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Abstract

Mamba2, a rising contender against transformer-
based architectures, has garnered significant atten-
tion for its impressive performance across diverse
tasks, sparking a wave of research into its analysis
and improvement. In this paper, we investigate
Mamba2 through the lens of spectral analysis,
uncovering a critical structural bias: Mamba2 in-
herently functions as a low-pass filter, leading
to over-smoothing. Over-smoothing, where to-
ken representations become overly uniform, ham-
pers the model’s ability to capture rich and di-
verse features, ultimately contributing to perfor-
mance degradation. To address this, we propose
a straightforward yet effective high-frequency en-
hancement method. By selectively amplifying
high-frequency components at the layer level,
our approach mitigates the over-smoothing effect,
restoring token diversity and improving represen-
tational richness. Experiments confirm the effi-
cacy of our method, demonstrating its ability to
enhance Mamba2’s performance across key tasks.

1. Introduction
Transformer-based architectures have emerged as the domi-
nant approach for sequence modeling, ranging from text gen-
eration to machine translation. However, the inherent limita-
tions of transformers(e.g. quadratic time complexity) have
motivated the development of sub-quadratic alternatives de-
signed to address these challenges (Yang et al., 2024b; Gu
et al., 2022b; Smith et al., 2023; Poli et al., 2023a; Peng et al.,
2023; Sun et al., 2024). Among these, Mamba and Mamba2
has gained considerable attention due to its strong perfor-
mance across a wide array of benchmarks (Gu & Dao, 2023;
Dao & Gu, 2024b). Nevertheless, a comprehensive analysis
of its architectural characteristics and potential limitations
is essential for a complete understanding of its capabilities.
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Figure 1. Spectral response of the attention map for Pythia and the
M matrix (cf. Eq. 6) for Mamba2

This paper investigates a critical yet overlooked issue in
Mamba2: over-smoothing, where token representations
within a layer become nearly identical. Although over-
smoothing is well-studied in transformers across various
tasks (Wang et al., 2022; Shi et al., 2022; Guo et al., 2023),
its occurrence and effects in Mamba2 remain largely unex-
plored. To bridge this gap, we conduct a spectral domain
analysis of Mamba2 (Dao & Gu, 2024b), utilizing the M
matrix (cf. Eq.6), a structure ideal for spectral examination.
Our analysis reveals, for the first time, that Mamba2 has a
strong bias toward low-frequency components, as illustrated
in Figure 1. This structural limitation not only reduces ex-
pressiveness but also diminishes performance in language
modeling tasks. To counteract this issue, we propose a high-
frequency enhancement strategy, a simple yet effective mod-
ification that significantly alleviates over-smoothing. Our
method leads to notable performance gains across multiple
language modeling benchmarks, validating our hypothesis
and demonstrating that targeted structural adjustments can
improve Mamba2’s expressiveness.

Our key contributions are as follows:

• We identify and analyze over-smoothing in Mamba2
through a novel Fourier spectrum perspective.

• We establish a direct link between Mamba2’s spectral
bias and its performance degradation.

• We propose and validate a simple high-frequency en-
hancement strategy that improves language modeling
performance.
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2. Related Works
2.1. Mamba2

Using definitions from Dao & Gu (2024b), we describe
Mamba2’s internal dynamics in this section. Each vec-
tor is designated as a row vector. Assuming that U =
[u1, u2, ..., uT ]

⊤ ∈ RT×d, that is, ui ∈ Rd, is a discrete
time sequence of T tokens, the inner equation for the t-th
token of each head of the Mamba2 layer can be understood
as follows:

ht = Atht−1 +Btx
⊤
t ∈ RN×P ,

yt = C⊤
t ht +D ⊙ xt ∈ RP

(1)

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd (2)

where t is current time token, xt, yt ∈ RP are projected
input representation and output hidden representations of
t-th token respectively, Norm denotes RMS normalization
(Zhang & Sennrich, 2019), ⊙ denotes element-wise multi-
plication, D ∈ RP , Wz ∈ RP×d, Wo ∈ Rd×P are trainable
parameters. Especially, in Mamba2, At is scalar-identity
matrix, i.e. At = atI . We denote d for hidden representa-
tion dimension, N for state size, P for dimension of each
head, T for sequence length. Detailed parameterization of
At, Bt, Ct, xt,∆t are deferred to Appendix A.2.

2.2. Transformer and Mamba2

Various models can be represented as sequence transfor-
mations. A sequence transformation is a parameterized
mapping of sequences, defined as Y = fθ(X), where
X ∈ RT×P is mapped to Y ∈ RT×P . Here, θ represents
the model parameters. If this mapping can be expressed
as Y = MθX , it is referred to as a matrix transformation.
For simplicity, we drop θ when it is clear from context. By
adopting the matrix transformation form, we can describe
various sequence modeling mechanisms within a unified
framework:

Q = input, K = input ∈ RT×N ,

V = input ∈ RT×P , M = (L⊙QK⊤) ∈ RT×T ,

Y = MV ∈ RT×P

(3)

Let L be a T ×T mask for autoregressive self-attention, typ-
ically a lower triangular matrix of 1s representing a causal
mask:

M = f(Lc ⊙QK⊤), Lc,ij =

{
1 i ≥ j

−∞ i < j
, (4)

where f = softmax, Q = WQ · X , K = WK · X , and
V = WV ·X , representing basic query, key, value mapping
for the softmax attention.

In this paper, we define S6 as applying Eq. 1 for each tokens.
This can be formulated in this matrix transformation form:

yt =

t∑
s=0

C⊤
t A×

t:sBsxs,

Y = S6(X) = MX,

Mji = C⊤
j Aj · · ·Ai+1Bi

(5)

Considering Q = C, K = B, we can define matrix trans-
formation as below since At = atI:

M = Ld ⊙ CB⊤, Ld,ij =

{
ai × · · · × aj+1 i ≥ j

0 i < j
(6)

where ai ∈ [0, 1] following its formulation. In this regard,
we can understand Mamba2 and transformers in matrix
transformation form, with main difference of how their mask
L is formulated. For detailed equations on this sequence
transformation form, refer to Appendix A.3.

2.3. Over-smoothing Problem

Over-smoothing, a phenomenon predominantly studied in
GNNs, arises when repeated message passing across layers
leads to overly similar or low-rank node representations,
resulting in indistinguishable embeddings and degraded per-
formance (Li et al., 2018; Choi et al., 2023a). This issue
has since been observed in Transformer models like BERT
and ViTs. Shi et al. (2022) show that self-attention matri-
ces in BERT resemble adjacency matrices, with layer nor-
malization accelerating convergence to low-rank subspaces.
To address this, they propose hierarchical fusion strategies.
Similarly, Wang et al. (2022) identify self-attention in ViTs
as a low-pass filter causing feature collapse and introduce
spectral reweighting techniques. Guo et al. (2023) connect
over-smoothing to dimensional collapse and propose Con-
traNorm, a normalization layer inspired by contrastive learn-
ing, to alleviate this issue in both GNNs and Transformers.
Building on this, a growing number of methods leveraging
graph-based algorithms to mitigate over-smoothing are un-
der active investigation (Choi et al., 2023b; Wi et al., 2025).

3. Frequency Bias in Mamba
3.1. Bias of the Model architecture

To better understand the structural behavior of Mamba2,
we examine the mathematical formulation of its M ma-
trix, which functions similarly to the attention weights in
transformers by determining how input sequences are trans-
formed into outputs. Derived in matrix transformation form
of Sec. 2.2, the M matrix of Mamba2 is defined with cu-
mulative product of At matrix. Eq. 6 shows how Eq. 5 can
be reformulated into masked matrix with a decay mask L
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, shaped by repeated applications of At at time t ∈ [T ].
As At = atI where at ∈ (0, 1), defined for simplicity in
Mamba2, each multiplication of At introduces a cumula-
tive product effect, resulting in a growing decay for tokens
further apart in the sequence. Consequently, earlier tokens
experience a rapid loss of influence, forcing the model to
prioritize recent tokens. This structural bias naturally steers
the model toward focusing on local information, making M
act as a low-pass filter.

We further investigate empirically how M matrix behaves
in the model. Figure 2 shows heatmap and spectral response
of M = Ld ⊙CB⊤ (decay mask) and M = f(Lc ⊙CB⊤)
(softmax causal mask). Figure 2(a) reveals a concentration
of weights on proximal tokens and similar weights on distant
tokens, confirming its bias toward local context. In compar-
ison, Figure 2(b) distribute weights more diverse despite
distance. Moreover, as observed in Figure 2(c), the decay
mask enforces a lower spectral magnitude compared to the
softmax mask, particularly at higher frequencies. This result
aligns with our theoretical insight that the decay mask acts
as a low-pass filter, suppressing high-frequency components
more aggressively. The decay mechanism biases the model
towards retaining low-frequency information, which overly
emphasizes smooth, long-term interactions at the cost of
reduced sensitivity to rapid variations, leading to a loss of
important high-frequency details.

3.2. Low pass filter leads Over-Smoothing

In this subsection, we conduct a series of analyses focusing
on token-wise similarity and singular value distributions
of hidden states to investigate the structural tendencies of
Mamba2 and their implications for over-smoothing.

We take Pythia (Biderman et al., 2023) as our counterpart
in these analyses due to their variable model scales and
disclosed training schemes. For more examples and the
details of visualizations, refer to Appendix E.

We first examined the token-wise cosine similarity of hidden
states across layers. As shown in Figure 3, the similarity
between tokens increases significantly with the depth of
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Figure 3. Cosine similarity plots of hidden states for Mamba2-1.3B
and Pythia-1.4B. The plot shows the average cosine similarity over
10 sentences; shaded area is the confidence interval.
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Figure 4. Singular value spectrum of feature maps from Mamba2-
1.3B and Pythia-1.4B.

the network. This trend indicates that token representations
become progressively more uniform as they pass through
layers, a hallmark of over-smoothing. This loss of token
diversity suggests that the model struggles to preserve fine-
grained information, which is critical for capturing intricate
linguistic patterns.

Figure 4 presents the singular value plots, showing a sharp
decline in singular values for Mamba2 compared to the
baseline. This rapid decrease suggests that the model’s fea-
ture representations are dominated by top-k single singular
value, highlighting a bias toward low-frequency informa-
tion and limiting representation richness, consistent with
cosine similarity and frequency analyses. We provide more
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Table 1. Main language modeling results against Pythia and Mamba2. Each task is performed zero-shot. The last column (Avg.) shows the
average over all benchmarks that use (normalized) accuracy as the metric. +HE represents our High-Enhance layer is applied to Mamba2.

#Params Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ 6 tasks ↑

130M
Pythia 33.44 38.00 32.84 61.37 30.30 52.17 43.56 24.15 40.73
Mamba2 35.26 32.18 34.35 62.40 30.89 52.96 44.15 23.46 41.37
Mamba2+HE 32.76 29.65 34.78 63.33 31.76 51.85 44.53 23.72 41.66

370M
Pythia 30.70 25.76 37.53 63.82 31.28 51.30 44.28 24.06 42.05
Mamba2 29.41 20.00 40.09 63.76 33.06 50.91 45.24 23.55 42.77
Mamba2+HE 28.87 19.33 40.73 64.69 33.83 52.17 47.60 23.72 43.79

1.3B
Pythia 26.57 18.80 41.68 64.53 33.84 51.30 48.11 24.40 43.98
Mamba2 29.30 13.35 46.15 64.15 35.01 50.99 47.64 23.29 44.54
Mamba2+HE 25.09 15.71 43.20 65.40 36.25 52.49 48.32 25.00 45.11

visualizations in Appendix E.

4. Layer-wise High Frequency Enhance Filter
To address the over-smoothing issue in Mamba2 models, we
propose a high-frequency enhancement method based on
gaussian blurring, widely used in various domains (Polesel
et al., 2000; Kotera et al., 2000; Deng, 2010). This simple
yet effective approach operates after every NHE layers, se-
lectively enhancing high-frequency information to improve
performance.

Let O(l) = [o
(l)
1 , o

(l)
2 , ..., o

(l)
T ] be the output sequence of l-th

layer of Mamba2, Mamba(l). For simplicity, we omit layer
index in this section, i.e. O = O(l). First, a gaussian kernel
is applied to the layer output O to extract low-frequency
components Olow:

Olow =

n∑
k=0

O[n− k] · G(k)∑n
j=0 G(j)

, G(k) =
1√
2πσ2

e−
k2

2σ2

(7)
where k ≥ 0 denotes kernel size and σ denotes standard
deviation of gaussian distribution. Then, the high-frequency
component Ohigh is simply computed with deduction. Fi-
nally, we emphasize high-frequency information by apply-
ing a tunable weight α, which we call strength:

Ohigh = O −Olow, Oout = O + α ·Ohigh (8)

By enhancing high-frequency components, our method mit-
igates over-smoothing and restores token diversity, enabling
Mamba2 to capture richer linguistic features with minimal
complexity.

5. Experiments
Following prior works (Gu & Dao, 2023; Yang et al., 2024a),
we evauluate our method against original Mamba2 and
Pythia on Wikitext (Wiki.) and LAMBADA (LMB.; (Pa-
perno et al., 2016)) perplexity and zero-shot commonsense

reasoning tasks, including LAMBADA, PiQA (Bisk et al.,
2019), HellaSwag (Hella.; (Zellers et al., 2019)), Wino-
Grande (Wino.; (Sakaguchi et al., 2019)), ARC-easy(ARC-
e), and ARC-challenge (ARC-c) Clark et al. (2018). We
report perplexity (ppl) on WikiText and LAMBADA, ac-
curacy normalized by length (acc n) on HellaSwag and
ARC-challenge, and accuracy (acc) on the other tasks
(since normalized accuracy is higher for almost all mod-
els for these tasks). Avg. denotes average of the 6 zero-
shot commonsense reasoning tasks. For training details,
refer to Appendix C.1. All results are obtained through
lm-evaluation-harness (Liang et al., 2023).

Table 1 presents the performance of each model across
multiple benchmarks. On every model scale, our enhanced
Mamba2 (Mamba2 + HE) outperforms the original Mamba2
(Mamba2) and Pythia in terms of average performance. Ex-
cept few tasks, our method demonstrates consistent improve-
ments on every tasks, proving that our high-frequency en-
hancement method effectively addresses the over-smoothing
issue, leading to a more expressive and robust model.

6. Conclusion
We conduct a spectral analysis of the Mamba2 architecture
to investigate its inherent over-smoothing issue. Our anal-
yses show that Mamba2’s decay mechanism acts as a low-
pass filter, emphasizing low-frequency components while
suppressing high-frequency information. This behavior sup-
ports the modeling of smooth, long-range dependencies but
limits the model’s ability to capture fine-grained interac-
tions. To address this, we introduce a spectral sharpening
technique that selectively enhances high-frequency com-
ponents, effectively mitigating the over-smoothing effect.
Experimental results across multiple benchmarks demon-
strate consistent performance improvements, validating the
effectiveness of our approach. Our findings provide insights
into Mamba2’s spectral characteristics and open pathways
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for further refinement using frequency-based techniques.
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Recurrent memory with optimal polynomial projections.
Advances in neural information processing systems, 33:
1474–1487, 2020.

5

https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://openreview.net/forum?id=HL7IhzS8W5
https://openreview.net/forum?id=HL7IhzS8W5
https://openreview.net/forum?id=3SzrqwupUx
https://openreview.net/forum?id=3SzrqwupUx
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=Iia0cnjMh2
https://openreview.net/forum?id=Iia0cnjMh2


Mitigating Over-Smoothing in Mamba2 via Spectral Domain Analysis

Gu, A., Goel, K., Gupta, A., and Ré, C. On the parameteri-
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(eds.), Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 4791–4800,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1472. URL
https://aclanthology.org/P19-1472/.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., and
Wang, X. Vision mamba: Efficient visual representation
learning with bidirectional state space model. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=YbHCqn4qF4.

8

https://aclanthology.org/P19-1472/
https://openreview.net/forum?id=YbHCqn4qF4
https://openreview.net/forum?id=YbHCqn4qF4


Mitigating Over-Smoothing in Mamba2 via Spectral Domain Analysis

A. Detailed explanation of Mamba2 architecture
A.1. Structured State Space Models

Structured state space models represent a new category of sequence models in deep learning, drawing connections to RNNs,
CNNs, and traditional state space models. These models are motivated by a specific continuous system that processes a
one-dimensional input sequence x ∈ RT into an output sequence y ∈ RT via an implicit latent state h ∈ RT×N .

Eq. 9 is a fundamental representation of organized SSMs.

h′(t) = Āh(t− 1) + B̄x(t)

y(t) = C⊤h(t)
(9)

ht = Aht−1 +Bxt

yt = C⊤ht

(10)

where A ∈ RN×N , B ∈ RN×1, C ∈ RN×1. This continuous SSMs in Eq. 9 are discretized to Eq. 10 through fixed formulas:
A = fA(∆, Ā), B = fB(∆, B̄).

A.2. Full architecture of Mamba2

Given an input sequence U = [u1, u2, ..., uT ]
⊤ ∈ RT×d, a Mamba2 block with d channels is built on top of the S6 layer via

the following formula, generating output sequence O = [o1, o2, ..., oT ]
⊤ ∈ RT×d:

ht = Atht−1 +Btx
⊤
t ∈ RN×P ,

yt = C⊤
t ht +D ⊙ xt ∈ RP

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd

(11)

where D ∈ RP , Wx,Wz ∈ Rd×P , Wo ∈ RP×d are trainable parameters. Each Mamba2 block consists of H heads, so that
H × P = d , which are computed in parallel, the result of which is summed together. We can specify how each matrices are
created for each head:

Āt = atI ∈ RN×N

at = exp(−∆texp(A)) ∈ R
Bt = ∆tB̄t ∈ RN×1

B̄t = σ(Conv(WBut)) ∈ RN×1

(12)

Ct = σ(Conv(WCut)) ∈ RN×1

∆t = Softplus(W∆ut + b∆) ∈ R
xt = σ(Conv(Wxut)) ∈ RP×1

(13)

where WB ,WC ∈ RN×d, W∆ ∈ R1×d. σ denotes SiLU activation function and Conv(·) denotes a channel-wise one-
dimensional convolution. By ∆, Mamba2 implements input-dependent selection mechanism. At performs as decay-ratio as
it is cumulatively multiplied. Ben-Kish et al. (2024) elaborate the condition of at. For computational stability, ∆ > 0 and
A < 0 is guaranteed in original implementation. Therefore, we can conclude at ∈ (0, 1).

Using this Mamba2 block, we can derive layer-wise Mamba2 architecture with L layers as below. For initial input, input
sequence is I = [i0, i1, ..., iT ] ∈ RT where it ∈ [V ] and we have U (l−1) = [u

(l−1)
1 , u

(l−1)
2 , ...u

(l−1)
T ] as input sequence for

the l-th layer. O(l) = [o
(l)
1 , o

(l)
2 , ...o

(l)
T ] serves as output sequence of l-th Mamba2 layer Mamba(l), V denotes vocab size

and P ∈ RT×V denotes final logits.

U (0) = Embeddingin(I) ∈ RT×d

O(l) = Mamba(l)(Norm[U (l−1)]) ∈ RT×d

P = Embeddingout(Norm([O(L)]) ∈ RT×V

(14)

Here, the output of the l-th layer is used as the input for the l + 1-th layer, i.e. O(l) = U (l).
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A.3. Matrix transformation derivation

We can derive matrix transformation form using these equations. By definition, h0 = B0x0. By induction,

ht = At . . . A1B0x0 +At . . . A2B1x1 + · · ·+AtAt−1Bt−2xt−2 +AtBt−1xt−1 +Btxt

=

t∑
s=0

A×
t:sBsxs

(15)

To produce yt, we multiply Ct. Then, by vectorizing over sequence length t ∈ [T ], we can produce the matrix transfomration
form of SSMs:

yt =

t∑
s=0

C⊤
t A×

t:sBsxs

Y = S6(X) = MX

Mji := C⊤
j Aj · · ·Ai+1Bi

(16)

In this paper, we refer to this matrix as the M matrix, which serves as our primary subject of analysis.

B. Extended Related Works
B.1. Frequency Analysis

We use Fourier transform as our main analytic tool. The Discrete Fourier Transform and Inverse Discrete Fourier Transform
can be denoted as F : Rn → Cn and F−1 : Cn → Rn, respectively. Following Wang et al. (2022), we regard matrices as
multi-channel signals. Applying DFT to a signal x can be interpreted as left-multiplying a DFT matrix which has rows
of Fourier basis fk = [e2πj(k−1)·0 ... e2πj(k−1)·(n−1)]T /

√
n ∈ Rn. Here, k denotes the k-th row of DFT matrix and j is

imaginary unit. In a matrix form, we can write DFT matrix as below:

DFT =
1√
n



1 1 1 · · · 1
1 e2πj e2πj(n−1) · · · e2πj(n−1)

...
...

...
. . .

...
1 e2πj(k−1)·1 e2πj(k−1)·(n−1) · · · e2πj(k−1)·(n−1)

...
...

...
. . .

...
1 e2πj(n−1) e2πj(n−1)2 · · · e2πj(n−1)2


(17)

and the inverse DFT is DFT−1 = DFT.

We can also define operators DC[·] and HC[·] using DFT matrix. The spectrum of z is z̃ = Fz, and z̃dc ∈ C, z̃hc ∈ Cn−1

means the first and rest elements of spectrum. The Direct-Current component of signal z can be defined as DC[z] = z̃dcf1.
This can also be interpreted as below:

DC[x] = DFT−1 diag(1, 0, . . . , 0)DFT,

x =
1

n
11Tx,

(18)

The complementary high-frquency component is defined as HC[z = [f2...fn]]z̃hc ∈ Cn. Similarly, we can write HC[·] as
below:

HC[x] = DFT−1 diag(0, 1, . . . , 1)DFTx

= DFT−1
(
I − diag(1, 0, . . . , 0)

)
DFTx

= I − 1

n
11Tx,

(19)

Low pass filter in signal processing is a system that presereves low-frequency components while suppresses high-frequency
components. In this perspective, when other components have significantly low frequency compared to DC[·], we can call
this filter as a low pass filter.
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B.2. Foundational Model based on State Space Models

Transformers (Vaswani et al., 2017) have become foundational across a wide range of domains (Yu et al., 2023; Nambiar
et al., 2020; Wen et al., 2022; Dosovitskiy et al., 2020), due to their strong performance and scalability. However, their
quadratic complexity with respect to sequence length has led to the development of various sub-quadratic models. Among
them, models based on SSMs (State Space Models) originated from HiPPO theory (Gu et al., 2020), approaching sequence
modeling through the concept of dynamics. S4 (Gu et al., 2022b) enabled parallel computation by defining a linear
time-invariant matrix as a kernel and demonstrated strong performance in the Long Range Arena benchmark. S4D (Gu
et al., 2022a) optimized computation by diagonalizing the parameter matrices of S4. Hyena Hierarchy (Poli et al., 2023b)
introduced a fully convolutional model, leveraging convolution to handle long sequences. H3 (Fu et al., 2023) focused on
language modeling, identifying and addressing limitations of SSMs. These models achieve efficient computation, scaling
nearly linearly with sequence length, and can operate as either convolutions or recurrences. They excel in tasks requiring
long-range dependency modeling, as evidenced by strong performance on benchmarks like the Long Range Arena (Tay
et al., 2021). However, SSMs face challenges in representing discrete, information-rich inputs such as text.

Amid this landscape, Mamba (Gu & Dao, 2023) introduced an input-dependent selection mechanism, overcoming the
challenges where traditional SSMs struggled due to their reliance on processing all inputs with a single state. With hardware-
efficient training, Mamba2 (Dao & Gu, 2024b) showcased superior modeling performance across diverse tasks not only
in language modeling, but also in various domains such as image processing, DNA modeling, and time-series forecasting.
Following its success, various models leveraging Mamba2 for different tasks have emerged (Zhu et al., 2024; Patro &
Agneeswaran, 2024; Hwang et al., 2024), with ongoing research exploring hybrid models (Glorioso et al., 2024; Ren et al.,
2024; Lieber et al., 2024), distillation (Wang et al., 2024; Dao & Gu, 2024a), and other approaches (Ben-Kish et al., 2024).

B.3. Analysis of Mamba2 and SSMs

Many experimental and theoretical researches have emerged on Mamba2’s ability on language modeling. Waleffe et al.
(2024) scrutinized Mamba2’s empirical ability on various tasks and analyzed weakness and strength of Mamba2 model and
also demonstrated reasonable performance of Mamba-Transformer hybrid model. On the other hand, Merrill et al. (2025)
insist inherent limitation of SSMs due to their architectures in the perspective of algorithmic problems. Park et al. (2024);
Grazzi et al. (2024) study on in-context learning ability of Mamba2 model, showing that Mamba2 has comparable ICL
ability on variant tasks. Nevertheless, Mamba2 showed poor performance on associative recall and selective copying of ICL
tasks. (Lee et al., 2024; Jelassi et al., 2024)

Another line of research focuses on theoretical analysis. Cirone et al. (2024) analyzed SSMs ability with CDE, theoretically
explaining where Deep SSM’s learning ability emerges. Sieber et al. (2024) organized recent foundation models as a unified
framework called Dynamical Systems Framework. They derived thorough comparison with a common framework, which
stems from dynamical systems, whereas Dao & Gu (2024b) tries to generalize as sequence-transformation format. Yu et al.
(2024) concentrates on frequency bias of State Space Models. They go through mathematical formulation of State Space
models and find out that SSMs’ initialization injects bias to model which cannot be overcome by training. Though they
scope on frequency bias, their study does not extend to current Mamba2 architecture. In this paper, we focus on spectral
properties of Mamba2 architecture, thereby addressing fundamental issues in Mamba.

C. Experimental Setup
C.1. Training details

In this section, we elaborate the training details for models in Sec. 5. Mamba2 and our models’ are trained on the Pile
dataset, deduplicated version (approximately 200B tokens) (Gao et al., 2020). We used the basic configuration provided
from (Dao & Gu, 2024b) for Mamba2 and Mamba2 + HE (Ours). We used GPTNeoX 20B tokenizer (Black et al., 2022)
following prior work. We trained our models with eight A100 GPUs for language modeling experiments on every scale.

For model size 130M and 370M, we used AdamW for optimization, β ∈ [0.9, 0.95] following Mamba2, weight decay of
0.1 with a peak learning rate of 4.8e-3. We used linear learning rate warmup with cosine decay, with a warm-up phase of
375M tokens. The 130M and 370M model were trained with a batch size of 223 tokens (# sequences × sequence length) and
the number of training steps as 23,521 (# tokens / # tokens in one batch) steps. This exactly equals 1 epoch of training for
the Pile dataset. We used 1.0 as gradient clip value. For Pythia, all other settings are same without learning rate for better
performance. We used learning rate 6e− 4 for model size 130M, 8e− 4 for model size 370M. For model size 1.3B, we also
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# Params Model Training steps Peak LR Batch size # Tokens Weight decay Gradient clip

130M
Pythia 23,251 6e-4 8M ∼200B 0.1 1.0

Mamba2 23,251 4.8e-3 8M ∼200B 0.1 1.0
Mamba2+HE 23,251 4.8e-3 8M ∼200B 0.1 1.0

370M
Pythia 23,251 8e-4 8M ∼200B 0.1 1.0

Mamba2 23,251 4.8e-3 8M ∼200B 0.1 1.0
Mamba2+HE 23,251 4.8e-3 8M ∼200B 0.1 1.0

1.3B
Pythia 47,042 2e-4 4M ∼200B 0.0 0.0

Mamba2 47,042 8e-4 4M ∼200B 0.0 0.0
Mamba2+HE 47,042 8e-4 4M ∼200B 0.0 0.0

Table 2. Summary of training settings.

used AdamW for optimization, but with β ∈ [0.9, 0.999] following default value of PyTorch, weight decay of 0.0 with a
peak learning rate 8e-4 for better performance. The batch size used for training was 222 tokens and the number of training
steps was 47,042, which also equals 1 epoch of training with the Pile dataset. We used linear learning rate scheduler, without
warm-up steps. We did not utilize gradient clipping for this setting. We used learning rate 2e − 4 for Pythia, model size
1.3B. Our proposed method consists of 3 hyperparameters: kernel size k, standard deviation of gaussian distribution σ, and
enhance strength α. For our results presented in this paper, we used k = 3, σ = 3, α = 1. Our implementation is publicly
available at https://github.com/sjiinkim/mamba2-high-freq-enhance.

C.2. Evaluation

For evaluation of language modeling performance, we used lm-evaluation-harness (Liang et al., 2023). We provide
details of evaluation tasks below.

• WikiText (Merity et al., 2017): A dataset consisting of high-quality, clean text extracted from Wikipedia articles,
commonly used to evaluate language modeling tasks by measuring a model’s ability to predict and generate coherent
and fluent text.

• LAMBADA (Paperno et al., 2016): A text completion task that measures a model’s ability to predict the final word
of a passage, requiring comprehension of the context, commonsense reasoning, as well as the ability to generate text
coherently.

• PIQA (Bisk et al., 2019): A physical commonsense reasoning task focused on selecting the most plausible solution to
everyday scenarios.

• HellaSwag (Zellers et al., 2019): A multiple-choice task that evaluates a model’s ability to select the most coherent
continuation of a given situation based on commonsense and narrative reasoning.

• WinoGrande (Sakaguchi et al., 2019): An expanded version of the Winograd Schema Challenge: a pronoun resolution
task designed to test commonsense reasoning by identifying which noun a pronoun refers to in a given sentence.

• ARC-easy (Clark et al., 2018): A subset of the AI2 Reasoning Challenge focusing on questions that require basic
scientific and commonsense knowledge.

• ARC-challenge (Clark et al., 2018): A more difficult subset of the AI2 Reasoning Challenge that tests advanced
reasoning and deep understanding of scientific and commonsense knowledge.

D. Limitations and future works
We discuss the limitations of our study and propose directions for future work. First, our study lacks a theoretical proof that
Mamba2 operates as a low-pass filter, which leads to over-smoothing. Additionally, we did not conduct an ablation study to
analyze the hyperparameter sensitivity of our proposed methodology due to limited time and resources. For future work, we
plan to address this limitation by conducting comprehensive sensitivity analyses and refining our approach accordingly.
Furthermore, we aim to explore the connection between over-smoothing and over-squashing.
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E. More visualizations
In this appendix, we provide more visualizations and how these metrics are calculated.

Visualization on specturm We compute the spectrum of M matrix by regarding M as a linear filter. The Fourier-domain
response of a linear filter is another linear kernel Λ = FMF−1. Given a spectrum x̃ = Fx, the i-th frequency response
will be Λix where Λi is the i-th row of Λ. Therefore, ||Λi||2 is used to evaluate the spectral response intensity of the i-th
frequency band. We provide how M matrix performs as a filter in Mamba2-1.3B over all layers in Figure 8. In addition, we
provide more comparison of Mamba2-130M and Pythia-160M in Figure 5.

How similarity curves are calculated Following Wang et al. (2022), we compute the pairwise cosine similarity between
every two different tokens. Given the layer index l and its output O(l), the cosine similarity is estimated by:

CosSiml =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

|X(l)⊤
i X

(l)
j |

||X(l)
i ||2||X(l)

j ||2
(20)

where X
(l)
i denotes the i-th row of X(l). This measures the token-wise cosine similarity: how similar the feature represen-

tations of two tokens are. We demonstrate visualizations of this metric in Figure 3 and Figure 7. We plot average cosine
similarity of 10 sentences randomly selected from the Pile dataset with 95% confidence interval.
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Figure 5. Comparison on spectral response of Mamba2-130M and Pythia-160M.

1 48
Depth

0.2

0.4

0.6

0.8

Co
sin

e 
Si

m
ila

rit
y

Mamba2
Pythia

(a) 370M

1 48
Depth

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Mamba2
Pythia

(b) 1.3B

1 64
Depth

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Mamba2
Pythia

(c) 2.8B

Figure 6. Cosine similarity plots of feature maps across various model sizes.
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Figure 7. Singular value plots of feature maps across various model sizes.
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Figure 8. Spectral response of Mamba2-1.3B for all layers, arranged sequentially in row-wise order
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