
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIGHLY EFFICIENT AND EFFECTIVE LLMS WITH
MULTI-BOOLEAN ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Weight binarization has emerged as a promising strategy to reduce the complexity
of large language models (LLMs). Existing approaches fall into post-training bina-
rization, which is simple but causes severe performance loss, and training-aware
methods, which depend on full-precision latent weights, adding complexity and
limiting efficiency. We propose a novel framework that represents LLMs with
multi-kernel Boolean parameters and, for the first time, enables direct finetuning
LMMs in the Boolean domain, eliminating the need for latent weights. This en-
hances representational capacity and dramatically reduces complexity during both
finetuning and inference. Extensive experiments across diverse LLMs show our
method outperforms recent ultra low-bit quantization and binarization techniques.

1 INTRODUCTION

0.0 2.5 5.0 7.5 10.0 12.5

15

20

25

30

35

40

Model Size (GB)

Pe
rp

le
xi

ty
on

C
4

(←
)

Figure 1: Finetuning OPT mod-
els (Zhang et al., 2022) using
our 3 Boolean kernels ( ), com-
pared to GPTQ (Frantar et al.,
2023) ( ), which quantizes the
models to 3 bits, and the FP16
baseline ( ) on the C4 dataset.

Large language models (Brown et al., 2020; Touvron et al., 2023a;
Liu et al., 2024a) have demonstrated unprecedented capabilities,
largely due to the continuous growth in both model and dataset
sizes. A key area of focus in optimizing these models is lower-
precision computation, which offers substantial benefits in terms
of memory and computational efficiency. One prominent approach
to achieving this is through the quantization of weight parameters,
which reduces the model size by lowering the precision of the weight
values. Recent studies on scaling laws (Dettmers & Zettlemoyer,
2023; Kumar et al., 2025) have highlighted the potential of using
low-precision techniques for large language models (LLMs).

Binarization represents one of the most extreme forms of quantiza-
tion for LLMs. While significant progress has been made, challenges
remain (Yuan et al., 2024; Huang et al., 2024; Li et al., 2025). Even
with advanced techniques like Quantization-Aware Training (QAT),
which fine-tunes the model extensively after binarization (Xu et al.,
2024; Jo et al., 2024), or trains it from scratch (Wang et al., 2023), performance still lags behind that
of full-precision (FP) models. This performance gap can be attributed to the limited representation
capacity of binary weights and the heavy reliance on FP latent weights for binarization. This reliance
not only makes the approach computationally expensive but also suboptimal, as it requires gradient
approximation. Meanwhile, recent advances in 4-bit quantization have achieved remarkable com-
pression with minimal accuracy loss, but further compression or applying these methods to smaller
models has yielded unsatisfactory results (Frantar et al., 2023; Lin et al., 2024).

In this paper, we aim to push the boundary of low-precision LLMs by proposing a novel method
named as Multiple Boolean Kernels (MBOK). We extend the work in Nguyen et al. (2024), which
proposes training neural networks with native Boolean weights directly in the Boolean domain,
However, effectively applying this approach to LLMs remains a key challenge. In particular, our
contributions are:

• We propose the framework MBOK, which employs multiple Boolean kernels, each using distinct
Boolean weights (§ 4.2). This allows for flexibly representing LLMs with low bits, while approaching
to FP performance with minimal both finetuning and inference cost. The Boolean weights are directly
trained in Boolean domain, avoiding the need for FP latent weights and gradient approximations.

• We propose a novel successive method that effectively transfers knowledge from an FP LLM into the
Boolean model (§ 4.3), followed by further fine-tuning using knowledge distillation (§ 4.3.2).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We introduce a method for automatically allocating the number of kernels for each weight (§ 5),
supporting any average bit-width, including fractional values.

• We provide a comprehensive empirical analysis and benchmarks, demonstrating our method’s
superior performance over recent binarization and quantization approaches (see § 6) with much
lower memory and computational overhead. For example, Fig. 1 shows that our method achieves
the best accuracy-compression trade-off, outperforming FP and existing quantization techniques.

2 RELATED WORKS

LLMs quantization. Quantization techniques are commonly used to reduce the memory and
latency of LLMs. They fall into two categories: QAT, which involves retraining or finetuning in
a quantized form, and Post-Training Quantization (PTQ), which can be applied directly without
retraining. Due to the difficulty of retraining such large models, most work focuses on PTQ (Frantar
et al., 2023; Sheng et al., 2023; Lin et al., 2024; Lee et al., 2024), though recent efforts also explore
QAT via data-free methods (LLM-QAT (Liu et al., 2024c)), or parameter-efficient fine-tuning like LoRA
(Dettmers et al., 2023). A promient PTQ method is GPTQ (Frantar et al., 2023), which introduces
one-shot low-bit weight quantization using approximate second-order information. Follow-up work
refines this by addressing outliers (Kim et al., 2024; Dettmers et al., 2024), accounting for activation
effects (Lin et al., 2024; Lee et al., 2024), and optimizing quantization parameters (OmniQuant (Shao
et al., 2024)). However, effective LLMs quantization is still challenging (Xu et al., 2025).

Binarization. This represents the most extreme form of quantization, typically using the sign(·)
function with gradients estimated via the straight-through-estimator (STE) (Bengio et al., 2013). Early
work focused on small Transformer models (Vaswani et al., 2017) trained or fine-tuned on labeled data
(Bai et al., 2021; Qin et al., 2022; Liu et al., 2022; 2023). Recent efforts have extended binarization
to LLMs. Methods like BiLLM (Huang et al., 2024), PB-LLM (Yuan et al., 2024), STBLLM (Dong et al.,
2025), and ARB-LLM (Li et al., 2025) adopt hybrid PTQ approaches, binarizing non-salient weights
while using higher precision for important ones, with calibration data used to adjust scaling factors.
BitStack (Wang et al., 2025), QBB (Bulat et al., 2024), DB-LLM (Chen et al., 2024) further improve
this with multiple binary bases, either through a training-free method or via knowledge distillation.
In contrast, BitNet (Wang et al., 2023) replaces linear layers with a custom 1-bit weight structure,
BitLinear, and trains the model from scratch. OneBit (Xu et al., 2024), which decomposes weights
into 1-bit components and scaling vectors for QAT, further enhanced by MoS (Jo et al., 2024) using
a mixture of scalings. Despite progress, these methods remain costly due to their dependence on
FP latent weights during training. Table 1 summarizes the key characteristics of these methods in
comparison to ours.

Table 1: A summary of SOTA binarization methods for LLMs compared to our method.

Method Train
from Scratch

Post-training
Binarization

Finetune from
FP Model

Calibration
Data

Weight
Update

Multiple
Binary Bases

Higher-bit
Salient Weights

BitNet (Wang et al., 2023) ✓ ✗ ✗ NA FP latent-weights ✗ ✗
BiLLM (Huang et al., 2024) ✗ ✓ ✗ ✓ NA ✓ ✗
PB-LLM (Yuan et al., 2024) ✗ ✓ ✗ ✓ NA ✗ ✓

STBLLM (Dong et al., 2025) ✗ ✓ ✗ ✓ NA ✓ ✓
ARB-LLM (Li et al., 2025) ✗ ✓ ✗ ✓ NA ✓ ✓

BitStack (Wang et al., 2025) ✗ ✓ ✗ ✗ NA ✓ ✗
DB-LLM (Chen et al., 2024) ✗ ✓ ✓ ✓ FP latent-weights ✓ ✗

QBB (Bulat et al., 2024) ✗ ✓ ✓ ✓ FP latent-weights ✓ ✗
OneBit (Xu et al., 2024) ✗ ✗ ✓ ✓ FP latent-weights ✗ ✗

MoS (Jo et al., 2024) ✗ ✗ ✓ ✓ FP latent-weights ✗ ✗

MBOK [Ours] ✗ ✗ ✓ ✓ Native Boolean weights ✓ ✗

3 PRELIMINARIES

Notations. We use a standard notation for vectors (a), matrices (A), and scalars (a). The i-th
element of a vector a is a[i], and the element at the i-th row and j-th column of a matrix A is A[i,j].
The symbol ⊙ denotes element-wise multiplication, with broadcasting if needed.

3.1 PITFALLS OF FULL-PRECISION LATENT WEIGHTS FOR BINARIZATION

Binarization is an effective technique for reducing both the size and computation of deep learning
models by converting high-precision weight parameters into 1-bit values (Hubara et al., 2016;
Courbariaux et al., 2015; Rastegari et al., 2016). For a linear layer, Y = XW⊤

FP + b, where
XFP ∈ Rb×n is the input data, and W ∈ Rm×n with the input size n and output size m, and b ∈ Rm

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

are the FP weights and bias. Binarization results in Y = α ·XW⊤
bin +b, with Wbin = sign(WFP)

and α as a scaling factor (e.g., α = ∥WFP∥1
m×n ) (Rastegari et al., 2016).

During training, the FP weights must be retained for learning the binarized weights. In vanilla
gradient descent, binarized weights are updated as Wbin = sign(WFP − η ·GWFP

), where η is
the learning rate and GWFP

is the gradient of the FP weights. This leads to high memory usage,
especially with optimizers like Adam (Kingma & Ba, 2015), which require storing two additional FP
momenta for each parameter. Moreover, the gradient approximation for binarized weights often uses
a differentiable proxy, like the STE (Bengio et al., 2013), but this introduces performance drops due
to proxy gradient noise. This noise can cause oscillations and instability during training.

3.2 NATIVE BOOLEAN FRAMEWORK FOR NEURAL NETWORKS

To address the issues associated with latent-weight-based approaches, Nguyen et al. (2024) recently
proposed a principled framework for directly training Boolean neural networks in the Boolean domain.
Consider the l-th Boolean linear layer; in the forward pass, the output of the next layer is defined as:

Y
(l)
[k,j] = b

(l)
[j] +

n∑
i=1

L(X
(l)
[k,i],W

(l)
[i,j]), 1 ≤ j ≤ m, (1)

where k denotes the sample index in the batch, and L is a logic gate such as and,or,xor, or xnor;
Hereafter, for clarity, we consider L = xnor as a concrete example. The weights W(l)

[i,j] are Boolean
values {TRUE, FALSE} or {−1,+1}, as typically used in practical implementations.
The logic gate L can be extended to handle mixed-type data. In this paper, we focus on the case where
the input data is real-valued, and the weights are Boolean. Specifically, for an input element x ∈ R,
we define xbool = TRUE ⇔ x ≥ 0, and xbool = FALSE ⇔ x < 0, and |x| its magnitude. The logic
operation between a real input x ∈ R and a Boolean weight w ∈ B is defined as xnor(w, x) ≜ s
such that sbool = xnor(wbool, x) and |s| = |x|.
Backward pass. This layer receives the backpropagation signal from the downstream layer. Specif-
ically, Z(l)

[k,j] ≜ δL
δY

(l)

[k,j]

denotes the variation of the loss function L w.r.t. the output at layer l.

To optimize the Boolean weights, we need to compute the corresponding loss signal, denoted as
Q

(l)
[i,j] ≜

δL
δW

(l)

[i,j]

, which is aggregated over the batch dimension k as:

Q
(l)
[i,j] =

b∑
k=1

1(Q
(l)
[k,i,j] = TRUE)|Q(l)

[k,i,j]| −
b∑

k=1

1(Q
(l)
[k,i,j] = FALSE)|Q(l)

[k,i,j]|, (2)

where Q(l)
[i,j,k] = xnor(Z

(l)
[k,j],X

(l)
[k,i]), and 1(·) is the indicator function. The backpropagation signal

for the upstream layer, P(l)
[k,j] ≜

δL
δX

(l)

[k,j]

, can be computed in a similar manner.

Boolean optimizer. Given the loss signal, the rule for updating the Boolean weight W(l)
[i,j] to

minimize the loss function L is as W(l)
[i,j] = ¬W

(l)
[i,j] if xnor(Q(l)

[i,j],W
(l)
[i,j]) = TRUE. Based on this

update rule, we can develop an optimizer that accumulates the signal Q(l)
[i,j] over training iterations.

Specifically, let W(l),t
[i,j] denotes the weight at iteration t, and M

(l),t
[i,j] represents its accumulator,

initialized as M(l),0
[i,j] = 0. The update rule for the accumulator is then defined as:

M
(l),t+1
[i,j] ← βtM

(l),t
[i,j] + ηQ

(l),t
[i,j] , (3)

where η is the accumulation factor acting as a learning rate, and βt is a regularizing factor that reflects
the system’s state at time t. In our work, we use brain plasticity (Fuchs et al., 2014) and Hebbian
theory (Hebb, 2005) to adaptively set βt. We encourage the reader check Appendix A for details.
Remarks on complexity and applicability to LLMs. This Boolean framework optimizes Boolean
parameters W

(l)
[i,j] directly in the Boolean space, eliminating the need for FP latent weights. As

shown in Eq. 3, the Boolean optimizer is more lightweight than common LLM optimizers like Adam,
requiring only one FP momentum per parameter. This reduces both training and inference complexity
and avoids gradient approximation induced from STE. As shown in Proposition A.10 in Appendix,
xnor(w, s) = w× s, mathematically enabling direct application to existing linear algebra operations.
Practically, native logic operations are much faster than multiplication.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 MULTIPLE BOOLEAN KERNELS

4.1 BOOLEAN REFORMULATION FOR LINEAR LAYERS

Figure 2: Illustration of SVID.

LLMs (Brown et al., 2020) are mostly based on the
Transformer architecture (Vaswani et al., 2017), in
which linear layers are the core elements. Inpsired by
Xu et al. (2024), we employ sign-value-independent
decomposition (SVID) such that an FP input matrix
W ∈ Rm×n of linear layers is decomposed into
one Boolean matrix Wbool ≜ sign(W) and two FP
vectors sin and sout. Precisely, let |W| be the element-wise absolute value of W, write |W| =
UΣV⊤ its singular value decomposition (SVD) (Beltrami, 1990). Using rank-1 approximation of
|W|, sin and sout are given as: sin =

√
σ1V[:,1], and sout =

√
σ1U[:,1]. Then, the input matrix is

approximated as W = Wbool ⊙ |W| ≈Wbool ⊙
(
souts

⊤
in

)
. This procedure is illustrated in Fig. 2.

Proposition 4.1. (Xu et al., 2024) For W ∈ Rm×n, write W = ŨΣ̃Ṽ
⊤

its SVD. Let a =
√
σ̃1Ũ[:,1],

and b =
√
σ̃1Ṽ[:,1]. With the notations as described above, we have:∥∥W −Wbool ⊙ souts

⊤
in

∥∥2
F
≤

∥∥∥W − ab⊤
∥∥∥2
F
. (4)

Remark 4.2. Proposition 4.1 re-states Proposition 2 of Xu et al. (2024) with its precise assumption of
vectors a and b which is necessary for its proof provided in Appendix therein.

Proposition 4.1 shows that using Wbool together with value matrix approximation is better than a
direct rank-1 approximation of W in terms of Frobenius-norm. This emphasizes the important role of
Wbool in approximating the original FP matrix. Moreover, our following Proposition 4.3 shows that
the SVID approximation as described above is optimal for approximating the original matrix Wbool.
Proposition 4.3. For W ∈ Rm×n and the notations as described above, we have:∥∥W −Wbool ⊙ souts

⊤
in

∥∥2
F
≤

∥∥∥W −Wbool ⊙ cd⊤
∥∥∥2
F
, ∀c ∈ Rm×1,∀d ∈ Rn×1. (5)

The proof is given in Appendix D.3. The linear layer can be then reformulated as (Xu et al., 2024):

XW⊤
FP ≈

[(
X⊙ s⊤in

)
Wbool

]
⊙ s⊤out. (6)

4.2 ENHANCED EXPRESSIVITY WITH MULTIPLE BOOLEAN KERNELS

Figure 3: The computation of a linear layer approxi-
mated using multi kernels of Boolean.

We have shown that SVID provides a good approx-
imation of the original weights, its expressivity
can be still limited to capture well the original FP
parameters of complicated models, which were
trained on large-scale datasets over extended pe-
riods of time. To overcome this limitation, we
propose the use of a multi-Boolean kernel struc-
ture for the weights. Specifically, we employ
K kernels, where each kernel utilizes distinct
Boolean weights and scaling factors, to better
represent the original weight parameters. This
leads to the approximation: WFP ≈Wapprox ≜∑K

k=1 W
[k]
bool ⊙ (s

[k]
outs

[k]
in

⊤
). The computation of

a linear layer can then be approximated as follows (see Fig. 3 for an illustration):

XW⊤
FP ≈

K∑
k=1

[(
X⊙ s

[k]
in

⊤
)
W

[k]
bool

]
⊙ s

[k]
out

⊤
. (7)

Here, the computational costs associated with the FP scaling factors, sin and sout, are small because
they only involve element-wise multiplications. The dominant computational cost arises from the
matrix multiplication between the scaled input data, X⊙ sin, and the weights. However, thanks to
the use of Boolean weights, the complexity is significantly reduced, as these multiplications can be

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

replaced by additions. Moreover, as we will demonstrate in § 6.1.1, only a small number of kernels
are required to achieve a reasonable result. Additionally, we find that, after the successive extraction
process from the FP model (§ 4.3.1), we only need to train the Boolean weights for the last kernel and
the scaling factors, further significantly reducing the overall complexity.

4.3 EFFECTIVE KNOWLEDGE TRANSFER INTO BOOLEAN MODELS

We have introduced our proposed multi-Boolean kernel structure for effectively representing the
linear layers of LLMs. In this section, we outline the process for transferring knowledge from a
source FP model to a Boolean model. This process consists of two steps: (1) data-free initialization
to maximize information retention from the source, and (2) data-dependent finetuning, where the
Boolean model is further trained on a target dataset with guidance from the FP model.

4.3.1 SUCCESSIVE EXTRACTION USING SVID

For each linear layer, to initialize the values of the Boolean weights and scaling factors for all kernels,
we successively apply SVID to the given FP weights. The goal here is to further proceed to SVID
process to approximate the residual error introduced by the previous step. Specifically, after each
step of decomposing the weight matrix using SVID, we obtain a residual matrix, which is defined as:

W[k]
res = W

[k]
input −W

[k]
bool ⊙

(
s
[k]
outs

[k]
in

⊤
)
. (8)

Here, W[k]
res is the residual matrix, and W

[k]
bool, s

[k]
out and s

[k]
in are the extracted parameters for the k-th

kernel, while W
[k]
input represents the input FP matrix for step k. For the first step, this is the original

weight matrix, and for subsequent steps, it is the residual matrix obtained from the previous step.

Fig. 4 illustrate this process. Although using multiple kernels effectively captures the original weight
matrix, a residual error still remains at the end of the process. While this residual error is small, it
can accumulate as it propagates through the layers, finally leading to predictions that diverge from
those of the original FP model. To address this issue, it is necessary to further finetune the resulting
model to compensate for these errors and make it better suited to the target task. We will discuss this
in § 6.1.2. In the following section, we will introduce knowledge distillation to achieve this goal.

Figure 4: Illustration of successive extractions of Boolean kernels from a given FP weight matrix.

4.3.2 FINETUNING WITH KNOWLEDGE DISTILLATION

Knowledge distillation (KD) (Hinton et al., 2015) trains a student network to mimic a more powerful
teacher, usually with greater efficiency. The student learns from the teacher’s output distribution
and/or intermediate states as “soft targets”. Here, the FP model is the teacher and the Boolean model
the student. Specifically, the output probability distribution of an LLM for a token X[i] is:

p(X[i]; τ) =
exp(X[i]/τ)∑NV

j=1 exp(X[j]/τ)
, (9)

where NV is the vocabulary size and τ is the softmax temperature. The logit-based knowledge
distillation (KD) loss across the sequence of all output tokens is defined as follows:

Llogits =
1

L

L∑
j=1

Dlogits
(
pFP(X[j]; τ), pbool(X[j]; τ)

)
. (10)

Here, pFP(X[j]; τ) and pbool(X[j]; τ) denote the distributions over the j-th token from the FP and
Boolean models, respectively, with L as the sequence length. We find that τ = 1 works best in
practice. Among possible measures for Dlogits (Ko et al., 2024), the forward Kullback–Leibler (KL)
divergence gives the strongest results; further discussion is in Appendix G.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To further reduce distributional discrepancies in intermediate layers, we additionally employ an
intermediate state–based KD loss over a sequence of hidden states:

Lis =
1

L

∑
h∈H

L∑
j=1

∥∥∥Qj,h
FP −Qj,h

bool

∥∥∥2
2
, (11)

where Qj,h
FP and Qj,h

bool represent the h-th hidden states of the FP and Boolean models for the j-th
token, repsectively; H is the set of chosen intermediate states. Finally, the overall loss is then
computed as L = Llogits + γLis, where γ is a weighted factor that balances the contribution of the
two losses. We empirically found that γ = 10 works best.

5 KERNEL ALLOCATION

Using more kernels enhances the Boolean model’s representational capacity but also increases its size.
We propose a method to automatically allocate kernels per weight under a fixed budget. Let NW

be the number of weights in the FP teacher model, and Kl for l ∈ [1, NW] the number of Boolean
kernels for the l-th weight. Our goal is to determine k ≜ {Kl}l∈[1,NW] subject to design constraints.
Key factors include:

(1) Residual error: Let e[k]l ∈ R denote the approximation error from applying the successive SVID

extraction to the k-th kernel of the l-th weight, measured by the Frobenius norm of W[k]
res (Eq. 8).

(2) Weight importance: Let hl denote the importance of the l-th weight in the FP teacher model.
Higher scores indicate the need for more Boolean kernels. We propose estimating hl using projection
weighted canonical correlation analysis (PWCCA) (Morcos et al., 2018), a reliable method for
analyzing deep model representations. Details are provided in Appendix E.1.

(3) Weight size: The size of the l-th weight is denoted by sl and pl ≜ sl/
∑NW

k=1 sk represents its
relative size in the model.

For a given k, the size of the target Boolean model, in terms of the number of weights, is
∑NW

l=1 Klsl.
Relative to the source FP model, this repersents an expansion ratio, defined as:

ρ(k) ≜

∑NW

l=1 Klsl∑NW

l=1 sl
=

NW∑
l=1

Klpl. (12)

Optimization objective. To control model size, we constrain the expansion ratio to a target
T ≥ 1 and limit the kernel size by Kmax, with T ≤ Kmax ≤ ∞. The optimization space is thus
K ≜ [1,Kmax]

NW , and the problem is formulated as:

k∗ = argmin
k∈K

E(k), s.t. ρ(k) ≤ T, where E(k) ≜
NW∑
l=1

hle
[Kl]
l f(pl). (13)

Here, E(k) is the objective (energy) function, and f(·) is a monotonically decreasing function. In
practice, we use f(pl) = (1/pl) log(1/pl). Intuitively, the goal is to minimize residual error while
prioritizing weights with higher importance and smaller size, balancing accurate knowledge transfer
with model efficiency.
Optimization algorithm. The problem has complexity O(KNW

max), which is prohibitive for LLMs.
To tackle this NP-hard problem efficiently, we note that e[k]l decreases with k for all l, and E(k) is
maximized at k = 1, with any increase in kl reducing E(k). This motivates a heuristic iterative
approach: at each step, increment the Kl that yields the largest reduction in E(k). The full algorithm
is given in Algorithm 9 in the Appendix. We will demonstrate in § 6.5 the practicality of our method.

6 EXPERIMENTS

Setups. In all experiments, we follow the protocol from Jo et al. (2024), without quantizing
activations. The training set combines WikiText2 (Merity et al., 2017) and a selected partition of C4
(Raffel et al., 2020) data, using sequences of length 2048. We apply a cosine decay learning rate with
a 3% warm-up over 3 epochs and batch size 8. Boolean parameters use a maximum learning rate of
5× 10−3, while remaining FP parameters are optimized with AdamW (Loshchilov & Hutter, 2019)
at a maximum learning rate of 2× 10−5, with β1 = 0.9 and β2 = 0.999. Following standard practice
(Jo et al., 2024), performance is evaluated via perplexity on WikiText2 and C4 (lower is better).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6.1 ABLATION STUDIES AND ANALYSIS

6.1.1 EFFECT OF THE NUMBER OF KERNELS

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of Kernels

N
or

m
al

iz
ed

D
ev

ia
tio

n Initialization

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of Kernels

Finetuned Perplexity (↓)

#Kernels 1 2 3 4

Wiki2 39.38 31.47 29.10 28.52
C4 35.44 28.62 26.48 25.90

#Kernels 5 6 7 8

Wiki2 28.19 28.16 28.13 28.08
C4 25.65 25.50 25.40 25.31

Figure 5: Normalized L1 norm difference between the approximated weights at initialization and
after finetuning against the FP weights (∥Wapprox −WFP∥1/∥WFP∥1) , and the final results.

We begin by examining the effect of the number of Boolean kernels on OPT-125M model (Zhang et al.,
2022). Fig. 5 shows the normalized difference between weights approximated via successive SVID and
the original FP weights, both at initialization and after finetuning. Increasing the number of kernels
reduces approximation error and improves perplexity, unlike MoS (Jo et al., 2024), where adding
more experts does not always help and can even hurt performance. Using 3–4 kernels yields a good
approximation, with diminishing improvements beyond that. Interestingly, the normalized difference
relative to the full FP weights is larger after KD finetuning. We hypothesize that KD compensates the
errors due to the lower expressiveness of a small number of kernels, further emphasizing its role in
adapting the model to approximate the FP model rather than exactly replicating each weight.

6.1.2 OPTIMIZATION STRATEGY

0 20000 40000 60000

10
3

Iteration

Llogits

0 20000 40000 60000

2
4
6
8

10
12
14

Iteration

Lis

0 20000 40000 60000

0.0

0.5

1.0

1.5

Iteration

Number of Flips (×103)
Optim.

Wiki2 C4
Kernel

1st 33.90 30.70
2nd 30.29 27.55
3rd 29.00 26.36
4th 28.60 25.93
All 32.04 29.08

Figure 6: The progression of training losses, number of flips, and perplexity of the resulting models
(OPT-125M) is examined with respect to the optimization of different kernel configurations.

Next, we study the effect of optimizing kernels on the OPT-125M model. We consider four Boolean
kernels but train only one at a time, keeping the others frozen. Fig. 6 shows the loss convergence.
Training the first kernel converges slowest, while higher-order kernels improve progressively. As
shown in Proposition 4.1 and Proposition 4.3, the SVID effectively extracts optimal Boolean weights
and scaling factors. In our successive SVID framework, the first kernel is well extracted and captures
the most important information, and higher-order kernels approximate residuals. Since the kernels are
related in a successive manner, modifying lower-order kernels affects higher-order ones. We observe
that training only the first kernel results in many weight flips, indicating optimization difficulty,
whereas fine-tuning only the last kernel efficiently compensates for residual errors, showing the
lowest flip rates and best performance. This is in line with the observation by Liu et al. (2024b),
where they compress “delta” induced by the finetuning process by using 1-bit weights. This further
highlights the advantage of our approach, as training complexity is significantly reduced by only
optimizing the last kernel. Thus, we apply this strategy in all our experiments.

6.2 MAIN BENCHMARK RESULTS

Table 2 compares our method with recent baselines in binarization and 2-bit quantization, evaluating
perplexity and accuracy on zero-shot tasks including Winogrande (Sakaguchi et al., 2021), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), and ARC (Clark et al.,
2018). For our method, we use 2 Boolean kernels, an ultra low-bit setting. Due to space constraints,
the results for LLaMA2-7B and LLaMA2-13B (Touvron et al., 2023b) and different number of Boolean
kernels are provided in Appendix G.4 and Appendix G.3. We note that our method is close to scalar
quantization while being completely orthogonal to vector quantization (VQ) which adds substantial
overhead (Gray, 1984). For completeness, we encourage the reader refer to Appendix G.7 for VQ
comparisons, and Appendix G.6 for further baselines.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Our method consistently and significantly outperforms the baselines in both perplexity and zero-shot
accuracy, achieving results close to the FP16 baseline despite using only a budget of 2 bits for weight.
As expected, QAT methods like OneBit and MoS perform better than PTQ methods, but this comes
at the cost of extensive finetuning. In contrast, our approach efficiently address this problem by
optimizing parameters directly in Boolean space, avoiding the need for optimizing in FP latent sapce.

Table 2: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLMs.

Model Method Wbits Perplexity (↓) Zero-shot Accuracy (↑)
Wiki2 C4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average

OPT-1.3B

FP16 16 14.62 14.72 57.82 72.42 53.70 59.51 50.97 29.52 53.99

PB-LLM 1.7 272.83 175.42 62.17 54.24 27.25 50.27 27.98 23.72 40.94
BiLLM 1.11 69.45 63.92 61.92 59.52 33.81 49.32 34.38 22.35 43.55
OneBit 1 20.36 20.76 57.85 66.53 39.21 54.61 42.80 23.97 47.50
MoS 1 18.45 18.83 60.34 68.66 41.99 53.99 44.87 26.19 49.34

GPTQ 2 9.5e3 3.8e3 39.60 52.07 25.57 49.33 26.68 23.63 35.15
LLM-QAT 2 4.9e3 2.1e3 37.83 50.05 25.72 49.72 25.76 25.09 34.07
OmniQuant 2 42.43 55.64 56.45 60.94 33.39 51.85 38.76 23.38 44.13

MBOK [Ours] 2×1 16.13 16.61 58.53 70.67 48.11 56.75 48.19 27.90 51.69

LLaMA-7B

FP16 16 5.68 7.08 73.21 77.42 72.99 66.85 52.53 41.38 64.06

PB-LLM 1.7 198.37 157.35 60.51 53.53 27.23 49.17 27.48 26.02 40.66
BiLLM 1.11 41.66 48.15 62.23 58.65 34.64 51.14 33.08 25.68 44.24
OneBit 1 8.48 10.49 62.50 70.40 54.03 55.32 41.07 30.88 52.36
MoS 1 7.97 9.72 64.59 71.82 58.18 58.88 42.09 31.31 54.48

GPTQ 2 1.9e3 7.8e2 43.79 49.95 25.63 49.41 25.84 27.47 37.02
LLM-QAT 2 7.1e2 3.0e2 37.83 50.87 24.76 51.78 26.26 25.51 36.17
OmniQuant 2 15.34 26.21 58.69 62.79 43.68 52.96 41.54 29.35 48.17

MBOK [Ours] 2×1 6.83 8.53 69.20 74.32 64.80 60.30 49.05 34.90 58.76

LLaMA-13B

FP16 16 5.09 6.61 68.47 79.05 76.24 70.17 59.85 44.54 66.39

PB-LLM 1.7 35.83 39.79 62.17 58.70 33.97 52.17 31.86 23.63 43.75
BiLLM 1.11 14.56 16.67 62.53 68.17 52.24 59.43 41.91 29.94 52.37
OneBit 1 7.65 9.56 63.30 71.98 60.61 59.43 42.85 32.42 55.10
MoS 1 7.16 8.81 63.82 73.88 64.05 60.93 44.28 33.11 56.68

GPTQ 2 3.2e3 9.9e2 42.39 50.00 25.27 50.67 26.14 27.39 36.98
LLM-QAT 2 1.8e3 1.2e3 37.83 50.33 25.40 51.62 27.02 26.87 36.51
OmniQuant 2 13.43 19.33 62.20 68.99 54.16 53.83 45.50 30.38 52.51

MBOK [Ours] 2×1 6.17 7.88 68.10 76.33 69.88 64.17 52.34 37.88 61.45

6.3 ACCURACY-COMPRESSION TRADE-OFFS

We further investigate the accuracy-compression trade-offs of our method, quantization methods, and
the FP model. Specifically, we compare 3-bit quantization using round-to-nearest (RTN) (Yao et al.,
2022; Dettmers et al., 2022) and GPTQ (Frantar et al., 2023) methods against our approach using 3
Boolean kernels. We evaluate these methods on OPT models of varying sizes. The results, presented
in Table 3 and Fig. 1, show that with 3 kernels, our method closely approaches the performance of the
FP model. Given the same weight budget, our method clearly sits on the Pareto frontier, delivering
the best performance for the same model size.

Table 3: OPT perplexity results (lower is better) on WikiText2 and C4. The results of FP, rount-to-
nearest (RTN) and QPTQ are taken from (Frantar et al., 2023).

OPT Model WBits Wiki2 C4
125M 350M 1.3B 2.7B 6.7B 125M 350M 1.3B 2.7B 6.7B

FULL-PRECISION 16 27.65 22.00 14.63 12.47 10.86 26.56 22.59 16.07 14.34 12.71

RTN (Yao et al., 2022; Dettmers et al., 2022) 3 37.28 25.94 48.17 16.92 12.10 33.91 26.21 24.51 18.43 14.36
QPTQ (Frantar et al., 2023) 3 31.12 24.24 15.47 12.87 11.39 29.22 24.63 16.97 15.00 13.18

MBOK [Ours] 3×1 29.10 23.12 15.30 13.09 11.03 28.62 22.10 15.68 14.00 12.33

6.4 COMPARISON WITH LATENT-WEIGHT APPROACHES

We compare our method with latent-weight approaches on OPT models, using MoS with 3 experts
and our method with 3 Boolean kernels. We also introduce a baseline using our SVID framework to
construct 3 binary weights that rely on FP latent weights for training. Results in Fig. 7 show that our
method converges much faster, as it directly optimizes Boolean parameters without the need for STE
to approximate gradient signals. Both our approach and the latent-weight method outperform MoS,
demonstrating the benefit of using additional Boolean kernels and our successive SVID framework.
Our method is also more efficient, avoiding the need for FP latent weights and extra momentum.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20000 40000 60000

10
3

10
4

Iteration

Tr
ai

ni
ng

lo
ss
L

OPT-125M

0 20000 40000 60000

10
3

10
4

Iteration

OPT-350M
OPT Method Wiki2 C4

125M
MoS (3 experts) 38.62 34.72
3 Latent weights 29.47 27.18
MBOK (3 kernels) [Ours] 29.10 26.48

350M
MoS (3 experts) 29.93 28.25
3 Latent weights 23.58 22.65
MBOK (3 kernels) [Ours] 23.12 22.10

Figure 7: Comparions between our method and latent-weight approaches.

6.5 KERNEL ALLOCATION AND COMPARISON TO BITNET B1.58

5 10
0

5

10

15

20

Attention Block

#K
er

ne
ls

FC 2
FC 1
Out proj
Q proj
V proj
K proj

Figure 9: Allocated kernels for
OPT-125M.

We next evaluate our kernel allocation method on the OPT-125M
model. It supports bit allocation at any granularity, including frac-
tional averages, providing practitioners with a flexible model selec-
tion tool under deployment constraints. Fig. 10 reports results for
varying average bit budgets, showing consistent improvements as the
budget increases. Fig. 9 illustrates kernel allocation with a 3.5-bit
average, where more kernels are assigned to FC2 and output projec-
tion layers in the final blocks. This aligns with prior observations
(Bondarenko et al., 2023; Frantar et al., 2023) that these layers are
particularly important and sensitive to compression.

1.582 2.5 3 3.5 4 4.5

26

28

30

32

Average bit budget

C
4

Pe
rp

le
xi

ty

Figure 10: OPT-125M per-
formance w.r.t. bit budget.

In addition, our framework’s flexibility enables direct comparison with
BitNet-b1.58 (Ma et al., 2024), which employs ternary weights. With a
1.58-bit budget, our model achieves reasonable results, whereas BitNet-
b1.58 reaches a C4 perplexity of 10199.89 due to finetuning instability,
consistent with Xu et al. (2024). We also compare against ShiftAddLLM
(You et al., 2024), a PTQ method supporting bit allocation. Our approach
performs substantially better (32.23 with a 2-bit budget vs. 435.84 for
their mixed 2.2-bit allocation, see Table 17 in ShiftAddLLM).

6.6 DISCUSSION ON COMPLEXITY

0 10 20 30

MBOK

MoS

Memory (GB)

OPT-6.7B

Figure 11: Estimated memory
for finetuning for weights ( )
and optimizer states ( ).

We emphasize the efficiency of our method during finetuning by
comparing MoS (Jo et al., 2024) with our approach using 3 Boolean
kernels on the OPT-6.7B model. Because we optimize directly in the
Boolean domain, each weight requires only 1 bit, whereas MoS relies
on 16-bit latent weights. Moreover, we finetune only the last Boolean
kernel, with the optimizer storing a single 16-bit momentum per
weight. In contrast, Adam (Kingma & Ba, 2015) for latent weights
needs two 16-bit momenta per weight. Fig. 11 shows the estimated
memory for a minibatch of one, highlighting the substantial memory savings of our method. These
gains could be further amplified by incorporating optimizer state compression techniques such as
GaLore (Zhao et al., 2024). We also provide a theoretical analysis of finetuning complexity in
Appendix F, and empirical evidence (Appendix G.7) demonstrating significant GPU latency gains:
using BitBlas library (Wang et al., 2024), our method achieves up to over 8.7× speedup for LLaMA2
layers compared to FP16, with even more improvements expected on native Boolean accelerators.

7 CONCLUSIONS

We introduced Multiple Boolean Kernels (MBOK), a novel framework for low-bit finetuning LLMs.
By utilizing Boolean weights and optimizing them directly in the Boolean domain, our framework
significantly reduces both memory and computation costs during both finetuning and inference. The
flexible multi-Boolean structure, along with the proposed successive SVID, effectively transfers
knowledge from a source FP model. Through extensive experiments on LLMs of various sizes,
we demonstrate that our method approaches FP performance while achieving the best accuracy-
compression trade-off compared to existing quantization and binarization methods.

Limitations. Our method, like other binarized neural networks, could not be assessed on native
Boolean accelerators due to hardware being optimized for real arithmetic. Nevertheless, we demon-
strated strong results even on modern hardware, underscoring the promise of our approach and
motivating future development of accelerators tailored to Boolean computation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-Policy Distillation of Language Models: Learning from Self-
Generated Mistakes. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=3zKtaqxLhW.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael Lyu, and
Irwin King. BinaryBERT: Pushing the Limit of BERT Quantization. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4334–4348,
Online, 2021. Association for Computational Linguistics. URL https://aclanthology.
org/2021.acl-long.334/.

E Beltrami. Sulle funzioni bilineari, giomale di mathematiche ad uso studenti delle uninersita. 11,
98–106.(an english translation by d boley is available as university of minnesota, department of
computer science). Technical report, Technical Report 90–37, 1990.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about Physical Com-
monsense in Natural Language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable Transformers:
Removing Outliers by Helping Attention Heads Do Nothing. In Advances in Neural
Information Processing Systems, volume 36, pp. 75067–75096. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/edbcb7583fd8921dad78adecfe06a99b-Paper-Conference.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Adrian Bulat, Yassine Ouali, and Georgios Tzimiropoulos. QBB: Quantization with Binary Bases for
LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=Kw6MRGFx0R.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. QuIP: 2-
Bit Quantization of Large Language Models With Guarantees. In Advances in Neu-
ral Information Processing Systems, volume 36, pp. 4396–4429. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf.

Hong Chen, Chengtao Lv, Liang Ding, Haotong Qin, Xiabin Zhou, Yifu Ding, Xuebo Liu, Min Zhang,
Jinyang Guo, Xianglong Liu, and Dacheng Tao. DB-LLM: Accurate Dual-Binarization for Efficient
LLMs. In Findings of the Association for Computational Linguistics: ACL 2024, pp. 8719–8730,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.516. URL https://aclanthology.org/2024.findings-acl.
516/.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.

10

https://openreview.net/forum?id=3zKtaqxLhW
https://aclanthology.org/2021.acl-long.334/
https://aclanthology.org/2021.acl-long.334/
https://proceedings.neurips.cc/paper_files/paper/2023/file/edbcb7583fd8921dad78adecfe06a99b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/edbcb7583fd8921dad78adecfe06a99b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Kw6MRGFx0R
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://aclanthology.org/2024.findings-acl.516/
https://aclanthology.org/2024.findings-acl.516/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

2924–2936, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1300. URL https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. arXiv preprint arXiv:1803.05457, 2018.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep
Neural Networks with Binary Weights during Propagations. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc., 2015.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit Inference Scaling Laws.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 7750–7774. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/dettmers23a.html.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit Matrix
Multiplication for Transformers at Scale. In Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=dXiGWqBoxaD.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Effi-
cient Finetuning of Quantized LLMs. In Advances in Neural Information Process-
ing Systems, volume 36, pp. 10088–10115. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf.

Tim Dettmers, Ruslan A. Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A Sparse-Quantized
Representation for Near-Lossless LLM Weight Compression. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Q1u25ahSuy.

Peijie Dong, Lujun Li, Yuedong Zhong, DaYou Du, Ruibo FAN, Yuhan Chen, Zhenheng Tang,
Qiang Wang, Wei Xue, Yike Guo, and Xiaowen Chu. STBLLM: Breaking the 1-Bit Barrier with
Structured Binary LLMs. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=6XUSDvBFkV.

C. Eckart and G. Young. The Approximation of One Matrix by Another of Lower Rank. Psychome-
trika, 1936.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate Quantization
for Generative Pre-trained Transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Eberhard Fuchs, Gabriele Flügge, et al. Adult Neuroplasticity: More than 40 Years of Research.
Neural plasticity, 2014, 2014.

Robert Gray. Vector Quantization. IEEE ASSP Magazine, 1(2):4–29, 1984.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The Unrea-
sonable Ineffectiveness of the Deeper Layers. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=ngmEcEer8a.

Donald Olding Hebb. The Organization of Behavior: A Neuropsychological Theory. Psychology
press, 2005.

Geoffrey Hinton, Vinyals Oriol, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 1, 2015.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. BiLLM: Pushing the Limit of Post-Training Quantization for LLMs. In
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 20023–20042. PMLR, 21–27 Jul 2024. URL https://
proceedings.mlr.press/v235/huang24q.html.

11

https://aclanthology.org/N19-1300/
https://proceedings.mlr.press/v202/dettmers23a.html
https://openreview.net/forum?id=dXiGWqBoxaD
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://openreview.net/forum?id=Q1u25ahSuy
https://openreview.net/forum?id=Q1u25ahSuy
https://openreview.net/forum?id=6XUSDvBFkV
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=ngmEcEer8a
https://proceedings.mlr.press/v235/huang24q.html
https://proceedings.mlr.press/v235/huang24q.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in neural information processing systems, pp. 4107–4115, 2016.

Dongwon Jo, Taesu Kim, Yulhwa Kim, and Jae-Joon Kim. Mixture of Scales: Memory-Efficient
Token-Adaptive Binarization for Large Language Models. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=pGOBEYcXzs.

Charles Jordan. Calculus of Finite Differences. Chelsea Publishing Company, New York, 2nd edition,
1950. doi: https://doi.org/10.1017/S0025557200230271.

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng
Shen, Michael W. Mahoney, and Kurt Keutzer. SqueezeLLM: Dense-and-Sparse Quantization. In
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 23901–23923. PMLR, 21–27 Jul 2024. URL https://
proceedings.mlr.press/v235/kim24f.html.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. DistiLLM: Towards Streamlined
Distillation for Large Language Models. In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 24872–
24895. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/ko24c.
html.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muennighoff,
Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling Laws for
Precision. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=wg1PCg3CUP.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: Outlier-aware
Weight Quantization for Efficient Fine-tuning and Inference of Large Language Models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13355–13364, 2024.

Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, Zhongchao Shi,
Linghe Kong, Yulun Zhang, and Xiaokang Yang. ARB-LLM: Alternating Refined Binarizations for
Large Language Models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ZU8OdDLTts.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang,
Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-
aware Weight Quantization for On-Device LLM Compression and Acceleration. In
Proceedings of Machine Learning and Systems, volume 6, pp. 87–100, 2024. URL
https://proceedings.mlsys.org/paper_files/paper/2024/file/
42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 Technical Report. arXiv preprint
arXiv:2412.19437, 2024a.

James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, and Tianle
Cai. BitDelta: Your Fine-Tune May Only Be Worth One Bit. In Advances in Neu-
ral Information Processing Systems, volume 37, pp. 13579–13600. Curran Associates, Inc.,
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/187d94b3c93343f0e925b5cf729eadd5-Paper-Conference.pdf.

Zechun Liu, Barlas Oguz, Aasish Pappu, Lin Xiao, Scott Yih, Meng Li, Raghuraman Krish-
namoorthi, and Yashar Mehdad. BiT: Robustly Binarized Multi-distilled Transformer. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 14303–14316. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/5c1863f711c721648387ac2ef745facb-Paper-Conference.pdf.

12

https://openreview.net/forum?id=pGOBEYcXzs
https://openreview.net/forum?id=pGOBEYcXzs
https://proceedings.mlr.press/v235/kim24f.html
https://proceedings.mlr.press/v235/kim24f.html
https://proceedings.mlr.press/v235/ko24c.html
https://proceedings.mlr.press/v235/ko24c.html
https://openreview.net/forum?id=wg1PCg3CUP
https://openreview.net/forum?id=ZU8OdDLTts
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/187d94b3c93343f0e925b5cf729eadd5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/187d94b3c93343f0e925b5cf729eadd5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5c1863f711c721648387ac2ef745facb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5c1863f711c721648387ac2ef745facb-Paper-Conference.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zechun Liu, Barlas Oguz, Aasish Pappu, Yangyang Shi, and Raghuraman Krishnamoorthi. Binary
and Ternary Natural Language Generation. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 65–77, Toronto, Canada,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.5. URL https:
//aclanthology.org/2023.acl-long.5/.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-Free Quantization Aware
Training for Large Language Models. In Findings of the Association for Computational Linguistics:
ACL 2024, pp. 467–484, Bangkok, Thailand, 2024c. Association for Computational Linguistics.
URL https://aclanthology.org/2024.findings-acl.26/.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The Era of 1-bit LLMs: All Large Language Models
are in 1.58 Bits. arXiv preprint arXiv:2402.17764, 1, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
Models. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on Representational Simi-
larity in Neural Networks with Canonical Correlation. In Advances in Neural In-
formation Processing Systems, volume 31. Curran Associates, Inc., 2018. URL
https://proceedings.neurips.cc/paper_files/paper/2018/file/
a7a3d70c6d17a73140918996d03c014f-Paper.pdf.

Van Minh Nguyen. Variation and Boolean Logic BackPropagation. arXiv preprint arXiv:2311.07427,
2023.

Van Minh Nguyen, Cristian Ocampo, Aymen Askri, Louis Leconte, and Ba-Hien Tran. BOLD:
Boolean Logic Deep Learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=DO9wPZOPjk.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua YAN, Aishan Liu, Qingqing Dang, Ziwei Liu,
and Xianglong Liu. BiBERT: Accurate Fully Binarized BERT. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=5xEgrl_
5FAJ.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks. In Proceedings of the European
Conference on Computer Vision (ECCV), October 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
Adversarial Winograd Schema Challenge at Scale. Communications of the ACM, 64(9):99–106,
2021.

13

https://aclanthology.org/2023.acl-long.5/
https://aclanthology.org/2023.acl-long.5/
https://aclanthology.org/2024.findings-acl.26/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper_files/paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf
https://openreview.net/forum?id=DO9wPZOPjk
https://openreview.net/forum?id=5xEgrl_5FAJ
https://openreview.net/forum?id=5xEgrl_5FAJ
http://jmlr.org/papers/v21/20-074.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. OmniQuant: Omnidirectionally Calibrated Quantization for
Large Language Models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Re, Ion Stoica, and Ce Zhang. FlexGen: High-Throughput Generative Inference of
Large Language Models with a Single GPU. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 31094–31116.
PMLR, 23–29 Jul 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
Efficient Foundation Language Models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Foundation
and Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288, 2023b.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#: Even
Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 48630–48656. PMLR, 21–27 Jul 2024a.

Albert Tseng, Qingyao Sun, David Hou, and Christopher De. QTIP: Quantiza-
tion with Trellises and Incoherence Processing. In Advances in Neural Infor-
mation Processing Systems, volume 37, pp. 59597–59620. Curran Associates, Inc.,
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. BitNet: Scaling 1-bit Transformers for Large Language
Models. arXiv preprint arXiv:2310.11453, 2023.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng, Ziming
Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. Ladder: Enabling Efficient Low-
Precision Deep Learning Computing through Hardware-aware Tensor Transformation. In 18th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 307–
323, Santa Clara, CA, 2024. USENIX Association. ISBN 978-1-939133-40-3. URL https:
//www.usenix.org/conference/osdi24/presentation/wang-lei.

Xinghao Wang, Pengyu Wang, Bo Wang, Dong Zhang, Yunhua Zhou, and Xipeng Qiu. BitStack: Any-
Size Compression of Large Language Models in Variable Memory Environments. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=lBntjGbyv0.

Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-Divergence Minimization for Sequence-
Level Knowledge Distillation. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 10817–10834, Toronto, Canada,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.605. URL
https://aclanthology.org/2023.acl-long.605/.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. OneBit: Towards Extremely Low-bit Large Language Models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=ZwiG9KjfHV.

14

https://openreview.net/forum?id=8Wuvhh0LYW
https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://openreview.net/forum?id=lBntjGbyv0
https://openreview.net/forum?id=lBntjGbyv0
https://aclanthology.org/2023.acl-long.605/
https://openreview.net/forum?id=ZwiG9KjfHV
https://openreview.net/forum?id=ZwiG9KjfHV


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zifei Xu, Sayeh Sharify, Wanzin Yazar, Tristan J Webb, and Xin Wang. Understanding the Difficulty
of Low-Precision Post-Training Quantization for LLMs. In ICLR 2025 Workshop on Sparsity in
LLMs, 2025. URL https://openreview.net/forum?id=fx9eAKwZKk.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers.
In Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=f-fVCElZ-G1.

Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu,
Amir Yazdanbakhsh, and Yingyan (Celine) Lin. ShiftAddLLM: Accelerating Pretrained
LLMs via Post-Training Multiplication-Less Reparameterization. In Advances in Neural
Information Processing Systems, volume 37, pp. 24822–24848. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/2c30a37c75f062e0bf79297c73db8c6c-Paper-Conference.pdf.

Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: Partially Binarized Large Language
Models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=BifeBRhikU.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
Machine Really Finish Your Sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4791–4800, Florence, Italy, 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1472. URL https://aclanthology.
org/P19-1472/.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer Language
Models. arXiv preprint arXiv:2205.01068, 2022.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection. In Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 61121–61143. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/zhao24s.html.

15

https://openreview.net/forum?id=fx9eAKwZKk
https://openreview.net/forum?id=f-fVCElZ-G1
https://openreview.net/forum?id=f-fVCElZ-G1
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c30a37c75f062e0bf79297c73db8c6c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c30a37c75f062e0bf79297c73db8c6c-Paper-Conference.pdf
https://openreview.net/forum?id=BifeBRhikU
https://aclanthology.org/P19-1472/
https://aclanthology.org/P19-1472/
https://proceedings.mlr.press/v235/zhao24s.html
https://proceedings.mlr.press/v235/zhao24s.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix

TABLE OF CONTENTS

A Primer on Boolean Neural Networks 17
A.1 Neuron Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2 Mathematical Foundation of Boolean Variation . . . . . . . . . . . . . . . . . . . 18
A.3 Boolean Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.4 Boolean Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Discussion on Hardware Considerations 24
B.1 Computation Proposed in § 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.2 Multi-core Computation Strategy in § 4.2 . . . . . . . . . . . . . . . . . . . . . . 24

C Code Samples of Core Implementation 25
C.1 Boolean Linear Layer and Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.2 Successive SVID for Kernel Extraction . . . . . . . . . . . . . . . . . . . . . . . 27

D Proof of Propositions 28
D.1 Proof of Boolean Linear Reformulation using SVID . . . . . . . . . . . . . . . . . 28

D.2 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D.3 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E Details on Kernel Allocation 32
E.1 Weight Importance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.2 Kernel Allocation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

F Theoretical Analysis of Training Complexity 33

G Additional Experiemental Results 34
G.1 Additional Information of Experiemental Settings . . . . . . . . . . . . . . . . . . 34

G.2 On the Choice of KD Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
G.3 Results of Different Number of Kernels on LLMs . . . . . . . . . . . . . . . . . . 34
G.4 Additional Results on LLaMA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
G.5 Generation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

G.6 Additional Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
G.7 Discussion on Latency and Comparison with Vector Quantization . . . . . . . . . 38

H Ethics Statement 39

I Reproducibility Statement 39

J The Use of Large Language Models 39

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A PRIMER ON BOOLEAN NEURAL NETWORKS

For completeness, this section reviews the concepts and methodology of Boolean neural networks as
proposed by Nguyen (2023); Nguyen et al. (2024).

A.1 NEURON DESIGN

Boolean Neuron. Consider the l-th Boolean linear layer; in the forward pass, the output of the next
layer is defined as Nguyen et al. (2024):

Y
(l)
[k,j] = b

(l)
[j] +

n∑
i=1

L(X
(l),W

(l)

[i,j]

[k,i] ), 1 ≤ j ≤ m, (14)

where k denotes the sample index in the batch, and L is a logic gate such as and,or,xor, or xnor;
The weights W(l)

[i,j] are Boolean values {TRUE, FALSE} or {−1,+1}, as typically used in practical
implementations. n and m are the number of input and output neurons, respectively. As the most
extreme use case, the input data are also Boolean values. The above summation is understood as the
counting of TRUE values. We emphasize that the framework is flexible, as it allows Boolean linear
layers to be connected through activation layers, layer normalization, arithmetic layers, or other types
of layers.

Mixed Boolean-Real Neuron. To enable flexible integration and coexistence of Boolean designs
with real-valued components in deep models, we consider two cases of mixed-type data: (i) Boolean
weights with real-valued inputs, and (ii) real-valued weights with Boolean inputs. This paper focuses
on the first case. These scenarios are addressed through an extension of Boolean logic to accommodate
mixed-type data. To proceed, we introduce the essential notations and definitions. Specifically, we
define B ≜ {TRUE, FALSE} as the Boolean domain, equipped with standard Boolean logic operations.

Definition A.1 (Three-valued logic). We define the mixed logic domain as M ≜ B ∪ {0}, where 0
represents an undefined or neutral value. The logic connectives in M are defined in alignment with
standard Boolean logic, as follows. First, the negation operator is extended as: ¬TRUE = FALSE,
¬FALSE = TRUE, and ¬0 = 0. Next, let L denote a generic logic connective (e.g., AND, OR). We
distinguish its use in M and B by writing LM and LB, respectively. The extended connective LM is
defined by:

LM(a, b) =

{
LB(a, b) for a, b ∈ B,
0 otherwise.

Notation A.2. Denote by L a logic set (e.g., B or M), R the real set, Z the set of integers, N a numeric
set (e.g., R or Z), and D a certain set of L or N.

Definition A.3. For x ∈ N, its logic value denoted by xlogic is given as xlogic = TRUE ⇔ x > 0,
xlogic = FALSE ⇔ x < 0, and xlogic = 0⇔ x = 0.

Definition A.4. The magnitude of a variable x, denoted by |x|, is defined as follows. If x ∈ N,
then |x| is the standard absolute value. For x ∈ L, the magnitude is given by:

|x| =
{
0 if x = 0,

1 otherwise.

Definition A.5 (Mixed-type logic). For L a logic connective of L and variables a, b, operation
c = L(a, b) is defined such that |c| = |a||b| and clogic = L(alogic, blogic).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 MATHEMATICAL FOUNDATION OF BOOLEAN VARIATION

In this section, we present the mathematical foundation of Boolean variation which is the corner
stone of the method for training Boolean weights directly within the Boolean domain, without relying
on FP latent weights (Nguyen et al., 2024).

A.2.1 BOOLEAN VARIATION

Definition A.6. Order relations ‘<’ and ‘>’ in B are defined as follows:

FALSE < TRUE, TRUE > FALSE. (15)

Definition A.7. For a, b ∈ B, the variation from a to b, denoted δ(a→ b), is defined as:

δ(a→ b) ≜


TRUE, if b > a,

0, if b = a,

FALSE, if b < a.

(16)

Definition A.8 (Type conversion). Define:

p: N→ L

x 7→ p(x) =


TRUE, if x > 0,

0, if x = 0,

FALSE, if x < 0.

(17)

Proposition A.9. (Nguyen, 2023; Nguyen et al., 2024) The following properties hold:

1. ∀x, y ∈ N: p(xy) = xnor(p(x),p(y)).
2. ∀a, b ∈ L: e(xnor(a, b)) = e(a) e(b).
3. ∀x, y ∈ N: x = y ⇔ |x| = |y| and p(x) = p(y).

In particular, property Proposition A.9(2) implies that by the embedding map e(·), we have:

({TRUE, FALSE},xor) ∼= ({±1},−×), (18)
({TRUE, FALSE},xnor) ∼= ({±1},×), (19)

where ∼= and × stand for isomorphic relation, and the real multiplication, resp. A consequence is that
by e(·), a computing sequence of pointwise XOR or XNOR, counting, and majority vote is equivalent
to a sequence of pointwise multiplications and accumulation performed on the embedded data.

Proposition A.10. The following properties hold:

1. a ∈ L, x ∈ N: xnor(a, x) = e(a)x.
2. x, y ∈ N: xnor(x, y) = xy.
3. x ∈ {L,N}, y, z ∈ N: xnor(x, y + z) = xnor(x, y) + xnor(x, z).
4. x ∈ {L,N}, y, λ ∈ N: xnor(x, λy) = λxnor(x, y).
5. x ∈ {L,N}, y ∈ N: xor(x, y) = −xnor(x, y).

Proof. The proof follows definitions A.5 and A.8.

• Following Definition A.1 we have ∀t ∈ M, xnor(TRUE, t) = t, xnor(FALSE, t) = ¬t,
and xnor(0, t) = 0. Put v = xnor(a, x). We have |v| = |x| and p(v) = xnor(a,p(x)).
Hence, a = 0⇒ p(v) = 0⇒ v = 0; a = TRUE ⇒ p(v) = p(x)⇒ v = x; a = FALSE ⇒
p(v) = ¬p(x)⇒ v = −x. Hence (1).

• The result is trivial if x = 0 or y = 0. For x, y ̸= 0, put v = xnor(x, y), we have
|v| = |x||y| and p(v) = xnor(p(x),p(y)). According to Definition A.8, if sign(x) =

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

sign(y), we have p(v) = TRUE ⇒ v = |x||y| = xy. Otherwise, i.e., sign(x) = − sign(y),
p(v) = FALSE ⇒ v = −|x||y| = xy. Hence (2).

• (3) and (4) follow (1) for x ∈ L and follow (2) for x ∈ N.

• For (5), write u = xor(x, y) and v = xnor(x, y), we have |u| = |v| and p(u) =
xor(p(x),p(y)) = ¬xnor(p(x),p(y)) = ¬p(v). Thus, sign(u) = − sign(v) ⇒ u =
−v.

Notation A.11. We denote F(S,T) the set of all functions from source S to image T.

Definition A.12. For f ∈ F(B,D), ∀x ∈ B, write δf(x → ¬x) := δ(f(x) → f(¬x)). The
variation of f w.r.t. x, denoted f ′(x), is defined as:

f ′(x) ≜ xnor(δ(x→ ¬x), δf(x→ ¬x)).

Remark A.13. For convenience and consistency of notation, we intentionally adopt the standard
symbol for the continuous derivative, f ′, to also denote Boolean variation The intended meaning
— whether it represents a continuous derivative or a Boolean variation — can be inferred from the
context in which the function f is defined. Intuitively, the variation of f w.r.t x is TRUE if f varies in
the same direction with x.
Example A.14. Let a ∈ B, f(x) = xor(x, a) for x ∈ B, the variation of f w.r.t. x can be derived by
establishing a truth table (see Table 4) from which we obtain f ′(x) = ¬a.

Table 4: Variation truth table of f(x) = xor(a, x), a, x ∈ B.

a x ¬x δ(x→ ¬x) f(a, x) f(a,¬x) δf(x→ ¬x) f ′(x)

TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE

A.2.2 BOOLEAN VARIATION CALCULUS

Below are some rules of Boolean variation which are necessary for training Boolean neural networks.

Proposition A.15. (Nguyen, 2023; Nguyen et al., 2024) For f, g ∈ F(B,B), ∀x, y ∈ B the
following properties hold:

1. δf(x→ y) = xnor(δ(x→ y), f ′(x)).

2. (¬f(x))′ = ¬f ′(x).
3. (g ◦ f)′(x) = xnor(g′(f(x)), f ′(x)).

Proof. The proof is by definition:

1. ∀x, y ∈ B, there are two cases. If y = x, then the result is trivial. Otherwise, i.e., y = ¬x,
by definition we have:

f ′(x) = xnor(δ(x→ ¬x), δf(x→ ¬x))
⇔ δf(x→ ¬x) = xnor(δ(x→ ¬x), f ′(x)).

Hence the result.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2. ∀x, y ∈ B, it is easy to verify by truth table that δ(¬f(x→ y)) = ¬δf(x→ y). Hence, by
definition,

(¬f)′(x) = xnor(δ(x→ ¬x), δ(¬f(x→ ¬x)))
= xnor(δ(x→ ¬x),¬δf(x→ ¬x))
= ¬xnor(δ(x→ ¬x), δf(x→ ¬x))
= ¬f ′(x).

3. Using definition, property (i), and associativity of xnor, ∀x ∈ B we have:

(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x)))
= xnor(δ(x→ ¬x),xnor(δf(x→ ¬x), g′(f(x))))
= xnor(g′(f(x)),xnor(δ(x→ ¬x), δf(x→ ¬x)))
= xnor(g′(f(x)), f ′(x)).

Proposition A.16. (Nguyen, 2023; Nguyen et al., 2024) For f ∈ F(B,N), the following
properties hold:

1. x, y ∈ B: δf(x→ y) = xnor(δ(x→ y), f ′(x)).
2. α ∈ N: (αf)′(x) = αf ′(x).
3. g ∈ F(B,N): (f + g)′(x) = f ′(x) + g′(x).

Proof. The proof is as follows:

1. For x, y ∈ B. Firstly, the result is trivial if y = x. For y ̸= x, i.e., y = ¬x, by definition:

f ′(x) = xnor(δ(x→ ¬x), δf(x→ ¬x)).

Hence, |δf(x→ ¬x)| = |f ′(x)| since |δ(x→ ¬x)| = 1, and

p(f ′(x)) = xnor(δ(x→ ¬x),p(δf(x→ ¬x)))
⇔ p(δf(x→ ¬x)) = xnor(δ(x→ ¬x),p(f ′(x))),

where p(·) is the logic projector Eq. 17. Thus, δf(x→ ¬x) = xnor(δ(x→ ¬x), f ′(x)).
Hence the result.

2. Firstly ∀x, y ∈ B, we have

δ(αf(x→ y)) = αf(y)− αf(x) = αδf(x→ y).

Hence, by definition,

(αf)′(x) = xnor(δ(x→ ¬x), δ(αf(x→ ¬x)))
= xnor(δ(x→ ¬x), αδf(x→ ¬x))
= αxnor(δ(x→ ¬x), δf(x→ ¬x)), due to Proposition A.10(4)

= αf ′(x).

3. For f, g ∈ F(B,N),

(f + g)′(x) = xnor(δ(x→ ¬x), δ(f + g)(x→ ¬x))
= xnor(δ(x→ ¬x), δf(x→ ¬x) + δg(x→ ¬x))
(∗)
= xnor(δ(x→ ¬x), δf(x→ ¬x)) + xnor(δ(x→ ¬x), δg(x→ ¬x)),
= f ′(x) + g′(x),

where (∗) is due to Proposition A.10(3).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For f ∈ F(Z,N), its derivative, also known in terms of finite differences, has been defined in the
literature as f ′(x) = f(x+ 1)− f(x), see e.g. Jordan (1950). With the logic variation as introduced
above, we can make this definition more generic as follows.
Definition A.17. For f ∈ F(Z,D), the variation of f w.r.t x ∈ Z is defined as f ′(x) ≜ δf(x →
x+ 1), where δf is in the sense of the variation defined in D.

Proposition A.18. (Nguyen, 2023; Nguyen et al., 2024) The following composition rules (chain
rules) hold:

1. For B f→ B g→ D: (g ◦ f)′(x) = xnor(g′(f(x)), f ′(x)), ∀x ∈ B.

2. For B f→ Z g→ D, x ∈ B, if |f ′(x)| ≤ 1 and g′(f(x)) = g′(f(x)− 1), then:

(g ◦ f)′(x) = xnor(g′(f(x)), f ′(x)).

Proof. The proof is as follows.

1. The case of B f→ B g→ B is obtained from Proposition A.15(3). For B f→ B g→ N, by using
Proposition A.16(1), the proof is similar to that of Proposition A.15(3).

2. By definition, we have
(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x))). (20)

Using property (1) of Proposition A.16, we have:
f(¬x) = f(x) + δf(x→ ¬x)

= f(x) + xnor(δ(x→ ¬x), f ′(x)). (21)
Applying Eq. 21 back to Eq. 20, the result is trivial if f ′(x) = 0. The remaining case is
|f ′(x)| = 1 for which we have xnor(δ(x → ¬x), f ′(x)) = ±1. First, for xnor(δ(x →
¬x), f ′(x)) = 1, we have:

δg(f(x)→ f(¬x)) = δg(f(x)→ f(x) + 1)

= g′(f(x))

= xnor(g′(f(x)), 1)

= xnor(g′(f(x)),xnor(δ(x→ ¬x), f ′(x))). (22)
Substitute Eq. 22 back to Eq. 20, we obtain:

(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x)))
= xnor(δ(x→ ¬x),xnor(g′(f(x)),xnor(δ(x→ ¬x), f ′(x))))
= xnor(g′(f(x)), f ′(x)),

where that last equality is by the associativity of xnor and that xnor(x, x) = True for
x ∈ B. Similarly, for xnor(δ(x→ ¬x), f ′(x)) = −1, we have:

δg(f(x)→ f(¬x)) = δg(f(x)→ f(x)− 1)

= −g′(f(x)− 1)

= xnor(g′(f(x)− 1),−1)
= xnor(g′(f(x)− 1),xnor(δ(x→ ¬x), f ′(x))). (23)

Substitute Eq. 23 back to Eq. 20 and use the assumption that g′(f(x)) = g′(f(x)− 1), we
have:

(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x)))
= xnor(δ(x→ ¬x),xnor(g′(f(x)− 1),xnor(δ(x→ ¬x), f ′(x))))
= xnor(g′(f(x)), f ′(x)).

Hence the preposition is proved.

Example A.19. From Example A.14, we have δxor(x, a)/δx = ¬a for a, x ∈ B. Using Proposi-
tion A.15-(2) we have: δxnor(x, a)/δx = a since xnor(x, a) = ¬xor(x, a).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.2.3 MULTIVARIATE CASE

The properties of Boolean variation described above can be extended to the multivariate case in a
straightforward manner. For example, in the case of multivariate Boolean functions, the extension is
as follows.

Definition A.20. For x = (x1, . . . , xn) ∈ Bn, denote x¬i ≜ (x1, . . . , xi−1,¬xi, xi+1, . . . , xn)
for n ≥ 1 and 1 ≤ i ≤ n. For f ∈ F(Bn,B), the (partial) variation of f w.r.t. xi, denoted f ′i(x)

or δf(x)/δxi, is defined as: f ′i(x) ≡ δf(x)/δxi ≜ xnor(δ(xi → ¬xi), δf(x→ x¬i)).

The composition rule then becomes:

Proposition A.21. (Nguyen et al., 2024) Let f ∈ F(Bn,B), n ≥ 1, and g ∈ F(B,B). For
1 ≤ i ≤ n:

(g ◦ f)′i(x) = xnor(g′(f(x)), f ′i(x)), ∀x ∈ Bn. (24)

Example A.22. Apply Proposition A.16-(3) to Y
(l)
[k,j] from Eq. 14: δY

(l)
[k,j]/δW

(l)
[i,j] =

δL(X
(l)
[k,i],W

(l)
[i,j])/δW

(l)
[i,j] and δY

(l)
[k,j]/δX

(l)
[k,i] = δL(X

(l)
[k,i],W

(l)
[i,j])/δX

(l)
[k,i]. Then, for L = xnor

as an example, we have: δY(l)
[k,j]/δW

(l)
[i,j] = X

(l)
[k,i] and δY

(l)
[k,j]/δX

(l)
[k,i] = W

(l)
[i,j].

A.3 BOOLEAN BACKPROPAGATION

This section presents how to apply the above principles of Boolean variation to define backpropagation
for Boolean neural networks. The l-th layer (Eq. 14), receives the backpropagation signal from the
downstream layer l + 1. Specifically, Z(l)

[k,j] ≜
δL

δY
(l)

[k,j]

denotes the variation of the loss function L

w.r.t. the output at layer l. To optimize the Boolean weights, we need to compute the corresponding
loss signal, denoted as Q(l)

[i,j] ≜
δL

δW
(l)

[i,j]

. In addition, we also have to compute the loss signal for the

upstream layer, defined as P(l)
[k,i] ≜

δL
δX

(l)

[k,i]

. Hereafter, we consider the logic gate L = xnor as a

concrete example.

First, using Proposition A.15, Proposition A.16, Proposition A.18 and its extension to the multivariate
case by Proposition A.21 in the same manner as shown in Example A.22, we have:

δY
(l)
[k,j]

δW
(l)
[i,j]

=
δxnor(X

(l)
[k,i],W

(l)
[i,j])

δW
(l)
[i,j]

= X
(l)
[k,i] (25)

δY
(l)
[k,j]

δX
(l)
[k,i]

=
δxnor(X

(l)
[k,i],W

(l)
[i,j])

δX
(l)
[k,i]

= W
(l)
[i,j] (26)

Using the chain rules given by Proposition A.18, we have the following atomic variations:

Q
(l)
[k,i,j] ≜

δL
δW

(l)
[i,j]

|k = xnor

 δL
δY

(l)
[k,j]

,
δY

(l)
[k,j]

δW
(l)
[i,j]

 = xnor
(
Z

(l)
[k,j],X

(l)
[k,i]

)
, (27)

P
(l)
[k,i,j] ≜

δL
δX

(l)
[k,i]

|j = xnor

 δL
δY

(l)
[k,j]

,
δY

(l)
[k,j]

δX
(l)
[k,i]

 = xnor
(
Z

(l)
[k,j],W

(l)
[i,j]

)
. (28)

The variations Q
(l)
[i,j] and G

(l)
[k,i] can be then obtained by aggregating the above atomic variations

over the batch dimension k and output dimension j, respectively. More specifically, denote 1(·) the
indicator function. Additionally, for b ∈ B and a variable x, we define 1(x = b) = 1 if xlogic = b

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

and 1(x = b) = 0 otherwise. Then, we have:

Q
(l)
[i,j] ≜

δL
δW

(l)
[i,j]

=
∑
k

1(Q
(l)
[k,i,j] = TRUE)|Q(l)

[k,i,j]| −
∑
k

1(Q
(l)
[k,i,j] = FALSE)|Q(l)

[k,i,j]|, (29)

P
(l)
[i,j] ≜

δL
δX

(l)
[k,i]

=
∑
j

1(P
(l)
[k,i,j] = TRUE)|P(l)

[k,i,j]| −
∑
j

1(P
(l)
[k,i,j] = FALSE)|P(l)

[k,i,j]|. (30)

A.4 BOOLEAN OPTIMIZER

Algorithm 1: Boolean learning process for a linear layer.
Input : Learning rate η, number of iterations T ;
Initialize : M(l),0

[i,j] = 0; β0 = 1;
1 for t = 0, . . . , T − 1 do

/* 1. Forward */

2 Compute Y(l),t following Eq. 14;
/* 2. Backward */

3 Receive δL
δY

(l),t

[k,j]

from downstream layer;

/* 2.1 Backpropagation */

4 Compute and backpropagate P(l),t to the upstream following Eq. 30;
/* 2.2 Weight update process */

5 Ntotal := 0, Nunchanged := 0;
6 foreach Wl

i,j do
7 Compute Q

(l),t+1
[i,j] following Eq. 29;

8 Update M
(l),t+1
[i,j] = βtM

(l),t
[i,j] + ηtQ

(l),t+1
[i,j] ;

9 Ntotal ← Ntotal + 1;
10 if xnor(M(l),t+1

[i,j] ,W
(l),t
[i,j] ) = TRUE then

/* Flip weight */

11 W
(l),t+1
[i,j] = ¬W(l),t

[i,j] ;
/* Reset corresponding accumulator */

12 M
(l),t+1
[i,j] = 0;

13 else
/* Weight is unchanged */

14 W
(l),t+1
[i,j] = W

(l),t
[i,j] ;

/* Update statistics to update β */
15 Nunchanged ← Nunchanged + 1;
16 Update ηt+1, βt+1 = Nunchanged/Ntotal ;

Given the above variations, the rule for updating the Boolean weight W(l)
[i,j] to minimize the loss

function L is as follows:

W
(l)
[i,j] = ¬W

(l)
[i,j] if xnor

(
Q

(l)
[i,j],W

(l)
[i,j]

)
= TRUE. (31)

Based on this update rule, we can develop an optimizer that accumulates the signal Q(l)
[i,j] over

training iterations. Specifically, let W(l),t
[i,j] denotes the weight at iteration t, and M

(l),t
[i,j] represents its

accumulator, initialized as M(l),0
[i,j] = 0. The update rule for the accumulator is then defined as: The

update rule for the accumulator is then defined as:

M
(l),t+1
[i,j] ← βtM

(l),t
[i,j] + ηQ

(l),t
[i,j] , (32)

where η is the accumulation factor acting as a learning rate, and βt is an auto-regularizing factor
that reflects the system’s state at time t. In our work, we use brain plasticity (Fuchs et al., 2014)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and Hebbian theory (Hebb, 2005) to adaptively set βt, that force the weights to adapt to their
neighborhood during. For the chose weight’s neighborhood, for instance, neuron, layer, or network
level, βt is set as:

βt =
Number of unchanged weights at t

Total number of weights
. (33)

It to temper the importance of weight variational according to how much neurons have changed. In
our experiments, βt is set to per-layer basis and initialized as β0 = 1 The learning process for a linear
layer is described in Algorithm 1.

B DISCUSSION ON HARDWARE CONSIDERATIONS

B.1 COMPUTATION PROPOSED IN § 4.1

The Boolean framework supports both full and partial binary settings. The afforementioned Boolean
variation calculus shows that:

xnor(xreal, wlogic) = xreal × wbinary, (34)

under the mapping TRUE → +1 and FALSE → −1. Consequently, matrix multiplication (matmul)
between a real tensor X and a logic tensor W can be implemented as follows:

• Using binary weights {−1,+1}: Simply represent the logic weights in binary format.
Then, matmul(xreal, wlogic) is directly computed as matmul(xreal, wbinary).

• Using native logic {TRUE, FALSE}: The multiplication reduces to:

matmul(xreal, wlogic) =

{
xreal, if wlogic = TRUE

−xreal, if wlogic = FALSE
(35)

Thus, a sign flip of xreal conditioned on wlogic, followed by accumulation, suffices to perform
matmul(Xreal,Wlogic).

The first approach is well-supported by modern hardware such as CPUs, GPUs, etc, where different
bit-widths can be used to represent and simulate weight values in {−1,+1}. Additionally, this
approach can be implemented directly in PyTorch (Paszke et al., 2019). The second approach, in
contrast, requires a specialized Boolean accelerator. Such hardware can massively accelerate the
computation by directly leveraging logic operations instead of real-arithmetic.

B.2 MULTI-CORE COMPUTATION STRATEGY IN § 4.2

Boolean design, as used in the paper, employs Boolean weights and operates using logic operations.
It is distinct from bit-level operations.

Boolean design: Weights are Boolean logic variables, taking values TRUE/FALSE or −1/ + 1.
Operations are logic-based, such as xnor, and or, etc. See Eq. 35 for an example.

Bit-level operations: These, such as bit-serial implementations in C/C++, operate bit-by-bit on
multi-bit variables. For instance, a bit-level AND between two n-bit variables produces an n-bit
result, where each bit is the ADN of corresponding pair of bits from the inputs. Bit-level operations
like bit-serial are inefficient in terms of latency, whereas Boolean logic operations are significantly
faster compared to real-arithmetic operations such as multiplication.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C CODE SAMPLES OF CORE IMPLEMENTATION

C.1 BOOLEAN LINEAR LAYER AND OPTIMIZER

In this section, we provide example Python code for implementing a Boolean linear layer based on
the xor logic gate. This implementation is based on the PyTorch framework (Paszke et al., 2019).
As done in Nguyen et al. (2024), the class definition for the Boolean linear layer is presented in
Algorithm 2, and its backpropagation mechanism—customized via PyTorch’s autograd system—is
detailed in Algorithm 3. Each Boolean kernel is primarily implemented using this Boolean linear
layer.

We consider both cases of the incoming backpropagation signal: Boolean-valued (see Algorithm 4),
and real-valued (see Algorithm 5). The latter is the main use case in this paper. An example
implementation of the Boolean optimizer used to update the layer’s parameters is provided in
Algorithm 6.

Algorithm 2: Python code of XOR linear layer

1 import torch
2
3 from torch import Tensor, nn, autograd
4 from typing import Any, List, Optional, Callable
5
6
7 class XORLinear(nn.Linear):
8
9 def __init__(self, in_features: int, out_features: int, bool_bprop: bool, **kwargs):

10 super(XORLinear, self).__init__(in_features, out_features, **kwargs)
11 self.bool_bprop = bool_bprop
12
13 def reset_parameters(self):
14 self.weight = nn.Parameter(torch.randint(0, 2, self.weight.shape))
15
16 if self.bias is not None:
17 self.bias = nn.Parameter(torch.randint(0, 2, (self.out_features,)))
18
19 def forward(self, X):
20 return XORFunction.apply(X, self.weight, self.bias, self.bool_bprop)

Algorithm 3: Python code of the backpropagation logic of XOR linear layer

1 class XORFunction(autograd.Function):
2
3 @staticmethod
4 def forward(ctx, X, W, B, bool_bprop: bool):
5 ctx.save_for_backward(X,W,B)
6 ctx.bool_bprop = bool_bprop
7
8 # Elementwise XOR logic
9 S = torch.logical_xor(X[:,None,:], W[None,:,:])

10
11 # Sum over the input dimension
12 S = S.sum(dim=2) + B
13
14 # 0-centered for use with BatchNorm when preferred
15 S = S - W.shape[1]/2
16
17 return S
18
19 @staticmethod
20 def backward(ctx, Z):
21 if ctx.bool_bprop:
22 G_X, G_W, G_B = backward_bool(ctx, Z)
23 else:
24 G_X, G_W, G_B = backward_real(ctx, Z)
25
26 return G_X, G_W, G_B, None

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 4: Backpropagation logic with Boolean received backpropagation

1 def backward_bool(ctx, Z):
2 """
3 Variation of input:
4 - delta(xor(x,w))/delta(x) = neg w
5 - delta(Loss)/delta(x) = xnor(z,neg w) = xor(z,w)
6 Variation of weights:
7 - delta(xor(x,w))/delta(w) = neg x
8 - delta(Loss)/delta(x) = xnor(z,neg x) = xor(z,x)
9 Variation of bias:

10 - bias = xnor(bias,True) ==> Variation of bias is driven in
11 the same basis as that of weight with xnor logic and input True.
12 Aggregation:
13 - Count the number of TRUEs = sum over the Boolean data
14 - Aggr = TRUEs - FALSEs = TRUEs - (TOT - TRUEs) = 2TRUES - TOT
15 where TOT is the size of the aggregated dimension
16 """
17 X, W, B = ctx.saved_tensors
18
19 # Boolean variation of input
20 G_X = torch.logical_xor(Z[:,:,None], W[None,:,:])
21
22 # Aggregate over the out_features dimension
23 G_X = 2 * G_X.sum(dim=1) - W.shape[0]
24
25 # Boolean variation of weights
26 G_W = torch.logical_xor(Z[:,:,None], X[:,None,:])
27
28 # Aggregate over the batch dimension
29 G_W = 2 * G_W.sum(dim=0) - X.shape[0]
30
31 # Boolean variation of bias
32 if B is not None:
33 # Aggregate over the batch dimension
34 G_B = 2 * Z.sum(dim=0) - Z.shape[0]
35
36 # Return
37 return G_X, G_W, G_B

Algorithm 5: Backpropagation logic with real received backpropagation

1 def backward_real(ctx, Z):
2 X, W, B = ctx.saved_tensors
3
4 """
5 Boolean variation of input processed using torch avoiding loop:
6 -> xor(Z: Real, W: Boolean) = -Z * emb(W)
7 -> emb(W): T->1, F->-1 => emb(W) = 2W-1
8 => delta(Loss)/delta(X) = Z*(1-2W) """
9 G_X = Z.mm(1-2*W)

10
11 """
12 Boolean variation of weights processed using torch avoiding loop:
13 -> xor(Z: Real, X: Boolean) = -Z * emb(X)
14 -> emb(X): T->1, F->-1 => emb(X) = 2X-1
15 => delta(Loss)/delta(W) = Z^T * (1-2X) """
16 G_W = Z.t().mm(1-2*X)
17
18 """ Boolean variation of bias """
19 if B is not None:
20 G_B = Z.sum(dim=0)
21
22 # Return
23 return G_X, G_W, G_B

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 6: Python code of Boolean optimizer

1 class BooleanOptimizer(torch.optim.Optimizer):
2
3 def __init__(self, params, lr: float):
4 super(BooleanOptimizer, self).__init__(params, dict(lr=lr))
5 for param_group in self.param_groups:
6 param_group[’accums’] = [torch.zeros_like(p.data) for p in param_group[’

params’]]
7 param_group[’ratios’] = [0 for p in param_group[’params’]]
8 self._nb_flips = 0
9

10 @property
11 def nb_flips(self):
12 n = self._nb_flips
13 self._nb_flips = 0
14 return n
15
16 def step(self):
17 for param_group in self.param_groups:
18 for idx, p in enumerate(param_group[’params’]):
19 self.update(p, param_group, idx)
20
21 def update(self, param: Tensor, param_group: dict, idx: int):
22 accum = param_group[’ratios’][idx] * param_group[’accums’][idx] + param_group[’

lr’] * param.grad.data
23 param_group[’accums’][idx] = accum
24 param_to_flip = accum * (2*param.data-1) >= 1
25 param.data[param_to_flip] = torch.logical_not(param.data[param_to_flip])
26 param_group[’accums’][idx][param_to_flip] = 0.
27 param_group[’ratios’][idx] = 1 - param_to_flip.float().mean()
28 self._nb_flips += float(param_to_flip.float().sum())

C.2 SUCCESSIVE SVID FOR KERNEL EXTRACTION

Algorithm 7 illustrate the Python code of the SVID algortithm to extract the optimal Boolean weights
and scaling factors for one kernel. Based on this, Algorithm 8 illustrates the succesive SVID algorithm
to extract all kernels.

Algorithm 7: Python code of SVID approximation of a FP matrix.

1 def svid_approximation(w):
2 """
3 Approximate the input matrix ‘w‘ by a boolean matrix and a rank-1 matrix:
4 w = w_bool * (s_out * s_in.T)
5
6 Args:
7 w (torch.Tensor): Input tensor of shape (*, m, n).
8
9 Returns:

10 tuple:
11 - w_bool (torch.Tensor): Boolean matrix of the same shape as ‘w‘.
12 - w_res (torch.Tensor): Residual matrix, w - w_bool * (s_out * s_in.T).
13 - s_in (torch.Tensor): Scaled first left singular vector of ‘w‘.
14 - s_out (torch.Tensor): Scaled first right singular vector of ‘w‘.
15 """
16 U, S, Vh = torch.linalg.svd(abs(w.data.clone().float()), full_matrices=False)
17
18 w_bool = torch.sign(w)
19 s_in = torch.sqrt(S[0]) * Vh[0,:].reshape(1,-1)
20 s_out = torch.sqrt(S[0]) * U[:,0].reshape(-1,1)
21
22 w_res = w - w_bool * torch.matmul(s_out, s_in)
23
24 return w_bool, w_res, s_in, s_out

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 8: Python code of successively extracts kernels from FP matrix using SVID.

1 def successive_svid(w_fp, n_kernels):
2 """
3 Perform successive SVID on the input matrix to extract Boolean kernels.
4
5 Args:
6 w_fp (torch.Tensor): Input weight matrix.
7 n_kernels (int): Number of iterations to extract kernels.
8
9 Returns:

10 list: List of dictionaries containing ‘n_kernels‘ kernels, each has:
11 - w_bool (torch.Tensor): Boolean matrix.
12 - s_in (torch.Tensor): Input scaling vector.
13 - s_out (torch.Tensor): Output scaling vector.
14 """
15 boolean_kernels = []
16
17 w = w_fp # The input to SVID at first iteration is the original weight
18
19 for k in range(n_kernels):
20 # Extract the Boolean weights, residual, and scaling vectors
21 w_bool, w_res, s_in, s_out = svid_approximation(w)
22
23 # Save the extracted kernel
24 boolean_kernels.append({’w_bool’: w_bool, ’s_in’: s_in, ’s_out’: s_out})
25
26 # The input to SVID for the next iteration is the current residual matrix
27 w = w_res
28
29 return boolean_kernels

D PROOF OF PROPOSITIONS

For completeness, we include the proofs of Propositions related to SVID approximation used in the
main paper.

D.1 PROOF OF BOOLEAN LINEAR REFORMULATION USING SVID

Proposition D.1. (Xu et al., 2024) Given the weight matrix WFP and input X, the linear layer
can be reformulated as the following using SVID approximation, WFP ≈Wbool ⊙

(
souts

⊤
in

)
, as

follows:

XW⊤
FP ≈

[(
X⊙ s⊤in

)
W⊤

bool

]
⊙ s⊤out. (36)

Proof. Due to the SVID approximation, we have WFP[i,j] ≈Wbool[i,j]sout[i]sin[j]. Then, we have:(
XW⊤

FP

)
[i,j]
≈

∑
k

X[i,k]W
⊤
FP[k,j] (37)

=
∑
k

X[i,k]WFP[j,k] (38)

=
∑
k

X[i,k]Wbool[j,k]sout[j]sin[k] (39)

=
∑
k

X[i,k]sin[k]Wbool[j,k]sout[j] (40)

=
∑
k

(
X⊙ s⊤in

)
[i,k]

W⊤
bool[k,j]sout[j] (41)

=
[(
X⊙ s⊤in

)
W⊤

bool

]
[i,j]

sout[j] (42)

=
{[(

X⊙ s⊤in
)
W⊤

bool

]
⊙ s⊤out

}
[i,j]

. (43)

Thus, the proposition is proved.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.2 PROOF OF PROPOSITION 4.1

Lemma D.2. (Xu et al., 2024) Denote σi(W) the i-th biggest singular value of matrix W. The
following inequality holds:

σ1(|W|) ≥ σ1(W). (44)

Proof. By the definition of induced norm, we have:

σ1(W) = ∥W∥2 = max
x,∥x∥2=1

∥Wx∥2, (45)

σ1(|W|) = ∥|W∥|2 = max
y,∥y∥2=1

∥|W|y∥2. (46)

In addition, because ∀x, ∥x∥2 = 1, we have:

∥|W||x|∥22 =
∑
i

∑
j

|W[i,j]||x[j]|

2

(47)

≥
∑
i

|∑
j

W[i,j]x[j]|

2

(48)

=
∑
i

∑
j

W[i,j]x[j]

2

(49)

= ∥Wx∥22. (50)

Therefore

max
y,∥y∥2=1

∥|W|y∥2 ≥ max
x,∥x∥2=1

∥Wx∥2 (51)

⇔ σ1(|W|) ≥ σ1(W). (52)

Thus, the lemma is proved.

Proposition D.3 (Restated from Xu et al. (2024)). For W ∈ Rm×n, write W = ŨΣ̃Ṽ
⊤

its
SVD. Let a =

√
σ̃1Ũ[:,1], and b =

√
σ̃1Ṽ[:,1]. Similarly, denote |W| = UΣV⊤ its SVD; sin

and sout are given as: sin =
√
σ1V[:,1], and sout =

√
σ1U[:,1]. We decompose the matrix as

W = Wbool ⊙ |W| ≈Wbool ⊙
(
souts

⊤
in

)
. We then have:∥∥W −Wbool ⊙ souts

⊤
in

∥∥2
F
≤

∥∥∥W − ab⊤
∥∥∥2
F
. (53)

Proof. We denote the following error matrices:

E1 = W − ab⊤, (54)

E2 = |W| − souts
⊤
in. (55)

Multiplying Wbool with both sides of Eq. 55, we have:

Wbool ⊙ |W| −Wbool ⊙ souts
⊤
in = Wbool ⊙E2 (56)

⇔W −Wbool ⊙ souts
⊤
in = Wbool ⊙E2. (57)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Thus, we have:

∥W −Wbool ⊙ souts
⊤
in∥2F = ∥Wbool ⊙E2∥2F (58)

=
∑
i,j

W2
bool[i,j] +E2

2[i,j] (59)

=
∑
i,j

E2
2[i,j] (60)

= ∥E2∥2F (61)

For SVD decomposition, the norm of the above error matrices in the rank-1 approximation is the um
of squares of all singular values except the largest one. In particular, we have:

∥E1∥2F =

n∑
i=2

σ2
i (W), (62)

∥E2∥2F =

n∑
i=2

σ2
i (|W|). (63)

Since ∥W∥2F = ∥|W|∥2F , we have:
n∑

i=1

σ2
i (W) =

n∑
i=1

σ2
i (|W|) (64)

⇔ ∥E1∥2F + σ2
1(W) = ∥E2∥2Fσ2

1(|W|). (65)

Thus, according to Lemma D.2 and Eq. 61, we have:

∥E2∥2F ≤ ∥E1∥2F (66)∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
≤

∥∥∥W − ab⊤
∥∥∥2
F
. (67)

Thus, the proposition is proved.

D.3 PROOF OF PROPOSITION 4.3

Proposition D.4. For W ∈ Rm×n, we denote |W| = UΣV⊤ its SVD. sin and sout are given as:
sin =

√
σ1V[:,1], and sout =

√
σ1U[:,1]. We decompose the matrix as W = Wbool ⊙ |W| ≈

Wbool ⊙
(
souts

⊤
in

)
. We then have:∥∥W −Wbool ⊙ souts

⊤
in

∥∥2
F
≤

∥∥∥W −Wbool ⊙ cd⊤
∥∥∥2
F
, ∀c ∈ Rm×1,∀d ∈ Rn×1. (68)

Proof. Similar to the proof of Proposition 4.3, we denote the following error matrices E1 = |W| −
souts

⊤
in and E2 = |W| − cd⊤. We have that

Wbool ⊙ |W| −Wbool ⊙ souts
⊤
in = Wbool ⊙E1 (69)

⇔W −Wbool ⊙ souts
⊤
in = Wbool ⊙E1. (70)

Therefore,∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
= ∥Wbool ⊙E1∥2F =

∑
i,j

W2
bool[i,j]E

2
1[i,j] =

∑
i,j

E2
1[i,j] = ∥E1∥2F .

(71)

Similarly, we have that ∥∥∥W −Wbool ⊙ ab⊤
∥∥∥2
F
= ∥E2∥2F . (72)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thus, we need to show that

∥E1∥2F ≤ ∥E2∥2F (73)

Additionally, we denote the rank-k approximation to |W| by SVD as Sk:

Sk =

k∑
i=1

σiU[:,i]V
⊤
[:,i]. (74)

With this notation, we have that S1 = souts
⊤
in is the rank-1 approximation of |W| by SVD.

From Eq. 73, we need to show that if there is an arbitrary rank-1 approximation to |W|, P1 = cd⊤,
we then have ∥∥|W| − souts

⊤
in

∥∥2
F
≤

∥∥∥|W| − cd⊤
∥∥∥2
F
. (75)

This can be done by using the Eckart-Young-Mirsky theorem (Eckart & Young, 1936). First, we have
that

∥|W| − S1∥2F =
∥∥|W| − souts

⊤
in

∥∥2
F
=

∥∥∥∥∥
n∑

i=2

σiU[:,i]V
⊤
[:,i]

∥∥∥∥∥
2

F

=

n∑
i=2

σ2
i . (76)

By the triangle inequality with the spectral norm, if |W| = C+D then σ1(|W|) ≤ σ1(C)+σ1(D).
Suppose the Ck and Dk denote the rank-k approximation to C and D by SVD method, respectively.
Then, for any i, j ≥ 1 we have

σi(C) + σj(D) = σ1(C−Ci−1) + σ1(D−Dj−1) (77)
≥ σ1(|W| −Ci−1 −Dj−1) (78)
≥ σ1(|W| − Si+j−2) (since rank(Ci−1 +Dj−1) ≤ i+ j − 2) (79)
= σi+j−1(|W|). (80)

Because σ2(P1) = 0, when C = |W| − P1 and D = P1 we have that for i ≥ 1, j = 2,
σi(|W| −P1) ≥ σi+1(|W|). As a result,

∥|W| −P1∥2F =
∑

i = 1nσi(|W| −P1)
2 ≥

∑
i = 2nσi(|W|)2 = ∥|W| − S1∥2F (81)

⇔ ∥E2∥2F ≥ ∥E1∥2F (82)

⇔
∥∥∥W −Wbool ⊙ cd⊤

∥∥∥2
F
≥

∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
. (83)

Hence the proposition is proved.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E DETAILS ON KERNEL ALLOCATION

E.1 WEIGHT IMPORTANCE ESTIMATION

We assess the importance of a linear weight in the original FP model by comparing the representations
at its input and output. Let X ∈ Rd×n and Y ∈ Rd×m denote the input and output matrices of a
linear layer, respectively, where d is the number of samples, and n and m are the input and output
feature dimensions. We hypothesize that a weight is important if it significantly transforms the
input representations. For example, a weight matrix equivalent to the identity does not alter the
representations and thus would be considered unimportant. To quantify this transformation, we use a
robust metric for comparing neural representations.

Various similarity measures can be used for this purpose, such as cosine similarity, as done in (Gromov
et al., 2025). In this work, we adopt PWCCA Morcos et al. (2018), which is particularly well-suited for
our setting: it is invariant to linear transformations—an essential property given that large language
models (LLMs) are primarily composed of linear layers—and effectively captures shared structure
while filtering out noise Morcos et al. (2018).

Specifically, we define the importance score as:

h = 1− 1

c

c∑
i=1

ρPWCCA,i(X,Y), (84)

where c denotes the number of canonical vectors used in the comparison (typically, c = min(n,m)).
The matrices X and Y are obtained by simply forwarding a set of data samples through the network.
In our experiments, we use 128 random samples from the WikiText2 training set to estimate the
importance score. Here, ρPWCCA,i represents the projection-weighted correlation along the i-th
canonical direction. The following section describes in detail how this correlation is computed.

Algorithm 9: Kernel allocation.
1 Input
2 T ≥ 1 ; /* model expansion limit */

3 E = [e
[k]
l ] ∈ RNW×Kmax for k ∈ [1,Kmax], l ∈ [1, NW] ; /* residual approx error */

4 h = [hl] ∈ RNW×1 ; /* weight importance scores */

5 p = [pl] ∈ RNW×1 ; /* weight size ratios */
6 Initialize
7 k = [1, . . . , 1]T of length NW ; /* starting choice */
8 f = k < Kmax ; /* feasible indicator */

9 C =
(

1
p
log 1

p

)
⊙ h⊙E ; /* where ⊙ is broadcasted over E columns */

10 While not all f is False do
11 g := ∅, l := ∅;
12 for l = 1 : NW do
13 if f [l] = True then
14 g := C[l,k[l]]−C[l,k[l] + 1] ; /* gain by increasing kernel size by 1

*/
15 Append l to l, append g to g;
16 Sort g in decreasing order, and arrange l accordingly;
17 for (g, l) in (g, l) do
18 kl := k;
19 kl[l] = kl[l] + 1;
20 if kT

l p ≤ T then
21 k[l] = k[l] + 1;
22 break ; /* escape the for loop */
23 else
24 f [l] := False;
25 f ← and(f ,k < Kmax) ; /* element-wise logical and */
26 return k

Projection-weighted Canonical Correlation Analysis. Canonical Correlation Analysis (CCA)
finds bases for two matrices such that, when the original matrices are projected onto these bases, the

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

resulting projections are maximally correlated. Without loss of generality, we assume that n ≤ m.
For 1 ≤ i ≤ n, the i-th canonical correlation coefficient ρi is given by:

ρi = max
wi

X,wi
Y

corr(Xwi
X,YYwi

Y) (85)

subject to Xwi
X ⊥Xwj

X ∀j < i

Ywi
Y ⊥Ywj

Y ∀j < i.

The vectors wi
X ∈ Rn and wi

Y ∈ Rm that maximize ρi are called the canonical weights. These
weights transform the original data into the canonical variables Xwi

X and Ywi
Y. The constraints

in Eq. 85 enforce orthogonality among the canonical variables, ensuring that each successive pair
captures a distinct mode of correlation.

The mean CCA correlation is then computed as:

ρ̄CCA =

∑n
i=1 ρi
n

, (86)

where n is the number of canonical correlation coefficients considered.

CCA is sensitive to perturbation when the condition number of X and Y is large. To imporve
robustness, Morcos et al. (2018) propose a strategy to reduce this sensitivity, which they term
“projection-weighted CCA” (PWCCA).

ρPWCCA,i =

∑c
i=1 αiρi∑c
i=1 αi

, αi =
∑
j

|⟨hi,xj⟩|, (87)

where xj is the j-th column of X, and hi = Xwi
X is the vector of canonical variables formed by

projecting X to the i-th canonical cooridate frame.

E.2 KERNEL ALLOCATION ALGORITHM

Algorithm 9 illustrates the details of our algorithm for kernel allocation.

F THEORETICAL ANALYSIS OF TRAINING COMPLEXITY

Consider a linear layer without bias, defined as Y = XW where X ∈ RB×L×N and W ∈ RN×M .
Here, B is the mini-batch size, L is the sequence length, N is the input dimension, and M is the
output dimension. We analyze the number of multiplications (MULs) required.

Latent-weight approach (same cost as full-precision training):

• Forward: B × L×N ×M (FP16–FP16 MULs)
• Backward w.r.t. weights: B × L×N ×M (FP16–FP16 MULs)
• Backward w.r.t. inputs: B × L×N ×M (FP16–FP16 MULs)
• Total: 3×B × L×N ×M FP16–FP16 MULs

Boolean approach with K kernels: (assuming FP16 gradients for a fair comparison). As shown in
the main text, only the final Boolean kernel needs to be fine-tuned. The number of multiplications
becomes:

• Forward: K ×B × L×N ×M (BOOL–FP16 MULs, using all K kernels)
• Backward w.r.t. weights: 1×B × L×N ×M (FP16–FP16 MULs, for last kernel only)
• Backward w.r.t. inputs: 1×B × L×N ×M (BOOL–FP16 MULs, for last kernel only)
• Total: (K + 1)×B × L×N ×M BOOL–FP16 MULs, and B × L×N ×M FP16–FP16 MULs

Since K is typically small (e.g., 2–4) while B and L are large (thousands), most computation shifts
from FP16–FP16 to the more efficient BOOL–FP16 operations. If we ignore the BOOL–FP16 MULs,

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

the FP16–FP16 operations are reduced by a factor of 2/3 (i.e., a 66.7% reduction). Remarkably,
this reduction is achieved while using more kernels and attaining better performance, yet with
significantly lower training complexity. According to BitNet (Wang et al., 2023) (Table 1), for
L = 512 and a LLaMA-like 13B model on 7 nm hardware, 1Bit–FP16 operations yield an energy
saving of approximately 56× compared to FP16–FP16. Hence, our method achieves substantial
training efficiency. Importantly, BitNet is a latent-weight approach, with efficiency gains realized
primarily during inference, whereas our method provides significant benefits already during training
and fine-tuning.

We note that the above analysis does not include optimizer cost. The latent-weight approach typically
relies on Adam, which requires two full-precision momenta per parameter and a complex update rule
involving multiple normalization statistics. By contrast, our Boolean approach employs a Boolean
optimizer requiring only one full-precision momentum per parameter, coupled with a much simpler
update rule (see Eq. 3). This further underscores the reduction in overall training complexity offered
by our method.

G ADDITIONAL EXPERIEMENTAL RESULTS

G.1 ADDITIONAL INFORMATION OF EXPERIEMENTAL SETTINGS

We use 12 Nvidia GPUs of Tesla V100 for our experiments. We follow exactly the experimental
settings in Jo et al. (2024). The results of the baselines in Table 2 are taken from Xu et al. (2024); Jo
et al. (2024).

G.2 ON THE CHOICE OF KD LOSS

0 20000 40000 60000

10
3

Iteration

Llogits(Forward KL)

0 20000 40000 60000

10
−1

Iteration

Lis

Dlogits Wiki2 C4

Forward KL 31.39 28.50
Reverse KL 33.14 29.46
Symmetric KL 32.67 29.26
JS Divergence 31.78 28.69
TV Distance 33.02 29.56

Figure 12: The training convergence of Lis, and Llogits, measured by Forward KL, and the final
results with respect to the choice of Dlogits.

Fig. 12 illustrates the convergence and results of using different choices for Dlogits in Eq. 10. Despite
its simplicity, forward KL achieves the best performance. More complex measures, such as total
variance (TV) distance (Wen et al., 2023) and Jensen-Shannon (JS) divergence (Agarwal et al., 2024),
offer no significant benefits in our case. Furthermore, we observe that the final perplexity is strongly
correlated with Llogits using forward KL, but not with Lis, as shown in Fig. 12 and Fig. 6. As a result,
we employ the forward KL in all experiments.

G.3 RESULTS OF DIFFERENT NUMBER OF KERNELS ON LLMS

To complement the Table 2, Table 5 shows the benchmarking results of LLMs using our MBOK
method with varying numbers of kernels per weight. Consistent with the observations made on
smaller models in § 6.1.1, we observe that increasing the number of kernels generally improves
performance. However, the performance gains begin to diminish noticeably beyond three kernels.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 5: Perplexity and zero-shot accuracy results of our MBOK method with different number of
kernels.

Model Method Wbits Perplexity (↓) Zero-shot Accuracy (↑)
Wiki2 C4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average

OPT-1.3B

MBOK (2 kernels) 2×1 16.13 16.61 58.53 70.67 48.11 56.75 48.19 27.90 51.69
MBOK (3 kernels) 3×1 15.30 15.68 60.64 70.78 50.71 56.83 48.82 28.49 52.71
MBOK (4 kernels) 4×1 14.83 14.92 60.95 70.85 51.02 56.85 49.13 29.24 53.01

LLaMA-7B

MBOK (2 kernels) 2×1 6.83 8.53 69.20 74.32 64.80 60.30 49.05 34.90 58.76
MBOK (3 kernels) 3×1 6.20 7.76 67.89 76.15 68.91 63.30 48.94 37.62 60.47
MBOK (4 kernels) 4×1 6.01 7.53 68.16 76.71 69.85 62.09 49.24 38.14 60.70

LLaMA-13B

MBOK (2 kernels) 2×1 6.17 7.88 68.10 76.33 69.88 64.17 52.34 37.88 61.45
MBOK (3 kernels) 3×1 5.58 7.15 67.39 77.74 73.37 66.61 54.04 41.21 63.39
MBOK (4 kernels) 4×1 5.38 6.91 68.69 77.63 74.23 66.53 56.14 41.38 64.10

G.4 ADDITIONAL RESULTS ON LLAMA-2

Table 6 shows the results on LLaMA2-13B (Touvron et al., 2023b). Similar to the Table 2, the
results of the baselines are taken from Xu et al. (2024) and Jo et al. (2024). It is clear that our
method consistently outperforms the baselines across different metrics and model sizes.This further
emphasizes the robustness of our approach across various types of models.

Table 6: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLaMA2
models.

Model Method Wbits Perplexity (↓) Zero-shot Accuracy (↑)
Wiki2 C4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average

LLaMA2-7B

FP16 16 5.47 6.97 71.10 76.88 72.94 67.09 53.58 40.61 63.70

PB-LLM 1.7 76.75 85.92 62.17 52.82 26.87 50.11 26.89 24.31 40.53
BiLLM 1.11 27.72 36.34 62.14 59.19 35.18 53.11 34.22 26.54 45.06
OneBit 1 8.60 10.74 63.06 70.40 54.24 56.67 40.82 29.35 52.42
MoS 1 7.88 9.75 65.02 71.55 59.41 56.18 41.84 30.03 54.01

GPTQ 2 7.7e3 NaN 42.97 49.46 26.19 50.28 26.77 28.58 37.38
LLM-QAT 2 1.1e3 6.6e2 59.14 50.12 25.10 49.08 26.26 26.96 35.89
OmniQuant 2 31.21 64.34 58.69 56.53 33.87 51.22 33.63 24.32 43.12

MBOK [Ours] 2×1 6.87 8.74 66.94 74.97 65.59 61.72 44.82 34.21 58.04
MBOK [Ours] 3×1 6.12 7.81 65.46 75.79 69.59 62.04 49.11 37.80 59.97

LLaMA2-13B

FP16 16 4.88 6.47 68.99 79.05 76.62 69.77 57.95 44.20 66.10

PB-LLM 1.7 155.25 151.15 37.82 53.26 28.89 49.48 28.28 23.72 36.91
BiLLM 1.11 20.71 27.19 62.20 62.51 38.05 56.35 40.69 27.73 47.92
OneBit 1 7.56 9.67 65.66 71.60 60.07 56.91 45.76 31.74 55.29
MoS 1 7.08 8.91 66.12 73.72 63.80 58.98 45.71 33.19 57.09

GPTQ 2 2.1e3 3.2e2 40.61 51.74 25.67 51.85 25.46 27.30 37.11
LLM-QAT 2 5.1e2 1.1e3 39.85 49.08 24.37 51.38 27.15 24.32 36.03
OmniQuant 2 16.88 27.02 62.05 62.24 50.34 53.20 40.66 29.61 49.68

MBOK [Ours] 2×1 5.97 7.85 66.32 75.84 70.24 62.51 50.00 37.46 60.40
MBOK [Ours] 3×1 5.35 7.07 66.80 77.59 73.79 65.27 54.47 41.89 63.30

G.5 GENERATION QUALITY

Table 7 illustrates the generated text given zero-shot arbitrary questions from LLaMA-13B with FP16
weights and MBOK using three kernels. It is clearly that our model is able to produce meaningful and
coherennt text compared to the original FP16 model.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 7: Comparison of generation quality (non-curated) on LLaMA-13B models with FP16 and MBOK
using three kernels.

Prompt: What are the capitals of China, US and Russia?

FP16: The capital of China is Beijing. The capital of the
United States is Washington D.C. and the capital of
Russia is Moscow.

MBOK: The capital of China is Beijing. The capital of the US
is Washington D.C. and the capital of Russia is Moscow.

Prompt: I have a friend who lives in London and I would like to
visit him. How would I go there from Paris?

FP16: You can take the Eurostar from Gare du Nord in Paris to
St. Pancras Station in London. The trip takes about 2
hours and 15 minutes.

MBOK: The fastest way to get from Paris to London is to take
the Eurostar train. The Eurostar departs from the Gare
du Nord station in Paris and arrives at the St. Pancras
International station in London. The trip takes about 2
hours and 15 minutes.

Prompt: What is Fete du Travail?

FP16: It is an annual holiday celebrated all over the world
that resulted from the labour union movement, to
celebrate the economic and social achievements of
workers. The majority of countries celebrate Labour Day
on May Day, or May 1, and it is popularly known as May
Day and International Workers’ Day

MBOK: In France, May 1st is a public holiday. It is also
known as Labour Day, International Workers_ Day, or May
Day. It is a celebration of the social and economic
achievements of the labour movement. It originated from
the eight-hour day movement, which advocated eight hours
for work, eight for recreation, and eight for rest.

Prompt: What are the main ingredients in pho, Vietnam_s iconic
noodle soup?

FP16: Rice noodles, beef or chicken, onions, ginger, cilantro,
bean sprouts, basil, lime, hoisin sauce, Sriracha, and
fish sauce.

MBOK: Bone broth, rice noodles, fish sauce, herbs and spices,
and beef, chicken, or seafood, depending on the type
of pho you_re eating. Pho is usually served with
bean sprouts, Thai basil, lime wedges, and hoisin and
sriracha sauces.

G.6 ADDITIONAL BASELINES

G.6.1 COMPARIONS WITH QUIP AND SHIFTADDLLM

Both QuIP (Chee et al., 2023) and ShiftAddLLM (You et al., 2024) are PTQ method for LLMs. QuIP
is a two-step process that leverages the insight that quantization performs better when weight and
Hessian matrices are incoherent. It uses an adaptive rounding procedure to minimize a quadratic
proxy objective, which measures the error between the original and quantized weights. Additionally,
it applies pre- and post-processing steps using random orthogonal matrices to ensure the weight and
Hessian matrices are incoherent. Conversely, our method does not employ either these complicated
pre- and post-processing steps or costly Hessian matrices. Meanwhile, ShiftAddLLM is a post-training

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

reparameterization process, which quantizes each weight matrix in the LLM into a set of binary
matrices and group-wise scaling factors. he original multiplication between activations and weights
is then reparameterized into: (1) bitwise shifts for the activations, using the power-of-two quantized
scaling factors, and (2) additions of the results, guided by the binary weight matrices; this process
can be implemented using look-up tables (LUTs) on GPUs.

Table 8 presents results on OPT models, with competitor results extracted from their respective
original papers. Notably, ShiftAddLLM utilizes a more computationally expensive group quantization,
whereas our method does not. Our results clearly demonstrate that our approach consistently and
significantly outperforms these baselines, particularly in the 2-bit scenario.

Table 8: Comparisons with QuIP, ShiftAddLLM using OPT models.

BIT-WIDTH METHOD OPT-125M OPT-350M OPT-1.3B

QuIP (Chee et al., 2023) 34.22 25.19 16.21
ShiftAddLLM (You et al., 2024) 31.29 24.24 21.532
MBOK [Ours] 29.10 23.12 15.03

QuIP (Chee et al., 2023) 347.40 672.30 41.64
ShiftAddLLM (You et al., 2024) 51.15 40.24 29.033
MBOK [Our] 28.60 24.54 16.13

G.6.2 COMPARIONS WITH BITSTACK, DB-LLM AND AWQ

While BitStack (Wang et al., 2025) also decompose weights using SVD, its core method and goal
fundamentally differ from our method. BitStack is a training-free method primarily aimed at saving
storage for inference. In contrast, our method not only converts FP models into Boolean models but
also includes further fine-tuning, with the goal of achieving low complexity in both training and
inference. Furthermore, while BitStack packs the extracted binary matrix into GPU-supported data
types to reduce inference memory, and its approach to loading residual blocks relies on their influence
on perplexity, our approach to residual block management is distinct.

DB-LLM (Chen et al., 2024) is limited to a fixed decomposition into two binary matrices, whereas our
MBOK method generalizes to an arbitrary number of Boolean kernels. In DB-LLM, the full-precision
knowledge is preserved only through scaling factors and binary matrices derived implicitly via
thresholding. There is no formal analysis proving the optimality of this formulation. In contrast,
thanks to the SVID in our approach, each extracted kernel is accompanied by an optimal scaling
vector and Boolean matrix. This allows us to only finetune the last kernel to calibrate the entire model.
Like most existing binary LLMs, DB-LLM relies on full-precision latent weights during training
and finetuning. Our method does not require this, as it directly operates in the Boolean domain.
This distinction is particularly important in the LLM context, where training and finetuning can be
computationally expensive.

Table 9 compares our method, MBOK (with 2 kernels), against BitStack, DB-LLM, and AWQ (Lin et al.,
2024) on LLaMA2-7B. It is evident that our method consistently outperforms all baselines.

Table 9: Comparisons with AWQ, BitStack, DB-LLM using LLaMA2-7B with 2-bit setting.

METHOD Wiki2 (↓) ARc-e (↑) ARC-c (↑) PIQA (↑) Hella. (↑) WinoG. (↑)

AWQ (Lin et al., 2024) 1.8e5 26.3 26.7 50.9 26.5 49.3
BitStack (Wang et al., 2025) 29.93 32.3 25.6 62.4 42.8 53.6
DB-LLM (Chen et al., 2024) 7.23 45.2 33.5 73.1 61.9 61.7
MBOK [Ours] 6.87 44.8 34.2 75.0 65.6 61.7

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

G.7 DISCUSSION ON LATENCY AND COMPARISON WITH VECTOR QUANTIZATION

Scalar and Vector Quantization. In the context of LLMs, scalar quantization and vector quantiza-
tion are two different approaches for compressing weights. Scalar quantization maps each weight or
activation independently to a smaller set of discrete levels (e.g., 32-bit floating-point to 8- or 4-bit
integers). It is simple, hardware-friendly, and widely used in practice, but it ignores correlations
across dimensions, potentially discarding fine-grained structure. Vector quantization (VQ) instead
compresses entire vectors (e.g., weight groups) by replacing them with indices into a learned code-
book of representative vectors. By capturing cross-dimensional correlations, VQ often achieves
higher compression, particularly for large embedding tables. However, codebook training is more
complex, and inference requires index lookups to reconstruct vectors. This adds significant overhead
to both quantization and dequantization, leading to much higher latency compared to scalar methods.

Our method is native 1-bit weight design, its nearest baselines are scalar weight quantization. As a
result, for a fair comparison, in the main text we mainly consider state-of-the-art scalar quantization
like OmniQuant (Shao et al., 2024), GPTQ (Frantar et al., 2023), LLM-QAT (Liu et al., 2024c) as the
main baselines. Nevertheless, for completeness, we also compare our approach against state-of-the-art
ultra low-bit vector quantization (VQ) methods for LLMs, including QTIP (Tseng et al., 2024b) and
QUIP# (Tseng et al., 2024a) in a 2-bit setting, specifically on LLaMA-7B with a sequence length of
2048 (results taken from the QTIP paper). The results are summarized in Table 10. Remarkably, our
method’s performance is comparable to these state-of-the-art (SOTA) VQ methods. This is noteworthy
given that our approach directly utilizes native Boolean weights, eliminating the need for the very
costly quantization and dequantization of high-dimensional vectors inherent in VQ.

Table 10: Perplexity comparison with SOTA vector quantization methods using LLaMA-7B.

METHOD Wiki2 (↓) C4 (↓)

QUIP# (Tseng et al., 2024a) 6.86 8.36
QTIP (Tseng et al., 2024b) 6.52 7.99
MBOK [Ours] 6.83 8.53

Empirical Evidence of Latency Gains. To demonstrate the practicality of our approach even on
modern hardware such as GPUs, we leverage the recently introduced BitBLAS library 1 (Wang et al.,
2024) for 1-bit matrix multiplications. Using FP16 activations with INT1 weights, we measure the
latency of linear layers in LLaMA-7B (Table 11) and LLaMA-13B (Table 12) under an inference batch
size of 1, evaluating our method MBOK with two kernels. Our results show that MBOK achieves up to
an 8.7× speedup over FP16 baselines, while substantially outperforming existing binarization and
scalar quantization methods, as detailed in the main text. We also benchmark against 2-bit QUIP#
and QTIP using the authors’ official implementations23. All experiments are conducted on a Google
Cloud A100 GPU.

Remarkably, our method is not only much faster than these VQ baselines but also delivers comparable
performance. This is expected, as VQ-based methods incur significant overhead from the costly
encoding and decoding steps required to realize their high compression ratios. Taken together, the
results highlight that our native Boolean approach offers a compelling and efficient alternative to
state-of-the-art vector quantization methods. With dedicated Boolean hardware accelerators, the
performance gains would be even more pronounced.

1https://github.com/microsoft/BitBLAS
2https://github.com/Cornell-RelaxML/quip-sharp
3https://github.com/Cornell-RelaxML/qtip

38

https://github.com/microsoft/BitBLAS
https://github.com/Cornell-RelaxML/quip-sharp
https://github.com/Cornell-RelaxML/qtip


2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 11: Measured latency (ms) of linear layers in LLaMA-7B, with values in parentheses denoting
speed-up relative to the FP16 baseline.

WEIGHT SIZE FP16 QUIP# (Tseng et al., 2024a) QTIP (Tseng et al., 2024b) MBOK (Ours)

4096× 4096 0.10697 0.46196 (0.23×) 1.37137 (0.08×) 0.04989 (2.14×)
4096× 11008 0.27935 0.55526 (0.50×) 3.13633 (0.09×) 0.05136 (5.44×)
11008× 4096 0.27664 0.55988 (0.49×) 3.16067 (0.09×) 0.05117 (5.41×)

Table 12: Measured latency (ms) of linear layers in LLaMA-13B, with values in parentheses denoting
speed-up relative to the FP16 baseline.

WEIGHT SIZE FP16 QUIP# (Tseng et al., 2024a) QTIP (Tseng et al., 2024b) MBOK (Ours)

5120× 5120 0.16540 0.62260 (0.27×) 1.96368 (0.08×) 0.05074 (3.25×)
5120× 13824 0.42830 0.62836 (0.68×) 5.23681 (0.09×) 0.05098 (8.40×)
13824× 5120 0.43411 0.62840 (0.69×) 5.21193 (0.08×) 0.04987 (8.70×)

H ETHICS STATEMENT

This work makes a fundamental contribution to machine learning methodology. It does not involve
human subjects, sensitive data, or applications with direct societal or ethical risks. We do not foresee
any immediate ethical concerns arising from this research.

I REPRODUCIBILITY STATEMENT

We provide detailed descriptions of all algorithms and illustrative code for the core components.
Experiments are conducted on standard benchmarks using established testing procedures, and all
experimental details and settings are fully declared to facilitate independent reproduction of our
results.

J THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for non-substantive assistance, including grammar
refinement and summarizing relevant literature. All research ideas, analyses, and conclusions are the
authors’ own.

39


	Introduction
	Related Works
	Preliminaries
	Pitfalls of Full-Precision Latent Weights for Binarization
	Native Boolean Framework for Neural Networks

	Multiple Boolean Kernels
	Boolean Reformulation for Linear Layers
	Enhanced Expressivity with Multiple Boolean Kernels 
	Effective Knowledge Transfer into Boolean Models
	Successive Extraction using SVID
	Finetuning with Knowledge Distillation


	Kernel Allocation
	Experiments
	Ablation Studies and Analysis
	Effect of the number of kernels
	Optimization strategy

	Main Benchmark Results
	Accuracy-Compression Trade-offs
	Comparison with Latent-weight Approaches
	Kernel Allocation and Comparison to BitNet b1.58
	Discussion on Complexity

	Conclusions
	Primer on Boolean Neural Networks
	Neuron Design
	Mathematical Foundation of Boolean Variation
	Boolean Backpropagation
	Boolean Optimizer

	Discussion on Hardware Considerations
	Computation Proposed in sec:boollinear
	Multi-core Computation Strategy in sec:multikernelboolean

	Code Samples of Core Implementation
	Boolean Linear Layer and Optimizer
	Successive SVID for Kernel Extraction

	Proof of Propositions
	Proof of Boolean Linear Reformulation using SVID
	Proof of pro:svid
	Proof of pro:svidrank1

	Details on Kernel Allocation
	Weight Importance Estimation
	Kernel Allocation Algorithm

	Theoretical Analysis of Training Complexity
	Additional Experiemental Results
	Additional Information of Experiemental Settings
	On the Choice of KD Loss
	Results of Different Number of Kernels on LLMs
	Additional Results on LLaMA-2
	Generation Quality
	Additional Baselines
	Discussion on Latency and Comparison with Vector Quantization 

	Ethics Statement
	Reproducibility Statement
	The Use of Large Language Models

