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ABSTRACT

In language tasks requiring extensive human-model interaction, the inference cost
of large language models (LLMs) can be substantial. To reduce expenses while
preserving the quality of the responses, an LLM router selects among candidate
models to balance between the expected response quality and the inference cost.
A central challenge in router training is the accuracy and accessibility of reliable
supervision. Gold-standard data, obtained from domain experts or benchmark la-
bels, provide accurate quality evaluations of LLM responses but are costly and
difficult to scale. In contrast, preference-based data, collected via crowdsourcing
or LLM-as-a-judge systems, are cheaper and more scalable, yet often biased in re-
flecting the true quality of responses. We cast the problem of LLM router training
with combined Gold-standard and preference-based data into a causal inference
framework by viewing the response evaluation mechanism as the treatment as-
signment. This perspective further reveals that the bias in preference-based data
corresponds to the well-known causal estimand: the conditional average treatment
effect (CATE). Based on this new perspective, we develop an integrative causal
router training framework that corrects preference-data bias, addresses imbalances
between two data sources, and improves routing robustness and efficiency. Nu-
merical experiments demonstrate that our approach delivers more accurate routing
and improves the trade-off between cost and quality.

1 INTRODUCTION

With the rapid growth of both deployment scale and model size of LLMs across diverse domains,
reducing inference and computational costs while preserving task performance has become a crit-
ical challenge for the commercial success of AI applications. LLM routing (Ding et al., 2024; Hu
et al., 2024; Ong et al., 2024) addresses this issue by constructing a decision framework that assigns
each incoming query either to larger, more powerful models or to cheaper but potentially weaker
ones, thereby balancing cost and performance trade-offs. Traditional cascading routers sequentially
process a query through a series of LLMs, from light to heavy, until a satisfactory response is ob-
tained (Chen et al., 2024), but this approach is often inefficient and introduces latency from repeated
calls. In contrast, predictive routers (Ong et al., 2024; Stripelis et al., 2024; Somerstep et al., 2025;
Tsiourvas et al., 2025) use statistical and machine learning (ML) methods to estimate the expected
quality gain from switching to a stronger model and compare it against the additional cost.

The effectiveness of predictive routers critically depends on the evaluation metrics available in the
training data. Existing works differ in the evaluation mechanisms used. For example, Ong et al.
(2024) leverage the LMArena dataset (Chiang et al., 2024), where responses are judged by internet
users, and further combine it with standardized benchmarks such as MMLU (Hendrycks et al., 2020)
or with LLM-judge-labeled datasets. In contrast, Tsiourvas et al. (2025); Stripelis et al. (2024)
employ accuracy-based benchmarks where queries admit objectively verifiable solutions.

In this work, we consider the LLM routing problem in challenging yet realistic scenarios, where
humans and LLMs have complex interactions within high-expertise domains, such as professional
healthcare conversations, AI-assisted programming, and exploratory scientific research. In these
scenarios, the queries are often open-ended and require professional training to be answered ac-
curately and appropriately. Consequently, precise evaluation of LLM responses typically demands
strong domain expertise and careful inspection, making it both costly and labor-intensive. While

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

some benchmark datasets provide carefully designed evaluation metrics in different professional
domains, e.g., HealthBench (Arora et al., 2025) for healthcare dialogue and LegalBench (Guha
et al., 2023) for legal reasoning, such resources usually demand substantial expert collaboration
and difficult to scale. Similarly, direct expert evaluation of responses remains resource-intensive
(Chang et al., 2024). These challenges hinder the efficient training of routers with sufficient and
high-quality samples. Although crowdsourcing or LLM-as-a-judge systems may offer scalable al-
ternatives, in high-expertise domains with open-ended queries such evaluations can be highly biased
and may not reliably reflect the true quality of responses (Zheng et al., 2023a; Tam et al., 2024).

These limitations highlight the need for a principled method that can integrate scarce but accurate
gold-standard data with scalable yet potentially biased preference-based data efficiently, for debiased
LLM router training. We address this challenge from a novel angle by casting it into a causal infer-
ence framework, where the response evaluation mechanism is viewed as the treatment assignment.
This perspective links router training and debiasing to the extensive literature on semiparametric
causal estimation (Imbens & Rubin, 2015; Chernozhukov et al., 2018), and further shows that the
bias in preference-based data corresponds to the conditional average treatment effect (CATE), which
can be efficiently estimated via causal meta-learners (Künzel et al., 2019). Building on this insight,
we propose a meta-router training framework that corrects preference-data bias through R- and
DR-learners for CATE estimation (Nie & Wager, 2021; Kennedy, 2023), thereby mitigating sam-
ple imbalances across heterogeneous data sources and enabling robust, efficient routing decisions,
particularly in human–AI interaction scenarios within high-expertise fields.

2 LLM ROUTING WITH GOLD-STANDARD AND PREFERENCE-BASED DATA

The LLM’s responding process towards a human query can be mathematically represented as a
(random) function

M : Q 7→ A
mapping any query q ∈ Q to an answer M(q) ∈ A. Here, Q and A are the text spaces of queries
and answers, respectively. For simplicity, in this work, we focus on the scenario of pairwise LLM
routing between two typical LLM models, namely Mp and Ma, where Mp denotes a premium
language model with generally higher response quality (e.g., GPT-5 (OpenAI, 2025)), and Ma rep-
resents its cost-effective alternative with possibly lower computational cost, yet potentially reduced
response quality with certain queries (e.g., GPT-4o mini (OpenAI, 2024)). For any incoming query
q, the router learns a policy π(q) ∈ {Mp,Ma} that maximizes expected utility function involving
generation cost and response quality.

2.1 GOLD-STANDARD AND PREFERENCE-BASED DATA

We refer gold-standard data (GS data) as the high-quality dataset for LLM evaluation, where output
qualities are assessed either by domain experts or the “gold labels” of the benchmark questions
(Hendrycks et al., 2020; Arora et al., 2025). Hence, it is generally considered the authoritative
ground truth for LLM response evaluation. We consider the GS data in the form of

DG = {(qi, ri)}ni=1,

where qi denotes the ith query and ri represents the evaluated quality gain between Mp(qi) and
Ma(qi) under the gold standard. Without loss of generality, we assume that a positive ri value
indicates Mp(qi) outperforms Ma(qi), a negative value indicates the opposite, and a value near 0
suggests comparable quality. For example, when the correctness of LLM responses can be unam-
biguously determined by standard answers, e.g., the MMLU dataset, we define ri = 1 if Mp(qi) is
correct and Ma(qi) is wrong, ri = 0 if both are correct or both are wrong, and ri = −1 if Ma(qi)
is correct and Mp(qi) is wrong. As another example, when ri is evaluated by domain experts, the
expert typically rates Mp(qi) and Ma(qi) respectively, based on some pre-defined scoring rubrics,
and ri is defined as the difference between these ratings.

We consider the standard probabilistic modeling for the generation of DG. In particular, we assume
(q1, r1), . . . , (qn, rn) are independent and identically distributed (iid) generated with qi ∼ Q for
some query distribution Q, and

ri = m(qi) + ϵi, (1)
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where the random errors (ϵi)ni=1 satisfy E(ϵi | qi) = 0, and m : Q 7→ R is the average quality gain
of some GS model.

Despite their high accuracy, GS data are typically labor-intensive to obtain and difficult to scale.
For open-ended queries, response evaluation often requires expert judgment or carefully designed
scoring rubrics, particularly in domain-specific professional contexts. Conversely, if only queries
with clear standard answers (e.g., the MMLU dataset) are retained, the empirical distribution of
(qi)

n
i=1 may fail to adequately represent the queries encountered in daily practice.

On the other hand, the preference-based evaluation offers a more scalable yet typically more subjec-
tive alternative for assessing LLM responses. For instance, LMArena (Chiang et al., 2024) evaluates
the LLM responses based on Internet users’ preferences, while the LLM-as-a-judge system employs
an LLM to directly compare and grade LLM responses (see, e.g., §3.1 in Zheng et al. (2023a)).

Specifically, we denote the preference-based data (PB data) by DP = {(q′i, yi)}mi=1, where q′i ∼ Q′

denotes the ith query from distribution Q′, and yi represents the outcome of comparing the responses
from Mp(q

′
i) and Ma(q

′
i) through a preference-based mechanism. Similar to DG, we assume the

samples in DP are iid and
yi = η(q′i) + ϵ′i, (2)

where the random errors (ϵ′i)
m
i=1 satisfy E(ϵ′i | q′i) = 0, and η : Q 7→ R is the average quality

gain under a preference-based evaluation mechanism. preference-based evaluation mechanisms are
usually simple and intuitive. For instance, the pairwise comparison in an LLM-as-a-judge system or
LMArena, returns yi = 1 if Mp(q

′
i) is preferred over Ma(q

′
i), yi = −1 if the opposite holds, and

yi = 0 in the case of a tie. There are multiple approaches to model the preference data generation
and η(q), e.g., the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952) and BERT classifier
(Devlin et al., 2019); see §4.2 in Ong et al. (2024).

Remark 1 Our empirical study suggests that rescaling {ri}mi=1 by a normalization constant c > 0
to {c ·ri}mi=1, so that the rescaled values are on the same scale as {yi}ni=1, can substantially improve
the performance of our proposed router. Some normalization constant one can consider include: (1)
c normalizing the magnitude: max{|c · r|i}i∈[n] = max{|y|i}i∈[m]; (2) c normalizing the empirical
variance: Var(c · ri) = Var(yi); (3) c (approximately) minimizing the distribution distance (e.g.,
the 2-Wasserstein distance) between the empirical distributions of {c · ri}i∈[n] and {yi}i∈[m].

2.2 COST FUNCTION

For any LLM M, we define its cost function as CM : Q 7→ R>0 that quantifies the cost of generating
the answer for any input query q ∈ Q using LLM model M. Following others (Ong et al., 2024;
Ding et al., 2024), in this paper, we assume the cost functions of both models are known a priori,
and consider the following normalized cost functions:

CMp(q) = 1, CMa(q) = 0, (3)
for any q ∈ Q. Such cost functions treat the call of Mp as one unit more expensive than the call of
Ma for any query. We focus on this normalized cost mainly for the ease of illustration.

Remark 2 Our proposed method can be easily applied to more complicated and realistic cost func-
tions. Many LLM providers (e.g., Claude, DeepSeek, Gemini and GPT) adopt a token-based pricing
model for developers and enterprises, where the cost of a query is the sum of input tokens times
the input rate and output tokens times the output rate (Chen et al., 2023). Formally, for LLM M,
CM(q) = cin,M · TM(q) + cout,M · TM(M(q)) + cfix,M, where TM(q) and TM(M(q)) are the
input and output token counts, cin,M, cout,M are known per-token rates, and cfix,M is a fixed cost.
Input tokens can be obtained via the tokenizer1, while output tokens can be estimated using gen-
eration limits (OpenAI, 2024) or predictive methods (Zheng et al., 2023b). Latency may also be
incorporated as an additional cost component.

2.3 THE ROUTING DECISION RULE

The decision rule of an LLM router is designed to compare the quality gain of choosing Mp over
Ma with the corresponding answer generation cost in §2.2. To quantitatively measure the quality

1e.g., https://platform.openai.com/tokenizer
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gain of routing a new query q, previous works mainly leverage the average quality gain of different
preference data η(q) (Ong et al., 2024; Zhang et al., 2025). However, as we focus on fields requiring
professional knowledge, e.g., healthcare, science, and computer programming, the GS model m(q)
is arguably a more reliable measure of quality gain. Specifically, the proposed utility contrasts the
expected quality gain based on the GS with the cost function and strives to balance between the
response quality with the cost as follows:

D(q | w) = E (r | q)︸ ︷︷ ︸
GS quality gain

−w ·
(
CMp(q)− CMa(q)

)︸ ︷︷ ︸
cost loss

= m(q)− w ·
(
CMp(q)− CMa(q)

)
. (4)

Here, w ≥ 0 is a user-specified conversion factor to control the trade-off between the quality gain
and the additional cost if the expensive model Mp is preferred over Ma. When D(q | w) is known,
the Bayes optimal classifier selects Mp over Ma in response to the query q if and only if the quality
gain surpasses the required additional cost based on the decision rule, namely, D(q | w) > 0, and
selects Ma over Mp otherwise.

3 INTEGRATIVE LMM ROUTING THROUGH CAUSAL META-LEARNERS

3.1 ORACLE INTEGRATIVE ROUTER WITH KNOWN SHIFT FUNCTION

To efficiently evaluate the average quality gain function m(·) of the GS model, we aim to combine
the information from both DP and DG. However, due to the uncertainty of human and LMM judge’s
preference ratings, there may exist a potential discrepancy (bias) between the golden-labeled quality
gain m(·) for DG and the preference-choice model η(·) for DP (Zheng et al., 2023a; Wataoka et al.,
2024; Zhu et al., 2023; Szymanski et al., 2025). This bias can be quantitatively modeled as an
unknown shift function

∆(q) = m(q)− η(q).

Consequently, a regression approach using the directly combined data DG ∪ DP (Ong et al., 2024)
can suffer from non-negligible estimation bias for m(·) even if the sample sizes of both PB data and
the GS data are sufficient.

In this section, we focus on estimating m(·) under an oracle scenario that the shift function ∆(·) is
known. Under such an ideal condition, one can estimate η(·) by integrating the information in DP

and DG using a bias correction process that takes the information of ∆(q) into account. Specifically,
consider the following bias-corrected human preference data:

T (DP | ∆) =
{
(q′i, r

′
i = yi +∆(q′i))

}m

i=1
,

where r′i can be roughly interpreted as the pseudo-GS quality difference as if the human-preference
queries are prompted. Then, our newly enriched dataset after bias correction can be described as

D+ = DG ∪ T (DP | ∆) = {(qi, ri)}ni=1 ∪ {(q′i, r′i)}mi=1.

Note that all samples in D+ are conditionally unbiased for η(q), namely, for any i ∈ [n] and j ∈ [m],

m(qi) = E(ri | qi), m(q′j) = E(r′j | q′j).

Over D+, one can apply any ML algorithm to estimate m(·) through a direct nonparametric regres-
sion. More specifically, m(·) solves the following population least-square problem:

m(·) = argmin
h:Q7→R

1

n+m
ED+

 ∑
(q,r)∈D+

(r − h(q))2

 , (5)

where the expectation is taken with respect to the distribution of D+. Then, our oracle estimator is
obtained by solving the penalized empirical counterpart of (5):

m̂o(· | ∆) = argmin
h∈H∆

1

n+m

[
n∑

i=1

(ri − h(qi))
2 +

m∑
i=1

(r′i − h(q′i))
2

]
+ Λ(h) (6)

= argmin
h∈H∆

1

n+m

[
n∑

i=1

(ri − h(qi))
2 +

m∑
i=1

(yi +∆(q′i)− h(q′i))
2

]
+ Λ(h),

4
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where H∆ is the estimator class specified by the ML algorithm, e.g., Gaussian process regression
Rasmussen & Williams (2006), deep neural networks Goodfellow et al. (2016), and random forests
Breiman (2001a), and Λ(·) is an optional user-specified regularizer on the complexity of h, e.g., the
ℓ2 (ridge) regularizer (Tikhonov & Arsenin, 1977) and the ℓ1 (Lasso) regularizer (Tibshirani, 1996).

By appropriately choosing the ML algorithm (and hereby Hm in (6)), m̂o(·) serves as a statistically
principal estimator for m(·) using all samples in DG ∪ DP . For example, if m(·) satisfies cer-
tain smoothness condition, then several nonparametric regression estimators can achieve statistical
optimality; see e.g., Wasserman (2006); Moutrada et al. (2020); Schmidt-Hieber (2020).

3.2 GS–PB DATA INTEGRATION: A CAUSAL INFERENCE PERSPECTIVE

The oracle procedure outlined in §3.1 indicates that it is crucial to develop a principal statistical
estimation framework for the shift function ∆(·) in order to estimate m(·) efficiently by combining
the information from DG and DP . In the following two sections, we reformulate the data integration
problem under the potential outcome framework in causal inference (see e.g., Imbens & Rubin
(2015)), and correspondingly, ∆(·) is the conditional average treatment effect (CATE) under such
a new model formulation. One can then use well-developed CATE estimation approaches in causal
inference, e.g., meta-learners (Künzel et al., 2019), to estimate ∆(·) robustly and efficiently.

We begin by observing that the combined dataset DG ∪ DP can be equivalently represented as

D = {(si, ti, oi)}n+m
i=1 , (7)

where each (si, ti, oi) is a sample from either DG or DP , indicated by ti, ti = 1 implies that
(si, ti, oi) is from DG, ti = 0 implies that the sample is from DP , and

si =

{
qι(i) when ti = 1,

q′ι(i) when ti = 0,
oi =

{
rι(i) when ti = 1,

yι(i) when ti = 0.

Here, we use ι(i) to represent the index of the sample (si, ti, oi) in its original dataset. Rather than
modeling DG and DP separately, we can alternatively characterize the distribution of the combined
dataset D = DG ∪ DP using a hierarchical mixture model. Specifically, each sample (si, ti, oi) is
generated according to the following GS–PB joint Data Generation Process, where ti serves as the
latent indicator of the data source, and the m, η characterize the GS and preference-based labeling
mechanisms, respectively.

GS–PB joint Data Generation Process

For each (si, ti, oi) ∈ D:

1. Generate ti with Pr(ti = 1) = κ ∈ [0, 1];

2. Generate si with si | ti = 1 ∼ Q and si | ti = 0 ∼ Q′;

3. Generate oi = ri under model (1) with qi = si if ti = 1, and oi = yi under model
(2) with q′i = si if ti = 0.

Here, κ can be interpreted as the mixture proportion that governs how frequently GS versus
PB data are observed in the joint dataset.

Such a joint data generation process naturally leads to the causal potential outcome framework
(Rubin, 2005). Specifically, we can view each query si as a unit and consider ti ∈ {0, 1} as the
binary treatment assignment to indicate whether the evaluation between Mp(si) and Ma(si) is
carried out by gold standards (ti = 1) or is PB (ti = 0). For each query si, the two potential
evaluation outcomes follow:

o
(1)
i = m(si) + ϵi, o

(0)
i = η(si) + ϵi, (8)

where o(1)i represents the counterfactual quality assessment of the quality gain shift from Ma(si) to
Mp(si) if the evaluation is justified by the gold standards, while o(0)i represents the quality gain with
the same query, but the evaluation is judged through a preference-based mechanism. Then, samples
in D can be equivalently considered as generated from the following standard causal mechanism.

5
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Lemma 1 Define fQ and fQ′ as density functions of Q and Q′, respectively. Then the GS-PB Data
Generation Process is equivalent to the Causal Data Generation Process as follows.

Causal Data Generation Process

For each (si, ti, oi) ∈ D:

1. Generate si ∼ κQ + (1 − κ)Q′, which is the mixture distribution of Q and Q′

with the mixture proportion κ;

2. Generate ti following the propensity score model Pr(ti = 1 | si) = p(si) :=
κfQ(si){κfQ(si) + (1− κ)fQ′(si)}−1;

3. Generate oi following the standard potential outcome model: oi = tio
(1)
i + (1 −

ti)o
(0)
i , where o

(1)
i and o

(0)
i are given by (8).

The proof of Lemma 1 is in Appendix A.1. Lemma 1 clarifies that the target function ∆(·) is CATE
from the perspective of causal data generation:

∆(q) = m(q)− η(q) = E(o(1) − o(0) | q).
The causal identification assumptions such as consistency and unconfoundedness are satisfied under
the Causal Data Generation Process. However, the positivity assumption on the propensity score,
i.e., p(s) ∈ (ϵ, 1− ϵ) for some constant ϵ > 0, may be violated when the supports of Q and Q′ are
not fully overlapping. In particular, violation occurs if there exists a region of q such that fQ(q) > 0
while fQ′(q) = 0, or vice versa. In such cases, our proposed method remains valid after a data
truncation step: we estimate ∆(q) only within the samples in the overlapped region of supports. We
defer a detailed discussion of this truncation-based extension to future work in §5.

3.3 CAUSAL META-LEARNING FOR ∆(q) AND META-ROUTER

Building on the seminal work of Künzel et al. (2019), many causal meta-learning approaches are de-
veloped, aiming to provide principled and flexible frameworks for CATE estimation. Meta-learners
can incorporate any off-the-shelf ML algorithm, thereby offering substantial flexibility. Moreover,
by leveraging ideas from orthogonal ML and semiparametric statistics (see, e.g., Chernozhukov
et al., 2018), meta-learners such as the R-learner (Nie & Wager, 2021) and the DR-learner (Kennedy,
2023) enjoy the oracle property. In particular, under mild conditions of nuisance function estima-
tion, CATE meta-learners can be asymptotically equivalent to an oracle estimator that has access to
the full set of individual treatment effects {o(1)i − o

(0)
i }ni=1, whereas in practice only one of o(1)i or

o
(0)
i is observed for each i. This oracle property implies the statistical optimality of the R-learner

and DR-learner for the estimation of ∆(q) in our setting; empirical studies also demonstrate their
efficiency (Wu & Yang, 2022; Curth & Van der Schaar, 2021). In this paper, we focus on R- and
DR-learners.

R-learner Let γ(s) = E(o | s) denote the marginal regression of the evaluation outcome on the
query s, and let p(s) = Pr(t = 1 | s) denote the propensity score of receiving a GS evaluation.
R-learner (Nie & Wager, 2021) constructs the orthogonalized residuals:

õi = oi − γ̂(si), t̃i = ti − p̂(si),

where γ̂ and p̂ are any sensible sample-based estimators for γ and p. The R-learner then estimates
∆(·) by solving the generalized least squares problem

∆̂R(·) = argmin
h∈H∆

1

n+m

n+m∑
i=1

(
õi − t̃ih(si)

)2
+ Λ(h), (9)

where H∆ is a pre-specified hypothesis space (e.g., linear functions, random forests, or neural net-
works), and Λ(h) is a regularizer to control complexity. This formulation is quasi-oracle efficient
under mild conditions on nuisance estimators. Specifically, causal forests (Athey et al., 2019) is
associated with the tree-based function class H∆ that can flexibly capture heterogeneous structures
of ∆(·) across different q.

6
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DR-learner An alternative is the doubly robust (DR) learner of Kennedy (2023). It constructs
a pseudo-outcome for each sample by combining outcome regression and propensity adjustment,
thereby guaranteeing consistency if either component is correctly specified. Specifically, let µt(s) =
E(o | s, t) denote the conditional regression under treatment status t ∈ {0, 1}. Then, the DR pseudo-
outcome is

ϕ̃i =

(
ti − p̂(si)

p̂(si)(1− p̂(si))

)(
oi − µ̂ti(si)

)
+ µ̂1(si)− µ̂0(si).

The DR-learner estimates ∆(·) by regressing ϕi on si:

∆̂DR(·) = argmin
h∈H∆

1

n+m

n+m∑
i=1

(
ϕ̃i − h(si)

)2
+ Λ(h). (10)

The doubly robust property ensures that ∆̂DR(q) is consistent if either µt(·) or p(·) is estimated
consistently. Such a feature is particularly appealing in our setting, because the distributional dis-
crepancy between DG and DP may induce misspecification in one nuisance model.

Both learners offer robustness against nuisance model misspecification and fit naturally into our in-
tegrative router. In this work, we consider both approaches as benchmark estimators for the shift
function ∆(·), and employ nonparametric ML regressors (e.g., random forests, deep neural net-
works, and XGBoost) to capture heterogeneous structures of ∆(·) across the query space.

The sample-splitting could be further employed into R- and DR-learners as discussed in (Nie & Wa-
ger, 2021; Kennedy, 2023) to avoid potential biases brought by nuisance function training through
ML algorithms. We omit the details only for simplicity, and note that the sample splitting could be
straightforwardly incorporated into our method. We refer interested readers to the aforementioned
two papers and, e.g., Chernozhukov et al. (2018) for further discussions.

Building on the construction of the oracle router in (6), we now replace the known shift function
∆(·) with its meta-learner-based estimator ∆̂(·), and thereby formalize our two-step meta-router.

Meta-router

Inputs: D = DG ∪ DP ; H∆, Hm, Λ(·) specified by selected ML algorithms.

1. Estimate the shift function ∆̂(·) via certain CATE learning approaches, e.g., the
R-learner or DR-learner in (9) or (10) with nuisance functions trained over D.

2. Meta-router m̂(·) = m̂o(· | ∆̂) is obtained by solving (6) wherein ∆(·) is replaced
by ∆̂(·).

4 NUMERICAL EXPERIMENTS ON HEALTHBENCH

HealthBench (Arora et al., 2025) is a recently released benchmark designed to evaluate the per-
formances of LLMs in open-ended healthcare scenarios. It consists 5000 professional user-model
dialogues that were selected to span a wide range of healthcare scenarios. In total, 262 physicians
across 26 specialties and 60 countries contributed to the creation of evaluation rubrics and consensus
standards, make the evaluation mechanism precise in reflecting the qualities of LLM responses. The
meta-evaluation verifies the trustworthy of these rubrics in faithfully reflecting physician judgement.

In our numerical experiments, we set Gemini 2.5 Pro as the primary model Mp (Comanici et al.,
2025) and Gemma 3 12B as the alternative model Ma (Team et al., 2025), and collect their responses
to all HealthBench questions. We then employ GPT-5-mini (OpenAI, 2025) for evaluation. For GS
evaluations, each score-collecting prompt includes the evaluation rubrics, the original question, and
the model response, and GPT-5-mini is asked to assign a score strictly following the rubrics. The
score difference between Mp and Ma for each question is treated as the GS quality differences of
two models. For preference-based evaluation, each prompt contains only the question and the two
responses, and GPT-5-mini, asked to act as a medical expert, indicates whether Mp is better (1),
comparable (0), or worse (−1), and this returned value is treated as the PB quality difference. We
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(a) n = 100 (b) n = 500 (c) n = 1000

Figure 1: The efficiency gains of different routing strategies compared to the random routing base-
line, against the primary model usage ratio. Subfigures correspond to varying GS sample sizes.
Colors indicate different methods: oracle benchmark (yellow), meta-router via DR-learner (red),
meta-router via R-learner (blue), predictive router using pooled GS–PB data (green), and predictive
router using GS data only (purple). Query embeddings are reduced to dimension 50 via PCA, and
all regressions are implemented using random forests.

normalize two types of quality gain evaluations to align their empirical variance (c.f., Remark 1(2)).
We embed each query text to a 768-dimensional vector using the gemini-embedding-001 model.

For each Monte Carlo (MC) round, we specify a machine learning algorithm H, a GS sample size
n, and a dimension d such that we further reduce the dimension of query text embedding to d via
PCA. We then randomly split the data into three parts: a testing set Dtext of with 500 queries
and the corresponding GS evaluation outcomes ri, a GS training set of size n, and a PB training
set containing the remaining samples. Each training set only includes its corresponding type of
evaluation outcomes. We compare six types of routers: (1) an oracle benchmark router that has
access to the GS evaluation outcomes for all training queries in both GS and PB sets, and trains
m(q) via H using all these outcomes; (2) a predictive router that estimates m(q) via H on the
pooled GS and PB training data, without distinguishing evaluation types; (3) a predictive router that
estimates m(q) via H using only the GS training data; (4) a meta-router based on the R-learner
trained on GS and PB data, with all involved predictions run by H; (5) a meta-router based on the
DR-learner trained on GS and PB data, with all involved predictions run by H; (6) a random router
that assigns each query to Mp with a fixed assignment probability.

We consider two learning algorithms for H: random forest (Breiman, 2001b) and XGBoost (Chen
& Guestrin, 2016), three GS sample sizes n ∈ {100, 500, 1000}, and two PCA dimensions d ∈
{50, 100}. For each configuration and each Monte Carlo (MC) round, each router’s decision rule
follows (4), with m(q) replaced by the corresponding estimator and binary cost functions as in (3).
Given any weight w in (4), we compute the total efficiency (TE) of each router as

TE =
∑

(qi,ri)∈Dtest

I{qi is assigned to the primary model} × ri,

where ri denotes the realized quality gain. By varying w, or equivalently the assignment probability
for the random router, we obtain TE values under different primary model usage ratios (PMUR),
defined as the proportion of queries assigned to the primary model among all testing samples. We
run 100 MC rounds for each configuration and report the median TE across rounds for each router
and PMUR level. To quantify relative performance, we further calculate the efficiency gain (EG) of
a router as its improvement over the random router, averaging over 500 test samples:

EG of any router =
Median TE of any router − Median TE of the random router

500
.

The EGs of different routers versus PMURs under various settings are reported in Figure 1–2 and
Figure 3–4 in the appendix. Our simulation results demonstrate the superior efficiency of meta-
routers, particularly in imbalanced regimes with very limited GS data. In contrast, the predictive
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(a) n = 100 (b) n = 500 (c) n = 1000

Figure 2: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. The query embedding dimension is reduced to 50
via PCA and all regressions are implemented via XGBoost. Other explanations are the same as
Figure 1.

router trained on directly pooled GS and PB data, as considered in e.g., Ong et al. (2024), shows lit-
tle efficiency improvement even with relatively large GS sample sizes, highlighting the detrimental
effect of bias ∆(q) in LLM routing. Among meta-routers, the R-learner-based variant consistently
achieves the best performance across regression methods, dimensional settings, and different propor-
tions of GS samples, further demonstrating the robustness of our proposed method after leveraging
robust meta-learner frameworks.

5 FUTURE WORK: TRUNCATION-BASED META-ROUTER UNDER POSITIVITY
VIOLATION

Currently, our framework requires that the query distribution of GS data and that of the PB data
share the common support. This requirement can be violated in practice when, e.g., the GS data
focuses on one category where responses can be easily justified, while the PB data are with regard to
more subjective queries. When the supports of the two query distributions do not fully overlap, the
positivity assumption for causal identification may be violated. A promising direction is to develop
a truncation-based meta-router, which always incorporates all GS data but only retains preference
data within the estimated overlap region of the two distributions. In particular, the overlap can
be identified via efficient density ratio estimation. Then a meta-learner of ∆(·) is trained only
over the samples in DG ∪ DP which are considered as belonging to this region. Finally, when we
train our truncation-based meta-router by solving (6) with obtained ∆̂(·) but only incorporating the
samples DP which belong to the detected overlap region. This truncation-based strategy offers a
principled way to exploit abundant preference data while avoiding extrapolation bias outside the
common support.
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A APPENDIX

A.1 PROOF OF LEMMA 1

The density function of (s, t, o) in GS–PB joint Data Generation Process could be written as

f(s, t, o) = κt(1− κ)1−tf t
Q(s)f1−t

Q′ (s)f t
r(o | s)f1−t

y (o | s),

where fr(· | s) and fy(· | s) represent the conditional probability density function of ri and yi given
qi = s, following (1) and (2), respectively. This could be further written as

f(s, t, o) = (κfQ(s) + (1− κ)fQ′(s))︸ ︷︷ ︸
fκQ+(1−κ)Q′ (s)

·
κt(1− κ)1−tf t

Q(s)f1−t
Q′ (s)

κfQ(s) + (1− κ)fQ′(s)︸ ︷︷ ︸
Pr(ti=t|s)=tp(s)+(1−t)p(s)

· f t
r(o | s)f1−t

y (o | s)︸ ︷︷ ︸
f
o(t)

(o|s)

, (11)

recalling the notation in Causal Data Generation Process, and thereby show the distributional equiv-
alence of two processes. □

A.2 ADDITIONAL NUMERICAL RESULTS FOR §4

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 3: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. The query embedding dimension is reduced to 100
via PCA and all regressions are implemented via random forest. Other explanations are the same as
Figure 1.

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 4: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. The query embedding dimension is reduced to 100
via PCA and all regressions are implemented via XGBoost. Other explanations are the same as
Figure 1.
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A.3 THE USE OF LARGE LANGUAGE MODELS (LLM)

For this project, LLMs were used to polish the writing of the main paper and to assist with coding
for the numerical experiments.
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