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ABSTRACT

In language tasks that require extensive human—model interaction, deploying a
single “best” model for every query can be expensive. To reduce inference cost
while preserving the quality of the responses, a large language model (LLM)
router selects the most appropriate model from a pool of candidates for each query.
A central challenge to training a high-quality router is the scarcity of reliable su-
pervision. Gold-standard data (e.g., expert-verified labels or rubric-based scores)
provide accurate quality evaluations of LLM responses but are costly and diffi-
cult to scale. In contrast, preference-based data, collected via crowdsourcing or
LLM-as-a-judge systems, are cheaper and more scalable, yet often biased in re-
flecting the true quality of responses. We cast the problem of LLM router training
with combined gold-standard and preference-based data into a causal inference
framework by viewing the response evaluation mechanism as the treatment as-
signment. This perspective further reveals that the bias in preference-based data
corresponds to the well-known causal estimand: the conditional average treatment
effect (CATE). Based on this new perspective, we develop an integrative causal
router training framework that corrects preference-data bias, address imbalances
between two data sources, and improve routing robustness and efficiency. Numer-
ical experiments demonstrate that our approach delivers more accurate routing and
improves the trade-off between cost and quality.

1 INTRODUCTION

As LLM deployments scale and model size grow, serving every request with the strongest model
becomes economically and operationally impractical for a commercial success of Al applications.
LLM routing (Ding et al., 2024; Hu et al., 2024; Ong et al., 2024) addresses this issue by constructing
a decision framework that assigns each incoming query either to larger, more powerful models or to
cheaper but potentially weaker ones, thereby balancing cost and performance trade-offs. Traditional
cascading routers sequentially process a query through a series of LLMs, from light to heavy, until
a satisfactory response is obtained (Chen et al., 2024), but this approach is often inefficient and
introduces latency from repeated calls. Predictive routers (Ong et al., 2024; Stripelis et al., 2024;
Somerstep et al., 2025; Tsiourvas et al., 2025) instead predict the appropriate model in one shot,
often by learning a mapping from query feature (such as text embeddings) to a target model under a
cost-quality objective using statistical and machine learning (ML) methods. Another important line
of work uses confidence- or reward-model-based routing (Chuang et al., 2025; Frick et al., 2025;
Wu & Lu, 2025), which selects models based on uncertainty estimates or learned reward scores
associated with each candidate response.

The effectiveness of predictive routers critically depends on the evaluation metrics available in the
training data. Existing works differ in the evaluation mechanisms used. For example, Ong et al.
(2024) use the LM Arena dataset (Chiang et al., 2024), where model preference are judged by internet
users, and further combine it with standardized benchmarks such as MMLU (Hendrycks et al., 2020)
or with LLM-judge-labeled datasets. In contrast, Tsiourvas et al. (2025); Stripelis et al. (2024)
employ accuracy-based benchmarks where queries admit objectively verifiable solutions.

In this work, we consider the LLM routing problem in challenging yet realistic scenarios, where hu-
mans and LLMs have complex interactions within expert knowledge domains, such as professional
healthcare conversations, Al-assisted programming, and exploratory scientific research. In these
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scenarios, the queries are often open-ended, so accurate evaluation often require domain expertise,
multi-criterion rubrics, and careful inspection, making gold labels both costly and labor-intensive
to acquire (Chang et al., 2024). This partially explains why the sample size of benchmark datasets
of different professional domains with carefully designed evaluation is small. For example, the
sample size of HealthBench (Arora et al., 2025) designed for healthcare dialogue is 5000. These
challenges hinder the efficient training of routers with sufficient and high-quality samples. Although
crowdsourcing or LLM-as-a-judge systems may offer scalable alternatives, such evaluations can
be systematically biased relative to expert judgments or task-specific rubrics and may not reliably
reflect the true quality of responses (Zheng et al., 2023a; Tam et al., 2024).

These limitations highlight the need for a principled method that can integrate scarce but accurate
gold-standard data with scalable yet potentially biased preference-based data efficiently, for debiased
LLM router training. We address this challenge from a novel angle by casting it into a causal infer-
ence framework, where the response evaluation mechanism is viewed as the treatment assignment.
This perspective links router training and debiasing to the extensive literature on semiparametric
causal estimation (Imbens & Rubin, 2015; Chernozhukov et al., 2018), and further shows that the
bias in preference-based data corresponds to the conditional average treatment effect (CATE), which
can be efficiently estimated via causal meta-learners (Kiinzel et al., 2019). Building on this insight,
we propose a meta-router training framework that corrects preference-data bias through R- and
DR-learners for CATE estimation (Nie & Wager, 2021; Kennedy, 2023), thereby mitigating sam-
ple imbalances across heterogeneous data sources and enabling robust, efficient routing decisions,
particularly in human—AlI interaction scenarios within high-expertise fields.

2 LLM ROUTING WITH GOLD-STANDARD AND PREFERENCE-BASED DATA

LLM responding process towards a human query can be mathematically represented as a (random)
function M : Q — A mapping any query ¢ € Q to an answer M(q) € A. Here, Q and A are the
text spaces of queries and answers, respectively. For simplicity, in this work, we consider pairwise
LLM routing between two models, namely M, and M, where M, denotes a premium model with
generally higher response quality (e.g., GPT-5 (OpenAl, 2025)), and M, represents its cost-effective
alternative with lower inference cost but potentially lower response quality for certain queries (e.g.,
GPT-40 mini (OpenAl, 2024)). Given a query g, the router learns a policy 7 (q) € {M,, M,} that
maximizes expected utility function involving inference cost and response quality.

2.1 GOLD-STANDARD AND PREFERENCE-BASED DATA

We refer to gold-standard data (GS data) as the high-quality dataset, where response quality is
assessed either by domain experts or by “gold labels” (Hendrycks et al., 2020; Arora et al., 2025).
Hence, it is generally considered the authoritative ground truth for LLM response evaluation. We
consider the GS data in the form of

Dg = {(4i, i) Fiz1,

where ¢; denotes the ith query and r; represents the evaluated quality gain between M, (g;) and
M (g;) under the gold standard. Without loss of generality, we assume that r; > 0 indicates
M, (g;) outperforms M,(g;), r; < 0 indicates the opposite, and a value near 0 suggests comparable
quality. For example, when correctness is objectively defined (e.g., the MMLU dataset), we define
r; = 1 if M, (g;) answers correctly and M,(g;) does not, r; = 0 if both are correct or both are
incorrect, and r; = —1 when only M,(qg;) is correct. As another example, when r; is evaluated
by domain experts, the expert typically rates M,,(¢;) and M, (g;) respectively, based on predefined
scoring rubrics, and r; is defined as the difference between these ratings.

We consider the standard probabilistic modeling for the generation of D¢. In particular, we assume
(q1,71),- -, (qn,rn) are independent and identically distributed (iid) generated with ¢; ~ 2 for
some query distribution 2, and

ri = V(q;) + €, (D

where the random errors (e;)?_, satisfy E(e; | ¢;) = 0, and m : Q — R is the average quality gain
of some GS model.
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Despite their high accuracy, GS data are typically labor-intensive to obtain and difficult to scale.
For open-ended queries, response evaluation often requires expert judgment or carefully designed
scoring rubrics, particularly in domain-specific professional contexts. Conversely, if only queries
with clear standard answers (e.g., the MMLU dataset) are retained, the empirical distribution of
(g:)_, may fail to adequately represent the queries encountered in daily practice.

On the other hand, the preference-based evaluation offers a more scalable yet typically more subjec-
tive alternative for assessing LLM responses. For instance, LMArena (Chiang et al., 2024) evaluates
the LLM responses based on Internet users’ preferences, while the LLM-as-a-judge system employs
an LLM to directly compare and grade LLM responses (see, e.g., §3.1 in Zheng et al. (2023a)).

Specifically, we denote the preference-based data (PB data) by Dp = {(q},y:)},, where ¢} ~ 2’
denotes the ith query from distribution 2’, and y; represents the outcome of comparing the responses
from M,,(q;) and M,(qg;) through a preference-based mechanism. Similar to D¢, we assume the
samples in Dp are iid and

yi = n(q;) + €, 2)

where the random errors (€)™, satisfy E(e} | ¢j) = 0, and n : Q — R is the average quality
gain under a preference-based evaluation mechanism. Preference-based evaluation mechanisms are
usually simple and intuitive. For instance, the pairwise comparison in an LLM-as-a-judge system or
LMArena, returns y; = 1 if M,,(g}) is preferred over M, (q}), y; = —1 if the opposite holds, and
y; = 0 in the case of a tie. There are multiple approaches to model the preference data generation
and 7)(q), e.g., the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952) and BERT classifier
(Devlin et al., 2019); see §4.2 in Ong et al. (2024).

Remark 1 Our empirical study suggests that rescaling {r;}" , by a normalization constant ¢ > 0
to {c-r;}1", so that the rescaled values are on the same scale as {y; },, can substantially improve
the performance of our proposed router. Some normalization constant could be considered include:
(1) ¢ normalizing the magnitude: max{|c - r|;}ic(n) = max{|yli }ic[m); (2) c normalizing the em-
pirical variance: Var(c - r;) = Var(y;); (3) ¢ (approximately) minimizing the distribution distance
(e.g., 2-Wasserstein distance) between the empirical distributions of {c - 7 }ic[n] and {Yy: }ic[m)-

2.2 COST FUNCTION

For any LLM M, we define its cost function as Cpq : Q — R that quantifies the cost of generating
the answer for any input query ¢ € Q using LLM model M. Following others (Ong et al., 2024;
Ding et al., 2024), in this paper, we assume the cost functions of both models are known a priori,
and consider the following normalized cost functions:

CM;, (Q) =1, CMa (Q) =0, 3)

for any ¢ € Q. Such cost functions treat the call of M, as one unit more expensive than the call of
M, for any query. We focus on this normalized cost mainly for the ease of exposition.

Remark 2 Our proposed method can be easily applied to more complicated and realistic cost func-
tions. Many LLM providers (e.g., Claude, DeepSeek, Gemini and GPT) adopt a token-based pricing
model for developers and enterprises, where the cost of a query is the sum of input tokens times
the input rate and output tokens times the output rate (Chen et al., 2023). Formally, for LLM M,
Cm(a) = cinnt - Tam(@) + Coutm - Tma(MI(q)) + caxm, where Taq(q) and T (M(q)) are the
input and output token counts, cin, pm, Cout, M are known per-token rates, and cgx, pm IS a fixed cost.
Input tokens can be obtained via the tokenizer', while output tokens can be estimated using gen-
eration limits (OpenAl, 2024) or predictive methods (Zheng et al., 2023b). Latency may also be
incorporated as an additional cost component.

2.3 THE ROUTING DECISION RULE

The decision rule of an LLM router is designed to compare the quality gain of choosing M, over
M, with the corresponding answer generation cost in §2.2. To quantitatively measure the quality
gain of routing a new query g, previous works mainly leverage the average quality gain of different

le.g., https://platform.openai.com/tokenizer
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preference data 1(q) (Ong et al., 2024; Zhang et al., 2025). However, as we focus on fields requiring
professional knowledge, e.g., healthcare, science, and computer programming, the GS model v (q)
is arguably a more reliable measure of quality gain. Specifically, the proposed utility contrasts the
expected quality gain based on the GS with the cost function and strives to balance between the
response quality with the cost as follows:

D(q|w,m)= E(r|q) —w-(Cm,(q) —Cm,(q) =v¢(q) —w- (Cm, (@) —Crm,(0) . 4

GS quality gain cost loss

Here, w > 0 is a user-specified conversion factor to control the trade-off between the quality gain
and the additional cost if the expensive model M, is preferred over M,. When % (q) is known and
cost function is binary as in (3), the Bayes optimal classifier selects M, over M, in response to the
query q if and only if the quality gain surpasses the required additional cost based on the decision
rule, namely, ¢)(¢) > w, and selects M, over M, otherwise.

3 INTEGRATIVE LLM ROUTING THROUGH CAUSAL META-LEARNERS

3.1 ORACLE INTEGRATIVE ROUTER WITH KNOWN SHIFT FUNCTION

To efficiently evaluate the average quality gain function 1 (-) of the GS model, we aim to combine
the information from both Dp and Ds. However, due to the uncertainty of human and LLM judge’s
preference ratings, there may exist a potential discrepancy (bias) between the golden-labeled quality
gain ¢(+) for D¢ and the preference-choice model 7(-) for Dp (Zheng et al., 2023a; Wataoka et al.,
2024; Zhu et al., 2023; Szymanski et al., 2025). This bias can be quantitatively modeled as an
unknown shift function for any query g,

A(q) =¥(q) —n(q).

Consequently, a regression approach using the directly combined data D U Dp (Ong et al., 2024)
can suffer from non-negligible estimation bias for ¢(-) even if the sample sizes of both PB data and
the GS data are sufficient.

In this section, we estimate () under an oracle scenario that the shift function A(+) is known (a the-
oretical scenario for illustration purpose) and leave scenario of unknown A(-) to section 3.3, where
our new method developed. Under such an ideal condition, one can estimate 7)(-) by integrating the
information in Dp and D¢ using a bias correction process that takes the information of A(-) into
account. Specifically, consider the following bias-corrected human preference data:
m
T(Dp [ A) = {(gf.7i =y + M) }.L,

where 7 can be roughly interpreted as the pseudo-GS quality difference as if the human-preference
queries are prompted. Then, our newly enriched dataset after bias correction can be described as

DT =DgUT(Dp | A) = {(gi i) }iey U{(g5, )}y
Note that all samples in D are conditionally unbiased for 1(g), namely, for any i € [n]and j € [m],
O(gi) = EB(ri | @), 9(q)) =E(} | ¢)).

Over D7, one can apply any ML algorithm to estimate +(-) through a direct nonparametric regres-
sion. More specifically, ¥(-) solves the following population least-square problem:

Y(-) = arg min
©) h:Q—R N+ M

Ep+ | > (r=h(@)], (5)
(q,r)eD*

where the expectation is taken with respect to the distribution of D*. Here h(-) is an arbitrary

prediction function mapping a query to a scalar estimation of the GS quality gain, and minimizing

(5) over all such h(-) identifies the true average GS quality gain ¢(-). Then, our oracle estimator is
obtained by solving the (regularized) empirical counterpart of (5):

n m

D (ri = h(@)® + > (yi + Algl) =h(a)* | +A(R),  (©)

i=1 i=1

U(- | A) = arg min
C14) heHa MM

!
Ti
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where H a is the estimator class specified by the ML algorithm, e.g., Gaussian process regression
(Rasmussen & Williams, 2006), deep neural networks (Goodfellow et al., 2016), and random forests
(Breiman, 2001a), and A(-) is an optional user-specified regularizer on the complexity of h, e.g., the
{5 (ridge) regularizer (Tikhonov & Arsenin, 1977) and the ¢; (Lasso) regularizer (Tibshirani, 1996).

By appropriately choosing the ML algorithm (and hereby H,, in (6)), ¢(- | A) serves as a statis-
tically principal estimator for (-) using all samples in D U Dp. For example, if ¢(-) satisfies
certain smoothness condition, then several nonparametric regression estimators can achieve statisti-
cal optimality; see e.g., Wasserman (2006); Moutrada et al. (2020); Schmidt-Hieber (2020).

3.2 GS-PB DATA INTEGRATION: A CAUSAL INFERENCE PERSPECTIVE

In practice, the shift function A(+) is unknown. Nevertheless, the oracle procedure outlined in §3.1
indicates that, empirically, it is crucial to develop a principal statistical estimation framework for the
shift function A(-) in order to estimate v(-) efficiently by combining the information from D¢ and
Dp. In the following two sections, we reformulate the data integration problem under the potential
outcome framework in causal inference (see e.g., Imbens & Rubin (2015)), and correspondingly,
A(+) is the conditional average treatment effect (CATE) under such a new model formulation. One
can then use well-developed CATE estimation approaches in causal inference, e.g., meta-learners
(Kiinzel et al., 2019), to estimate A(-) robustly and efficiently.

To streamline the presentation, we pool the GS and PB datasets into a single collection and use a
unified triple (s;,t;,0;) for sample ¢, where s; denotes the query of sample ¢, t; € {0,1} is the
source indicator (t; = 1 if the label is obtained from the gold-standard (GS) mechanism and ¢; = 0
if it is obtained from the preference-based (PB) mechanism), o; is the observed outcome, i.e., the
evaluated quality gain between M, (s;) and M, (s;) under the corresponding mechanism. With this
notation, the pooled dataset D U Dp can be written as

D = {(si,ti,00) 1", 7

where each sample comes from either D¢ or Dp depending on ¢;. Specifically, when ¢; = 1 (GS
sample), we have o, = r; as in model 1; when ¢; = 0 (PB sample), we have o; = y; as in model 2.

Rather than modeling D and Dp separately, we can alternatively characterize the distribution of
the combined dataset D = D¢ U Dp using a hierarchical mixture model (Pooled DGP).

Pooled Data Generation Process (Pooled DGP)

For each (s;,t;,0;) € D:
1. Generate t; with Pr(t, = 1) = k € [0,1]; here k controls how often GS samples
are observed in the joint dataset.

2. Generate s; with s; | t; =1~ 2 and s; | t; =0 ~ 2', where 2 and 2’ are the
query distributions of the GS and PB data, respectively;

3. Generate 0; = r; under model (1) with q; = s; ift; = 1, and 0; = y; under model
(2) with ¢, = s; if t; = 0.

Such a joint data generation process naturally leads to the causal potential outcome framework
(Rubin, 2005). Specifically, we can view each query a unit, s; as its covariates, and consider ¢; €
{0, 1} as the binary treatment assignment to indicate whether the evaluation between M, (s;) and
M (s;) is carried out by gold standards (¢; = 1) or is PB (¢; = 0). For each query s;, the two
potential evaluation outcomes follow:

051) =1(s;) + €, ol(-o) =n(s;) + ¢, (8)
(1)

where o, represents the counterfactual quality assessment of the quality gain shift from M, (s;) to

M, (s;) if the evaluation is justified by the gold standards, while ogo) represents the quality gain with

the same query, but the evaluation is judged through a preference-based mechanism. Then, samples
in D can be equivalently considered as generated from the following standard causal mechanism.
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Lemma 1 Define fo and f o as density functions of 2 and 2', respectively. Then the Pooled DGP
is equivalent to the Causal DGP as follows.

Causal Data Generation Process (Causal DGP)

For each (s;,t;,0;) € D:

1. Generate s; ~ k2 + (1 — k) 2/, which is the mixture distribution of 2 and 2’
with the mixture proportion k;

2. Generate t; following the propensity score model Pr(t; = 1 | s;) = p(s;) =
kfo(si){rfa(si) + (1 —kK)far(s:)}

3. Generate o; following the standard potential outcome model: o; = tiogl) + (1 -
(1) (0)

ti)ogo), where o; ' and o;

are given by (8).

The proof of Lemma 1 is in Appendix A.5. Lemma 1 clarifies that the target function A(-) is CATE
from the perspective of causal data generation:

A(s) = 9(s) —n(s) = E(0™ — ol | 5).

The causal identification assumptions such as consistency and unconfoundedness could be naturally
satisfied under the Causal DGP. In particular, under the data collection procedure considered in this
paper (c.f., §A.1), the no unmeasured confounders is satisfied, whenever there is no unobserved
random variable, other than the query s, jointly affecting both the treatment assignment mechanism
and the outcome. On the other hand, the positivity assumption on the propensity score, i.e., p(s) €
(e,1 — €) for some constant € > 0, may be violated when the supports of 2 and .2’ do not coincide.
In particular, violation occurs if there exists a region of ¢ such that fo(s) > 0 while fo/(s) = 0,
or vice versa. In such cases, our proposed method remains valid after a data truncation step: we
estimate A(-) only within the samples in the overlapped region of supports. We defer a detailed
discussion of this truncation-based extension to future work in §5.

3.3 CAUSAL META-LEARNING FOR A(g) AND META-ROUTER

Building on the seminal work of Kiinzel et al. (2019), many causal meta-learning approaches are de-
veloped, aiming to provide principled and flexible frameworks for CATE estimation. Meta-learners
can incorporate any off-the-shelf ML algorithm, thereby offering substantial flexibility. Moreover,
by leveraging ideas from orthogonal ML and semiparametric statistics (see, e.g., Chernozhukov
etal., 2018), meta-learners such as the R-learner (Nie & Wager, 2021) and the DR-learner (Kennedy,
2023) enjoy the oracle property. In particular, under mild conditions of nuisance function estimation,
CATE meta-learners can be asymptotically equivalent to an oracle estimator that has access to the
full set of individual treatment effects {05” — 050)};;1, whereas in practice only one of 021) or o§0>
is observed for each 7. This oracle property implies that R-learner and DR-learner could achieve the
statistical optimality for the estimation of A(+) in our setting (Wu & Yang, 2022; Curth & Van der
Schaar, 2021). In this paper, we focus on R- and DR-learners.

The implementation details of R- and DR-learners are deferred to §A.3 in the Appendix. Both
learners offer robustness against nuisance model misspecification and fit naturally into our estima-
tion purpose of A(:). In this work, we consider both approaches as benchmark estimators for the
shift function A(-), and employ nonparametric ML regressors (e.g., random forests, deep neural
networks, and XGBoost) to capture heterogeneous structures of A(-) across the query space.

The sample-splitting could be further employed into R- and DR-learners as discussed in (Nie & Wa-
ger, 2021; Kennedy, 2023) to avoid potential biases brought by nuisance function training through
ML algorithms. We omit the details only for simplicity, and note that the sample splitting could be
straightforwardly incorporated into our method. We refer interested readers to the aforementioned
two papers and, e.g., Chernozhukov et al. (2018) for further discussions.

Building on the construction of the oracle router in (6), we now replace the known shift function
A(-) with its meta-learner-based estimator A(-), and thereby formalize our two-step meta-router.
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Meta-router

Inputs: D = D UDp; Ha, Hm, A(+) specified by selected ML algorithms.

1. Estimate the shift function A() via certain CATE learning approaches, e.g., the
R-learner or DR-learner in (S3) or (S4) with nuisance functions trained over D.

2. Meta-router ¢)(- | A) is obtained by solving (6) wherein A(-) is replaced by A(-).

Although using DR-learner and R-learner as examples, our meta-router is a generally framework
does not tie on any specific CATE estimation approach. Our meta-router framework could be natu-
rally extended to the multiple-LLM scenario, we defer more discussions to §A.2 in the Appendix.

4 NUMERICAL EXPERIMENTS

4.1 HEALTHBENCH

HealthBench (Arora et al., 2025) is a recently released benchmark designed to evaluate the per-
formances of LLMs in open-ended healthcare scenarios. It consists 5000 professional user-model
dialogues that were selected to span a wide range of healthcare scenarios. In total, 262 physicians
across 26 specialties and 60 countries contributed to the creation of evaluation rubrics and consensus
standards, make the evaluation mechanism precise in reflecting the qualities of LLM responses. The
meta-evaluation verifies the trustworthy of these rubrics in faithfully reflecting physician judgment.

In our numerical experiments, we set Gemini 2.5 Pro as the primary model M, (Comanici et al.,
2025) and Gemma 3 12B as the alternative model M, (Team et al., 2025), and collect their responses
to all HealthBench questions. We then employ GPT-5-mini (OpenAl, 2025) for evaluation. For
gold-standard evaluations, each score-collecting prompt includes the evaluation rubrics, the original
question, and the model response, and GPT-5-mini is asked to assign a score strictly following the
official rubrics. Notably, generating GS evaluation through LLM could be a limitation of our study,
and direct expert validation shall be ideal. The HealthBench study (OpenAl, 2025) reports that
GPT-4.1 with rubric achieves marco F1 score of 0.709 against physician annotations on consensus
criteria and be able to match expert grading (Table 6 in OpenAl (2025)). Thus, we believe that
using GPT5-mini with rubric should perform similarly to expert grading for our study. The score
difference between M,, and M, for each question is treated as the GS quality differences of two
models (see Appendix A.7 for our prompts). For preference-based evaluation, each prompt contains
only the question and the two responses, and GPT-5-mini, asked to act as a medical expert, indicates
whether M, is better (1), comparable (0), or worse (—1), and this returned value is treated as
the PB quality gain (see Appendix A.7 for our prompts). We normalize two types of quality gain
evaluations to align their empirical variance (c.f., Remark 1(2)). We embedded each query text
to a 768-dimensional vector using the gemini-embedding-001 model. We report in Figure S2 in
Appendix, the histogram of the PB-GS quality differences {r; — v; }229°. The sample mean of these
differences is substantially below zero, as confirmed by a two-sided t-test yielding a p-value smaller
than 2.2 x 10716, which motivates the training of debiased meta-router.

Experiment Setting For each Monte Carlo (MC) round, we specify the estimator class H by a
machine learning algorithm, a GS sample size n, and a dimension d such that we further reduce
the dimension of query text embedding to d via PCA; for simplicity, we use the same estimator
class H for all nuisance function, CATE function and router training. We then randomly split the
data into three parts: a testing set Dioy of with 500 queries and the corresponding GS evaluation
outcomes r;, a GS training set of size n, and a PB training set containing the remaining samples.
Each training set only includes its corresponding type of evaluation outcomes. We compare seven
types of routers: (1) an oracle benchmark router that has access to the GS evaluation outcomes
for all training queries in both GS and PB sets, and trains v(q) over H using all these outcomes;
(2) a predictive router that estimates ) (q) over H on the pooled GS and PB training data, without
distinguishing evaluation types; (3) a predictive router that estimates v)(¢q) over H using only the
PB training data; (4) a predictive router that estimates 1)(q) over H using only the GS training data;
(5) a meta-router based on the R-learner trained on GS and PB data, with all involved predictions
run by H; (6) a meta-router based on the DR-learner trained on GS and PB data, with all involved
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Figure 1: The efficiency gains of different routing strategies compared to the random routing base-
line, against the primary model usage ratio in the main numerical experiments. Subfigures corre-
spond to varying GS sample sizes. Colors indicate different methods: , meta-router
via DR-learner, meta-router via R-learner, , predictive router us-
ing GS data only, and predictive router using PS data only.
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Figure 2: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. All regressions are implemented via XGBoost. Other
settings are the same as Figure 1.

predictions run by H; (7) a random router that assigns each query to M, with a fixed assignment
probability. The routers based on pooled GS and PB training data, and solely based on PB training
data, follow the same framework as Ong et al. (2024), serving as our state-of-art baseline.

Main Experiments We specify H by the learning algorithm of random forest (Breiman,
2001b), set PCA dimension d to 50, and test three GS sample sizes n € {100, 500,1000}.
For each configuration and each Monte Carlo (MC) round, each router’s decision rule follows
(4), with 1(q) replaced by the corresponding estimator and binary cost functions as in (3).
Given any weight w in (4), we compute the total efficiency (TE) of each router as TE =
> (4i,71)EDrent I{g; is assigned to the primary model} x r;, where r; denotes the realized quality
gain. By varying w, or equivalently the assignment probability for the random router, we obtain
TE values under different primary model usage ratios (PMUR), defined as the proportion of queries
assigned to the primary model among all testing samples. We run 200 MC rounds for each configu-
ration and report the mean TE across rounds for each router and PMUR level. To quantify relative
performance, we further calculate the efficiency gain (EG) of a router as its improvement over the
random router, averaging over 500 test samples:

Mean TE of any router — Mean TE of the random router
500 '

EG of any router =

The EGs of different routers versus PMURs under different sample sizes, are reported in Figures 1.

Our simulation results demonstrate the superior efficiency of meta-routers, particularly in imbal-
anced regimes with very limited GS data. In contrast, the predictive router trained on directly pooled
GS and PB data or only PB data, as considered in e.g., Ong et al. (2024), shows little efficiency im-
provement even with relatively large GS sample sizes, highlighting the detrimental effect of bias
A(q) in LLM routing. As the GS sample size increases, the efficiency gains of all routers improve,
except for the PB-only router, highlighting the value of incorporating GS data for debiasing.
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Figure 3: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. The setting is same as Figure 1, with an additional
curve corresponding to the simple debiased router through linear scaling.

Ablation Studies To investigate the impacts of different meta-router components, we conduct dif-
ferent numerical experiments for ablation studies, by changing one key element in our main numer-
ical experiments while keeping other settings unchanged, examine the performance changes.

(i) We consider ‘H to be specified by another machine learning algorithm XGBoost (Chen &
Guestrin, 2016). The EGs are reported in Figure 2. The R-learner-based router consistently
outperform other routers, which demonstrates its robustness over different regression methods.
In general, the EGs in Figure 2 are not as high as the EGs in Figure 1, showing the importance
of comparing different regression methods when training the meta-router.

(i) We consider another router trained using a simple debiasing strategy based on linear scaling. We
debias the PB data by subtracting the sample mean difference between the PB and GS datasets,
and then train a router on the pooled set consisting of the shifted PB data and the GS data. The
resulting EGs are shown in Figure 3. The simple debiasing router has a similar performance
with the router trained by directly pooled data, and Meta-Routers consistently outperform it.
Such observation indicates that in practice, the bias between PB and GS outcomes are usually
heterogeneous across different queries, and more sophisticated CATE estimators such as meta-
learners, are essential for an effective debiasing.

(iii) In the data preprocess, we do not normalize the GS data following Remark 1(2). The EGs are
reported in Figure S4. The meta-routers do not significantly outperform the router trained via
GS data only, highlighting the importance of pre-normalization for meta-routers.

(iv) We consider d = 100 for the PCA. The EGs are reported in Figure S3. The meta-routers also
outperform other routers, further demonstrating the robustness of our approach.

(v) We collect the PB data alternatively from another cheaper LLM judge: Grok 4 Fast, with other
settings kept the same as the main numerical experiment. The EGs are reported in Figure S5.
The meta-routers outperform other approaches especially when the sample size of GS data is
small, which verifies the adaptivity of our approach with different preferences.

4.2 PRBENCH

PRBench is a rubric-based benchmark for high-stakes professional reasoning in the domain of law
and finance (Akyrek et al., 2025). The dataset comprises 1,100 expert-authored tasks across 114
countries and 47 U.S. jurisdictions, similar to HealthBench, accompanied by 19,356 expert-curated
evaluation rubrics. All tasks were contributed by 182 industry professionals, thus offers rich real-
world complexity beyond conventional academic benchmarks, enabling deeper analysis of open-
ended, economically consequential reasoning. We focus on 676 questions in PRBench with one-
turn conversation. Similar to §4.1, we consider the primary model as Gemini 2.5 Pro and alterna-
tive model Gemma 3 12 B, and use the same mechanism for the GS-based and PB-based answer
evaluations; see Appendix A.7 for our prompts. Due to the limited sample size of PRBench, we
correspondingly consider small GS sample size n € {50,100, 150} and small PCA dimension for
the query embeddings, namely, d = 20. Other numerical experiment settings are the same as the
main experiment in §4.1.
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Figure 4: The efficiency gains of different routing strategies trained and tested over PRBench in
§4.2. Explanations of subfigures are the same as Figure 1.

The EGs are reported in Figure 4. The DR-learner-based router consistently outperforms the base-
lines, demonstrating the effectiveness of our approach. Under the limited sample size, the R-learner-
based router offers no clear advantage over other methods, highlighting the superior sample effi-
ciency of the DR-learner in this setting.

5 FUTURE WORK: TRUNCATION-BASED META-ROUTER UNDER POSITIVITY
VIOLATION

Currently, our framework requires that the query distribution of GS data and that of the PB data
share the common support, i.e., the positivity of propensity scores shall hold. This requirement
can be violated in practice when, e.g., the GS data focuses on one category where responses can
be easily justified, while the PB data are with regard to more subjective queries. One could avoid
positivity violation by explicit experiment designs in the data collecting period. On the other hand,
positivity violation could also be detected through high-dimensional density ratio estimation of the
query distributions in GS and PB data, respectively; see e.g., Sugiyama et al. (2012). In particular,
the region where the estimated density ratio is well upper- and lower-bounded can be interpreted as
the overlap region between the distributions of ¢ in the GS and PB datasets, respectively.

When the propensity scores tend to be extreme (i.e., close to 0 or 1), the R-learner and EP-learner
(van der Laan et al., 2024) may offer more robust debiasing performance. When the positivity as-
sumption is totally violated, the distribution supports of two query distributions do not fully overlap.
A promising direction is to develop a truncation-based meta-router, which always incorporates all
GS data but only retains preference data within the estimated overlap region of the two distributions.
In particular, the overlap can be identified via efficient density ratio estimation. Then a meta-learner
of A(+) is trained only through overlapping samples in D¢ U Dp, which are considered as belong-
ing to this region. If following Remark 1(2), GS data are now only normalized to have the same
variance as PB data within these overlapping samples. Finally, when we train our truncation-based
meta-router by solving (6) with obtained A() but only incorporating the samples Dp which belong
to the detected overlap region. This truncation-based strategy offers a principled way to exploit
abundant preference data while avoiding extrapolation bias outside the common support.

Additional discussions on other future directions are included in Appendix A.4, including the ap-
plications of semi-supervised learning and active learning, and the potential extension to out-of-
distribution routing.
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A APPENDIX

A.1 PRACTICAL DEPLOYMENT AND END-TO-END WORKFLOW

In this section, we discuss design choices and recommendations for deploying meta-router in an
end-to-end workflow. To make this section self-contained, we briefly recall the key parameters and
notations. Following the main paper, we consider pairwise LLM routing between two models: a
higher-quality, higher-cost model M, (the “primary”) and a cheaper alternative M,. In practice,
M, would typically be the strongest model available in the stack (for example, a proprietary frontier
LLM), and M, a smaller or open-source model chosen for lower price or latency. A router such
as meta-router observes an incoming query ¢; € Q and decides whether to assign it to M, or
M, based on the expected gold-standard quality gain 1)(g;) and the associated cost, following the
decision rule in Section 2.3.

The first design choice is the gold-standard quality objective. In practice, the operator must choose
the evaluation mechanism that defines the evaluated quality gain r; between M, (¢;) and M, (¢;)
and hence the gold-standard quality gain function 1 (-). For example, when correctness is objectively
defined, r; can be a discrete gain such as 1, 0, or —1 depending on which model answers correctly.
When evaluation is rubric-based, domain experts (or a trusted evaluation pipeline) score the two
responses separately and r; is defined as the difference between these scores. In other applications,
an internal reward model may provide a scalar for each response, and r; can again be taken as the
difference between the reward assigned to M, (¢;) and M, (¢;). Meta-router does not require access
to per-response scores beyond this scalar difference. We recommend that operators define the quality
gain using an evaluation mechanism that is as objective, stable, and aligned with the target task as
possible, since the router is explicitly optimized for this gold-standard objective.

The second design choice is the cost model and the acceptable trade-off between quality and cost,
which are encoded through a conversion factor w (see Section 2.2). In deployment, the per-query
cost of M,, and M, can be measured in monetary units (for example, token-based API pricing),
latency, or a weighted combination of the two. Given these costs, w > 0 controls how much gold-
standard quality gain is required to justify the additional cost of using M,, instead of M,: larger
values of w favor cheaper routing, whereas smaller values favor higher-quality routing. When (g;)
is known, the Bayes-optimal policy routes g; to M,, if and only if (g;) exceeds the cost-adjusted
threshold implied by w (Section 2.3). In practice, Meta-router learns an estimate 172(g;) and applies
the same threshold rule. A practical way to select w is to evaluate, on a held-out set with gold-
standard labels, the average realized cost and average gold-standard quality achieved by the induced
routing policy over a grid of candidate w values, and then choose the smallest w that satisfies a
deployment budget constraint such as a maximum fraction of queries routed to M,, or a maximum
total cost relative to an “always M,,” baseline.

The third design choice is how to collect the datasets needed to train the router. Meta-router uses two
data sources: a small gold-standard set D¢ and a larger preference-based set Dp. Dg is constructed
by sampling queries from the actual traffic in the domain of interest and obtaining r; for each,
via expert annotation or a trusted evaluation pipeline as discussed above. The sample size can
be adapted to resources; in our experiments, a few hundred gold-standard queries already provide
measurable gains. In parallel, Dp is obtained for queries drawn from the same traffic by collecting
cheaper pairwise judgments (for example, crowdsourced labels or LLM-as-a-judge comparisons)
indicating whether M, is better, similar, or worse than M,. These judgments are coded as y; €
{—1,0,1}. The important practical point is that gold-standard data can be scarce, expensive, and
domain-specific, whereas preference data can be plentiful but biased. Meta-router is specifically
designed to combine these two data resources and to correct the systematic bias in Dp using the
information in Dg.

The fourth design choice is the representation used for training and for incoming queries. In a
deployed system, it is natural to reuse an existing embedding service (for example, the same text
embedding model already used for retrieval). Each query in Dg U Dp is embedded as a numerical
vector, once using this service, and the resulting vectors (optionally reduced in dimension by prin-
cipal component analysis) serve as features for all downstream components in meta-router. Lever-
aging existing infrastructure makes the proposed meta-router highly efficient and flexible, as the
additional computational cost at training and inference time is dominated by a single embedding
call and lightweight tabular models.
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Figure S1: End-to-End workflow of the meta-router. The training stage only involves the GS-data
{(¢i,7i)}7~, and PB-data {(¢;,y;)}", and can be carried out completely offline. The inference

stage is based on the trained causal meta router ¢(-) and runs online with generic incoming new
queries.

Given these design choices, meta-router is trained as described in Section 3.2: it learns the query-
dependent shift between gold-standard and preference-based evaluations using causal meta-learners,
uses this estimated shift to transform preference labels into pseudo-gold-standard labels, and then
fits a final regression model @(q) on the union of true and pseudo gold-standard labels. We rec-
ommend using simple tabular learners such as gradient-boosted trees or random forests on the fixed
embeddings, since these models are already powerful enough for the routing task while keeping
computational cost minimal at inference time.

At inference time, the router is straightforward to integrate into existing infrastructure. Each incom-
ing query from any supported domain is sent to the embedding service, the embeddrng is passed
through the trained router w and the output is compared to the threshold w. If 1/1( ) > w, the query
is routed to M,,; otherwise it is routed to M,. The incremental latency compared with a system
without routing is limited to one embedding call and a single evaluation of a small regressor, which
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is negligible relative to executing the primary LLM. The entire workflow of the training and infer-
ence stages is visualized in Figure S1. Note that the training stage can be done offline with already
available GS and PB data, while the trained causal meta-router can be directly applied online with
incoming new queries.

Two additional considerations may arise in practice. The first is how to handle multiple or evolving
domains. When domains are clearly distinct (for example, medical, legal, and coding assistance),
the operator may train either a separate router for each domain or a single router that takes a domain
indicator as an additional feature. In the latter case, the causal shift A(q) is allowed to vary by
domain, and the router learns to use gold-standard supervision from one domain to inform others
only to the extent that queries are similar in the shared embedding space. When a completely
new domain is introduced, the recommended procedure is to start with preference-based data in
that domain, then gradually collect a small amount of gold-standard data and retrain or fine-tune
the router, exactly as in the initial deployment. Our experiments show that a modest number of
domain-specific gold-standard queries is sufficient to obtain benefits from meta-router; without any
gold-standard data in a domain, no current method can align routing decisions with that domain’s
gold-standard objective due to the underlying bias between gold-standard data and preference-based
data.

The second consideration is monitoring costs and benefits after deployment. Because the router’s
objective is defined in terms of 1(q) and cost, it is natural to monitor, on a rolling basis, (i) the
fraction of queries sent to M,,, (ii) the realized cost relative to baselines such as always using M,
or always using M, and (iii) the realized gold-standard quality on a small stream of queries that
continue to receive expert evaluation. If the observed cost is too high, the operator can increase
w; if the observed quality is lower than desired, the operator can decrease w or collect additional
gold-standard labels and retrain. Because router retraining is cheap, these updates can be performed
regularly as query distributions or cost constraints change.

A.2 MULTI-MODEL META-ROUTER

We discuss the natural extension of our meta-routing algorithm to the multi-model routing sce-
nario. In particular, we attempt to route each query over N candidate LLMs, indexed by 1 through
N. Following the definition of the pooled dataset for two specific LLMs in (7), we use a quintet
(84, ki, 4i, ti, 0;), to define the ith collected pairwise comparison sample where the interpretations
of s;, t;, o; are the same as the two-LLM routing scenario, i.e., they are the testing query, GS—PB
indicator, and the quality gain measurement, respectively. The new variables k;, ¢, € [N] represent
that the pair of LLMs being compared are LLM k; and LLM /; in the ith sample; without loss of
generality, we require k; > ¢; for all i € [N]. The overall pairwise comparison dataset, comparing
different pairs of LLMs, is
D = {(87,'7 ki7 éiv tiv O’L)}ilzla
where [ represents the full sample size.

We treat the query s and the LLM pair (k, £) together as the covariates, ¢ as the treatment assignment
and o as the observed outcome, for our causal framework. Then following the potential outcome
framework in (8), we define the potential outcomes for the ith sample as

o) = i, 0. (s0) + €, o\ = 1, 0, (50) + €, (S1)
where the nuisance functions 14, ¢(s) and 7, ¢(s) now depend on both query s; as well as the LLM
pair (k, £) being compared. They represent the expected quality difference between the two models
(LLM k and LLM /¢) when assessed through the gold-standard evaluation and the human-preference

evaluation, respectively. Then the bais between 1y, ¢(s) and 7y ¢(s) could still be viewed as the
CATE function:

Bree(s) = Yie(s) = mie(s) =E (00 = o | 5,9 = (k. 0)).

Therefore, by treating (s, k, ) instead of s as the covariates, the meta-learners in §3.3 could still

be exploited to obtain an estimator Ay, ¢(s) of Ay ¢(s) for any (k, £,s). Then similar to (6), the
meta-router could be obtained by solving the debiased empirical least-square objective,

1[)*(' | A) = argmin % Z(Ol - hkq‘,lq‘,(si))z + Z(OZ + Akq‘,lq‘,(si) - hkq‘,lq‘,(si))z + A(h)v (S2)

he(YEHA ti=1 t;=0
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where the trained router 1&1@, ¢(s | A) now depends on both the query s as well as the LLM pair (k, £),

and Hn is any user specified estimator class containing functions approximating A,(-) depending
on both the LLM pair and query.

When estimating 1, (+), 7, (+) and A,(+), additional structural assumptions on these functions could
be further made. For example, if considering ranking models like Bradley-Terry-Luce Model
(Bradley & Terry, 1952; Luce et al., 1959) for the PB data generation (Rafailov et al., 2023), we

have
exp (B (s))

exp(0k(s)) + exp(Be(s))’

where 6 (s) is the preference score function for each LLM k. Such modeling resolves the non-
identification issue of ny, ¢(s) if (k, £)x>, does not get compared in D, and reduce the sample com-
plexity for the estimation of 7,(-). For the practical implementation of meta-router with multiple
LLMs in the above procedure, it would be important to investigate reasonable functional assump-
tions in order to improve the estimation flexibility and efficiency, which we leave for future work.

Nke(8) =

A.3 R-LEARNER AND DR-LEARNER

R-learner Let v(s) = E(o | s) denote the marginal regression of the evaluation outcome on the
covariates (query) s, and let p(s) = Pr(¢t = 1 | s) denote the propensity score of receiving a GS
evaluation. R-learner (Nie & Wager, 2021) constructs the orthogonalized residuals:

0y = 0 —A(si), ti =1t —p(si),
where 4 and p are any sensible sample-based estimators for v and p. The R-learner then estimates
A(-) by solving the generalized least squares problem

n+m

S (61 — Eih(s:)” + A(h), (S3)

i=1

AR' = arg min
() heHa Tt M

where H A is a pre-specified hypothesis space (e.g., linear functions, random forests, or neural net-
works), and A(h) is a regularizer to control complexity. This formulation is quasi-oracle efficient
under mild conditions on nuisance estimators. Specifically, causal forests (Athey et al., 2019) is
associated with the tree-based function class H a that can flexibly capture heterogeneous structures
of A(-) across different g.

DR-learner An alternative is the doubly robust (DR) learner of Kennedy (2023). It constructs
a pseudo-outcome for each sample by combining outcome regression and propensity adjustment,
thereby guaranteeing consistency if either component is correctly specified. Specifically, DR-learner
considers u:(s) = E(o | s,t), denoting the conditional regression under treatment status ¢ € {0, 1}.
With no unmeasured confounders, we further have p1(-) = ¥(:), po(-) = n(-). Then, the DR
pseudo-outcome is

T ti — p(si)
# = (msi)(l ~h(s2)

The DR-learner estimates A(-) by regressing ¢; on s;:

> (0i = fie, (50)) + fa(si) — fio(s:)-

n+m

37 (61— h(si)” + Ah). (S4)

i=1

ADR~ = arg min
() h%HA n—+m

The doubly robust property ensures that Apg(+) is consistent if either y;(+) or p(-) is estimated
consistently. Such a feature is particularly appealing in our setting, because the distributional dis-
crepancy between D and Dp may induce misspecification in one nuisance model.

Remark 3 (Computational Cost) In practice, the computational cost of meta-learners is modest.
The overall complexity is essentially the same order as training the underlying machine-learning
models used within the learner. More concretely, the computation consists of: (i) fitting the nui-
sance models (propensity score and outcome regressions) and the final CATE regression, and (ii)
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for certain meta-learners, constructing pseudo-outcomes. Step (i) has the same computational or-
der as training the chosen ML algorithm for nuisance and CATE function approximations. Step
(ii) requires only a single pass through the data (e.g., computing R-learner or DR-learner pseudo-
outcomes), which is linear in the sample size. Therefore, the additional overhead introduced by
meta-learning is mild relative to the ML models used.

A.4 FUTURE DIRECTIONS

Semi-supervised learning From a causal perspective, fully semi-supervised CATE estimation is
technically challenging because the target is a high-dimensional function of the covariates; most
existing semi-supervised learning based work (Cheng et al., 2021; Hou et al., 2025) focused on
average treatment effects (ATEs) rather than CATEs. That said, we believe unlabeled data can still
be very useful in our setting by helping to learn better query representations. One natural extension
is to augment the current methods with a learnable representation that is trained on both labeled
and unlabeled queries. Unlabeled queries from real traffic can regularize so that it reflects the true
deployment distribution (e.g., via smoothness/consistency or clustering objectives), while GS+PB
queries drive the CATE loss in this learned space. We believe that such representation can reduce the
distribution difference between GS, PB, and incoming queries, thereby improving and downstream
routing quality.

Active learning Active learning offers a complementary and appealing extension (Settles, 2009).
In particular, rather than treating the GS pool as fixed, one could use an initial Meta-Router to adap-
tively select which queries receive expensive GS evaluation to maximize routing accuracy within a
fixed GS budget. For example, one can view the evaluation mechanism (GS vs PB) as treatment
and design acquisition rules that prioritize queries where the current router is most uncertain or most
decision critical, such as queries near the routing decision boundary.

Handling out-of-distribution routing Our current work focuses on the in-distribution setting,
where deployment queries are drawn from the same population as the GS and PB data used to train
Meta-Router. For truly out-of-distribution (OOD) queries, a practical platform may collect responses
from both models and obtain PB or GS evaluations for these new queries. This naturally forms an
online-learning process in which the system gradually expands the coverage of the in-distribution
domain. Integrating such OOD-aware data collection into Meta-Router is an interesting direction
for future work, and we have noted this in the revised manuscript.

A.5 PROOF OF LEMMA 1
The density function of (s, ¢, 0) in GS-PB DGP could be written as
fls,t.0) =K' (1 =)' f5(8) f () fr(o | )y~ o ] 5),

where f,.(- | s) and f, (- | s) represent the conditional probability density function of r; and y; given
q; = s, following (1) and (2), respectively. This could be further written as

KL= R) ()5 ' (5)

flort o) = (nfale) + (L2 W)f26)): Zr o= gy a1 018), 69

feota-r)ya(s) Pr(timtls)—tp(s)+ (1—1)p(3) £ (ols)

recalling the notation in Causal DGP, and thereby show the distributional equivalence of two pro-
cesses. O
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A.6 ADDITIONAL NUMERICAL RESULTS FOR §4.1

Additional results for §4.1 are reported in Figures S2-S5.
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Figure S2: The histogram of all queries’ PB-based and GS-based evaluation differences, i.e., {r; —
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Figure S3: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. The query embedding dimension is reduced to 100.
Other explanations are the same as Figure 1.
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Figure S4: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. GS data are not normalized to align the variance with
PB data. Other settings are the same as Figure 1.
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Figure S5: The efficiency gains of different routing strategies compared with the random routing
baseline versus the primary model usage ratio. PB data are collected by another LLM judger: Grok
4 Fast. Other settings are the same as Figure 1.
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A.7 EVALUATION-COLLECTING PROMPTS IN NUMERICAL EXPERIMENTS

In this section, we present the four prompts we use to collect the GS and PB evaluation data for our
numerical experiments in §4.1 and §4.2 as follows.

Prompt collecting the gold-standard evaluation from G ini for HealthBench

You are an expert medical educator and response evaluator. Evaluate this single medical response according to the provided criteria.

**Qriginal Question:**
{prompt}

**Evaluation Criteria:**
{rubrics}

*#*]deal Completion (Reference):**
{ideal_completions_data}

**Reponse to Evaluate:**
{response}

**Evaluation Rules:**
1. Read each criterion exactly as written
Award points only if the criterion is completely satisfied
Award 0 points for partial matches or close approximations
If a criterion specifies exact details (numbers, procedures), require exact matches
Be precise with medical/technical details

‘When in doubt, award O points rather than partial credit

N A

For negative criteria (penalties), apply the full penalty if violated

**Qutput Format:**

{

"total_score": <sum of all criterion points>,
"criterion_scores": {
"criterion_1": <points awarded/deducted>,
"criterion_2": <points awarded/deducted>,
"criterion_3": <points awarded/deducted>,

Prompt collecting the preference-based evaluation from GPT-5 mini for HealthBench

You are a medical expert evaluating Al responses to healthcare questions. Your task is to compare two Al responses and determine which one is
significantly better from a medical perspective.

**Evaluation Criteria:**

Medical accuracy and safety

Completeness of advice
- Appropriateness for the patient’s situation

- Professional tone and clarity

Adherence to medical best practices

**Instructions: **
1. Read the patient’s question carefully
2. Evaluate both Response A and Response B
3. Return ONLY a single number:

- 1if Response A is significantly better
- -1 if Response B is significantly better
- 0 if both responses are roughly equivalent in quality

*#*Patient Question:**
{prompt}

**Response A:##
{response_a}

**Response B:#*
{responseb}

**Your evaluation (return only 1, -1, or 0):**
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Prompt collecting the gold-standard evaluation from GPT-5

You are an expert legal and finance educator and response evaluator. Evaluate this single legal or finance response according to the provided criteria.

*#*Qriginal Question:**
{prompt}

**Evaluation Criteria:**
{rubrics}

**Reponse to Evaluate:**
{response}

**Evaluation Rules:**
1. Read each criterion exactly as written
Award points only if the criterion is completely satisfied
Award 0 points for partial matches or close approximations
If a criterion specifies exact details (numbers, procedures), require exact matches
Be precise with medical/technical details

When in doubt, award 0 points rather than partial credit

SOe o W

For negative criteria (penalties), apply the full penalty if violated

**Qutput Format:**

{
"total_score": <sum of all criterion points>,
"criterion_scores": {
"criterion_1": <points awarded/deducted>,
"criterion_2": <points awarded/deducted>,
"criterion_3": <points awarded/deducted>,

Prompt collecting the preference-based evaluation fr: ini for PRBench

You are a financial/legal® expert evaluating Al responses to finance/legal questions. Your task is to compare two Al responses and determine which one
is significantly better from a financial/legal perspective.

**Evaluation Criteria:**
(if the query is related to finance) (if the query is related to legal)

- Financial Accuracy Legal Accuracy
- Process Transparency & Auditability - Application of Law to the Facts

Procedural Correctness

Handling Uncertainty

- Practical Utility - Handling Uncertainty

- Risk & Ethical Disclosure - Practical Utility

- Supplemental Insight - Risk & Ethical Disclosure
- Instruction Following - Supplemental Insight

Instruction Following

**Instructions: **
1. Read the client’s question carefully
2. Evaluate both Response A and Response B
3. Return ONLY a single number:

- 1if Response A is significantly better
- -1 if Response B is significantly better
- 0if both responses are roughly equivalent in quality

*+Patient Question:**
{prompt}

**Response A:*#
{response._a}

**Response B:**
{responseb}

**Your evaluation (return only 1, -1, or 0):**

aUsing the words “financial” or “legal” depends on the type of the corresponding query. For the A/B format below, the same logic applies.
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A.8 THE USE OF LARGE LANGUAGE MODELS (LLM)

For this project, LLMs were used to polish the writing of the main paper and to assist with coding
for the numerical experiments.
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