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ABSTRACT

Slot-oriented approaches for compositional scene segmentation from images and
videos still depend on provided background information or slot assignments. We
present Loci-Segmented (Loci-s) building on the slot-based location and identity
tracking architecture Loci (Traub et al., ICLR 2023). Loci-s enables dynamic (i)
background processing by means of a foreground identifying module and a back-
ground re-generator; (ii) top-down modified object-focused bottom-up processing;
and (iii) depth estimate generation. We also improve automatic slot assignment
via a slot-location-entity regularization mechanism and a prior segmentation net-
work. The results reveal superior video decomposition performance in the MOVi
datasets and in another established dataset collection targeting scene segmenta-
tion. Loci-s outperforms the state-of-the-art with respect to the intersection over
union (IoU) score in the multi-object video dataset MOVi-E by a large margin and
even without supervised slot assignments and without the provision of background
information. We furthermore show that Loci-s generates well-interpretable latent
representations. These representations may serve as a foundation-model-like in-
terpretable basis for solving downstream tasks, such as grounding language, form-
ing compositional rules, or solving one-shot reinforcement learning tasks.

1 INTRODUCTION

Visual scene understanding from images or videos presents unique challenges. Classical architec-
tures such as CNNs (Liu et al., 2022) or ViTs (Vision Transformers) (Dosovitskiy et al., 2020)
exacerbate existing limitations, being data-hungry, susceptible to adversarial attacks, and low on in-
terpretability. To address these challenges, slot attention mechanisms have emerged as a promising
avenue (Locatello et al., 2020). These architectures offer a way to bind features into ’slots’ that
dynamically represent distinct entities in a scene (Locatello et al., 2020), building upon prior work
in attention mechanisms (Vaswani et al., 2017) and capsule networks (Sabour et al., 2017). Current
state-of-the-art systems include the Slot Attention for Video model (SAVi++, Elsayed et al.), which
however applies supervised slot assignments upon trial initialization, and the location and identity
tracking slot-based recurrent architecture (Loci, Traub et al., 2023b), which assigns slots without
supervision but relies on static backgrounds. Our work builds on Loci.

Loci has shown superior performance on the CATER challenge, in which objects (balls and cones)
are transported hidden within other objects (cones). It is rather closely related to other slot-based
object processing architectures including SAVi++ (Elsayed et al.; Locatello et al., 2020; Kipf et al.,
2022; Wu et al., 2023), surveyed in (Yuan et al., 2023). It differs in (i) its slot-specific encoding
approach that starts from pixels, (ii) its emergent disentanglement of objects from positions, and
(iii) its event-oriented internal processing loop. Up to now, Loci relied on a static background-
encoding module. As a result, it was not applicable to more complex dynamic backgrounds or
moving cameras. Moreover, Loci was not able to profit from or predict depth information.

In this work, we enable Loci to deal with (i) dynamic complex backgrounds, (ii) videos where the
camera is moving, and (iii) depth information. Additional incremental improvements enable the
segmentation of scenes with more complex and diverse objects. Thereby, we enhance the state-of-
the-art of scene segmentation algorithms in both the MOVi-* datasets (Greff et al., 2022) as well as
in a scene segmentation dataset benchmark suite used in a recent review paper (Yuan et al., 2023).
Our key contributions are:
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Figure 1: The primary Loci-s architecture features: a Hyper-ConvNeXt encoder, which generates
Position and Gestalt codes slot-individually; an Update module, which adaptively fuses current
encoder information with prior temporal predictions; a Transition module, which calculates object
dynamics via a GateL0RD layer (i.e., a strongly gated RNN, cf. Gumbsch et al., 2021) and inter-
slot interactions via self-attention; finally, a Decoder module, which computes sequential slot-wise
predictions including depth estimates for the subsequent frame.

(i) A novel dynamic background processing module, which enables foreground-background
separation including background depth and RGB reconstruction;

(ii) An enhanced encoder processing pipeline with top-down controlled second-order connec-
tions, facilitating adaptive object-focused encodings;

(iii) An enhanced decoder processing pipeline that introduces faster sequential mask-prioritized
decoding and the generation of object depth estimates;

(iv) The optional inclusion of Scene-Relative-Depth as an input channel;

(v) The implementation of improved slot assignment techniques, including slot-location-entity
regularization and the inclusion of a standard prior segmentation network;

(vi) Superior segmentation and video decomposition performance in numerous benchmarks.

2 LOCI ARCHITECTURE

Before detailing the novel extensions in Loci-s, we briefly introduce Loci (Traub et al., 2023b).
Loci is a slot-based object-oriented processing architecture that consists of a slot-wise encoder, a
transition, and a decoder module (cf., Figure 1).

Encoder Module: In contrast to other slot-based approaches (Yuan et al., 2023), Loci slots each
start from the input image. At time point t, each slot k receives as input the actual video frame
It, the previous prediction error Et, and a background mask M̂ t

bg . Moreover, to focus each slot
on its own object encoding, previous slot predictions are fed in as additional input, including its
predicted position Q̂t

k encoded as an isotropic Gaussian in pixel space, its visibility mask M̂ t,v
k

and object mask M̂ t,o
k encoded as grayscale images, its RGB image R̂t

k, and the summed visibility
masks of the remaining slots M̂ t,s

k . As output, the encoder produces two key types of codes for
each slot by means of a ResNet architecture: Gestalt Codes G̃t

k: A 1D latent representations of an
object’s appearance, capturing shape, color, texture, and other visual attributes; Position Codes P̃ t

k:
A disentangled spatial property code including the object’s 2D location (xk, yk), its size (σk), and
its distance in depth encoded as a priority code (ρk).

Transition Module: The transition module contains a slot-wise recurrent module and a multi-
head attention module. The recurrent module implements GateL0RD units, which encode LSTM-
like recurrent cells with an even stronger shielding, to foster event-predictive encodings (Gumbsch
et al., 2021). The multi-head attention module enables the object-interaction-oriented exchange
of information between slots. As its result, the transition module outputs next object-respective
Gestalt-Codes Ĝt+1

k and positions P̂ t+1
k .
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Figure 2: Left: Encoder visualization with the added depth information and slot-wise depth and
object mask channels (in red). Right: A single Hyper-ConvNeXt block within the encoder where a
top-down hyper-network translates Ĝt

k into spatial convolutional kernel weight residuals.

Decoder Module: The decoder module reconstructs the predicted scene starting from a 3D tensor
that combines the Gestalt code vector as channels with the positional encoding (xk, yk,σk). It then
upscales this tensor to the full input resolution via a ResNet. The outputs are an RGB slot image
R̂t+1

k , visibility mask M̂ t+1,v
k , and position Q̂t+1

k . The scene is finally recomposed by combining
the masked RGB outputs with respect to their respective priority codes ρ̂k and the background mask.

3 METHODOLOGY

Loci-s builds on Loci but significantly enhances its abilities: We enable the processing and pre-
diction of depth information; we design an even more dynamic encoder-decoder framework; and
we introduce a dedicated background processing module. Detailed Loci-s network wiring and size
information can be found in Appendix C.

3.1 DEPTH AS INPUT

We introduce a novel input channel to the Loci-s model, denoted as Scene-Relative Depth (see
Appendix B for more details). Depth normalization is expected to significantly support object seg-
mentation, as object edges will naturally be marked by spatial depth non-linearities. While this
channel enhances performance further, our ablation studies below show that the Loci-s model yields
superior performance in MOVi-E also without depth information as input.

3.2 ENCODER

The encoder and decoder subnetworks adopt a ConvNeXt-like architecture Liu et al. (2022), replac-
ing the previously used ResNet architecture. Furthermore, we add an inner top-down processing
loop to the architecture, which propagates predicted Gestalt code information Ĝt

k directly into the
encoder. These codes are utilized within a hypernetwork to compute dynamic residuals for the
depth-wise convolutional kernels present in the ConvNeXt blocks of the encoder (see Figure 2).
This architectural modification enables the encoder to integrate top-down feedback into its compu-
tations, thereby improving the object-specific encoding pipeline.

3.3 DECODER

We introduce a cascaded decoder architecture, shown in Figure 3, and partition the Gestalt Code
Gt

k into three segments, each comprising 256 elements. These segments encode mask Gmt
k, depth

Gdtk, and RGB channels Grtk. The Mask Decoder module uses element-wise multiplication between
the Gestalt Code ˆGmt

k and a two-dimensional isotropic Gaussian heatmap generated from Position
Code P̂ t

k. This modulated spatialized Gestalt Code is then subject to a compact convolutional neural
network. The Depth Decoder module is implemented by a U-Net architecture. It decodes the depth
information via the predicted Depth Gestalt Code Ĝdtk, which is multiplied layer-wise with the com-
puted object mask, enforcing masked outlines. The RGB Decoder module clones the Depth Decoder
architecture but additionally receives the Depth Decoder’s output as input. Finally, the RGB image
of the encoded object is reconstructed via the RGB Gestalt code, which is layer-wise multiplied with
the computed object mask and additionally informed by the generated depth estimations.
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Figure 3: Decoder visualization illustrating the cascaded reconstruction strategy, first decoding the
mask, then the depth, and finally the RGB image of a slot-encoded entity.

The cascading of the decoder architecture does not only encourage a disentangled encoding of an
object’s mask (i.e., its shape), its distance to the camera (i.e., its depth), and its appearance, but
it also facilitates appearance reconstruction because the prediction of the mask is easier and then
informs the depth and RGB-pattern reconstruction. Additionally, the cascaded decoder facilitates
the reconstruction of the unoccluded raw mask M̂ t,o

k and the occlusion-aware mask M̂ t
k, because

only the Mask-decoder, but not the Depth and RGB decoders, needs to be re-run to generated the
occlusion-aware mask.

3.4 BACKGROUND

Another pivotal enhancement in our work is the development of a Background Module, which is
trained prior to the slotted architectural components. This module enables the application of Loci-
s to environments with complex backgrounds, featuring both intricate backgrounds and moving
cameras. As delineated in Figure 4, this module is bifurcated into two core elements: an Uncertainty
Network and a Background Extraction Network.

The Uncertainty Network employs a U-Net architecture with ConvNeXt residual blocks. Skip con-
nections between down-sampling and up-sampling layers avoid vanishing gradients. The network is
trained in a supervised manner to compositionally segment the foreground in a scene, generating an
uncertainty mask that predicts the provided foreground mask from either pure RGB or RGB+Depth
depending on the used version (Loci-s or Loci-sd). It thus learns to deem dynamic foreground
objects ‘uncertain’, in contrast with the generally stable background elements in natural scenes.

The output from the Uncertainty Network serves as a masking function for the Background Extrac-
tion Network. This network implements a masked autoencoder using a Vision Transformer. This
Vision Transformer is designed to predict both the RGB values and the depth map from either RGB
alone or from both RGB and depth maps . By selectively masking-out foreground objects, we intro-
duce a bias favoring the exclusive reconstruction of the background elements. To further accentuate
this bias, we constrain the depth reconstruction module with a narrow bottleneck. The network
is trained as a background autoencoder by masking the reconstruction loss with the inverse of the
foreground mask.

3.5 PRETRAINING OBJECT ENCODINGS AND DECODINGS

The original Loci architecture was fully trained end-to-end without any information on objects what-
soever. While Loci-s could also be trained in this way, in order to speed-up learning and save compu-
tational resources, we implement a sequential pre-training strategy specifically tailored for Loci-s’s
encoder and decoder components. It is trained on single-object detection and reconstruction tasks.
To initialize it, the encoder is furnished with an input frame with all slot-specific inputs nullified
except for the slot-specific 2D Gaussian position, which is computed from the ground-truth target
mask during this training stage. To avoid reliance on exact position encodings, the encoding is sub-
jected to stochastic perturbations while ensuring its confinement within the mask’s boundary. Any
slot-specific inputs contingent with other slots are explicitly nullified. Note that during this pre-
training stage we thus encourage slots to encode particular masks, but we do not initialize the slots
explicitly to ground-truth bounding boxes. During all evaluations, we do not provide any supervised
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Figure 4: Background module: Input RGB or RGB+Depth is used to compute an Uncertainty or
Foreground Mask via a U-Net. The mask is used in a Masked Autoencoder to reconstruct a back-
ground representation from the foreground masked input image (RGB or RGB+Depth).

slot information whatsoever. This is in stark contrast to SAVi++, where slots are initialized to the
ground-truth bounding boxes in the first frame during training and evaluation (Elsayed et al.).

3.6 SEGMENTATION PREPROCESSING

In the process of pre-training the encoder-decoder architecture on discrete object instances, the
Loci-s network acquires a foundational ability to en- and decode objects. Learning is furthermore
supported by the pre-trained background module, which distinguishes foreground entities from the
background context. The remaining challenge lies in the accurate identification and allocation of
objects into distinct slots. SAVi++ provides ground-truth bounding box information to accomplish
this step (Elsayed et al.). Our work explores three methodologies for the initial assignment of slots,
without relying on ground-truth information.

First, we utilize a stochastic positioning strategy within the foreground mask that is generated by the
Uncertainty Network. In particular, we sample a location uniformly randomly within the generated
uncertainty map, which essentially predicts object masks. We initialize an empty slot with this
location encoded as a 2D Gaussian position Qt

k, similar to the pretraining of the object-specific
encodings and decodings specified above. This serves as the most rudimentary technique.

This first approach, however, is susceptible to the erroneous partitioning of larger objects, because
multiple random positions may be selected within the same object. To mitigate this, our second
approach—termed “Regularized Initial Slots”—retains the random sampling paradigm during a
warm-up phase. Following each network pass, though, we compute a similarity metric for each
slot pair, based on both the Euclidean distance between their positional codes and the correlation
of their Gestalt codes. Slots exhibiting a similarity below a predefined threshold are nullified in a
stochastic manner.

The third approach employs a specialized segmentation network akin to YOLACT (Bolya et al.,
2019), which was trained supervised using a Cross-Entropy loss comparing predicted instance masks
with the best matching ground truth once. The best matching was computed using a linear sum
assignment with IoU as the metric. For more details on the architecture or segmentation performance
see appendix (cf. Table 7 and Table 3). Initial slot positions are calculated based on the instance
masks outputted by this network. Additionally, the instance masks are used as a teacher forcing
signal, instead of the actual slot masks, during a slot initialization phase that is applied on the initial
frame.

4 EXPERIMENTS & RESULTS

In our experimentation pipeline, we initially pretrain our models on the Kubric MOVi-(a-f) dataset
(Greff et al., 2022). Subsequently, we employ two distinct strategies: (1) full model training on
MOVi-(a-e) for benchmarking against SAVi++ (Elsayed et al.), and (2) fine-tuning the encoder,
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Table 1: Loci-s demonstrates largely superior performance in the MOVi Challenge, benchmarked
against SAVi++ (Elsayed et al.). The results show that segmentation performance critically depends
on the strategy for initial slot assignment. Note that SAVI++ provides ground-truth masks to each
slot in the first frame. Loci-s, on the other hand, uses our novel segmentation preprocessing strategy.
A segmentation network-informed slot assignment (seg) with depth information as input (Loci-sd)
yields the best score. Random slot assignments given the uncertainty map from the Uncertainty
Module (rnd) clearly show the importance to start with good slot assignments, yielding performance
worse than SAVi++ but still better than SAVi in MOVi-D and MOVi-E. Employing the regularized
initial slot technique (reg) during the initialization phase yields intermediate outcomes. The smaller
standard deviation (±) of our results also hints at a more reproducible training and evaluation of
Loci-s than SAVI++ and especially SAVI.

mIoU↑ (%) FG-ARI↑ (%)
Model MOVi-C MOVi-D MOVi-E MOVi-C MOVi-D MOVi-E
CRW 27.8± 0.2 45.3± 0.0 47.5± 0.1 * * *
SAVi 43.1± 0.7 22.7± 7.5 30.7± 4.9 77.6± 0.7 59.6± 6.7 55.3± 5.8

SAVi++ 45.2± 0.1 48.3± 0.5 47.1± 1.3 81.9± 0.2 86.0± 0.3 84.1± 0.9

Loci-sd (rnd) 40.3± 0.1 40.9± 0.3 44.4± 0.2 58.5± 0.6 49.8± 0.2 60.8± 0.2
Loci-sd (reg) 45.7± 0.2 47.9± 0.3 49.2± 0.3 74.1± 0.3 74.0± 0.9 81.3± 0.8
Loci-sd (seg) 45.5± 0.1 51.8± 0.1 53.5± 0.1 79.2± 0.3 81.1± 0.2 88.5± 0.2
Loci-s (rnd) 33.4± 0.3 38.8± 0.2 41.2± 0.2 60.4± 0.5 54.3± 0.3 63.9± 0.6
Loci-s (reg) 35.7± 0.2 41.2± 0.2 42.4± 0.1 68.1± 0.5 71.4± 0.7 78.3± 0.1
Loci-s (seg) 36.2± 0.1 44.9± 0.1 47.0± 0.1 72.7± 0.3 79.5± 0.2 85.1± 0.0

decoder, and background modules on the datasets delineated in the Computational Scene Represen-
tation Review (Yuan et al., 2023) prior to Loci-s training on these datasets.

For video dataset training, we employ a warm-up phase comprising three iterations, during which
only the encoder and decoder are updated, omitting the predictor. This warm-up occurs on the initial
frame. We utilize truncated backpropagation through time (BPTT) with a sequence length of 2 for
sequence-based learning. In contrast, for image datasets, we omit the warm-up phase and iteratively
forward and backward propagate the same image for three cycles.

In the inference phase, we extend the warm-up iterations to 10 for both video and image data, which
showed an empirical improvement in performance. Additionally, in image-centric tasks, we augment
the number of full-architecture iterations to 10, totaling 20 processing steps: 10 for encoder/decoder-
only warm-up and 10 for full architecture evaluation.

4.1 VIDEO EVALUATION

The design of Loci-s primarily centers around temporal predictions, hence a detailed comparative
study is performed against SAVi++ on the MOVi-(c-e) dataset. To maintain evaluative consistency,
we adhere to the same performance measures as outlined in the SAVi++ paper, namely the Per-Frame
Intersection over Union (IoU) and the Per-Sequence Foreground Adjusted Rand Index (FG-ARI).

As illustrated in Table 1, Loci-s manifests a notable performance uplift, registering a 13.59% relative
IoU improvement on the most demanding MOVi-E dataset, elevating the score from 47.1% (attained
by SAVi++) to 53.5% (Loci-s with depth input and segmentation preprocessing). The FG-ARI met-
ric, which encapsulates both spatial fidelity and the temporal consistency of the computed masks,
presents a more nuanced landscape. While Loci-s achieves the best score in the MOVi-E dataset,
SAVi++ exhibits superior performance in the MOVi-C and MOVi-D datasets. This performance
discrepancy can be partially attributed to their architectural distinctions: SAVi++ incorporates an
explicit history of previous frames to predict the current frame, while Loci-s fuses current observa-
tions to form the next frame prediction.

In light of these architectural design choices, Loci has demonstrated stable slot activations over
extended temporal windows (Traub et al., 2023b). However, the masks decoded from the predicted
Gestalt codes M t+1

k are less accurate than those derived directly from the encoder M̃ t
k. The encoder

masks, on the other hand, suffer from low temporal consistency, since the information fusion of
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Figure 5: Example of an occluded object inference given ground truth RGB image and depth map.

Figure 6: Interpretable slot-wise decomposition of the input from Figure 7 into RGB, depth, and
mask reconstructions as well as position estimates (rows). Only occupied slots (columns) and the
background module output (most right column) are shown.

G̃t
k with Gt−1

k happens afterwards via the update gate and also inside the predictor itself (via the
GateL0RD recurrences). At the moment the challenge remains to further improve the fusion of
accurate mask reconstructions (G̃t

k) with stable temporal predictions (G̃t−1
k ).

4.2 IMAGE EVALUATION

In a recent review paper about compositional scene understanding, Yuan et al. (2023) proposed a
total of 6 datasets ranging in complexity from compositing MNIST to realistic texture simulations
like MOVi-(c-e). These datasets are constructed in a way to perform two test: an in-distribution test
with the same number of objects in a scene as seen during training (between 3 and 6); and another
out-of-distribution test that probes generalization abilities with object numbers ranging from 7 to 10.
In our experiments we used a pretraind (on MOVi-(a-f)) encoder-decoder network and fine-tuned it
using all 6 datasets at once. We then further trained Loci-s on these combined 6 datasets and set
the maximum number of slots to 6 during training. We then selected the model checkpoint form the
epoch with the lowest validation error. For the generalization test we simply increase the maximum
number of slots without further training to 10. We test the following metrics, which were reported by
Yuan et al. (2023): Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), Intersection

Figure 7: Loci-s segmentation example of the generalization datasets from the compositional scene
understanding paper Yuan et al. (2023). The datasets are compositions of MNIST digits or dSprites,
the Abstract Scene dataset, CLEVR, SHOP VRB, and a combination of GSO and HDRI-Haven.

7



Under review as a conference paper at ICLR 2024

Table 2: Loci-s largely outperforms all other reported approaches. Only in the object-specific ad-
justed mutual information (AMI) score and the object counting accuracy GMIOO is better.

AMI-A ARI-A AMI-O ARI-O IoU F1 OCA OOA
Test 1 Validation (3-6 Objects)

AIR 0.380 0.397 0.845 0.827 N/A N/A 0.549 0.709
N-EM 0.208 0.233 0.341 0.282 N/A N/A 0.013 N/A
IODINE 0.638 0.700 0.772 0.752 N/A N/A 0.487 N/A
GMIOO 0.738 0.811 0.916 0.914 0.708 0.808 0.772 0.846
MONet 0.657 0.699 0.863 0.857 N/A N/A 0.663 0.583
GENESIS 0.411 0.412 0.420 0.382 0.105 0.170 0.213 0.603
SPACE 0.640 0.678 0.817 0.765 0.630 0.739 0.436 0.666
Slot Attention 0.393 0.321 0.758 0.711 N/A N/A 0.028 N/A
EfficientMORL 0.341 0.279 0.673 0.621 N/A N/A 0.107 N/A
GENESIS-V2 0.304 0.206 0.728 0.693 N/A N/A 0.153 0.574
Loci-s (rnd) 0.835 0.918 0.735 0.891 0.742 0.822 0.421 -
Loci-s (reg) 0.838 0.921 0.730 0.898 0.731 0.810 0.443 -
Loci-s (seg) 0.844 0.922 0.748 0.920 0.781 0.860 0.505 -

Test 2 Generalization (7-10 Objects)
AIR 0.410 0.402 0.802 0.740 N/A N/A 0.327 0.689
N-EM 0.256 0.268 0.354 0.261 N/A N/A 0.017 N/A
IODINE 0.633 0.652 0.781 0.731 N/A N/A 0.387 N/A
GMIOO 0.732 0.781 0.891 0.868 0.647 0.746 0.534 0.823
MONet 0.635 0.665 0.820 0.785 N/A N/A 0.446 0.619
GENESIS 0.380 0.378 0.415 0.315 0.076 0.132 0.160 0.584
SPACE 0.628 0.639 0.802 0.717 0.543 0.654 0.265 0.650
Slot Attention 0.447 0.330 0.761 0.696 N/A N/A 0.029 N/A
EfficientMORL 0.366 0.236 0.662 0.562 N/A N/A 0.085 N/A
GENESIS-V2 0.378 0.235 0.723 0.655 N/A N/A 0.189 0.617
Loci-s (rnd) 0.820 0.866 0.766 0.875 0.667 0.755 0.228 -
Loci-s (reg) 0.828 0.888 0.768 0.865 0.637 0.724 0.244 -
Loci-s (seg) 0.832 0.877 0.783 0.905 0.706 0.792 0.315 -

over Union (IoU), F1 score and Object Counting Accuracy (OCA). As shown in Table 2 Loci-s
shows superior performance in most metrics for both the in-distribution test and the generalization
test. Note that we did not explicitly train or fine-tune Loci-s on each dataset individually, as don ine
Yuan et al. (2023), but rather trained them on all datasets combined, scaling individual resolutions up
to 256×256 where necessary. We expect even better performance with a dataset-specific fine-tuning
of model and hyper parameters.

4.3 TOP DOWN FEEDBACK ABLATIONS

In Figure 8, we conduct a further ablation study to investigate the impact of top-down feedback in
our architecture. We restrict our evaluation to pre-trained encoder-decoder networks, motivated by
their substantially lower computational cost. Indeed, these networks are trainable using a single
GTX 1080 GPU with a single slot for pre-training. Each experimental configuration is executed
five times, utilizing a consistent set of five random seeds for reproducibility. Our ablation compares
four scenarios evaluating the inner and outer top-down feedback loops: the gated inner loop flexibly
controls the fusion of temporally predicted Position and Gestalt codes with the novel evidence from
the new sensory input; the outer loop controls the hyper-network tuning the spatial convolutional
encoder kernels top-down. We compare the performance of (i) the proposed architecture with both
inner and outer feedback loops, (ii) a version with only outer feedback, (iii) a version with only inner
feedback, and (iv) a baseline with no feedback mechanisms.

The results in Figure 8 demonstrate that the inclusion of top-down feedback is particularly advan-
tageous for mask prediction tasks, resulting in a significant improvement in the Intersection-over-
Union (IoU) metric. While the benefits for the Structural Similarity Index Measure (SSIM) in RGB
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Figure 8: Ablating inner or outer feedback loop confirms their efficacy seeing improvements in per-
object mask intersection-over-union (IoU) and depth structural similarity index measure (SSIM).

reconstruction are less consistent, the depth reconstruction task also profits from the presence of
top-down feedback information.

5 CONCLUSION

The Loci-s model introduces several key innovations in the domain of scene understanding and ob-
ject segmentation. A novel background reconstruction and foreground density estimation approach
greatly facilitates object-oriented scene segmentations without relying on ground-truth slot initial-
ization. Moreover, dynamic convolution kernels via a hyper-network-controlled top-down residual
network facilitates object-specific visual encoding. Finally, the incorporation of depth information
additionally facilitates segmentation performance event further. These advancements collectively
contribute to a 13.59% relative improvement in IoU on the challenging MOVi-E dataset compared to
state-of-the-art models like SAVi++. Even without depth information, Loci-s outperforms SAVI++
in the MOVi-E dataset, even though SAVi++ provides ground-trugh bounding boxes to initialize its
slots in the first frame. Still, Loci-s falls short in some performance metrics, particularly in FG-ARI
in the MOVi-C and MOVi-D datasets when compared to SAVi++. This suggests that while Loci-s
excels in complex environments, it still struggles with fully accurate temporal object trackings. We
suspect that this can be attributed to the fact that Loci-s fully compresses past video frame informa-
tion in the internal recurrent state of its Transition Module. In contrast, SAVi++ maintains the full
history applying attention-controlled fusion of all previous video frames. Our results demonstrate
robustness in both in-distribution and out-of-distribution tests, highlighting the model’s generaliza-
tion abilities. However, it remains an open question whether this robustness extends to more varied
or even more dynamic environments, and how it fares against models optimized for such scenarios.
Furthermore, Loci-s shows great potential in terms of interpretability of deep learning systems, as
shown in Figure 7 (further examples can be found in the appendix and supplementary video mate-
rial).

Future work could integrate past frame information, as done in SAVi++, to enhance its temporal
prediction abilities. Alternatively or additionally, the recurrent internal processing pipeline may
be improved in future work. Taking inspiration from human cognition, from the binding problem,
and from recent computational and conceptual insights into our modularized minds (Greff et al.,
2020; Mattar & Lengyel, 2022; Heald et al., 2023; Butz et al., 2021; Schwöbel et al., 2021), the
background processing module may yet be enhanced to a universal background extraction module
relative to which foreground objects may be extracted. Furthermore, optimally distributing cognitive
processing resources onto currently task-relevant objects and interactions remains as an important
challenge. We believe that segmentation-oriented algorithms, such as Loci-s, constitute one crucial
foundation-model-like module that offers itself to be effectively combined with (i) reinforcement
learning, planning, and reasoning approaches and (ii) language processing modules in future work.
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A APPENDIX

A.1 CLOSING THE INNER LOOP

We enhance Loci’s object tracking abilities similar to Traub et al. (2023a), which draws inspiration
from Kalman filtering (Kalman, 1960). Originally, Loci predicts the next object states via a pixel
space-routed outer loop (see Figure 1; outer loop). We draw inspiration from work in model-based
reinforcement learning, which has recently advocated latent world model predictions (Hafner et al.,
2019; 2020; Ha & Schmidhuber, 2018; Schrittwieser et al., 2020). These allow the imagination of
future scene dynamics via an inner loop, without explicit pixel-based generations. Similarly, we
apply an inner processing loop in Loci-s. (see Figure 1; inner loop).

In accordance with Kalman filtering, Loci-s is enabled to linearly interpolate between the current
sensor information and its predictions. Formally, the current object states St

k = (Gt
k, P t

k) become a
linear blending of the observed object states G̃t

k, P̃ t
k and the predicted object states Ĝt

k, P̂ t
k:

Gt
k = αt,G

k G̃t
k + (1− αt,G

k )Ĝt
k (1)

P t
k = αt,P

k P̃ t
k + (1− αt,P

k )P̂ t
k (2)

The weighting α is specific for each Gestalt and position code in each slot k. Importantly, Loci-s
learns to regulate this percept gate on its own in a fully self-supervised manner. It learns an update
function gθ, which takes as input the observed state S̃t

k, the predicted state Ŝt
k, and the last positional

encoding P t−1
k :

(zt,Gk , zt,Pk ) = gθ(S̃
t
k, Ŝ

t
k, P

t−1
k ) + ε with ε ∼ N (0,Σ), (3)
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Table 3: Performance of our segmentation prepossessing network. While achieving adequate perfor-
mance on evaluation datasets, the preprocessing network clearly fails on the generalization dataset.

mIoU↑ (%)
MOVi-C MOVi-D MOVi-E Review datasets Test 1 Review datasets Test 2

88.39± 0.03 82.48± 0.05 80.89± 0.07 90.98± 0.12 67.31± 0.05

We model gθ with a feed-forward network. To be able to fully rely on its own predictions, Loci-s
needs to be able to fully close the gate by setting α exactly to zero. We therefore use a rectified
hyperbolic tangent to compute α:

(αt,G
k , αt,P

k ) = max(0, tanh((zt,Gk , zt,Pk ))). (4)

An L0 loss on gate openings encourages the reliance on internal beliefs rather than external updates.

B DEPTH INPUT NORMALIZATION

We log-normalized the Scene-Relative Depth, according to Equation 5:

d =
1

1 + exp
(

d̂−µ
σ

) , (5)

where d̂ represents the natural logarithm of the raw depth values. Parameters µ and σ denote the
mean and standard deviation of the log-transformed depth, respectively.

Figure 9: The slotwise decomposition of the input from Figure 7 into unmasked rgb and depth
reconstructions per slot and the background rgb and depth reconstruction. For simplicity we only
show occupied slots.

C DETAILED LOCI-S SIZE AND WIRING INFORMATION

12



Under review as a conference paper at ICLR 2024

Figure 10: Qualitative Analysis of Results on the MOVi-E Dataset: The top two rows show the input
frames while the third row shows the target frame superimposed with the slot masks, and the last
two rows show the next frame predictions.
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Table 4: Encoder Architecture, for more information see the source file in nn/hyper encoder.py

Component Layer Configuration

Encoder Base

ResidualPatchEmbedding Conv2D(16, 32, 4, 4) + AvgPool + Channel Copy
HyperConvNext 32→ 32
ResidualPatchEmbedding Conv2D(32, 64, 2, 2) + AvgPool + Channel Copy
HyperConvNext 64→ 64
ResidualPatchEmbedding Conv2D(64, 128, 2, 2) + AvgPool + Channel Copy
HyperConvNext 128→ 128
HyperConvNext 128→ 128
HyperConvNext 128→ 128

Position Encoder

HyperConvNext 128→ 128
HyperConvNext 128→ 128
HyperConvNext 128→ 4
FeaturesMapToPosition

Gestalt Base Encoder HyperConvNext 128→ 128
HyperConvNext 128→ 128

Mask Gestalt Encoder

ResidualPatchEmbedding Conv2D(128, 256, 2, 2) + AvgPool + Channel Copy
HyperConvNext 256→ 256
HyperConvNext 256→ 256
HyperConvNext 256→ 256
HyperConvNext 256→ 256
PositionPooling

Depth Gestalt Encoder

ResidualPatchEmbedding Conv2D(128, 256, 2, 2) + AvgPool + Channel Copy
HyperConvNext 256→ 256
HyperConvNext 256→ 256
HyperConvNext 256→ 256
HyperConvNext 256→ 256
PositionPooling

RGB Gestalt Encoder

ResidualPatchEmbedding Conv2D(128, 256, 2, 2) + AvgPool + Channel Copy
HyperConvNext 256→ 256
HyperConvNext 256→ 256
HyperConvNext 256→ 256
HyperConvNext 256→ 256
PositionPooling
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Table 5: Predictor Architecture, for more information see the source file in nn/predictor.py

Component Layer Configuration

UpdateController

Linear 1550→ 256
SiLU
Linear 256→ 256
SiLU
Linear 256→ 2

Predictor

InputEmbedding
Linear 774→ 1024
SiLU
Linear 1024→ 1024

GateL0rd 1024→ 1024
MultiheadSelfAttention 1024→ 1204
GateL0rd 1024→ 1024
MultiheadSelfAttention 1024→ 1204
GateL0rd 1024→ 1024
MultiheadSelfAttention 1024→ 1204
GateL0rd 1024→ 1024
MultiheadSelfAttention 1024→ 1204
GateL0rd 1024→ 1024
OutputEmbedding

Linear 1024→ 1024
SiLU
Linear 1024→ 774
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Table 6: Decoder Architecture, for more information see the source file in nn/decoder.py

Component Layer Configuration

MaskDecoder

GestaltPositionFussion
Conv2d 256→ 128, kernel=3, pad=1
SiLU
Conv2d 128→ 64, kernel=3, pad=1
SiLU
Conv2d 64→ 32, kernel=3, pad=1
SiLU
Conv2d 32→ 128, kernel=1
TransposedConv2d 128→ 1, kernel=16, stride=16

DepthDecoder

MaskEncoder
Conv2d 1→ 128, kernel=16, stride=16
SiLU
Conv2d 128→ 32, kernel=1

GestaltMaskFussion Gestalt * MaxPool(mask, kernel=16)
Concat ModulatedGestalt, EncodedMask, PositionalEmbedding
Conv2d 304→ 64, kernel=1
ConvNeXt 64→ 64
ConvNeXt 64→ 64
ConvNeXt 64→ 64
Conv2d 64→ 256, kernel=1
SiLU
TransposedConv2d 256→ 1, kernel=16, stride=16

RGBDecoder

MaskEncoder
Conv2d 1→ 128, kernel=16, stride=16
SiLU
Conv2d 128→ 32, kernel=1

DepthEncoder
Conv2d 1→ 256, kernel=16, stride=16
SiLU
Conv2d 256→ 64, kernel=1

GestaltMaskFussion Gestalt * MaxPool(mask, 16)
Concat ModulatedGestalt, EncodedMask, EncodedDepth, PositionalEmbedding
Conv2d 368→ 128, kernel=1
ConvNeXt 128→ 128
ConvNeXt 128→ 128
ConvNeXt 128→ 128
ConvNeXt 128→ 128
ConvNeXt 128→ 128
Conv2d 128→ 512, kernel=1
SiLU
TransposedConv2d 512→ 3, kernel=16, stride=16
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Table 7: Segmentation preprocessing, see nn/proposal v2.py for more details

Component Layer Configuration

SegmentationUNet

Cat Depth + 2D Grid(-1,1)
ResidualPatchEmbedding Conv2D(3, 64, 4, 4) + AvgPool + Channel Copy
ConvNeXt 64→ 64
ResidualPatchEmbedding Conv2D(64, 128, 2, 2) + AvgPool + Channel Copy
ConvNeXt 128→ 128
ConvNeXt 128→ 128
ResidualPatchEmbedding Conv2D(128, 256, 2, 2) + AvgPool + Channel Copy
ConvNeXt 256→ 256
ConvNeXt 256→ 256
ConvNeXt 256→ 256
ResidualPatchEmbedding Conv2D(256, 512, 2, 2) + AvgPool + Channel Copy
ConvNeXt 256→ 256
HyperNetwork

GlobalAvgPool
Linear 512→ 512
SiLU
Linear 512→ 512
SiLU
Linear 512→ 512

ConvNeXt 512→ 512
Conv2d 512→ 2048, kernel=1
SiLU
Conv2d 2048→ 256, kernel=2, stride=2
ConcatFeatures
Conv2d 512→ 256, kernel=1
ConvNeXt 256→ 256
Conv2d 256→ 1024, kernel=1
SiLU
Conv2d 1024→ 128, kernel=2, stride=2
ConcatFeatures
Conv2d 256→ 128, kernel=1
ConvNeXt 128→ 128
Conv2d 128→ 512, kernel=1
SiLU
Conv2d 512→ 64, 2, stride=2
ConcatFeatures
Conv2d 128→ 64, kernel=1
ConvNeXt 64→ 64
Conv2d 64→ 512, kernel=1
SiLU
Conv2d 512→ 32, kernel=4, stride=4
ApplyHyperWeights Features @ weights, 32, 16
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Table 8: Background Architecture, for more information see the source file in nn/decoder.py

Component Layer Configuration

Uncertainty UNet

MaskEncoder
ResidualPatchEmbedding Conv2D(4, 16, 4, 4) + AvgPool + Channel Copy
ConvNeXt 16→ 16
ResidualPatchEmbedding Conv2D(16, 32, 2, 2) + AvgPool + Channel Copy
ConvNeXt 32→ 32
ResidualPatchEmbedding Conv2D(32, 64, 2, 2) + AvgPool + Channel Copy
ConvNeXt 64→ 64
ResidualPatchEmbedding Conv2D(64, 128, 2, 2) + AvgPool + Channel Copy
ConvNeXt 128→ 128
ConvNeXt 128→ 128
ResidualPatchUpscaling Conv2D(128, 64, 2, 2) + Upscale + Channel Avg
ConvNeXt 64→ 64
ResidualPatchUpscaling Conv2D(64, 32, 2, 2) + Upscale + Channel Avg
ConvNeXt 32→ 32
ResidualPatchUpscaling Conv2D(32, 16, 2, 2) + Upscale + Channel Avg
ConvNeXt 16→ 16
ResidualPatchUpscaling Conv2D(16, 1, 4, 4) + Upscale + Channel Avg

Background Extractor
Base-Encoder

PatchEmbedding
Conv2d 4→ 256, kernel=16, stride=16
SiLU
Conv2d 256→ 64, kernel=1

MHA-Layer 64→ 64
MHA-Layer 64→ 64

Background Extractor
RGB-Encoder

MHA-Layer 64→ 64

Background Extractor
Depth-Encoder

MHA-Layer 64→ 64
Bottleneck token avg + cross attention to single token
Sigmoid
Binarize x← x+ x(1− x)N (0, 1)

Background Extractor
Depth-Decoder

ConvNeXt 64→ 64
ConvNeXt 64→ 64
PatchUpscaling

Conv2d 64→ 256, kernel=1
SiLU
TransposedConv2d 256→ 1, kernel=16, stride=16

Background Extractor
RGB-Decoder

Depth-Encoder
PatchEmbedding 1→ 64
ConvNeXt 64→ 64

Cross-Attention-Layer 64→ 64
ConvNeXt 64→ 64
ConvNeXt 64→ 64
PatchUpscaling

Conv2d 64→ 256, kernel=1
SiLU
TransposedConv2d 256→ 1, kernel=16, stride=16
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