandomCharacterSubstitution (),958
9 WordSwapRandomCharacterDeletion (),959

10 WordSwapRandomCharacterInsertion (),960
11 ]961
12 )962
13963
14 constraints = [964
15 RepeatModification (),965
16 StopwordModification (),966
17 LevenshteinEditDistance (30)967
18 ]968
19 search_method = GreedyWordSwapWIR ()969

1 """970
2 Recipes for PuncAttack971
3 """972
4 punctuations = '\'-'973
5 transformation =974

WordSwapTokenSpecificPunctuationInsertion(975
letters_to_insert=punctuations)976

6 constraints = [977
7 RepeatModification (),978

6https://github.com/QData/TextAttack
7https://github.com/microsoft/promptbench

8 StopwordModification (), 979
9 WordEmbeddingDistance(min_cos_sim =0.6), 980

10 PartOfSpeech(allow_verb_noun_swap=True), 981
11 UniversalSentenceEncoder(threshold =0.8) 982
12 ] 983
13 search_method = GreedyWordSwapWIR () 984

1 """ 985
2 Recipes for TextFooler 986
3 """ 987
4 transformation = WordSwapEmbedding(max_candidates 988

=50) 989
5 constraints = [ 990
6 RepeatModification (), 991
7 StopwordModification (), 992
8 WordEmbeddingDistance(min_cos_sim =0.6), 993
9 PartOfSpeech(allow_verb_noun_swap=True), 994

10 UniversalSentenceEncoder(threshold =0.84, metric=" 995
angular") 996

11 ] 997
12 search_method = GreedyWordSwapWIR () 998

1 """ 999
2 Recipes for BertAttack 1000
3 """ 1001
4 transformation = WordSwapMaskedLM(max_candidates =48) 1002
5 constraints = [ 1003
6 RepeatModification (), 1004
7 StopwordModification (), 1005
8 MaxWordsPerturbed(max_percent =1), 1006
9 UniversalSentenceEncoder(threshold =0.8) 1007

10 ] 1008
11 search_method = GreedyWordSwapWIR () 1009

C Detailed Experimental Results 1010

In this section, we present detailed experimental 1011

results that could not be shown in the main text due 1012

to space limitation. 1013

• The overall attack performances of P5, TALL- 1014

Rec and CoLLM are shown in Table 9, Table 1015

10 and Table 11, respectively. The scatter 1016

plots of them are shown in Figure 7. 1017

• The performance comparison with traditional 1018

shilling attacks of TALLRec and CoLLM are 1019

shown in 13 and 14. 1020

• The performances of attacking fine-tuned Rec- 1021

former is shown in Table 3. 1022

D Case Studies 1023

In this section, we present examples of attacks and 1024

defenses against RecFormer as a victim model, as 1025

shown in Table 15 - 20. 1026
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Dataset Method
Effectiveness Stealthiness

Propensity ↑ Rel. Impro. ↑ # queries ↓ NDCG@10 ↑ Cos. ↑ Rouge-l ↑ Perplexity ↓ # pert. words ↓

Sports

Clean 0.35137 0.0% - 0.28782 1.000 1.000 2158.7 -
ChatGPT 0.36891 5.0% - 0.28777 0.794 0.499 1770.9 -

Trivial 0.34813 -0.9% - 0.28764 0.896 0.869 4376.6 -
Deepwordbug 0.41533 18.2% 39.3 0.28765 0.637 0.381 7417.3 4.9

TextFooler 0.42784 21.8% 91.2 0.28768 0.688 0.499 2494.9 4.1
PuncAttack 0.39292 11.8% 46.7 0.28789 0.842 0.602 2572.7 3.4
BertAttack 0.41893 19.2% 135.7 0.28781 0.823 0.598 9421.4 3.7

Beauty

Clean 0.08218 0.0% - 0.28765 1.000 1.000 611.6 -
ChatGPT 0.07889 -4.0% - 0.28733 0.822 0.516 501.8 -

Trivial 0.07734 -5.9% - 0.28761 0.939 0.901 1189.5 -
Deepwordbug 0.23193 182.2% 47.3 0.28708 0.640 0.370 4590.1 4.9

TextFooler 0.25010 204.3% 112.1 0.28691 0.683 0.460 1200.3 4.2
PuncAttack 0.20653 151.3% 52.2 0.28693 0.828 0.594 1132.0 3.4
BertAttack 0.29618 260.4% 146.8 0.28676 0.821 0.585 2634.5 3.5

Toys

Clean 0.26065 0.0% - 0.28587 1.000 1.000 4060.4 -
ChatGPT 0.28115 7.9% - 0.28610 0.793 0.454 1967.1 -

Trivial 0.26913 3.3% - 0.28614 0.880 0.852 7874.4 -
Deepwordbug 0.49867 91.3% 28.0 0.28619 0.642 0.490 8896.5 3.5

TextFooler 0.52492 101.4% 65.0 0.28613 0.733 0.571 4413.1 3.0
PuncAttack 0.42457 62.9% 31.3 0.28637 0.860 0.666 4134.3 2.4
BertAttack 0.46528 78.5% 80.0 0.28597 0.855 0.690 9618.9 2.4

Table 9: Performance comparison of attacking P5 where Rel. Impro. denotes relative improvement against clean
setting. The best result is in boldface.

Dataset Method
Effectiveness Stealthiness

Propensity ↑ Rel. Impro. ↑ # queries ↓ NDCG@10 ↑ Cos. ↑ Rouge-l ↑ Perplexity ↓ # pert. words ↓

Sports

Clean 0.0399 - - 0.58489 1.000 1.000 2158.7 -
ChatGPT 0.0426 6.7% - 0.58449 0.794 0.499 1770.9 -

Trivial 0.0402 0.6% - 0.58479 0.896 0.869 4376.6 -
Deepwordbug 0.1074 168.8% 30.9 0.58459 0.643 0.459 8274.9 3.3

TextFooler 0.1093 173.5% 61.3 0.58395 0.686 0.512 2075.5 2.7
PuncAttack 0.0897 124.6% 27.6 0.58489 0.854 0.621 3153.9 2.0
BertAttack 0.0955 139.1% 67.2 0.58484 0.848 0.682 5397.2 1.7

Beauty

Clean 0.0566 - - 0.56758 1.000 1.000 611.6 -
ChatGPT 0.0581 2.6% - 0.56546 0.822 0.516 501.8 -

Trivial 0.0558 -1.3% - 0.56755 0.939 0.901 1189.5 -
Deepwordbug 0.1605 183.6% 26.7 0.56737 0.674 0.531 2330.8 2.9

TextFooler 0.1724 204.6% 53.4 0.56581 0.736 0.589 1491.0 2.5
PuncAttack 0.1482 161.9% 29.8 0.56727 0.864 0.692 853.9 1.9
BertAttack 0.1643 190.3% 70.4 0.56620 0.852 0.712 2036.6 1.8

Toys

Clean 0.5548 - - 0.56822 1.000 1.000 4060.4 -
ChatGPT 0.5602 1.0% - 0.56666 0.793 0.454 1067.1 -

Trivial 0.5245 -5.5% - 0.56822 0.880 0.852 7874.4 -
Deepwordbug 0.6786 22.3% 21.5 0.56822 0.650 0.493 8181.2 2.5

TextFooler 0.7098 27.9% 45.6 0.56886 0.729 0.577 4953.7 2.1
PuncAttack 0.6624 19.4% 22.8 0.56733 0.865 0.659 3418.2 1.7
BertAttack 0.6798 22.5% 69.5 0.56850 0.874 0.733 8047.0 1.5

Table 10: Performance comparison of attacking TALLRec where Rel. Impro. denotes relative improvement against
clean setting. The best result is in boldface.
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Dataset Method
Effectiveness Stealthiness

Propensity ↑ Rel. Impro. ↑ # queries ↓ NDCG@10 ↑ Cos. ↑ Rouge-l ↑ Perplexity ↓ # pert. words ↓

Sports

Clean 0.35137 0.0% - 0.28782 1.000 1.000 2158.7 -
ChatGPT 0.36891 5.0% - 0.28777 0.794 0.499 1770.9 -

Trivial 0.34813 -0.9% - 0.28764 0.896 0.869 4376.6 -
Deepwordbug 0.41533 18.2% 39.3 0.28765 0.637 0.381 7417.3 4.9

TextFooler 0.42784 21.8% 91.2 0.28768 0.688 0.499 2494.9 4.1
PuncAttack 0.39292 11.8% 46.7 0.28789 0.842 0.602 2572.7 3.4
BertAttack 0.41893 19.2% 135.7 0.28781 0.823 0.598 9421.4 3.7

Beauty

Clean 0.08218 0.0% - 0.28765 1.000 1.000 611.6 -
ChatGPT 0.07889 -4.0% - 0.28733 0.822 0.516 501.8 -

Trivial 0.07734 -5.9% - 0.28761 0.939 0.901 1189.5 -
Deepwordbug 0.23193 182.2% 47.3 0.28708 0.640 0.370 4590.1 4.9

TextFooler 0.25010 204.3% 112.1 0.28691 0.683 0.460 1200.3 4.2
PuncAttack 0.20653 151.3% 52.2 0.28693 0.828 0.594 1132.0 3.4
BertAttack 0.29618 260.4% 146.8 0.28676 0.821 0.585 2634.5 3.5

Toys

Clean 0.26065 0.0% - 0.28587 1.000 1.000 4060.4 -
ChatGPT 0.28115 7.9% - 0.28610 0.793 0.454 1967.1 -

Trivial 0.26913 3.3% - 0.28614 0.880 0.852 7874.4 -
Deepwordbug 0.49867 91.3% 28.0 0.28619 0.642 0.490 8896.5 3.5

TextFooler 0.52492 101.4% 65.0 0.28613 0.733 0.571 4413.1 3.0
PuncAttack 0.42457 62.9% 31.3 0.28637 0.860 0.666 4134.3 2.4
BertAttack 0.46528 78.5% 80.0 0.28597 0.855 0.690 9618.9 2.4

Table 11: Performance comparison of attacking CoLLM where Rel. Impro. denotes relative improvement against
clean setting. The best result is in boldface

Dataset Method
Effectiveness Stealthiness

Exposure ↑ Rel. Impro. ↑ # queries ↓ NDCG@10 ↑ Cos. ↑ Rouge-l ↑ Perplexity ↓ # pert. words ↓

Sports

Clean 0.00261 - - 0.01252 1.000 1.000 2158.7 -
ChatGPT 0.00263 0.8% - 0.01237 0.794 0.499 1770.9 -

Trivial 0.00219 -16.1% - 0.01237 0.896 0.869 4376.6 -
Deepwordbug 0.00835 220.0% 40.1 0.01232 0.778 0.608 5086.0 3.1

TextFooler 0.01074 311.8% 94.0 0.01228 0.775 0.595 2030.6 3.2
PuncAttack 0.00932 257.2% 60.0 0.01235 0.864 0.672 2747.2 2.6
BertAttack 0.01111 325.9% 165.0 0.01228 0.827 0.645 7382.3 3.2

Beauty

Clean 0.00432 - - 0.03022 1.000 1.000 611.6 -
ChatGPT 0.00356 -17.7% - 0.02915 0.822 0.516 501.8 -

Trivial 0.00390 -9.7% - 0.03022 0.939 0.901 1189.5 -
Deepwordbug 0.01348 212.0% 49.4 0.02960 0.744 0.591 3626.9 4.1

TextFooler 0.01886 336.6% 116.3 0.02926 0.758 0.567 1372.3 4.5
PuncAttack 0.01270 194.0% 72.9 0.02959 0.853 0.679 1115.9 3.3
BertAttack 0.01949 351.0% 214.8 0.02928 0.822 0.642 2288.2 4.0

Toys

Clean 0.00429 - - 0.03626 1.000 1.000 4060.4 -
ChatGPT 0.00392 -8.6% - 0.03580 0.793 0.454 1967.1 -

Trivial 0.00407 -5.1% - 0.03623 0.880 0.852 7874.4 -
Deepwordbug 0.01268 195.7% 33.6 0.03610 0.703 0.542 11045.3 3.1

TextFooler 0.01725 302.5% 86.8 0.03596 0.709 0.525 4762.2 3.3
PuncAttack 0.01214 183.1% 41.1 0.03577 0.845 0.653 4350.4 2.4
BertAttack 0.01381 222.1% 116.6 0.03599 0.829 0.661 12640.6 2.6

Table 12: Performance comparison of attacking fintuned Recformer where Rel. Impro. denotes relative improve-
ment against clean setting. The best result is in boldface.

Sports Beauty Toys

Attack AUC Propensity AUC Propensity AUC Propensity

Clean 0.58489 0.03994 0.56758 0.05659 0.56822 0.55476
Random 0.53550 0.05450 0.56603 0.08472 0.56394 0.36513

Bandwagon 0.55781 0.04082 0.55167 0.00757 0.55189 0.54899
Aush 0.57643 0.02868 0.55416 0.00265 0.55416 0.52596

LegUP 0.54123 0.04361 0.53604 0.06628 0.55946 0.57901
TextFooler 0.58395 0.10926 0.56581 0.17238 0.56886 0.70980

Table 13: Shilling attacks on TALLRec.
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Figure 4: Performance comparison of different attacks on P5.
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Figure 5: Performance comparison of different attacks on TALLRec.
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Figure 6: Performance comparison of different attacks on CoLLM.

Figure 7: Performance comparison of different attacks on various models. The size of the scatter points represents
the cosine semantic similarity with the original title, with larger points indicating better semantic preservation (best
viewed in color).

Sports Beauty Toys

Attack AUC Propensity AUC Propensity AUC Propensity

Clean 0.58331 0.57760 0.56256 0.22535 0.58622 0.38361
Random 0.55275 0.57192 0.52894 0.27450 0.54497 0.24871

Bandwagon 0.57669 0.56773 0.53884 0.23739 0.55721 0.34892
Aush 0.57767 0.55084 0.54857 0.24656 0.55373 0.49610

LegUP 0.57648 0.54010 0.53802 0.19230 0.54504 0.39779
TextFooler 0.58285 0.65581 0.55993 0.38677 0.58706 0.57592

Table 14: Shilling attacks on CoLLM.
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Model Text Exposure

Clean Little People Surprise Sounds Fun Park 0.0111

Trivial Little People Surprise Sounds Fun Park good fantastic 0.0151

GPT Exciting Sounds Fun Park for Little Ones 0.0201

DeepwordBug Little ePople Surprise Sounds Fun Park 0.0701

+Defense Little People Surprise Sounds Fun Park 0.0111

PunAttack Little P-eople Surprise Sounds Fun Park 0.0496

+Defense Little People Surprise Sounds Fun Park 0.0111

Textfooler Little Inhabitants Surprise Sounds Fun Park 0.0702

+Defense Surprising Audible Comic Park: Little Inhabitants 0.0586

BertAttack Little joe Surprise Sounds Fun Park 0.0326

+Defense Little Joe’s Surprise Sound Fun Park 0.0198

Table 15: Item “B00008PVZG” in the Amazon-Toys dataset. The red part points out the differences from the
original text.

Model Text Exposure

Clean Fisher-Price Fun-2-Learn Smart Tablet 0.0076

Trivial Fisher-Price Fun-2-Learn Smart Tablet better selling 0.0095

GPT Interactive Learning Tablet for Kids 0.0335

DeepwordBug Fisher-Price Fun-2-Learn Smar Tmblet 0.0335

+Defense Fisher-Price Fun-2-Learn Smart Tablet 0.0076

PunAttack Fisher-Price Fun–2-Learn Sm’art Tablet 0.0285

+Defense Fisher-Price Fun-2-Learn Smart Tablet 0.0076

Textfooler Fisher-Price Fun-2-Learn Canny Table 0.0768

+Defense Fisher-Price Fun-2-Learn Canine Table 0.0756

BertAttack Fisher-Price Fun-2-Learn this Tablet 0.0262

+Defense Fisher-Price Fun-2-Learn Tablet 0.0190

Table 16: Item “B005XVCTAU” in the Amazon-Toys dataset. The red part points out the differences from the
original text.

Model Text Exposure

Clean Salon Grafix Healthy Hair Nutrition Cleansing Conditioner, 12 oz 0.0321

Trivial Salon Grafix Healthy Hair Nutrition Cleansing Conditioner, 12 oz fantastic loved 0.0103

GPT Nourishing Hair Care: Salon Grafix Cleansing Conditioner, 12 oz 0.0331

DeepwordBug Salon Grafix Healthy Hair Nutirtion Cleansing Conditioner, 12 oz 0.1020

+Defense Salon Grafix Healthy Hair Nutrition Cleansing Conditioner, 12 oz, 12 oz 0.0321

PunAttack Salon Grafix Healthy Hair Nutrit-ion Cleansing Conditioner, 12 oz 0.0866

+Defense Salon Grafix Healthy Hair Nutrition Cleansing Conditioner, 12 oz 0.0321

Textfooler Salon Grafix Healthy Hair Nourishment Cleansing Conditioner, 12 oz 0.1438

+Defense Salon Grafix Healthy Hair Nourishing Cleansing Conditioner, 12 oz 0.1135

BertAttack Salon Grafix Healthy Hair style Cleansing Conditioner, 12 oz 0.1172

+Defense Salon Grafix Healthy Hair Style Cleansing Conditioner, 12 oz. 0.1139

Table 17: Item “B007MNYY14” in the Amazon-Beauty dataset. The red part points out the differences from the
original text.
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Model Text Exposure

Clean Phyto Organics Set Theratin Shampoo amp; Humectin Conditioner 1L Each 0.0014

Trivial Phyto Organics Set Theratin Shampoo amp; Humectin Conditioner 1L Each purchase cheap 0.0015

GPT Luxurious Phyto Organics Set: Theratin Shampoo Humectin Conditioner - 1L Each! 0.0019

DeepwordBug Phyto Organics et heratin Shampoo amp; Humectin Conditioner 1L Each 0.0370

+Defense Phyto Organics and Keratin Shampoo & Humectin Conditioner 1L Each 0.0170

PunAttack Phyto Organic’s Se’t Theratin Shampoo amp; Humectin Conditioner 1L Each 0.0386

+Defense Phyto Organics Set Theratin Shampoo amp; Humectin Conditioner 1L Each 0.0014

Textfooler Phyto Organic Setting Theratin Shampoo amp; Humectin Conditioner 1L Each 0.0200

+Defense Phyto Organic Setting Theratin Shampoo & Humectin Conditioner - 1L Each 0.0272

BertAttack Phyto Organics for Theratin Shampoo makeup; Humectin Conditioner 1L Each 0.0483

+Defense Phyto Organics for Theratin Shampoo & Hair Conditioner - 1L Each 0.0540

Table 18: Item “B0030UG27W” in the Amazon-Beauty dataset. The red part points out the differences from the
original text.

Model Text Exposure

Clean GAIAM Toeless Grippy Yoga Socks Toesocks 0.0017

Trivial GAIAM Toeless Grippy Yoga Socks Toesocks wonderful product 0.0032

GPT GAIAM Grippy Toeless Yoga Socks - Ultimate Toesocks 0.0036

DeepwordBug GAIAM Toeless Grippy Yoga oScks Toesocks 0.0071

+Defense GAIAM Toeless GripBpy Yoga Socks - Quality Socks 0.0041

PunAttack GA-IAM Toeless Grip-py Yoga Sock’s Toesocks 0.0085

+Defense GA-IAM Toeless Grippy Yoga Sock’s Toesocks 0.0053

TextFooler GAIAM Toeless Grippy Yoga Sock Toesocks 0.0111

+Defense Gaiam Toeless Grippy Yoga Socks - Toe Socks 0.0031

BertAttack GAIAM Toeless Grippy Yoga with Toesocks 0.0080

+Defense GAIAM Toeless Grip Yoga Socks with Toesocks 0.0056

Table 19: Item “B008EADJPG” in the Amazon-Sports dataset. The red part points out the differences from the
original text.

Model Text Exposure

Clean BladesUSA E419-PP Polypropylene Karambit Training Knife 6.7-Inch Overall 0.0014

Trivial BladesUSA E419-PP Polypropylene Karambit Training Knife 6.7-Inch Overall quality excellent 0.0012

GPT Ultimate Training Knife: BladesUSA E419-PP Karambit - Unbeatable Performance! 0.0041

DeepwordBug BladesUSA E419-PP Polyproylene Karambit Training Knife 6.7-Inch Ovearll 0.0158

+ Defense BladesUSA E419-PP Polypropylene Karambit Training Knife 6.7-Inch Overall 0.0014

PunAttack Bla’desUSA E419-PP Polypropy’lene Karambit Training Knife 6.7-Inch Overall 0.0117

+ Defense BladesUSA E419-PP Polypropylene Karambit Training Knife 6.7-Inch Overall 0.0014

TextFooler BladesUSA E419-PP Polypropylene Karambit Training Knifes 6.7-Inch Overall 0.0036

+ Defense BladesUSA E419-PP Polypropylene Karambit Training Knifes 6.7-Inch Overall 0.0036

BertAttack BladesUSA E419-PP a Karambit Training Knife 6.7-Inch Overall 0.0095

+ Defense BladesUSA E419-PP: A Karambit Training Knife with 6.7-Inch Overall Length 0.0082

Table 20: Item “B0089AH12I” in the Amazon-Sports dataset. The red part points out the differences from the
original text.

18


	Introduction
	Method
	Problem Definition
	Victim Model-Agnostic Attack
	Trivial Attack with Word Insertion
	Re-writing with GPTs

	Exploring Vulnerabilities in LLM-Based Recommendation Models through Black-Box Text Attacks

	Experiments
	Experimental Settings
	Victim Models
	Compared Shilling Attacks
	Datasets
	Implementation Details
	Evaluation metrics

	Performance Comparison
	The influence of fine-tuning
	The influence of item popularity
	Transferability
	Transferability across tasks.
	Transferability across victim models.

	Re-writing Defense

	Related Work
	LLM-based Recommendation
	Shilling Attack

	Conclusion
	Experimental Settings
	Victim Models
	Compared Shilling Attacks
	Implementation Details

	Text Attack
	Text Attack Components
	Goal Function
	Constraint
	Transformation
	Search Method

	Implementations

	Detailed Experimental Results
	Case Studies

