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ABSTRACT

Weight binarization has emerged as a promising strategy to reduce the complexity
of large language models (LLMs). Existing approaches fall into post-training bina-
rization, which is simple but causes severe performance loss, and training-aware
methods, which depend on full-precision latent weights, adding complexity and
limiting efficiency. We propose a novel framework that represents LLMs with
multi-kernel Boolean parameters and, for the first time, enables direct finetuning
LMMs in the Boolean domain, eliminating the need for latent weights. This en-
hances representational capacity and dramatically reduces complexity during both
finetuning and inference. Extensive experiments across diverse LLMs show our
method outperforms recent ultra low-bit quantization and binarization techniques.

1 INTRODUCTION

Large language models (Brown et al., 2020; Touvron et al., 2023a;

Liu et al., 2024a) have demonstrated unprecedented capabilities, T *°]

largely due to the continuous growth in both model and dataset g 359

sizes. A key area of focus in optimizing these models is lower- g 37

precision computation, which offers substantial benefits in terms £ 257§

of memory and computational efficiency. One prominent approach & 207 |\

to achieving this is through the quantization of weight parameters, & 157 \\1—\.
which reduces the model size by lowering the precision of the weight 00 25 50 75 100 195
values. Recent studies on scaling laws (Dettmers & Zettlemoyer, Model Size (GB)

2023; Kumar et al., 2025) have highlighted the potential of using

low-precision techniques for large language models (LLMs). Figure 1: Finetuning OPT mod-

S ] els (Zhang et al., 2022) using
Binarization represents one of the most extreme forms of quantiza- our 3 Boolean kernels (=), com-

tion for LLMs. While significant progress has been made, challenges pared to GpTQ (Frantar et al.,
remain (Yuan et al., 2024; Huang et al., 2024; Li et al., 2025). Even 2023) (-*), which quantizes the
with advanced techniques like Quantization-Aware Training (QAT), models to 3 bits, and the FP16
which fine-tunes the model extensively after binarization (Xu et al., baseline (-#-) on the C4 dataset.
2024; Jo et al., 2024), or trains it from scratch (Wang et al., 2023), performance still lags behind that
of full-precision (FP) models. This performance gap can be attributed to the limited representation
capacity of binary weights and the heavy reliance on FP latent weights for binarization. This reliance
not only makes the approach computationally expensive but also suboptimal, as it requires gradient
approximation. Meanwhile, recent advances in 4-bit quantization have achieved remarkable com-
pression with minimal accuracy loss, but further compression or applying these methods to smaller
models has yielded unsatisfactory results (Frantar et al., 2023; Lin et al., 2024).

In this paper, we aim to push the boundary of low-precision LLMs by proposing a novel method
named as Multiple Boolean Kernels (MBOK). We extend the work in Nguyen et al. (2024), which
proposes training neural networks with native Boolean weights directly in the Boolean domain,
However, effectively applying this approach to LLMs remains a key challenge. In particular, our
contributions are:

* We propose the framework MBOK, which employs multiple Boolean kernels, each using distinct
Boolean weights (§ 4.2). This allows for flexibly representing LLMs with low bits, while approaching
to FP performance with minimal both finetuning and inference cost. The Boolean weights are directly
trained in Boolean domain, avoiding the need for FP latent weights and gradient approximations.

* We propose a novel successive method that effectively transfers knowledge from an FP LLM into the
Boolean model (§ 4.3), followed by further fine-tuning using knowledge distillation (§ 4.3.2).
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* We introduce a method for automatically allocating the number of kernels for each weight (§ 5),
supporting any average bit-width, including fractional values.

* We provide a comprehensive empirical analysis and benchmarks, demonstrating our method’s
superior performance over recent binarization and quantization approaches (see § 6) with much
lower memory and computational overhead. For example, Fig. 1 shows that our method achieves
the best accuracy-compression trade-off, outperforming FP and existing quantization techniques.

2 RELATED WORKS

LLMs quantization. Quantization techniques are commonly used to reduce the memory and
latency of LLMs. They fall into two categories: QAT, which involves retraining or finetuning in
a quantized form, and Post-Training Quantization (PTQ), which can be applied directly without
retraining. Due to the difficulty of retraining such large models, most work focuses on PTQ (Frantar
et al., 2023; Sheng et al., 2023; Lin et al., 2024; Lee et al., 2024), though recent efforts also explore
QAT via data-free methods (LLM-QAT (Liu et al., 2024c)), or parameter-efficient fine-tuning like LoRA
(Dettmers et al., 2023). A promient PTQ method is GPTQ (Frantar et al., 2023), which introduces
one-shot low-bit weight quantization using approximate second-order information. Follow-up work
refines this by addressing outliers (Kim et al., 2024; Dettmers et al., 2024), accounting for activation
effects (Lin et al., 2024; Lee et al., 2024), and optimizing quantization parameters (OmniQuant (Shao
et al., 2024)). However, effective LLMs quantization is still challenging (Xu et al., 2025).

Binarization. This represents the most extreme form of quantization, typically using the sign(-)
function with gradients estimated via the straight-through-estimator (STE) (Bengio et al., 2013). Early
work focused on small Transformer models (Vaswani et al., 2017) trained or fine-tuned on labeled data
(Bai et al., 2021; Qin et al., 2022; Liu et al., 2022; 2023). Recent efforts have extended binarization
to LLMs. Methods like BiLLM (Huang et al., 2024), PB-LLM (Yuan et al., 2024), STBLLM (Dong et al.,
2025), and ARB-LLM (Li et al., 2025) adopt hybrid PTQ approaches, binarizing non-salient weights
while using higher precision for important ones, with calibration data used to adjust scaling factors.
BitStack (Wang et al., 2025), QBB (Bulat et al., 2024), DB-LLM (Chen et al., 2024) further improve
this with multiple binary bases, either through a training-free method or via knowledge distillation.
In contrast, BitNet (Wang et al., 2023) replaces linear layers with a custom 1-bit weight structure,
BitLinear, and trains the model from scratch. OneBit (Xu et al., 2024), which decomposes weights
into 1-bit components and scaling vectors for QAT, further enhanced by MoS (Jo et al., 2024) using
a mixture of scalings. Despite progress, these methods remain costly due to their dependence on
FP latent weights during training. Table 1 summarizes the key characteristics of these methods in
comparison to ours.

Table 1: A summary of SOTA binarization methods for LLMs compared to our method.

Method Train Post-training Finetune from Calibration Weight Multiple Higher-bit

from Scratch Binarization — FP Model Data Update Binary Bases Salient Weights
BitNet (Wang et al., 2023) v X X NA FP latent-weights X X
BiLLM (Huang et al., 2024) X v X v NA v X
PB-LLM (Yuan et al., 2024) X v X v NA X v
STBLLM (Dong et al., 2025) X v X v NA v v
ARB-LLM (Li et al., 2025) X v X v NA v v
BitStack (Wang et al., 2025) X v X X NA v X
DB-LLM (Chen et al., 2024) X v v v FP latent-weights v X
QBB (Bulat et al., 2024) X v v v FP latent-weights v X
OneBit (Xu et al., 2024) X X v v FP latent-weights X X
Mos (Jo et al., 2024) X X v v FP latent-weights X X
MBOK [Ours] X X v v Native Boolean weights v X

3 PRELIMINARIES

Notations. We use a standard notation for vectors (a), matrices (A), and scalars (a). The i-th
element of a vector a is ap, and the element at the i-th row and j-th column of a matrix A is A[
The symbol ® denotes element-wise multiplication, with broadcasting if needed.

i,4]*

3.1 PITFALLS OF FULL-PRECISION LATENT WEIGHTS FOR BINARIZATION

Binarization is an effective technique for reducing both the size and computation of deep learning
models by converting high-precision weight parameters into 1-bit values (Hubara et al., 2016;
Courbariaux et al., 2015; Rastegari et al., 2016). For a linear layer, Y = XW—FFP + b, where
Xpp € RP*" s the input data, and W € R™*™ with the input size n and output size m, and b € R™
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are the FP weights and bias. Binarization results in Y = or- XW,. + b, with Wi, = sign(Wgp)

and « as a scaling factor (e.g., @ = %) (Rastegari et al., 2016).

During training, the FP weights must be retained for learning the binarized weights. In vanilla
gradient descent, binarized weights are updated as Wy;,, = sign(Wgp — - Gwp ), Where 7 is
the learning rate and Gw ., is the gradient of the FP weights. This leads to high memory usage,
especially with optimizers like Adam (Kingma & Ba, 2015), which require storing two additional FP
momenta for each parameter. Moreover, the gradient approximation for binarized weights often uses
a differentiable proxy, like the STE (Bengio et al., 2013), but this introduces performance drops due
to proxy gradient noise. This noise can cause oscillations and instability during training.

3.2 NATIVE BOOLEAN FRAMEWORK FOR NEURAL NETWORKS

To address the issues associated with latent-weight-based approaches, Nguyen et al. (2024) recently
proposed a principled framework for directly training Boolean neural networks in the Boolean domain.
Consider the [-th Boolean linear layer; in the forward pass, the output of the next layer is defined as:

( 1 l .
[k)n UJFZL [w fz)j])v 1<j<m, (1)

where k denotes the sample index in the batch, and L is a logic gate such as and, or, xor, or xnor;

Hereafter, for clarity, we consider L = xnor as a concrete example. The weights Wff) ;) are Boolean

values {TRUE, FALSE} or {—1, 41}, as typically used in practical implementations.

The logic gate L can be extended to handle mixed-type data. In this paper, we focus on the case where
the input data is real-valued, and the weights are Boolean. Specifically, for an input element x € R,
we define xpoo = TRUE < 2 > 0, and o = FALSE < x < 0, and || its magnitude. The logic
operation between a real input 2 € R and a Boolean weight w € B is defined as xnor(w,z) £ s
such that spee1 = XNOT(Whool, ) and |s| = |z|.

Backward pass. This layer receives the backpropagation signal from the downstream layer. Specif-

ically, ZE,?]] = Y (L) denotes the variation of the loss function £ w.r.t. the output at layer /.

To optimize the Boolean weights, we need to compute the corresponding loss signal, denoted as
Q(l (i.j] & _9L_ 'which is aggregated over the batch dimension k as:

Wiy
Q) = >_1UQp), ;) = TRUE)QY, | - S 1Qf, ;) = FALSE)|Q(, . @)
k=1 k=1
where Q k] = xnor(ZEl?]], ka)l]) and 1(-) is the indicator function. The backpropagation signal
for the upstream layer, PEQJ] = X ‘}EL) , can be computed in a similar manner.

]
Boolean optimizer. Given the loss signal, the rule for updating the Boolean weight Wf )J]
O]

minimize the loss function £ is as W= ﬂWE ) g 1f xnor(QEf)j] W[(ZZ)J]

update rule, we can develop an optimizer that accumulates the signal Q ] over training iterations.

Specifically, let WE )7] denotes the weight at iteration ¢, and Mfi)j] represents its accumulator,

) = TRUE. Based on this

initialized as Mfl) ? = 0. The update rule for the accumulator is then defined as:
0),t+1 tn ()t 1)t
M~ < B My + Q) &)
where 7 is the accumulation factor acting as a learning rate, and 3¢ is a regularizing factor that reflects

the system’s state at time ¢. In our work, we use brain plasticity (Fuchs et al., 2014) and Hebbian
theory (Hebb, 2005) to adaptively set 3. We encourage the reader check Appendix A for details.

Remarks on complexity and applicability to LLMs. This Boolean framework optimizes Boolean

parameters W(?j] directly in the Boolean space, eliminating the need for FP latent weights. As

shown in Eq. 3, the Boolean optimizer is more lightweight than common LLM optimizers like Adam,
requiring only one FP momentum per parameter. This reduces both training and inference complexity
and avoids gradient approximation induced from STE. As shown in Proposition A.10 in Appendix,
xnor(w, s) = w X s, mathematically enabling direct application to existing linear algebra operations.
Practically, native logic operations are much faster than multiplication.
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4 MULTIPLE BOOLEAN KERNELS

4.1 BOOLEAN REFORMULATION FOR LINEAR LAYERS

LLMs (Brown et al., 2020) are mostly based on the . EEEDSD
Transformer architecture (Vaswani et al., 2017), in
which linear layers are the core elements. Inpsired by
Xu et al. (2024), we employ sign-value-independent
decomposition (SVID) such that an FP input matrix e e e :
W € R™*" of linear layers is decomposed into
one Boolean matrix Wi, £ sign(W) and two FP Figure 2: Illustration of SVID.

vectors s;, and Squ. Precisely, let [W| be the element-wise absolute value of W, write |[W| =
UZV' its singular value decomposition (SVD) (Beltrami, 1990). Using rank-1 approximation of
W/, sin and sy are given as: sy, = /01 V[ 1], and squs = /01U 1) Then, the input matrix is
approximated as W = W1 © [W| & Wioo © (SoutS;, ). This procedure is illustrated in Fig. 2.

~~~T ~
Proposition 4.1. (Xu et al., 2024) For W € R™*", write W = UXV its SVD. Leta = /51U ),
and b = /01 V. 1). With the notations as described above, we have:

X
D)

m

9 2

HW_WbOOIQSoutS'THF < HW—abTHF. “4)

Remark 4.2. Proposition 4.1 re-states Proposition 2 of Xu et al. (2024) with its precise assumption of
vectors a and b which is necessary for its proof provided in Appendix therein.

Proposition 4.1 shows that using Wi, together with value matrix approximation is better than a
direct rank-1 approximation of W in terms of Frobenius-norm. This emphasizes the important role of
‘Wioo! in approximating the original FP matrix. Moreover, our following Proposition 4.3 shows that
the SVID approximation as described above is optimal for approximating the original matrix W,qy.

Proposition 4.3. For W € R™*™ and the notations as described above, we have:
2
[W = Whool © Soussin || < HW — Whoot © chH . Ve e R™ L vd e R (5)
F
The proof is given in Appendix D.3. The linear layer can be then reformulated as (Xu et al., 2024):

XWI—-!:P ~ [(X © S1—|I—1) Wbool] O] S—r (6)

out*

4.2 ENHANCED EXPRESSIVITY WITH MULTIPLE BOOLEAN KERNELS

‘We have shown that SVID provides a good approx-

imation of the original weights, its expressivity | Sou |2, [ sl
can be still limited to capture well the original FP s/ of shy!
parameters of complicated models, which were
trained on large-scale datasets over extended pe-
riods of time. To overcome this limitation, we
propose the use of a multi-Boolean kernel struc-

ture for the weights. Specifically, we employ
K kernels, where each kernel utilizes distinct Qv .
Boolean weights and scaling factors, to better © : 1carnabe X input

represent the original weight parameters. This ] ) )
leads to the approximation: W &~ W o Figure 3: The computation of a linear layer approxi-
pp - YYEP ™ WYWapprox = mated using multi kernels of Boolean.

-
S W{)k] ® (s s, The computation of

ool
a linear layer can then be approximated as follows (see Fig. 3 for an illustration):

K
XWip &~y [(X © si[ﬁ]T> WL’“QOI} osl,. @

k=1
Here, the computational costs associated with the FP scaling factors, s;, and s, are small because
they only involve element-wise multiplications. The dominant computational cost arises from the
matrix multiplication between the scaled input data, X © s;;,, and the weights. However, thanks to
the use of Boolean weights, the complexity is significantly reduced, as these multiplications can be



Under review as a conference paper at ICLR 2026

replaced by additions. Moreover, as we will demonstrate in § 6.1.1, only a small number of kernels
are required to achieve a reasonable result. Additionally, we find that, after the successive extraction
process from the FP model (§ 4.3.1), we only need to train the Boolean weights for the last kernel and
the scaling factors, further significantly reducing the overall complexity.

4.3 EFFECTIVE KNOWLEDGE TRANSFER INTO BOOLEAN MODELS

We have introduced our proposed multi-Boolean kernel structure for effectively representing the
linear layers of LLMs. In this section, we outline the process for transferring knowledge from a
source FP model to a Boolean model. This process consists of two steps: (1) data-free initialization
to maximize information retention from the source, and (2) data-dependent finetuning, where the
Boolean model is further trained on a target dataset with guidance from the FP model.

4.3.1 SUCCESSIVE EXTRACTION USING SVID

For each linear layer, to initialize the values of the Boolean weights and scaling factors for all kernels,
we successively apply SVID to the given FP weights. The goal here is to further proceed to SVID
process to approximate the residual error introduced by the previous step. Specifically, after each
step of decomposing the weight matrix using SVID, we obtain a residual matrix, which is defined as:

!
witl = Wi, - Wil o (sl ). ®

Here, W] is the residual matrix, and Wgﬂol, sgfl]t and s

res

kernel, while Wi[i]put represents the input FP matrix for step k. For the first step, this is the original

weight matrix, and for subsequent steps, it is the residual matrix obtained from the previous step.

(%]

in

are the extracted parameters for the k-th

Fig. 4 illustrate this process. Although using multiple kernels effectively captures the original weight
matrix, a residual error still remains at the end of the process. While this residual error is small, it
can accumulate as it propagates through the layers, finally leading to predictions that diverge from
those of the original FP model. To address this issue, it is necessary to further finetune the resulting
model to compensate for these errors and make it better suited to the target task. We will discuss this
in § 6.1.2. In the following section, we will introduce knowledge distillation to achieve this goal.

sl s (K]
o (successively) out (successively) Sout
o O e oo 4 CITEDD

000 —b

Wrp wil Wi wi, wi wit,

_______________________________
~~~~~~~~~~~~

1st kernel extraction 2nd kernel extraction K-th kernel extraction

Figure 4: Illustration of successive extractions of Boolean kernels from a given FP weight matrix.

4.3.2 FINETUNING WITH KNOWLEDGE DISTILLATION

Knowledge distillation (KD) (Hinton et al., 2015) trains a student network to mimic a more powerful
teacher, usually with greater efficiency. The student learns from the teacher’s output distribution
and/or intermediate states as “‘soft targets”. Here, the FP model is the teacher and the Boolean model
the student. Specifically, the output probability distribution of an LLM for a token Xy;; is:

exp(X(;)/7)
p(X[v]a T) - =Ny a ,
Zj:l eXP(X[j]/T)

where Ny is the vocabulary size and 7 is the softmax temperature. The logit-based knowledge
distillation (KD) loss across the sequence of all output tokens is defined as follows:

L
1
Liogits = T Z Diogits (PEP (X[ T), Pbool (X[ 7)) - (10)
Jj=1

Here, prp (X(j1; 7) and ppool (X[;1; 7) denote the distributions over the j-th token from the FP and
Boolean models, respectively, with L as the sequence length. We find that 7 = 1 works best in
practice. Among possible measures for Dyggis (Ko et al., 2024), the forward Kullback—Leibler (KL)
divergence gives the strongest results; further discussion is in Appendix G.2.

&)
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To further reduce distributional discrepancies in intermediate layers, we additionally employ an
intermediate state—based KD loss over a sequence of hidden states:

L5 gt it

hEH] 1

Y

where Qfp " and bool represent the h-th hidden states of the FP and Boolean models for the j-th
token, repsectively; H is the set of chosen intermediate states. Finally, the overall loss is then
computed as £ = Liogits + 7Lis, Where y is a weighted factor that balances the contribution of the
two losses. We empirically found that v = 10 works best.

5 KERNEL ALLOCATION

Using more kernels enhances the Boolean model’s representational capacity but also increases its size.
We propose a method to automatically allocate kernels per weight under a fixed budget. Let Nw
be the number of weights in the FP teacher model, and K] for I € [1, Nw] the number of Boolean
kernels for the [-th weight. Our goal is to determine k £ {;} l€]1,Nw] Subject to design constraints.
Key factors include:

(1) Residual error: Let elm € R denote the approximation error from applying the successive SVID

extraction to the k-th kernel of the [-th weight, measured by the Frobenius norm of WLIZ]S (Eq. 8).

(2) Weight importance: Let h; denote the importance of the [-th weight in the FP teacher model.
Higher scores indicate the need for more Boolean kernels. We propose estimating h; using projection
weighted canonical correlation analysis (PWCCA) (Morcos et al., 2018), a reliable method for
analyzing deep model representations. Details are provided in Appendix E.1.

(3) Weight size: The size of the [-th weight is denoted by s; and p; = s;/ Zi\;"‘{ Sy, Tepresents its
relative size in the model.

For a given k, the size of the target Boolean model, in terms of the number of weights, is Zl]i"i’ Kis;.
Relative to the source FP model, this repersents an expansion ratio, defined as:

K;s
p(k) £ Zit K i Zszz (12)
l s

Optimization objective. To control model size, we constrain the expansion ratio to a target
T > 1 and limit the kernel size by K ax, with T' < K ,,x < 0o. The optimization space is thus

K £ [1, Kpax)¥W, and the problem is formulated as:
k* =argmin£(k), st pk) <T, where&(k Zhle[ l]f (p1)- (13)
kek

Here, £(k) is the objective (energy) function, and f(-) is a monotomcally decreasing function. In
practice, we use f(p;) = (1/p;) log(1/p;). Intuitively, the goal is to minimize residual error while
prioritizing weights with higher importance and smaller size, balancing accurate knowledge transfer
with model efficiency.

Optimization algorithm. The problem has complexity O(KXW), which is prohibitive for LLMs.

To tackle this NP-hard problem efficiently, we note that el[k] decreases with k for all [, and £(k) is
maximized at k = 1, with any increase in k; reducing £(k). This motivates a heuristic iterative
approach: at each step, increment the K that yields the largest reduction in £ (k). The full algorithm
is given in Algorithm 9 in the Appendix. We will demonstrate in § 6.5 the practicality of our method.

6 EXPERIMENTS

Setups. In all experiments, we follow the protocol from Jo et al. (2024), without quantizing
activations. The training set combines WikiText2 (Merity et al., 2017) and a selected partition of C4
(Raffel et al., 2020) data, using sequences of length 2048. We apply a cosine decay learning rate with
a 3% warm-up over 3 epochs and batch size 8. Boolean parameters use a maximum learning rate of
5 x 1073, while remaining FP parameters are optimized with AdamW (Loshchilov & Hutter, 2019)
at a maximum learning rate of 2 x 10~°, with 8; = 0.9 and 3> = 0.999. Following standard practice
(Jo et al., 2024), performance is evaluated via perplexity on WikiText2 and C4 (lower is better).

6
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6.1 ABLATION STUDIES AND ANALYSIS

6.1.1 EFFECT OF THE NUMBER OF KERNELS

- Initialization Finetuned Perplexity ({)

g 107 K . #Kemels 1 2 3 4

% 0.8 0.8 emets

206 = 0.64 Wiki2 39.38 31.47 29.10 28.52

Soad 0al & C4 3544 28.62 2648 2590

E 1

E B 0.2+ &3 332 #Kernels 5 6 7 8

0.0 0.0

“ 1523456738 123456078 Wiki2 28.19 28.16 28.13 28.08

Number of Kernels Number of Kernels C4 25.65 2550 2540 2531

Figure 5: Normalized L1 norm difference between the approximated weights at initialization and
after finetuning against the FP weights (|| W approx — Wep|[1/||WEep|[1) , and the final results.

We begin by examining the effect of the number of Boolean kernels on OPT-125M model (Zhang et al.,
2022). Fig. 5 shows the normalized difference between weights approximated via successive SVID and
the original FP weights, both at initialization and after finetuning. Increasing the number of kernels
reduces approximation error and improves perplexity, unlike Mos (Jo et al., 2024), where adding
more experts does not always help and can even hurt performance. Using 3—4 kernels yields a good
approximation, with diminishing improvements beyond that. Interestingly, the normalized difference
relative to the full FP weights is larger after KD finetuning. We hypothesize that KD compensates the
errors due to the lower expressiveness of a small number of kernels, further emphasizing its role in
adapting the model to approximate the FP model rather than exactly replicating each weight.

6.1.2 OPTIMIZATION STRATEGY

Liogits Lis Number of Flips (x 10%)
Optim. .
14 Wiki2 C4
12 1.5 Kernel
10+ J—
o 104 | — Ist 33.90 30.70
6 0.5 i 2nd 3029 27.55
4 —_
2] 0.0 3rd 29.00 26.36

T T T T T T T T T —
0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000 4th - 28.60 2593

= All 32.04 29.08
Iteration Iteration Iteration _

Figure 6: The progression of training losses, number of flips, and perplexity of the resulting models
(OPT-125M) is examined with respect to the optimization of different kernel configurations.

Next, we study the effect of optimizing kernels on the OPT-125M model. We consider four Boolean
kernels but train only one at a time, keeping the others frozen. Fig. 6 shows the loss convergence.
Training the first kernel converges slowest, while higher-order kernels improve progressively. As
shown in Proposition 4.1 and Proposition 4.3, the SVID effectively extracts optimal Boolean weights
and scaling factors. In our successive SVID framework, the first kernel is well extracted and captures
the most important information, and higher-order kernels approximate residuals. Since the kernels are
related in a successive manner, modifying lower-order kernels affects higher-order ones. We observe
that training only the first kernel results in many weight flips, indicating optimization difficulty,
whereas fine-tuning only the last kernel efficiently compensates for residual errors, showing the
lowest flip rates and best performance. This is in line with the observation by Liu et al. (2024b),
where they compress “delta” induced by the finetuning process by using 1-bit weights. This further
highlights the advantage of our approach, as training complexity is significantly reduced by only
optimizing the last kernel. Thus, we apply this strategy in all our experiments.

6.2 MAIN BENCHMARK RESULTS

Table 2 compares our method with recent baselines in binarization and 2-bit quantization, evaluating
perplexity and accuracy on zero-shot tasks including Winogrande (Sakaguchi et al., 2021), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), and ARC (Clark et al.,
2018). For our method, we use 2 Boolean kernels, an ultra low-bit setting. Due to space constraints,
the results for LLaMA2-7B and LLaMA2-13B (Touvron et al., 2023b) and different number of Boolean
kernels are provided in Appendix G.4 and Appendix G.3. We note that our method is close to scalar
quantization while being completely orthogonal to vector quantization (VQ) which adds substantial
overhead (Gray, 1984). For completeness, we encourage the reader refer to Appendix G.7 for VQ
comparisons, and Appendix G.6 for further baselines.
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Our method consistently and significantly outperforms the baselines in both perplexity and zero-shot
accuracy, achieving results close to the FP16 baseline despite using only a budget of 2 bits for weight.
As expected, QAT methods like OneBit and MoS perform better than PTQ methods, but this comes
at the cost of extensive finetuning. In contrast, our approach efficiently address this problem by
optimizing parameters directly in Boolean space, avoiding the need for optimizing in FP latent sapce.

Table 2: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLMs.

.. Perplexity () Zero-shot Accuracy (1)
Model Method Whits wiki2 €4 BoolQ PIQA Hella. WinoG. ARC-c ARC-c Average
FP16 16 14.62 1472 57.82 7242 53.70 59.51 50.97 29.52 53.99
PB-LLM 1.7 27283 17542 62.17 5424 2725 50.27 27.98 23.72 40.94
BiLLM 1.11 69.45 6392 6192 59.52 33.81 49.32 34.38 22.35 43.55
OPT-1.3B OneBit 1 20.36 20.76 57.85 66.53 39.21 54.61 42.80 23.97 47.50
L. Mos | 1845 1883 6034 68.66 4199 5399 4487 2619 4934
GPTQ 2 9.5e3 3.8¢3 39.60 52.07 2557 49.33 26.68 23.63 35.15
LLM-QAT 2 4.9e3 2.1e3 37.83 50.05 25.72 49.72 25.76 25.09 34.07
OmniQuant 2 4243 5564 5645 6094 33390 5185 3876 2338  44.13

MBOK [Ours]  2x1 16.13 16.61 5853 70.67 48.11 56.75 48.19  27.90 51.69

FP16 16 5.68 7.08 7321 7742 7299  66.85 52.53 4138 64.06

PB-LLM 1.7 198.37 157.35 60.51 5353 27.23  49.17 27.48  26.02 40.66

BiLLM .11 41.66 48.15 6223 58.65 3464 51.14 33.08  25.68 44.24

LLaMA-TB OneBit 1 8.48 1049 6250 70.40 54.03  55.32 41.07  30.88 52.36
aMA- MosS 1 797 972 6459 7182 58.18 58.88 42.09 3131 54.48
GPTQ 2 1.9e3  7.8e2 43.79 4995 2563 4941 25.84 2747 37.02

LLM-QAT 2 7.1e2  3.0e2 37.83 50.87 2476 5178 2626 2551 36.17

OmniQuant 2 1534 2621 58.69 6279 43.68 5296 41.54 2935 48.17

MBOK [Ours]  2x1 6.83 853 6920 7432 6480 6030 49.05  34.90 58.76

FP16 16 5.09 6.61 68.47 79.05 7624  70.17 59.85 4454 66.39

PB-LLM 1.7 3583 39.79 62.17 5870 3397 5217 31.86  23.63 43.75

BiLLM L.11 1456 16.67 6253 68.17 5224 5943 4191 29.94 52.37

LLaMA-13B OneBit 1 7.65 9.56 6330 7198 60.61 5943 4285 3242 55.10
AMA- MosS 1 7.16 8.81 63.82 73.88 6405 6093 4428  33.11 56.68
GPTQ 2 3.2e3  99e2 4239 50.00 2527 @ 50.67 26.14 2739 36.98

LLM-QAT 2 1.8e3 12e3 37.83 5033 2540 51.62 27.02  26.87 36.51

OmniQuant 2 1343 1933 6220 6899 54.16  53.83 4550  30.38 5251

MBOK [Ours]  2x1 6.17 788 68.10 7633 69.88 64.17 5234 37.88 61.45

6.3 ACCURACY-COMPRESSION TRADE-OFFS

We further investigate the accuracy-compression trade-offs of our method, quantization methods, and
the FP model. Specifically, we compare 3-bit quantization using round-to-nearest (RTN) (Yao et al.,
2022; Dettmers et al., 2022) and GPTQ (Frantar et al., 2023) methods against our approach using 3
Boolean kernels. We evaluate these methods on OPT models of varying sizes. The results, presented
in Table 3 and Fig. 1, show that with 3 kernels, our method closely approaches the performance of the
FP model. Given the same weight budget, our method clearly sits on the Pareto frontier, delivering
the best performance for the same model size.

Table 3: OPT perplexity results (lower is better) on WikiText2 and C4. The results of FP, rount-to-
nearest (RTN) and QPTQ are taken from (Frantar et al., 2023).

OPT Model WBits  osM 350M VYll;]lsz 27B  67B | 125M 350M E;B 27B  6.7B
FULL-PRECISION 16 27.65 22.00 14.63 1247 10.86 | 26.56 2259 16.07 14.34 12.71
RTN (Yao et al., 2022; Dettmers et al, 2022) 3 | 37.28 2594 48.17 1692 12.10 | 3391 2621 2451 1843 1436
QPTQ (Frantar et al., 2023) 3| 3112 2424 1547 1287 1139 | 2922 2463 1697 1500 13.18
MBOK [Ours] 3x1 | 2910 2312 1530 13.09 11.03 | 28.62 22.10 15.68 14.00 1233

6.4 COMPARISON WITH LATENT-WEIGHT APPROACHES

We compare our method with latent-weight approaches on OPT models, using MoS with 3 experts
and our method with 3 Boolean kernels. We also introduce a baseline using our SVID framework to
construct 3 binary weights that rely on FP latent weights for training. Results in Fig. 7 show that our
method converges much faster, as it directly optimizes Boolean parameters without the need for STE
to approximate gradient signals. Both our approach and the latent-weight method outperform Mos,
demonstrating the benefit of using additional Boolean kernels and our successive SVID framework.
Our method is also more efficient, avoiding the need for FP latent weights and extra momentum.
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4 OPT-125M OPT-350M OPT  Method e ——

_ !

3 10 104 etho iki

g = MosS (3 experts) 38.62 34.72

o 3| 3 125M 3 Latent weights 29.47 27.18

£ 10 10° — MBOK (3 kemels) [Ours] 29.10 26.48

<

= ‘ : ‘ : ‘ ‘ ‘ ‘ — Mos (3 experts) 29.93 28.25
0 20000 40000 60000 0 20000 40000 60000  350M 3 Latent weights 23.58 22.65

Iteration lteration = MBOK (3 kernels) [Ours] 23.12 22.10

Figure 7: Comparions between our method and latent-weight approaches.

6.5 KERNEL ALLOCATION AND COMPARISON TO BITNET B1.58

We next evaluate our kernel allocation method on the OPT-125M 20 mEC2
model. It supports bit allocation at any granularity, including frac- % 15 mEC1
tional averages, providing practitioners with a flexible model selec- § 10 :gugrﬂj-o’
tion tool under deployment constraints. Fig. 10 reports results for * s V proj
varying average bit budgets, showing consistent improvements as the 0 K proj

budget increases. Fig. 9 illustrates kernel allocation with a 3.5-bit 5o

average, where more kernels are assigned to FC2 and output projec-
tion layers in the final blocks. This aligns with prior observations

Attention Block
Figure 9: Allocated kernels for

(Bondarenko et al., 2023; Frantar et al., 2023) that these layers are OPT-125M.

particularly important and sensitive to compression. . 32
In addition, our framework’s flexibility enables direct comparison with E 30
BitNet-b1.58 (Ma et al., 2024), which employs ternary weights. With a E 28|
1.58-bit budget, our model achieves reasonable results, whereas BitNet- 3 . |

b1.58 reaches a C4 perplexity of 10199.89 due to finetuning instability,
consistent with Xu et al. (2024). We also compare against ShiftAddLLM
(You et al., 2024), a PTQ method supporting bit allocation. Our approach
performs substantially better (32.23 with a 2-bit budget vs. 435.84 for Figure 10: OPT-125M per-
their mixed 2.2-bit allocation, see Table 17 in ShiftAddLLM). formance w.r.t. bit budget.

T T T T T T 1
1.582 2.5 3 3.5 4 4.5
Average bit budget

6.6 DISCUSSION ON COMPLEXITY

OPT-6.7B
We emphasize the efficiency of our method during finetuning by Mos
comparing MoS (Jo et al., 2024) with our approach using 3 Boolean ok |
kernels on the OPT-6.7B model. Because we optimize directly in the : A 5
Boolean domain, each weight requires only 1 bit, whereas MoS relies Memory (GB)

on 16-bit latent weights. Moreover, we finetune only the last Boolean

kernel, with the optimizer storing a single 16-bit momentum per Figure 11: Estimated memory
weight. In contrast, Adam (Kingma & Ba, 2015) for latent weights for finetuning for weights (1)
needs two 16-bit momenta per weight. Fig. 11 shows the estimated and optimizer states (#).
memory for a minibatch of one, highlighting the substantial memory savings of our method. These
gains could be further amplified by incorporating optimizer state compression techniques such as
GaLore (Zhao et al., 2024). We also provide a theoretical analysis of finetuning complexity in
Appendix F, and empirical evidence (Appendix G.7) demonstrating significant GPU latency gains:
using BitBlas library (Wang et al., 2024), our method achieves up to over 8.7x speedup for LLaMA2
layers compared to FP16, with even more improvements expected on native Boolean accelerators.

7 CONCLUSIONS

We introduced Multiple Boolean Kernels (MBOK), a novel framework for low-bit finetuning LLMs.
By utilizing Boolean weights and optimizing them directly in the Boolean domain, our framework
significantly reduces both memory and computation costs during both finetuning and inference. The
flexible multi-Boolean structure, along with the proposed successive SVID, effectively transfers
knowledge from a source FP model. Through extensive experiments on LLMs of various sizes,
we demonstrate that our method approaches FP performance while achieving the best accuracy-
compression trade-off compared to existing quantization and binarization methods.

Limitations. Our method, like other binarized neural networks, could not be assessed on native
Boolean accelerators due to hardware being optimized for real arithmetic. Nevertheless, we demon-
strated strong results even on modern hardware, underscoring the promise of our approach and
motivating future development of accelerators tailored to Boolean computation.
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A PRIMER ON BOOLEAN NEURAL NETWORKS

For completeness, this section reviews the concepts and methodology of Boolean neural networks as
proposed by Nguyen (2023); Nguyen et al. (2024).

A.1 NEURON DESIGN

Boolean Neuron. Consider the I-th Boolean linear layer; in the forward pass, the output of the next
layer is defined as Nguyen et al. (2024):

lw<”
Y, b”+ZL Xy ), 1<j<m, (14)

where k denotes the sample index in the batch, and L is a logic gate such as and, or, xor, or xnor;
The weights Wg)j] are Boolean values { TRUE, FALSE} or {—1, +1}, as typically used in practical
implementations. n and m are the number of input and output neurons, respectively. As the most
extreme use case, the input data are also Boolean values. The above summation is understood as the
counting of TRUE values. We emphasize that the framework is flexible, as it allows Boolean linear

layers to be connected through activation layers, layer normalization, arithmetic layers, or other types
of layers.

Mixed Boolean-Real Neuron. To enable flexible integration and coexistence of Boolean designs
with real-valued components in deep models, we consider two cases of mixed-type data: (i) Boolean
weights with real-valued inputs, and (ii) real-valued weights with Boolean inputs. This paper focuses
on the first case. These scenarios are addressed through an extension of Boolean logic to accommodate
mixed-type data. To proceed, we introduce the essential notations and definitions. Specifically, we
define B = {TRUE, FALSE} as the Boolean domain, equipped with standard Boolean logic operations.

Definition A.1 (Three-valued logic). We define the mixed logic domain as M = B U {0}, where 0
represents an undefined or neutral value. The logic connectives in M are defined in alignment with
standard Boolean logic, as follows. First, the negation operator is extended as: =TRUE = FALSE,
—FALSE = TRUE, and —0 = 0. Next, let L denote a generic logic connective (e.g., AND, OR). We
distinguish its use in Ml and B by writing Ly and Ly, respectively. The extended connective Ly is
defined by:
Lg(a,b) fora,be B,

Lua(a,b) = {0 otherwise.

Notation A.2. Denote by L a logic set (e.g., B or M), R the real set, Z the set of integers, N a numeric
set (e.g., R or Z), and D a certain set of I or N.

Definition A.3. For x € N, its logic value denoted by x1ogic is given as Tiogic = TRUE & x > 0,
Tlogic = FALSE & x < 0, and T1ogic = 0 & x = 0.

then |x| is the standard absolute value. For x € L, the magnitude is given by:

0 ifx=0,
|x|={

1 otherwise.

Definition A.5 (Mixed-type logic). For L a logic connective of L and variables a, b, operation
¢ = L(a,b) is defined such that |c| = |a||b| and ciogic = L(aiogic, blogic)-
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A.2 MATHEMATICAL FOUNDATION OF BOOLEAN VARIATION

In this section, we present the mathematical foundation of Boolean variation which is the corner
stone of the method for training Boolean weights directly within the Boolean domain, without relying
on FP latent weights (Nguyen et al., 2024).

A.2.1 BOOLEAN VARIATION

Definition A.6. Order relations ‘<’ and ‘>’ in B are defined as follows:

FALSE < TRUE, TRUE > FALSE. (15)

Definition A.7. For a,b € B, the variation from a to b, denoted 6(a — b), is defined as:

TRUE, ifb > a,
§(a—b) =40, ifb=a, (16)
FALSE, ifb < a.

Definition A.8 (Type conversion). Define:
p: N—L
TRUE, ifz > 0,

z = p(z) =10, ifz =0, (17)
FALSE, ifz <0.

Proposition A.9. (Nguyen, 2023; Nguyen et al., 2024) The following properties hold:
1. Va,y € N: p(zy) = xnor(p(z), p(y))-
2. Ya,b € L: e(xnor(a,b)) = e(a) e(b).
3. Vz,y e N: x =y < |z| = |y| and p(x) = p(y).

In particular, property Proposition A.9(2) implies that by the embedding map e(-), we have:

({TRUE, FALSE}, xor) = ({£1}, —x), (18)
({TRUE, FALSE}, xnor) = ({£1}, x), (19)

where =2 and x stand for isomorphic relation, and the real multiplication, resp. A consequence is that
by e(+), a computing sequence of pointwise XOR or XNOR, counting, and majority vote is equivalent
to a sequence of pointwise multiplications and accumulation performed on the embedded data.

Proposition A.10. The following properties hold:
1. a €L, x € N: xnor(a,z) = e(a)z.
z,y € N: xnor(z,y) = zy.
z € {L,N}, y, z € N: xnor(z,y + z) = xnor(z, y) + xnor(z, ).
z € {L,N}, y, A € N: xnor(z, \y) = A\xnor(z, y).
z € {L,N}, y € N: xor(z,y) = —xnor(z, y).

SRS

Proof. The proof follows definitions A.5 and A.8.

* Following Definition A.1 we have V¢t € M, xnor(TRUE,t) = t, xnor(FALSE,t) = —t,
and xnor(0,t) = 0. Put v = xnor(a,x). We have |v| = |z| and p(v) = xnor(a, p(z)).
Hence,a = 0 = p(v) =0 = v = 0; a = TRUE = p(v) = p(v) = v = x; a = FALSE =
p(v) = = p(z) = v = —z. Hence (1).

* The result is trivial if z = 0 or y = 0. For z,y # 0, put v = xnor(z,y), we have
|v] = |z||y| and p(v) = xnor(p(x),p(y)). According to Definition A.8, if sign(x) =
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sign(y), we have p(v) = TRUE = v = |z||y| = zy. Otherwise, i.e., sign(z) = — sign(y),
p(v) = FALSE = v = —|z||y| = xy. Hence (2).

* (3) and (4) follow (1) for x € L. and follow (2) for z € N.

* For (5), write u = xor(x,y) and v = xnor(z,y), we have |u| = |v| and p(u) =
xor(p(z), p(y)) = —xmnor(p(x),p(y)) = —p(v). Thus, sign(u) = —sign(v) = u =
—v.

Notation A.11. We denote F (S, T) the set of all functions from source S to image T.

Definition A12. For f € F(B,D), Vo € B, write  f(z — —x) := §(f(x) — f(—x)). The
variation of f w.rt. x, denoted f'(x), is defined as:
A

f'(z) £ xnor(§(x — —x),0f(x — —x)).

Remark A.13. For convenience and consistency of notation, we intentionally adopt the standard
symbol for the continuous derivative, f”, to also denote Boolean variation The intended meaning
— whether it represents a continuous derivative or a Boolean variation — can be inferred from the
context in which the function f is defined. Intuitively, the variation of f w.r.t x is TRUE if f varies in
the same direction with .

Example A.14. Leta € B, f(x) = xor(z,a) for x € B, the variation of f w.r.t. x can be derived by
establishing a truth table (see Table 4) from which we obtain f'(x) = —a.

Table 4: Variation truth table of f(x) = xor(a, z), a,x € B.

a x -z Oz ——x) fla,z) fla,—x) df(x——-x) f'(z)
TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE

A.2.2 BOOLEAN VARIATION CALCULUS

Below are some rules of Boolean variation which are necessary for training Boolean neural networks.

Proposition A.15. (Nguyen, 2023; Nguyen et al., 2024) For f,g € F(B,B), Vz,y € B the
following properties hold:

1. 6f(z = y) = xnor(d(z — y), f/(x)).
2. (=f(@) = =f'(2).
3. (9o f)(z) = xmnor(g'(f(x)), f'(x)).

Proof. The proof is by definition:
1. Vz,y € B, there are two cases. If y = x, then the result is trivial. Otherwise, i.e., y = -z,
by definition we have:

f'(z) = xnor(§(x — —x),0f(x — —x))
& §f(x — —z) = xnor(8(z — —x), f(x)).

Hence the result.

19



Under review as a conference paper at ICLR 2026

2. Vx,y € B, it is easy to verify by truth table that 6(—f(x — y)) = =0 f(z — y). Hence, by
definition,

(—f) () = xnor(§(x — —x),6(~f(z — —z)))
= xnor(6(z — —z), 0 f(z — —x))
= —xnor(é(z — —x),df(z — —x))

= ~f'(2).
3. Using definition, property (i), and associativity of xnor, Vx € B we have:

(g0 f)(z) = xnor(d(x — —),6g(f(z) = f(-2)))

— xnor(8(z — —a), xnor(3f(x — ~w), g (f(x)))
— xnor(g/(f(x)), xnor(8(x — —a),6f(x — )
— xnor(q/(f(2)), ().

O

Proposition A.16. (Nguyen, 2023; Nguyen et al., 2024) For f € F(B,N), the following
properties hold:

1. z,y € B: 0f(x — y) = xnor(d(z — y), f'(x)).
2. a € N: (af)(z) = af(z).
3. g€ FB,N): (f +9)'(z) = f'(z) + ¢'(2).

Proof. The proof is as follows:

1. For z,y € B. Firstly, the result is trivial if y = x. For y # z, i.e., y = —z, by definition:
f'(x) = xnor(§(x — —x),0f(x — —x)).
Hence, |0 f(x — —z)| = | f/(z)| since |§(z — —x)| = 1, and
p(f'(x)) = xnor(d(z — ), p(df (x = —x)))
< p(0f(z = ~z)) = xnor(5(z — ), p(f'(x))),

where p(-) is the logic projector Eq. 17. Thus, 6 f(x — —x) = xnor(d(z — —z), f'(z)).
Hence the result.

2. Firstly Vz,y € B, we have
é(af(z = y) =af(y) —af(z) =adf(z = y).
Hence, by definition,
(af) (x) = xnor(§(x — —x),6(af(x — —x)))

= xnor(é(z — —z),ad f(x — —x))
= axnor(d(z — —x),d f(xr — —x)), due to Proposition A.10(4)

= af'(x).

3. For f,g € F(B,N),
(f +9)/(z) = xnor(d(z — —x),0(f + g)(x — 7))
= xnor(§(z — —x),0f(x = —x) + dg(x — —x))

© xnor(d(z — —x),0f(x — —x)) + xnor(d(z — —x),dg(xz — —x)),

= f'(z) +4'(2),
where (x) is due to Proposition A.10(3). O
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For f € F(Z,N), its derivative, also known in terms of finite differences, has been defined in the
literature as f'(x) = f(z + 1) — f(x), see e.g. Jordan (1950). With the logic variation as introduced
above, we can make this definition more generic as follows.

Definition A.17. For f € F(Z,D), the variation of f w.r.t x € Z is defined as f'(x) = 5 f(x —
x4 1), where 6 f is in the sense of the variation defined in D.

Proposition A.18. (Nguyen, 2023; Nguyen et al., 2024) The following composition rules (chain
rules) hold:

1. ForBL B % D: (9o f)(x) =xnor(¢'(f(z)), f'(x)), Yz € B.

2 ForBLZ 5D zeB, if|f (@) <land ¢'(f(z)) = ¢'(f(x) — 1), then:

(
(g0 f) () = xnor(g'(f(2)), f'(z)).
Proof. The proof is as follows.

1. The case of B % B % B is obtained from Proposition A.15(3). For B BNy JEN N, by using
Proposition A.16(1), the proof is similar to that of Proposition A.15(3).
2. By definition, we have
(go f)(x) =xnor(§(x — —x),09(f(x) — f(—x))). (20)
Using property (1) of Proposition A.16, we have:
foa) = f(@) +6f(z = —x)
= f(@) +xnor(d(z — ~x), f'(x)). 21

(x
Applying Eq. 21 back to Eq. 20, the result is trivial if f'(z) = 0. The remaining case is
|f/(z)| = 1 for which we have xnor(§(x — —z), f'(x)) = £1. First, for xnor(§(z —
—z), f(x)) = 1, we have:

o9(f(z) = f(-x)) = 0g(f(x) = f(z) +1)
=g'(f(2))
= xnor(g'(f(z)),1)
= xnor(¢'(f(z)),xnor(d(z — —z), f'(x))). (22)
Substitute Eq. 22 back to Eq. 20, we obtain:
(g0 f)(z) = xnor(d(z — —),d9(f(x) = f(~7)))
= xnor(§(x — —x),xnor(¢'(f(z)),xnor(§(x — —x), f'(z))))
— xnor(¢/(f(x)), /'(x),

where that last equality is by the associativity of xnor and that xnor(z,z) = True for

x € B. Similarly, for xnor(§(x — —x), f'(z)) = —1, we have:
og(f(x) = f(-x)) = dg(f(x) = f(x) = 1)
=—g'(f(z) - 1)

= xnor(g'(f(z) — 1), 1)
= xnor(¢'(f(z) — 1),xnor(6(x — —x), f'(z))). (23)

Substitute Eq. 23 back to Eq. 20 and use the assumption that ¢'(f(z)) = ¢'(f(z) — 1), we
have:

(9o f)(x) = xnor(5(z — ~x),d9(f(z) = f(~z)))
= xnor(§(z — —z),xnor(¢' (f(z) — 1), xnor(d(z — —x), f'(z))))

= xnor(g¢'(f(x)), f'(x)).

Hence the preposition is proved. O

Example A.19. From Example A.14, we have éxor(z,a)/dxz = —a for a,z € B. Using Proposi-
tion A.15-(2) we have: dxnor(z,a)/éx = a since xnor(z,a) = —xor(x, a).

21



Under review as a conference paper at ICLR 2026

A.2.3 MULTIVARIATE CASE

The properties of Boolean variation described above can be extended to the multivariate case in a
straightforward manner. For example, in the case of multivariate Boolean functions, the extension is
as follows.

~

Definition A.20. Forx = (z1,...,2,) € B", denote X—; = (T1,..., T 1, Ti, Tit1,---,Tn
forn>1and1 <i<n. For f € F(B",B), the (partial) variation of f w.r.t. z;, denoted f!(x)
or 8 f(x)/dx;, is defined as: fl(x) = 6f(x)/dx; = xnor(d(x; — —x;),df(x — x—i)).

The composition rule then becomes:
Proposition A.21. (Nguyen et al., 2024) Let f € F(B™,B), n > 1, and g € F(B,B). For
1<i<n:
(90 f)i(x) = xnor(¢'(f(x)), fi(x)), VxeB" 24

Example A22 Apply Proposition A.16-(3) to Y(l) .] from Eq. 14: 5Y[ll€)]]/6w(l) =

(%, [4,4]
OL(X( W) oW and 6 ) /60X () = LX), Wff)j )/0X ;). Then, for L = xnor

kyd] —

as an example, we have: (5Y(l) /6W(l = XE,?Z and 6Y(]i ]/(5X[k i Wg)j]

A.3 BOOLEAN BACKPROPAGATION

This section presents how to apply the above principles of Boolean variation to define backpropagation
for Boolean neural networks. The [-th layer (Eq. 14) receives the backpropagation signal from the
downstream layer [ 4 1. Specifically, ka)J] = Y([) denotes the variation of the loss function £

w.r.t. the output at layer [. To optimize the Boolean welghts we need to compute the corresponding

loss signal, denoted as Q lig] = = vfzf” . In addition, we also have to compute the loss signal for the
[é,4]
upstream layer, defined as PEI?Z.] £ X 5(1) Hereafter, we consider the logic gate L = xnor as a

[Fa)
concrete example.

First, using Proposition A.15, Proposition A.16, Proposition A.18 and its extension to the multivariate
case by Proposition A.21 in the same manner as shown in Example A.22, we have:

(l) 0} O]
l) o (l) ki
Wi Wi
©) @ O]
Y _ 5xn0r(X[k z],VV[i)j]) _ WED] 26)
(l) O] i,j
0X (ki) 5X[k’i]
Using the chain rules given by Proposition A.18, we have the following atomic variations:
5L or  OY}
Q(l). 2 ——— |k = xnor , k] | — xnor (Z(l)» ,X(l). ) , 27
[k,i,3] 6W(l) 6Y(l) 6W(l) [k,g] ™ [k, 1]
[4,4] [k,5] [i,5]
@
5L 5L 0Y|
E,?. 2 7\J = Xno kgl | — xnor (Z(l)» ,W(AZ)A ) . (28)
N 6XE/? ! 5Yfll€) ; 5X[Il€) ' (k,g)> 77 [6,4]

The variations Qg). and Gfk) ; can be then obtained by aggregating the above atomic variations

over the batch dimension % and output dimension j, respectively. More specifically, denote 1(-) the
indicator function. Additionally, for b € B and a variable =, we define 1(z = b) = 1 if Ziggic = b

22



1

10

11

12

13

14

15
16

Under review as a conference paper at ICLR 2026

and 1(z = b) = 0 otherwise. Then, we have:

! oL
QE%',)J] = swd Z (Q[k Qg TRUE)‘Q[k 1,9] | Z (Q[k i T FALSE)|Q[k i J]| (29)
[4,4] k k
W a 0L () ) o _ 0
P,y = XD Z (P[k q= TRUE)|P J]\ - Z (P[k q= FALSE)|P[k ]|. (30)
[k,i] J J

A.4 BOOLEAN OPTIMIZER

Algorithm 1: Boolean learning process for a linear layer.

Input  : Learning rate 7, number of iterations 7T’

Initialize : MEPJ? =0;8%=1;

fort:O,...,f—ldo

/+« 1. Forward x/

Compute Y'* following Eq. 14;

/+ 2. Backward x/

Receive % from downstream layer;

/x 2.1 Bééﬁpropagation x/

Compute and backpropagate Pt to the upstream following Eq. 30;
/* 2.2 Weight update process x/

Notar := 0, Nunchanged =0;

foreach Wl do

Compute Q(l) 1 following Eq. 29;

e M = sl sl

N, total < N, total + 1

if xnor(MEf)frl Wg)]]) — TRUE then
/+ Flip weight x/

WO _wO-,
[2,5] [i.4]°

/+ Reset corresponding accumulator «/
MO+ _ "
[é.J]
else

/* Weight is unchanged x/

w1 _ Ot
[4,4] [i.g]°

/* Update statistics to update [ */
Nunchanged < Nunchanged +1;
Update ’17t+1, 6t+1 = Nunchanged/]vtolal >

Given the above variations, the rule for updating the Boolean weight Wﬁ)j] to minimize the loss
function L is as follows:

WO _

0
[i.5] — W,

lig] if xnor (Q(l) w

il Wi, J]) = TRUE. 3
Based on this update rule, we can develop an optimizer that accumulates the signal sz.l)j] over

training iterations. Specifically, let Wfll)j]t denotes the weight at iteration ¢, and Mg)ﬂt represents its

accumulator, initialized as M(l) = 0. The update rule for the accumulator is then defined as: The
update rule for the accumulator is then defined as:

D41, aen p (Dt
M < M+

+ Q| (32)

[i,9]°

where 7 is the accumulation factor acting as a learning rate, and 3! is an auto-regularizing factor
that reflects the system’s state at time ¢. In our work, we use brain plasticity (Fuchs et al., 2014)
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and Hebbian theory (Hebb, 2005) to adaptively set 37, that force the weights to adapt to their
neighborhood during. For the chose weight’s neighborhood, for instance, neuron, layer, or network
level, 3¢ is set as:

Number of unchanged weights at ¢

gt =
It to temper the importance of weight variational according to how much neurons have changed. In

our experiments, 3? is set to per-layer basis and initialized as 3° = 1 The learning process for a linear
layer is described in Algorithm 1.

33
Total number of weights 33)

B DISCUSSION ON HARDWARE CONSIDERATIONS

B.1 COMPUTATION PROPOSED IN § 4.1

The Boolean framework supports both full and partial binary settings. The afforementioned Boolean
variation calculus shows that:

Xnor(mreala wlogic) = Zreal X Whbinary s (34)

under the mapping TRUE — +1 and FALSE — —1. Consequently, matrix multiplication (matmul)
between a real tensor X and a logic tensor W can be implemented as follows:

* Using binary weights {—1,+1}: Simply represent the logic weights in binary format.
Then, matmul(Z e, Wiogic) is directly computed as matmul(Zrear, Woinary)-

* Using native logic { TRUE, FALSE}: The multiplication reduces to:

Lreal s if Wiogic = TRUE

' (35)
—Treal s lf wlogic = FALSE

mathI(xreala wlogic) = {

Thus, a sign flip of Zea conditioned on wegc, followed by accumulation, suffices to perform
matmul(Xea, Wiogic)-

The first approach is well-supported by modern hardware such as CPUs, GPUs, etc, where different
bit-widths can be used to represent and simulate weight values in {—1,+1}. Additionally, this
approach can be implemented directly in PyTorch (Paszke et al., 2019). The second approach, in
contrast, requires a specialized Boolean accelerator. Such hardware can massively accelerate the
computation by directly leveraging logic operations instead of real-arithmetic.

B.2 MULTI-CORE COMPUTATION STRATEGY IN § 4.2

Boolean design, as used in the paper, employs Boolean weights and operates using logic operations.
It is distinct from bit-level operations.

Boolean design: Weights are Boolean logic variables, taking values TRUE/FALSE or —1/ + 1.
Operations are logic-based, such as xnor, and or, etc. See Eq. 35 for an example.

Bit-level operations: These, such as bit-serial implementations in C/C++, operate bit-by-bit on
multi-bit variables. For instance, a bit-level AND between two n-bit variables produces an n-bit
result, where each bit is the ADN of corresponding pair of bits from the inputs. Bit-level operations
like bit-serial are inefficient in terms of latency, whereas Boolean logic operations are significantly
faster compared to real-arithmetic operations such as multiplication.
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C CODE SAMPLES OF CORE IMPLEMENTATION

C.1 BOOLEAN LINEAR LAYER AND OPTIMIZER

In this section, we provide example Python code for implementing a Boolean linear layer based on
the xor logic gate. This implementation is based on the PyTorch framework (Paszke et al., 2019).
As done in Nguyen et al. (2024), the class definition for the Boolean linear layer is presented in
Algorithm 2, and its backpropagation mechanism—customized via PyTorch’s aut ograd system—is
detailed in Algorithm 3. Each Boolean kernel is primarily implemented using this Boolean linear
layer.

We consider both cases of the incoming backpropagation signal: Boolean-valued (see Algorithm 4),
and real-valued (see Algorithm 5). The latter is the main use case in this paper. An example
implementation of the Boolean optimizer used to update the layer’s parameters is provided in
Algorithm 6.

Algorithm 2: Python code of XOR linear layer

import torch
from torch import Tensor, nn, autograd
from typing import Any, List, Optional, Callable
class XORLinear (nn.Linear):
def __init__ (self, in_features: int, out_features: int, bool_bprop: bool, *xkwargs):
super (XORLinear, self).__init__ (in_features, out_features, xxkwargs)

self.bool_bprop = bool_bprop

def reset_parameters (self):
self.weight = nn.Parameter (torch.randint (0, 2, self.weight.shape))

if self.bias is not None:
self.bias = nn.Parameter (torch.randint (0, 2, (self.out_features,)))

def forward(self, X):
return XORFunction.apply (X, self.weight, self.bias, self.bool_bprop)

Algorithm 3: Python code of the backpropagation logic of XOR linear layer

class XORFunction (autograd.Function) :

@staticmethod

def forward(ctx, X, W, B, bool_bprop: bool):
ctx.save_for_backward(X,W,B)
ctx.bool_bprop = bool_bprop

# Elementwise XOR logic
S = torch.logical_xor (X[:,None,:], W[None,:,:])
# Sum over the input dimension
S = S.sum(dim=2) + B
# O-centered for use with BatchNorm when preferred
S = S - W.shape[l]/2
return S
@staticmethod

def backward(ctx, Z):
if ctx.bool_bprop:
G_X, G_W, G_B = backward_bool (ctx, 2Z)
else:
G_X, G_W, G_B = backward_real (ctx, Z)

return G_X, G_W, G_B, None
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Algorithm 4: Backpropagation logic with Boolean received backpropagation

def backward_bool (ctx, Z):

1
’ W
3 Variation of input:
4 - delta(xor(x,w))/delta(x) = neg w
5 - delta(Loss) /delta(x) = xnor(z,neg w) = Xor (z,w)
6 Variation of weights:
- delta(xor(x,w))/delta(w) = neg x
8 - delta(Loss)/delta(x) = xnor(z,neg x) = xor(z,x)
9 Variation of bias:
10 - bias = xnor(bias,True) ==> Variation of bias is driven in
11 the same basis as that of weight with xnor logic and input True.
12 Aggregation:
13 — Count the number of TRUEs = sum over the Boolean data
14 - Aggr = TRUEs - FALSEs = TRUEs - (TOT - TRUEs) = 2TRUES - TOT
15 where TOT is the size of the aggregated dimension
16 won
17 X, W, B = ctx.saved_tensors
18
19 # Boolean variation of input
20 G_X = torch.logical_xor(Z[:,:,None], W[None,:,:])
21
22 # Aggregate over the out_features dimension
23 G_X = 2 % G_X.sum(dim=1) - W.shape[O0]
24
25 # Boolean variation of weights
26 G_W = torch.logical_xor(Z[:,:,None], X[:,None,:])
27
28 # Aggregate over the batch dimension
29 G_W =2 % G_W.sum(dim=0) - X.shape[O0]
30
31 # Boolean variation of bias
32 if B is not None:
33 # Aggregate over the batch dimension
34 G_B =2 x Z.sum(dim=0) - Z.shape[0]
35
36 # Return
37 return G_X, G_W, G_B

Algorithm 5: Backpropagation logic with real received backpropagation

def backward_real (ctx, Z):

1

2 X, W, B = ctx.saved_tensors

3

4 won

5 Boolean variation of input processed using torch avoiding loop:

6 -> xor (Z: Real, W: Boolean) = -Z * emb (W)
-> emb(W): T->1, F->-1 => emb (W) = 2W-1

8 => delta (Loss) /delta(X) = Zx(1-2w) """

9 G_ X = Z.mm(1-2xW)

10

1 wnn

12 Boolean variation of weights processed using torch avoiding loop:

13 -> xor (Z: Real, X: Boolean) = -Z x emb(X)

14 -> emb (X): T->1, F->-1 => emb(X) = 2X-1

15 => delta(Loss) /delta(W) = Z°T » (1-2X) """

16 G W = 2Z.t() . mm(1l-2%X)

17

18 """ Boolean variation of bias """

19 if B is not None:

20 G_B = Z.sum(dim=0)

21

22 # Return

3 return G_X, G_W, G_B
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Algorithm 6: Python code of Boolean optimizer

class BooleanOptimizer (torch.optim.Optimizer) :

def __init__ (self, params, lr: float):

super (BooleanOptimizer, self).__init__ (params, dict (lr=1lr))

for param_group in self.param_groups:

param_group[’accums’] = [torch.zeros_like(p.data)

params’ 1]

for p in param_group[’

param_group[’ratios’] = [0 for p in param _group[’params’]]

self._nb_flips = 0

@property

def nb_flips(self):
n = self._nb_flips
self._nb_flips = 0
return n

def step(self):
for param_group in self.param_groups:
for idx, p in enumerate (param_group[’params’]):
self.update (p, param_group, idx)

def update(self, param: Tensor, param_group: dict, idx:

int):

accum = param_group[’ratios’][idx] * param_group[’accums’][idx] + param_group|[’

lr’] x param.grad.data
param_group|[’accums’] [idx] = accum
param_to_flip = accum * (2xparam.data-1) >= 1
param.data[param_to_flip] = torch.logical_not (param.data[param_to_flip])
param_group[’accums’] [idx] [param_to_flip] = 0.
param_group|[’ratios’] [idx] = 1 - param_to_flip.float () .mean ()

self._nb_flips += float (param_to_flip.float () .sum())

C.2 SUCCESSIVE SVID FOR KERNEL EXTRACTION

Algorithm 7 illustrate the Python code of the SVID algortithm to extract the optimal Boolean weights
and scaling factors for one kernel. Based on this, Algorithm § illustrates the succesive SVID algorithm

to extract all kernels.

Algorithm 7: Python code of SVID approximation of a FP matrix.

def svid_approximation (w) :

won
Approximate the input matrix ‘w' by a boolean matrix and a rank-1 matrix:
w = w_bool x (s_out % s_in.T)
Args:
w (torch.Tensor): Input tensor of shape (*, m, n).
Returns:
tuple:
- w_bool (torch.Tensor): Boolean matrix of the same shape as ‘w'
- w_res (torch.Tensor): Residual matrix, w - w_bool x= (s_out % s_in.T).
— s_in (torch.Tensor): Scaled first left singular vector of ‘w'.
- s_out (torch.Tensor): Scaled first right singular vector of ‘w'

nnn

U, S, Vh = torch.linalg.svd(abs(w.data.clone().float()),

w_bool = torch.sign(w
s_in = torch.sqrt (S[0
s_out = torch.sqgrt (S|

)
1) % Vh[O0,:].reshape(l,-1)
0]) % U[:,0].reshape(-1,1)

w_res = w — w_pool % torch.matmul (s_out, s_in)

return w_bool, w_res, s_in, s_out

full _matrices=False)
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Algorithm 8: Python code of successively extracts kernels from FP matrix using SVID.

def successive_svid(w_fp, n_kernels):
Perform successive SVID on the input matrix to extract Boolean kernels.
Args:
w_fp (torch.Tensor): Input weight matrix.
n_kernels (int): Number of iterations to extract kernels.
Returns:
list: List of dictionaries containing ‘n_kernels' kernels, each has:
w_bool (torch.Tensor): Boolean matrix.
- s_in (torch.Tensor): Input scaling vector.
- s_out (torch.Tensor): Output scaling vector.
wnn
boolean_kernels = []
w = w_fp # The input to SVID at first iteration is the original weight
for k in range (n_kernels):
# Extract the Boolean weights, residual, and scaling vectors
w_bool, w_res, s_in, s_out = svid_approximation (w)
# Save the extracted kernel
boolean_kernels.append ({’w_bool’: w_bool, ’s_in’: s_in, ’s_out’: s_out})
# The input to SVID for the next iteration is the current residual matrix
W = w_res
return boolean_kernels
D PROOF OF PROPOSITIONS

For completeness, we include the proofs of Propositions related to SVID approximation used in the
main paper.

D.1

PROOF OF BOOLEAN LINEAR REFORMULATION USING SVID

Proposition D.1. (Xu et al., 2024) Given the weight matrix Wgp and input X, the linear layer
can be reformulated as the following using SVID approximation, Wgp =~ Wh,,o1 © (soutsi—r'—l), as
follows:

XW;‘FP ~ |:(X © sl—Irl) W;)rooli| © S(—)rut‘

(36)

Proof. Due to the SVID approximation, we have Wrp(; ;) & Wioo1(;,5Sout[i]Sin[j]- Then, we have:

()

o~ X Wi
[7,5] A

= Z X, i) WEP[), k]
%

= Z X i,k] Whool[j, k] Sout[]Sin[k]
%

= ZX[i,k]Sin[k]Wbool[j,k:] Soutlj]
k

= Z (X © Sl—rrl) [i,k] W};rool[k,j]sout[j]
k

= [(Xosh) Wia),

~ Sout[j]
i,7]

= { [(X ® SII) W;)rooljl © S;r“t}[i,j] '

Thus, the proposition is proved.

28
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D.2 PROOF OF PROPOSITION 4.1

Lemma D.2. (Xu et al., 2024) Denote o;(W) the i-th biggest singular value of matrix W. The

Sfollowing inequality holds:
o1(|W]) = 01(W).

Proof. By the definition of induced norm, we have:

(W) = [Wa = max [Waa
(W) = [[W2 = max [[Wio

yillyllz=

In addition, because Vx, ||x||2 = 1, we have:

|51

?

W =" | > Wy
j

> Z |ZW[M]Xm|
i J

2

= Z Zw[i,ﬂx[a‘]
i J
= [Wx|3.

Therefore
max [[[W]y[l2 > max [[Wx]

yillyllz=1 x[[x[l2=1

& 01(|W]) = a1 (W).

Thus, the lemma is proved.

(44)

(45)

(46)

(47)

(43)

(49)

(50)

61V}

(52)

O

gyl
Proposition D.3 (Rgstated from Xu et al.~(2024)). For W € R™*" write W = UXV its
SVD. Leta = \/o1U|. 1), and b = \/51 V|, 1). Similarly, denote [W| = UXV ' its SVD; sin
and Syt are given as: sin = /01 V[, 1), and souy = /01U, 1]. We decompose the matrix as

W = Wiool @ [W| & Wheo © (soutsi—g). We then have:

HW - Wbool © Soutsi—LH; S HW B abTHQ '
F

Proof. We denote the following error matrices:

E, =W —ab',

E;, = |W| - soutsi—;.
Multiplying Wi,,,1 With both sides of Eq. 55, we have:

Wbool © |W‘ - Wbool © Soutsi—lr—l - Wbool © E2

T
S W - Wbool © SoutSip = Wbool © E2~

29
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Thus, we have:

|‘W_Wbool®soutsi—;||%‘ = HWbool®E2H%‘ (58)
= Wicoiis) + B (59)
i.j
=2 B2 (60)
i.j
= [|Ez (61)

For SVD decomposition, the norm of the above error matrices in the rank-1 approximation is the um
of squares of all singular values except the largest one. In particular, we have:

B |7 =0l (W), (62)
=2

[E2ll% = o?(IW]). (63)
1=2

Since |W||% = ||[W]||%, we have:

D o (W) =D o (W) (64)
i=1 i=1

& |[E1|7 + 0 (W) = [[Ez|Fof (IW]). (65)
Thus, according to Lemma D.2 and Eq. 61, we have:
B[ < IE1 1% (66)
2
W = Whoo! @ Soussih || < Hw_abTHF_ (67)
Thus, the proposition is proved. O

D.3 PROOF OF PROPOSITION 4.3

Proposition D.4. For W € R™*", we denote |W| = UXV ' its SVD. siy and Sou; are given as:
Sin = /01 V[.,1), and Souy = /01U[. 1). We decompose the matrix as W = Who1 © [W| ~
Whool © (SoutSiy ). We then have:

in

2
[W = Wioo © soussih [ < [W = Wioor @ed ||, vee R ¥d e R™L  (68)

Proof. Similar to the proof of Proposition 4.3, we denote the following error matrices E; = |[W| —
SoutSi and By = [W| — cd . We have that

Whoot @ [W| = Wioo @ SoutSiy, = Whool © Eq (69)
& W — Wiool @ SoutSiy = Whoot © Ej. (70)
Therefore,
2 2
||W = Whoa © Soutsi—;HF = ||Wbool © El”F = Zwiool[i,j}E%[i,j] = ZE%[L]‘] = HE1||%
0. i\

(71)

Similarly, we have that

2

HW—Wbool(DabTHF — | Es| . (72)
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Thus, we need to show that

1B 5 < B2 % (73)

Additionally, we denote the rank-k approximation to |[W/| by SvD as Sg:
k
i=1

With this notation, we have that S; = soutsg1 is the rank-1 approximation of |W| by SVD.

From Eq. 73, we need to show that if there is an arbitrary rank-1 approximation to |W|, P; = cd’,
we then have

(75)

m

2
[IW1 = sousis [ < [ W] = cd |

F
This can be done by using the Eckart-Young-Mirsky theorem (Eckart & Young, 1936). First, we have
that

W = S1% = [[[W] = sousih||» = | S oi ULV,
1=2

=> o} (76)

2
F 1=2

By the triangle inequality with the spectral norm, if [W| = C + D then o1 (|W]) < 01 (C) + o1(D).
Suppose the Cj, and Dy, denote the rank-k approximation to C and D by svD method, respectively.
Then, for any ¢, 7 > 1 we have

O'Z‘(C)+O'j(D):Ul(Cfci_1)+O'1(Dij_1) (77)
> 01 (|W]-Ci-1 — Dj1) (78)
> 0'1(|W| — Si+j_2) (Sil’lCC rank(Ci_l + Dj_l) <i4+j— 2) (79)
— o1y (W), (%0)

Because 02(Py) = 0, when C = |[W| — P; and D = P; we have that for i > 1,5 = 2,
oi(|[W|—=P1) > 0,41 (|W]). As a result,

W] = P2 =3 i = 1o, (W] = P1)* > 3 i = 270, ((W])? = [[W] = S1]% 8D

< [|Eallf > B |l (82)
2
= HW—WbOOIQCdTHF 2 HW_WbOOIQSOUtSi—lI—lHi'\' (83)
Hence the proposition is proved. O
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E DETAILS ON KERNEL ALLOCATION

E.1 WEIGHT IMPORTANCE ESTIMATION

We assess the importance of a linear weight in the original FP model by comparing the representations
at its input and output. Let X € R?*" and Y € R?*™ denote the input and output matrices of a
linear layer, respectively, where d is the number of samples, and n and m are the input and output
feature dimensions. We hypothesize that a weight is important if it significantly transforms the
input representations. For example, a weight matrix equivalent to the identity does not alter the
representations and thus would be considered unimportant. To quantify this transformation, we use a
robust metric for comparing neural representations.

Various similarity measures can be used for this purpose, such as cosine similarity, as done in (Gromov
et al., 2025). In this work, we adopt PWCCA Morcos et al. (2018), which is particularly well-suited for
our setting: it is invariant to linear transformations—an essential property given that large language
models (LLMSs) are primarily composed of linear layers—and effectively captures shared structure
while filtering out noise Morcos et al. (2018).

Specifically, we define the importance score as:
1 c
h=1--% ppwocai(X,Y), (84)
i=1

where ¢ denotes the number of canonical vectors used in the comparison (typically, ¢ = min(n, m)).
The matrices X and Y are obtained by simply forwarding a set of data samples through the network.
In our experiments, we use 128 random samples from the WikiText2 training set to estimate the
importance score. Here, ppwcca,; represents the projection-weighted correlation along the i-th
canonical direction. The following section describes in detail how this correlation is computed.

Algorithm 9: Kernel allocation.

Input
T>1; /* model expansion limit =/
E= [egk]} € RVwW>Emax for € [1, Kmax), | € [1, Nw]; /+ residual approx error /
h = [h] € RVWX1; /* weight importance scores =/
p=I[p] € RNwx1L. /* weight size ratios */
Initialize
k=1[1,...,1]T of length Nw ; /+ starting choice */
f =k < Knax ; /+ feasible indicator =/
C= (%log %) OhoE; /* where (® is broadcasted over E columns =/
While not all £ is False do
g:=0,1:=0;
for/=1: Nw do
if £I] = True then
g:=C[Lk[l]] - C[l,k[]] +1]; /* gain by increasing kernel size by 1
*/
Append [ to 1, append g to g;
Sort g in decreasing order, and arrange 1 accordingly;
for (g,1) in (g,1) do
kl =K
k; [l] =k [l] +1;
if k' p < T then
‘ k[l] = k[I] + 1;
break ; /* escape the for loop */
else
| f[l] := False;
f < and(f,k < Kmax) ; /* element-wise logical and =%/
return k

Projection-weighted Canonical Correlation Analysis. Canonical Correlation Analysis (CCA)
finds bases for two matrices such that, when the original matrices are projected onto these bases, the
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resulting projections are maximally correlated. Without loss of generality, we assume that n < m.
For 1 < i < n, the i-th canonical correlation coefficient p; is given by:

pi = max corr(Xwi, YYw) (85)

Wi, Wy
subject to Xwi | Xwh Vj <i
Ywi LYw), Vj<i.
The vectors wi € R™ and w, € R™ that maximize p; are called the canonical weights. These
weights transform the original data into the canonical variables Xw% and YwY,. The constraints

in Eq. 85 enforce orthogonality among the canonical variables, ensuring that each successive pair
captures a distinct mode of correlation.

The mean CCA correlation is then computed as:

poca = E:T”’ (86)

where n is the number of canonical correlation coefficients considered.

CCA is sensitive to perturbation when the condition number of X and Y is large. To imporve
robustness, Morcos et al. (2018) propose a strategy to reduce this sensitivity, which they term
“projection-weighted CCA” (PWCCA).

iy Qaipi
PPWCCA,i = 2§clp, Q; = Z [(hi, %), 87)
J

i=1 %

where x; is the j-th column of X, and h; = Xwgc is the vector of canonical variables formed by
projecting X to the ¢-th canonical cooridate frame.

E.2 KERNEL ALLOCATION ALGORITHM

Algorithm 9 illustrates the details of our algorithm for kernel allocation.

F THEORETICAL ANALYSIS OF TRAINING COMPLEXITY

Consider a linear layer without bias, defined as Y = XW where X € REXLXN and W € RN*M
Here, B is the mini-batch size, L is the sequence length, N is the input dimension, and M is the
output dimension. We analyze the number of multiplications (MULSs) required.

Latent-weight approach (same cost as full-precision training):

e Forward: B x L x N x M (FP16—-FP16 MULSs)

* Backward w.r.t. weights: B x L x N x M (FP16-FP16 MULs)

* Backward w.r.t. inputs: B X L x N x M (FP16-Fp16 MULSs)

» Total: 3 x B x L x N x M FP16-FP16 MULs

Boolean approach with K Kkernels: (assuming FP16 gradients for a fair comparison). As shown in

the main text, only the final Boolean kernel needs to be fine-tuned. The number of multiplications
becomes:

» Forward: K x B x L x N x M (BOOL-FP16 MULs, using all K kernels)

* Backward w.r.t. weights: 1 X B x L x N x M (FP16-FP16 MULs, for last kernel only)

* Backward w.r.t. inputs: 1 x B x L x N x M (BOOL-FP16 MULs, for last kernel only)

» Total: (K +1) x Bx L x N x M BOOL-FP16 MULs, and B x L x N x M FP16-FP16 MULs

Since K is typically small (e.g., 2—4) while B and L are large (thousands), most computation shifts
from FP16-FP16 to the more efficient BOOL—FP16 operations. If we ignore the BOOL-FP16 MULs,
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the FP16—FP16 operations are reduced by a factor of 2/3 (i.e., a 66.7% reduction). Remarkably,
this reduction is achieved while using more kernels and attaining better performance, yet with
significantly lower training complexity. According to BitNet (Wang et al., 2023) (Table 1), for
L = 512 and a LLaMA-like 13B model on 7 nm hardware, 1Bit—FP16 operations yield an energy
saving of approximately 56 x compared to FP16-FP16. Hence, our method achieves substantial
training efficiency. Importantly, BitNet is a latent-weight approach, with efficiency gains realized
primarily during inference, whereas our method provides significant benefits already during training
and fine-tuning.

We note that the above analysis does not include optimizer cost. The latent-weight approach typically
relies on Adam, which requires two full-precision momenta per parameter and a complex update rule
involving multiple normalization statistics. By contrast, our Boolean approach employs a Boolean
optimizer requiring only one full-precision momentum per parameter, coupled with a much simpler
update rule (see Eq. 3). This further underscores the reduction in overall training complexity offered
by our method.

G ADDITIONAL EXPERIEMENTAL RESULTS

G.1 ADDITIONAL INFORMATION OF EXPERIEMENTAL SETTINGS

We use 12 Nvidia GPUs of Tesla V100 for our experiments. We follow exactly the experimental
settings in Jo et al. (2024). The results of the baselines in Table 2 are taken from Xu et al. (2024); Jo
et al. (2024).

G.2 ON THE CHOICE OF KD Loss

Liogits (Forward KL)

10
Diogits Wiki2 C4
= Forward KL 31.39 28.50
Reverse KL 33.14 29.46
= Symmetric KL 32.67 29.26
10-1 = JS Divergence 31.78 28.69
= TV Distance 33.02 29.56

T T T T T T
0 20000 40000 60000 0 20000 40000 60000

Iteration Iteration

Figure 12: The training convergence of Lis, and Liogits, measured by Forward KL, and the final
results with respect to the choice of Djggits.

Fig. 12 illustrates the convergence and results of using different choices for Dyygiis in Eq. 10. Despite
its simplicity, forward KL achieves the best performance. More complex measures, such as total
variance (TV) distance (Wen et al., 2023) and Jensen-Shannon (JS) divergence (Agarwal et al., 2024),
offer no significant benefits in our case. Furthermore, we observe that the final perplexity is strongly
correlated with Liogis using forward KL, but not with Lj,, as shown in Fig. 12 and Fig. 6. As a result,
we employ the forward KL in all experiments.

G.3 RESULTS OF DIFFERENT NUMBER OF KERNELS ON LLMS

To complement the Table 2, Table 5 shows the benchmarking results of LLMs using our MBOK
method with varying numbers of kernels per weight. Consistent with the observations made on
smaller models in § 6.1.1, we observe that increasing the number of kernels generally improves
performance. However, the performance gains begin to diminish noticeably beyond three kernels.
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Table 5: Perplexity and zero-shot accuracy results of our MBOK method with different number of
kernels.

Perplexity () Zero-shot Accuracy (1)

Model Method Whit
ode etho "™ Wiki2 €4 BoolQ PIQA Hella. WinoG. ARC-¢ ARC-c Average

MBOK (2 kernels) 2x1 16.13 16.61 5853 70.67 4811 56.75 48.19  27.90 51.69
OPT-1.3B MBOK (3 kernels) 3x1 1530 15.68 60.64 70.78 50.71  56.83 48.82  28.49 52.71
MBOK (4 kernels) 4x1  14.83 1492 6095 7085 51.02 56.85 49.13  29.24 53.01

MBOK (2 kernels) 2x1 6.83 853 6920 7432 6480  60.30 49.05  34.90 58.76
LLaMA-7B MBOK (3 kernels) 3x1 6.20 7776  67.89 76.15 6891  63.30 48.94  37.62 60.47
MBOK (4 kernels) 4x1 6.01 753 68.16 7671 69.85  62.09 4924 38.14 60.70

MBOK (2 kernels) 2x1 6.17 7.88  68.10 7633 69.88  64.17 5234  37.88 61.45
LLaMA-13B MBOK (3 kernels) 3x1 5.58 7.15 6739 7174 7337  66.61 54.04 4121 63.39
MBOK (4 kernels) 4x1 5.38 691 68.69 77.63 7423  66.53 56.14  41.38 64.10

G.4 ADDITIONAL RESULTS ON LLAMA-2

Table 6 shows the results on LLaMA2-13B (Touvron et al., 2023b). Similar to the Table 2, the
results of the baselines are taken from Xu et al. (2024) and Jo et al. (2024). It is clear that our
method consistently outperforms the baselines across different metrics and model sizes.This further
emphasizes the robustness of our approach across various types of models.

Table 6: Perplexity and zero-shot accuracy results of Floatl6, quantized and binarized LLaMA2
models.

.. Perplexity (|) Zero-shot Accuracy (1)
Model Method Whits \vikia €4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average
P16 16 547 697 7110 7688 7294 67.09 5358 4061  63.70
PB-LLM 17 7675 8592 6217 5282 2687 S0.11 2689 2431  40.53
BiLLM LIl 2772 3634 6214 5919 3518 5301 3422 2654 4506
Ciangp | OmeBit I 860 1074 6306 7040 5424 5667 4082 2935 5242
AMAZTB s I 788 975 6502 7155 5941 5618 4184 3003 5401
GPTQ 2 77¢3  NaN 4297 4946 2619 5028 2677 2858 3738
LLM-QAT 2 Lle3 6662 5914 5012 2510 4908 2626 2696 3589
OmniQuant 2 3121 6434 5869 5653 3387 5122 3363 2432 43.12

MBOK [Ours] 2x1 6.87 874 6694 7497 6559 61.72 4482 3421 58.04
MBOK [Ours] 3x1 6.12 781 6546 7579 69.59 @ 62.04 49.11  37.80 59.97

FP16 16 4.88 6.47 6899 79.05 76.62  69.77 5795 4420 66.10

PB-LLM 1.7 15525 151.15 37.82 5326 2889 4948 28.28  23.72 36.91

BiLLM .11 2071 2719 6220 6251 38.05 5635 40.69 2773 47.92

LLaMA2-13B OneBit 1 7.56 9.67 65.66 71.60 60.07 5691 45776 31.74 55.29
a . MoS 1 7.08 8.91 66.12 7372 63.80 5898 45.71 33.19 57.09
GPTQ 2 2.1e3  32e2 40.61 51.74 25.67 51.85 2546  27.30 37.11

LLM-QAT 2 5.1e2  1.1e3 3985 49.08 2437 5138 27.15 2432 36.03

OmniQuant 2 16.88 27.02 62.05 6224 5034  53.20 40.66  29.61 49.68

MBOK [Ours] 2x1 5.97 785 6632 7584 7024 @ 62.51 50.00 37.46 60.40
MBOK [Ours]  3x1 5.35 7.07 66.80 77.59 7379 @ 65.27 5447  41.89 63.30

G.5 GENERATION QUALITY

Table 7 illustrates the generated text given zero-shot arbitrary questions from LLaMA-13B with FP16
weights and MBOK using three kernels. It is clearly that our model is able to produce meaningful and
coherennt text compared to the original FP16 model.
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Table 7: Comparison of generation quality (non-curated) on LLaMA-13B models with FP16 and MBOK
using three kernels.

Prompt:
FP16:

MBOK:

What are the capitals of China, US and Russia?

The capital of China is Beijing. The capital of the
United States is Washington D.C. and the capital of
Russia is Moscow.

The capital of China is Beijing. The capital of the US
is Washington D.C. and the capital of Russia is Moscow.

Prompt:

FP16:

MBOK:

I have a friend who lives in London and I would like to
visit him. How would I go there from Paris?

You can take the Eurostar from Gare du Nord in Paris to
St. Pancras Station in London. The trip takes about 2
hours and 15 minutes.

The fastest way to get from Paris to London is to take
the Eurostar train. The Eurostar departs from the Gare
du Nord station in Paris and arrives at the St. Pancras
International station in London. The trip takes about 2
hours and 15 minutes.

Prompt:
FP16:

MBOK:

What is Fete du Travail?

It is an annual holiday celebrated all over the world
that resulted from the labour union movement, to
celebrate the economic and social achievements of
workers. The majority of countries celebrate Labour Day
on May Day, or May 1, and it is popularly known as May
Day and International Workers’ Day

In France, May lst is a public holiday. It is also
known as Labour Day, International Workers_ Day, or May
Day. It is a celebration of the social and economic
achievements of the labour movement. It originated from
the eight-hour day movement, which advocated eight hours
for work, eight for recreation, and eight for rest.

Prompt:

FP16:

MBOK:

What are the main ingredients in pho, Vietnam_s iconic
noodle soup?

Rice noodles, beef or chicken, onions, ginger, cilantro,
bean sprouts, basil, lime, hoisin sauce, Sriracha, and
fish sauce.

Bone broth, rice noodles, fish sauce, herbs and spices,
and beef, chicken, or seafood, depending on the type
of pho you_re eating. Pho is usually served with

bean sprouts, Thai basil, lime wedges, and hoisin and
sriracha sauces.

G.6 ADDITIONAL BASELINES

G.6.1 COMPARIONS WITH QUIP AND SHIFTADDLLM

Both QuIP (Chee et al., 2023) and ShiftAddLLM (You et al., 2024) are PTQ method for LLMs. QuIP
is a two-step process that leverages the insight that quantization performs better when weight and
Hessian matrices are incoherent. It uses an adaptive rounding procedure to minimize a quadratic
proxy objective, which measures the error between the original and quantized weights. Additionally,
it applies pre- and post-processing steps using random orthogonal matrices to ensure the weight and
Hessian matrices are incoherent. Conversely, our method does not employ either these complicated
pre- and post-processing steps or costly Hessian matrices. Meanwhile, ShiftAddLLM is a post-training
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reparameterization process, which quantizes each weight matrix in the LLM into a set of binary
matrices and group-wise scaling factors. he original multiplication between activations and weights
is then reparameterized into: (1) bitwise shifts for the activations, using the power-of-two quantized
scaling factors, and (2) additions of the results, guided by the binary weight matrices; this process
can be implemented using look-up tables (LUTSs) on GPUs.

Table 8 presents results on OPT models, with competitor results extracted from their respective
original papers. Notably, ShiftAddLLM utilizes a more computationally expensive group quantization,
whereas our method does not. Our results clearly demonstrate that our approach consistently and
significantly outperforms these baselines, particularly in the 2-bit scenario.

Table 8: Comparisons with QuIP, ShiftAddLLM using OPT models.

BIT-WIDTH METHOD OPT-125M OPT-350M OPT-1.3B
QuiIP (Chee et al., 2023) 34.22 25.19 16.21
2 ShiftAddLLM (You et al., 2024) 31.29 24.24 21.53
MBOK [Ours] 29.10 23.12 15.03
QuIP (Chee et al., 2023) 347.40 672.30 41.64
3 ShiftAddLLM (You et al., 2024) 51.15 40.24 29.03
MBOK [Our] 28.60 24.54 16.13

G.6.2 COMPARIONS WITH BITSTACK, DB-LLM AND AWQ

While BitStack (Wang et al., 2025) also decompose weights using SVD, its core method and goal
fundamentally differ from our method. BitStack is a training-free method primarily aimed at saving
storage for inference. In contrast, our method not only converts FP models into Boolean models but
also includes further fine-tuning, with the goal of achieving low complexity in both training and
inference. Furthermore, while BitStack packs the extracted binary matrix into GPU-supported data
types to reduce inference memory, and its approach to loading residual blocks relies on their influence
on perplexity, our approach to residual block management is distinct.

DB-LLM (Chen et al., 2024) is limited to a fixed decomposition into two binary matrices, whereas our
MBOK method generalizes to an arbitrary number of Boolean kernels. In DB-LLM, the full-precision
knowledge is preserved only through scaling factors and binary matrices derived implicitly via
thresholding. There is no formal analysis proving the optimality of this formulation. In contrast,
thanks to the SVID in our approach, each extracted kernel is accompanied by an optimal scaling
vector and Boolean matrix. This allows us to only finetune the last kernel to calibrate the entire model.
Like most existing binary LLMs, DB-LLM relies on full-precision latent weights during training
and finetuning. Our method does not require this, as it directly operates in the Boolean domain.
This distinction is particularly important in the LLM context, where training and finetuning can be
computationally expensive.

Table 9 compares our method, MBOK (with 2 kernels), against BitStack, DB-LLM, and AWQ (Lin et al.,
2024) on LLaMA2-7B. It is evident that our method consistently outperforms all baselines.

Table 9: Comparisons with AWQ, BitStack, DB-LLM using LLaMA2-7B with 2-bit setting.

METHOD Wiki2 (}) ARc-e (1) ARC-c (1) PIQA (1) Hella. (1) WinoG. (1)
AWQ (Lin et al., 2024) 1.8e5 26.3 26.7 50.9 26.5 49.3
BitStack (Wang et al., 2025) 29.93 32.3 25.6 62.4 42.8 53.6
DB-LLM (Chen et al., 2024) 7.23 45.2 33.5 73.1 61.9 61.7
MBOK [Ours] 6.87 44.8 34.2 75.0 65.6 61.7
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G.7 DISCUSSION ON LATENCY AND COMPARISON WITH VECTOR QUANTIZATION

Scalar and Vector Quantization. In the context of LLMs, scalar quantization and vector quantiza-
tion are two different approaches for compressing weights. Scalar quantization maps each weight or
activation independently to a smaller set of discrete levels (e.g., 32-bit floating-point to 8- or 4-bit
integers). It is simple, hardware-friendly, and widely used in practice, but it ignores correlations
across dimensions, potentially discarding fine-grained structure. Vector quantization (VQ) instead
compresses entire vectors (e.g., weight groups) by replacing them with indices into a learned code-
book of representative vectors. By capturing cross-dimensional correlations, VQ often achieves
higher compression, particularly for large embedding tables. However, codebook training is more
complex, and inference requires index lookups to reconstruct vectors. This adds significant overhead
to both quantization and dequantization, leading to much higher latency compared to scalar methods.

Our method is native 1-bit weight design, its nearest baselines are scalar weight quantization. As a
result, for a fair comparison, in the main text we mainly consider state-of-the-art scalar quantization
like OmniQuant (Shao et al., 2024), GPTQ (Frantar et al., 2023), LLM-QAT (Liu et al., 2024c¢) as the
main baselines. Nevertheless, for completeness, we also compare our approach against state-of-the-art
ultra low-bit vector quantization (VQ) methods for LLMs, including QTIP (Tseng et al., 2024b) and
QuIP# (Tseng et al., 2024a) in a 2-bit setting, specifically on LLaMA-7B with a sequence length of
2048 (results taken from the QTIP paper). The results are summarized in Table 10. Remarkably, our
method’s performance is comparable to these state-of-the-art (SOTA) VQ methods. This is noteworthy
given that our approach directly utilizes native Boolean weights, eliminating the need for the very
costly quantization and dequantization of high-dimensional vectors inherent in VQ.

Table 10: Perplexity comparison with SOTA vector quantization methods using LLaMA-7B.

METHOD Wiki2 (1) C4 ()

QUIP# (Tseng et al., 2024a) 6.86 8.36
QTIP (Tseng et al., 2024b) 6.52 7.99
MBOK [Ours] 6.83 8.53

Empirical Evidence of Latency Gains. To demonstrate the practicality of our approach even on
modern hardware such as GPUs, we leverage the recently introduced BitBLAS library ! (Wang et al.,
2024) for 1-bit matrix multiplications. Using FP16 activations with INT1 weights, we measure the
latency of linear layers in LLaMA-7B (Table 11) and LLaMA-13B (Table 12) under an inference batch
size of 1, evaluating our method MBOK with two kernels. Our results show that MBOK achieves up to
an 8.7x speedup over FP16 baselines, while substantially outperforming existing binarization and
scalar quantization methods, as detailed in the main text. We also benchmark against 2-bit QUIP#
and QTIP using the authors’ official implementations®*. All experiments are conducted on a Google
Cloud A100 GPU.

Remarkably, our method is not only much faster than these VQ baselines but also delivers comparable
performance. This is expected, as VQ-based methods incur significant overhead from the costly
encoding and decoding steps required to realize their high compression ratios. Taken together, the
results highlight that our native Boolean approach offers a compelling and efficient alternative to
state-of-the-art vector quantization methods. With dedicated Boolean hardware accelerators, the
performance gains would be even more pronounced.

lhttps ://github.com/microsoft/BitBLAS
https://github.com/Cornell-RelaxML/quip-sharp
Shttps://github.com/Cornell-RelaxML/qtip
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Table 11: Measured latency (ms) of linear layers in LLaMA-7B, with values in parentheses denoting
speed-up relative to the FP16 baseline.

WEIGHT SIZE  FP16  QUIP# (Tseng et al., 2024a) QTIP (Tseng et al., 2024b) MBOK (Ours)

4096 x 4096  0.10697 0.46196 (0.23x) 1.37137 (0.08x) 0.04989 (2.14x)
4096 x 11008 0.27935 0.55526 (0.50%) 3.13633 (0.09x) 0.05136 (5.44x)
11008 x 4096 0.27664 0.55988 (0.49x) 3.16067 (0.09x) 0.05117 (5.41x)

Table 12: Measured latency (ms) of linear layers in LLaMA-13B, with values in parentheses denoting
speed-up relative to the FP16 baseline.

WEIGHT SIZE  FP16  QUIP# (Tseng et al., 2024a) QTIP (Tseng et al., 2024b) MBOK (Ours)

5120 x 5120  0.16540 0.62260 (0.27x) 1.96368 (0.08x) 0.05074 (3.25x)
5120 x 13824 0.42830 0.62836 (0.68x) 5.23681 (0.09x) 0.05098 (8.40x)
13824 x 5120 0.43411 0.62840 (0.69x) 5.21193 (0.08 %) 0.04987 (8.70x)

H ETHICS STATEMENT

This work makes a fundamental contribution to machine learning methodology. It does not involve
human subjects, sensitive data, or applications with direct societal or ethical risks. We do not foresee
any immediate ethical concerns arising from this research.

I REPRODUCIBILITY STATEMENT

We provide detailed descriptions of all algorithms and illustrative code for the core components.
Experiments are conducted on standard benchmarks using established testing procedures, and all
experimental details and settings are fully declared to facilitate independent reproduction of our
results.

J THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for non-substantive assistance, including grammar
refinement and summarizing relevant literature. All research ideas, analyses, and conclusions are the
authors’ own.
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