

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIGHLY EFFICIENT AND EFFECTIVE LLMs WITH MULTI-BOOLEAN ARCHITECTURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Weight binarization has emerged as a promising strategy to reduce the complexity of large language models (LLMs). Existing approaches fall into post-training binarization, which is simple but causes severe performance loss, and training-aware methods, which depend on full-precision latent weights, adding complexity and limiting efficiency. We propose a novel framework that represents LLMs with multi-kernel Boolean parameters and, for the first time, enables direct finetuning LLMs in the Boolean domain, eliminating the need for latent weights. This enhances representational capacity and dramatically reduces complexity during both finetuning and inference. Extensive experiments across diverse LLMs show our method outperforms recent ultra low-bit quantization and binarization techniques.

1 INTRODUCTION

Large language models (Brown et al., 2020; Touvron et al., 2023a; Liu et al., 2024a) have demonstrated unprecedented capabilities, largely due to the continuous growth in both model and dataset sizes. A key area of focus in optimizing these models is lower-precision computation, which offers substantial benefits in terms of memory and computational efficiency. One prominent approach to achieving this is through the quantization of weight parameters, which reduces the model size by lowering the precision of the weight values. Recent studies on scaling laws (Dettmers & Zettlemoyer, 2023; Kumar et al., 2025) have highlighted the potential of using low-precision techniques for large language models (LLMs).

Binarization represents one of the most extreme forms of quantization for LLMs. While significant progress has been made, challenges remain (Yuan et al., 2024; Huang et al., 2024; Li et al., 2025). Even with advanced techniques like Quantization-Aware Training (QAT), which fine-tunes the model extensively after binarization (Xu et al., 2024; Jo et al., 2024), or trains it from scratch (Wang et al., 2023), performance still lags behind that of full-precision (FP) models. This performance gap can be attributed to the limited representation capacity of binary weights and the heavy reliance on FP latent weights for binarization. This reliance not only makes the approach computationally expensive but also suboptimal, as it requires gradient approximation. Meanwhile, recent advances in 4-bit quantization have achieved remarkable compression with minimal accuracy loss, but further compression or applying these methods to smaller models has yielded unsatisfactory results (Frantar et al., 2023; Lin et al., 2024).

In this paper, we aim to push the boundary of low-precision LLMs by proposing a novel method named as Multiple Boolean Kernels (MBOK). We extend the work in Nguyen et al. (2024), which proposes training neural networks with native Boolean weights directly in the Boolean domain. However, effectively applying this approach to LLMs remains a key challenge. In particular, our contributions are:

- We propose the framework MBOK, which employs multiple Boolean kernels, each using distinct Boolean weights (§ 4.2). This allows for flexibly representing LLMs with low bits, while approaching to FP performance with minimal *both* finetuning and inference cost. The Boolean weights are directly trained in Boolean domain, avoiding the need for FP latent weights and gradient approximations.
- We propose a novel successive method that effectively transfers knowledge from an FP LLM into the Boolean model (§ 4.3), followed by further fine-tuning using knowledge distillation (§ 4.3.2).

Figure 1: Finetuning OPT models (Zhang et al., 2022) using our 3 Boolean kernels (▲), compared to OPTQ (Frantar et al., 2023) (▲), which quantizes the models to 3 bits, and the FP16 baseline (●) on the C4 dataset.

054

- We introduce a method for automatically allocating the number of kernels for each weight (§ 5),
055 supporting any average bit-width, including fractional values.

056

- We provide a comprehensive empirical analysis and benchmarks, demonstrating our method’s
057 superior performance over recent binarization and quantization approaches (see § 6) with much
058 lower memory and computational overhead. For example, Fig. 1 shows that our method achieves
059 the best accuracy-compression trade-off, outperforming FP and existing quantization techniques.

060

061 2 RELATED WORKS

062 **LLMs quantization.** Quantization techniques are commonly used to reduce the memory and
063 latency of LLMs. They fall into two categories: QAT, which involves retraining or finetuning in
064 a quantized form, and Post-Training Quantization (PTQ), which can be applied directly without
065 retraining. Due to the difficulty of retraining such large models, most work focuses on PTQ (Frantar
066 et al., 2023; Sheng et al., 2023; Lin et al., 2024; Lee et al., 2024), though recent efforts also explore
067 QAT via data-free methods (LLM-QAT (Liu et al., 2024c)), or parameter-efficient fine-tuning like LoRA
068 (Dettmers et al., 2023). A prominent PTQ method is OPTQ (Frantar et al., 2023), which introduces
069 one-shot low-bit weight quantization using approximate second-order information. Follow-up work
070 refines this by addressing outliers (Kim et al., 2024; Dettmers et al., 2024), accounting for activation
071 effects (Lin et al., 2024; Lee et al., 2024), and optimizing quantization parameters (OmniQuant (Shao
072 et al., 2024)). However, effective LLMs quantization is still challenging (Xu et al., 2025).

073 **Binarization.** This represents the most extreme form of quantization, typically using the $\text{sign}(\cdot)$
074 function with gradients estimated via the straight-through-estimator (STE) (Bengio et al., 2013). Early
075 work focused on small Transformer models (Vaswani et al., 2017) trained or fine-tuned on labeled data
076 (Bai et al., 2021; Qin et al., 2022; Liu et al., 2022; 2023). Recent efforts have extended binarization
077 to LLMs. Methods like BiLLM (Huang et al., 2024), PB-LLM (Yuan et al., 2024), STBLLM (Dong et al.,
078 2025), and ARB-LLM (Li et al., 2025) adopt hybrid PTQ approaches, binarizing non-salient weights
079 while using higher precision for important ones, with calibration data used to adjust scaling factors.
080 BitStack (Wang et al., 2025), QBB (Bulat et al., 2024), DB-LLM (Chen et al., 2024) further improve
081 this with multiple binary bases, either through a training-free method or via knowledge distillation.
082 In contrast, BitNet (Wang et al., 2023) replaces linear layers with a custom 1-bit weight structure,
083 BitLinear, and trains the model from scratch. OneBit (Xu et al., 2024), which decomposes weights
084 into 1-bit components and scaling vectors for QAT, further enhanced by MoS (Jo et al., 2024) using
085 a mixture of scalings. Despite progress, these methods remain costly due to their dependence on
086 FP latent weights during training. Table 1 summarizes the key characteristics of these methods in
087 comparison to ours.

088 Table 1: A summary of SOTA binarization methods for LLMs compared to our method.

Method	Train from Scratch	Post-training Binarization	Finetune from FP Model	Calibration Data	Weight Update	Multiple Binary Bases	Higher-bit Salient Weights
BitNet (Wang et al., 2023)	✓	✗	✗	NA	FP latent-weights	✗	✗
BiLLM (Huang et al., 2024)	✗	✓	✗	✓	NA	✓	✓
PB-LLM (Yuan et al., 2024)	✗	✓	✗	✓	NA	✗	✓
STBLLM (Dong et al., 2025)	✗	✓	✗	✓	NA	✓	✓
ARB-LLM (Li et al., 2025)	✗	✓	✗	✓	NA	✓	✓
BitStack (Wang et al., 2025)	✗	✓	✗	✗	NA	✓	✗
DB-LLM (Chen et al., 2024)	✗	✓	✓	✓	FP latent-weights	✓	✗
QBB (Bulat et al., 2024)	✗	✓	✓	✓	FP latent-weights	✓	✗
OneBit (Xu et al., 2024)	✗	✗	✓	✓	FP latent-weights	✗	✗
MoS (Jo et al., 2024)	✗	✗	✓	✓	FP latent-weights	✗	✗
MBOk [Ours]	✗	✗	✓	✓	Native Boolean weights	✓	✗

098 3 PRELIMINARIES

100 **Notations.** We use a standard notation for vectors (\mathbf{a}), matrices (\mathbf{A}), and scalars (a). The i -th
101 element of a vector \mathbf{a} is $\mathbf{a}_{[i]}$, and the element at the i -th row and j -th column of a matrix \mathbf{A} is $\mathbf{A}_{[i,j]}$.
102 The symbol \odot denotes element-wise multiplication, with broadcasting if needed.

103 3.1 PITFALLS OF FULL-PRECISION LATENT WEIGHTS FOR BINARIZATION

104 Binarization is an effective technique for reducing both the size and computation of deep learning
105 models by converting high-precision weight parameters into 1-bit values (Hubara et al., 2016;
106 Courbariaux et al., 2015; Rastegari et al., 2016). For a linear layer, $\mathbf{Y} = \mathbf{X}\mathbf{W}_{\text{FP}}^{\top} + \mathbf{b}$, where
107 $\mathbf{X}_{\text{FP}} \in \mathbb{R}^{b \times n}$ is the input data, and $\mathbf{W} \in \mathbb{R}^{m \times n}$ with the input size n and output size m , and $\mathbf{b} \in \mathbb{R}^m$

108 are the FP weights and bias. Binarization results in $\mathbf{Y} = \alpha \cdot \mathbf{X} \mathbf{W}_{\text{bin}}^\top + \mathbf{b}$, with $\mathbf{W}_{\text{bin}} = \text{sign}(\mathbf{W}_{\text{FP}})$
 109 and α as a scaling factor (e.g., $\alpha = \frac{\|\mathbf{W}_{\text{FP}}\|_1}{m \times n}$) (Rastegari et al., 2016).
 110

111 During training, the FP weights must be retained for learning the binarized weights. In vanilla
 112 gradient descent, binarized weights are updated as $\mathbf{W}_{\text{bin}} = \text{sign}(\mathbf{W}_{\text{FP}} - \eta \cdot \mathbf{G}_{\mathbf{W}_{\text{FP}}})$, where η is
 113 the learning rate and $\mathbf{G}_{\mathbf{W}_{\text{FP}}}$ is the gradient of the FP weights. This leads to high memory usage,
 114 especially with optimizers like Adam (Kingma & Ba, 2015), which require storing two additional FP
 115 momenta for each parameter. Moreover, the gradient approximation for binarized weights often uses
 116 a differentiable proxy, like the STE (Bengio et al., 2013), but this introduces performance drops due
 117 to proxy gradient noise. This noise can cause oscillations and instability during training.
 118

3.2 NATIVE BOOLEAN FRAMEWORK FOR NEURAL NETWORKS

119 To address the issues associated with latent-weight-based approaches, Nguyen et al. (2024) recently
 120 proposed a principled framework for directly training Boolean neural networks in the Boolean domain.
 121 Consider the l -th Boolean linear layer; in the forward pass, the output of the next layer is defined as:
 122

$$\mathbf{Y}_{[k,j]}^{(l)} = \mathbf{b}_{[j]}^{(l)} + \sum_{i=1}^n L(\mathbf{X}_{[k,i]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)}), \quad 1 \leq j \leq m, \quad (1)$$

123 where k denotes the sample index in the batch, and L is a logic gate such as **and**, **or**, **xor**, or **xnor**;
 124 Hereafter, for clarity, we consider $L = \text{xnor}$ as a concrete example. The weights $\mathbf{W}_{[i,j]}^{(l)}$ are Boolean
 125 values {TRUE, FALSE} or $\{-1, +1\}$, as typically used in practical implementations.
 126

127 The logic gate L can be extended to handle mixed-type data. In this paper, we focus on the case where
 128 the input data is real-valued, and the weights are Boolean. Specifically, for an input element $x \in \mathbb{R}$,
 129 we define $x_{\text{bool}} = \text{TRUE} \Leftrightarrow x \geq 0$, and $x_{\text{bool}} = \text{FALSE} \Leftrightarrow x < 0$, and $|x|$ its magnitude. The logic
 130 operation between a real input $x \in \mathbb{R}$ and a Boolean weight $w \in \mathbb{B}$ is defined as $\text{xnor}(w, x) \triangleq s$
 131 such that $s_{\text{bool}} = \text{xnor}(w_{\text{bool}}, x)$ and $|s| = |x|$.
 132

133 **Backward pass.** This layer receives the backpropagation signal from the downstream layer. Specifically,
 134 $\mathbf{Z}_{[k,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{Y}_{[k,j]}^{(l)}}$ denotes the variation of the loss function \mathcal{L} w.r.t. the output at layer l .
 135

136 To optimize the Boolean weights, we need to compute the corresponding loss signal, denoted as
 137 $\mathbf{Q}_{[i,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{W}_{[i,j]}^{(l)}}$, which is aggregated over the batch dimension k as:
 138

$$\mathbf{Q}_{[i,j]}^{(l)} = \sum_{k=1}^b \mathbf{1}(\mathbf{Q}_{[k,i,j]}^{(l)} = \text{TRUE}) |\mathbf{Q}_{[k,i,j]}^{(l)}| - \sum_{k=1}^b \mathbf{1}(\mathbf{Q}_{[k,i,j]}^{(l)} = \text{FALSE}) |\mathbf{Q}_{[k,i,j]}^{(l)}|, \quad (2)$$

141 where $\mathbf{Q}_{[i,j,k]}^{(l)} = \text{xnor}(\mathbf{Z}_{[k,j]}^{(l)}, \mathbf{X}_{[k,i]}^{(l)})$, and $\mathbf{1}(\cdot)$ is the indicator function. The backpropagation signal
 142 for the upstream layer, $\mathbf{P}_{[k,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{X}_{[k,j]}^{(l)}}$, can be computed in a similar manner.
 143

144 **Boolean optimizer.** Given the loss signal, the rule for updating the Boolean weight $\mathbf{W}_{[i,j]}^{(l)}$ to
 145 minimize the loss function \mathcal{L} is as $\mathbf{W}_{[i,j]}^{(l)} = \neg \mathbf{W}_{[i,j]}^{(l)}$ if $\text{xnor}(\mathbf{Q}_{[i,j]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)}) = \text{TRUE}$. Based on this
 146 update rule, we can develop an optimizer that accumulates the signal $\mathbf{Q}_{[i,j]}^{(l)}$ over training iterations.
 147 Specifically, let $\mathbf{W}_{[i,j]}^{(l),t}$ denotes the weight at iteration t , and $\mathbf{M}_{[i,j]}^{(l),t}$ represents its accumulator,
 148 initialized as $\mathbf{M}_{[i,j]}^{(l),0} = 0$. The update rule for the accumulator is then defined as:
 149

$$\mathbf{M}_{[i,j]}^{(l),t+1} \leftarrow \beta^t \mathbf{M}_{[i,j]}^{(l),t} + \eta \mathbf{Q}_{[i,j]}^{(l),t}, \quad (3)$$

150 where η is the accumulation factor acting as a learning rate, and β^t is a regularizing factor that reflects
 151 the system's state at time t . In our work, we use brain plasticity (Fuchs et al., 2014) and Hebbian
 152 theory (Hebb, 2005) to adaptively set β^t . We encourage the reader check Appendix A for details.
 153

154 **Remarks on complexity and applicability to LLMs.** This Boolean framework optimizes Boolean
 155 parameters $\mathbf{W}_{[i,j]}^{(l)}$ directly in the Boolean space, eliminating the need for FP latent weights. As
 156 shown in Eq. 3, the Boolean optimizer is more lightweight than common LLM optimizers like Adam,
 157 requiring only one FP momentum per parameter. This reduces both training and inference complexity
 158 and avoids gradient approximation induced from STE. As shown in Proposition A.10 in Appendix,
 159 $\text{xnor}(w, s) = w \times s$, mathematically enabling direct application to existing linear algebra operations.
 160 Practically, native logic operations are much faster than multiplication.
 161

162 4 MULTIPLE BOOLEAN KERNELS

164 4.1 BOOLEAN REFORMULATION FOR LINEAR LAYERS

165 LLMs (Brown et al., 2020) are mostly based on the
 166 Transformer architecture (Vaswani et al., 2017), in
 167 which linear layers are the core elements. Inspired by
 168 Xu et al. (2024), we employ sign-value-independent
 169 decomposition (SVID) such that an FP input matrix
 170 $\mathbf{W} \in \mathbb{R}^{m \times n}$ of linear layers is decomposed into
 171 one Boolean matrix $\mathbf{W}_{\text{bool}} \triangleq \text{sign}(\mathbf{W})$ and two FP
 172 vectors \mathbf{s}_{in} and \mathbf{s}_{out} . Precisely, let $|\mathbf{W}|$ be the element-wise absolute value of \mathbf{W} , write $|\mathbf{W}| =$
 173 $\mathbf{U}\Sigma\mathbf{V}^{\top}$ its singular value decomposition (SVD) (Beltrami, 1990). Using rank-1 approximation of
 174 $|\mathbf{W}|$, \mathbf{s}_{in} and \mathbf{s}_{out} are given as: $\mathbf{s}_{\text{in}} = \sqrt{\sigma_1}\mathbf{V}_{[:,1]}$, and $\mathbf{s}_{\text{out}} = \sqrt{\sigma_1}\mathbf{U}_{[:,1]}$. Then, the input matrix is
 175 approximated as $\mathbf{W} = \mathbf{W}_{\text{bool}} \odot |\mathbf{W}| \approx \mathbf{W}_{\text{bool}} \odot (\mathbf{s}_{\text{out}}\mathbf{s}_{\text{in}}^{\top})$. This procedure is illustrated in Fig. 2.

176 **Proposition 4.1.** (Xu et al., 2024) For $\mathbf{W} \in \mathbb{R}^{m \times n}$, write $\mathbf{W} = \tilde{\mathbf{U}}\tilde{\Sigma}\tilde{\mathbf{V}}^{\top}$ its SVD. Let $\mathbf{a} = \sqrt{\tilde{\sigma}_1}\tilde{\mathbf{U}}_{[:,1]}$,
 177 and $\mathbf{b} = \sqrt{\tilde{\sigma}_1}\tilde{\mathbf{V}}_{[:,1]}$. With the notations as described above, we have:

$$179 \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}}\mathbf{s}_{\text{in}}^{\top}\|_F^2 \leq \|\mathbf{W} - \mathbf{a}\mathbf{b}^{\top}\|_F^2. \quad (4)$$

181 **Remark 4.2.** Proposition 4.1 re-states Proposition 2 of Xu et al. (2024) with its precise assumption of
 182 vectors \mathbf{a} and \mathbf{b} which is necessary for its proof provided in Appendix therein.

183 Proposition 4.1 shows that using \mathbf{W}_{bool} together with value matrix approximation is better than a
 184 direct rank-1 approximation of \mathbf{W} in terms of Frobenius-norm. This emphasizes the important role of
 185 \mathbf{W}_{bool} in approximating the original FP matrix. Moreover, our following Proposition 4.3 shows that
 186 the SVID approximation as described above is optimal for approximating the original matrix \mathbf{W}_{bool} .

187 **Proposition 4.3.** For $\mathbf{W} \in \mathbb{R}^{m \times n}$ and the notations as described above, we have:

$$189 \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}}\mathbf{s}_{\text{in}}^{\top}\|_F^2 \leq \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{c}\mathbf{d}^{\top}\|_F^2, \quad \forall \mathbf{c} \in \mathbb{R}^{m \times 1}, \forall \mathbf{d} \in \mathbb{R}^{n \times 1}. \quad (5)$$

191 The proof is given in Appendix D.3. The linear layer can be then reformulated as (Xu et al., 2024):

$$193 \mathbf{X}\mathbf{W}_{\text{FP}}^{\top} \approx [(\mathbf{X} \odot \mathbf{s}_{\text{in}}^{\top}) \mathbf{W}_{\text{bool}}] \odot \mathbf{s}_{\text{out}}^{\top}. \quad (6)$$

194 4.2 ENHANCED EXPRESSIVITY WITH MULTIPLE BOOLEAN KERNELS

196 We have shown that SVID provides a good approx-
 197 imation of the original weights, its expressivity
 198 can be still limited to capture well the original FP
 199 parameters of complicated models, which were
 200 trained on large-scale datasets over extended pe-
 201 riods of time. To overcome this limitation, we
 202 propose the use of a multi-Boolean kernel struc-
 203 ture for the weights. Specifically, we employ
 204 K kernels, where each kernel utilizes distinct
 205 Boolean weights and scaling factors, to better
 206 represent the original weight parameters. This
 207 leads to the approximation: $\mathbf{W}_{\text{FP}} \approx \mathbf{W}_{\text{approx}} \triangleq$
 208 $\sum_{k=1}^K \mathbf{W}_{\text{bool}}^{[k]} \odot (\mathbf{s}_{\text{out}}^{[k]} \mathbf{s}_{\text{in}}^{[k]\top})$. The computation of
 209 a linear layer can then be approximated as follows (see Fig. 3 for an illustration):

$$210 \mathbf{X}\mathbf{W}_{\text{FP}}^{\top} \approx \sum_{k=1}^K \left[\left(\mathbf{X} \odot \mathbf{s}_{\text{in}}^{[k]\top} \right) \mathbf{W}_{\text{bool}}^{[k]} \right] \odot \mathbf{s}_{\text{out}}^{[k]\top}. \quad (7)$$

213 Here, the computational costs associated with the FP scaling factors, \mathbf{s}_{in} and \mathbf{s}_{out} , are small because
 214 they only involve element-wise multiplications. The dominant computational cost arises from the
 215 matrix multiplication between the scaled input data, $\mathbf{X} \odot \mathbf{s}_{\text{in}}$, and the weights. However, thanks to
 the use of Boolean weights, the complexity is significantly reduced, as these multiplications can be

Figure 2: Illustration of SVID.

176 **Figure 2: Illustration of SVID.** The diagram shows the decomposition of a matrix \mathbf{W} into a Boolean matrix \mathbf{W}_{bool} and two vectors \mathbf{s}_{out} and \mathbf{s}_{in} . \mathbf{W} is approximated as $\mathbf{W}_{\text{bool}} \odot |\mathbf{W}|$. This is shown as $\mathbf{W} \approx \mathbf{W}_{\text{bool}} \odot |\mathbf{W}| \approx \mathbf{W}_{\text{bool}} \odot (\mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^{\top})$. The process involves 'sign extraction of \mathbf{W} ' and a 'rank-1 approx. of $|\mathbf{W}|$ '.

Figure 3: The computation of a linear layer approximated using multi kernels of Boolean.

replaced by additions. Moreover, as we will demonstrate in § 6.1.1, only a small number of kernels are required to achieve a reasonable result. Additionally, we find that, after the successive extraction process from the FP model (§ 4.3.1), we only need to train the Boolean weights for the last kernel and the scaling factors, further significantly reducing the overall complexity.

4.3 EFFECTIVE KNOWLEDGE TRANSFER INTO BOOLEAN MODELS

We have introduced our proposed multi-Boolean kernel structure for effectively representing the linear layers of LLMs. In this section, we outline the process for transferring knowledge from a source FP model to a Boolean model. This process consists of two steps: (1) data-free initialization to maximize information retention from the source, and (2) data-dependent finetuning, where the Boolean model is further trained on a target dataset with guidance from the FP model.

4.3.1 SUCCESSIVE EXTRACTION USING SVID

For each linear layer, to initialize the values of the Boolean weights and scaling factors for all kernels, we successively apply SVID to the given FP weights. The goal here is to further proceed to SVID process to approximate the residual error introduced by the previous step. Specifically, after each step of decomposing the weight matrix using SVID, we obtain a residual matrix, which is defined as:

$$\mathbf{W}_{\text{res}}^{[k]} = \mathbf{W}_{\text{input}}^{[k]} - \mathbf{W}_{\text{bool}}^{[k]} \odot \left(\mathbf{s}_{\text{out}}^{[k]} \mathbf{s}_{\text{in}}^{[k]} \right)^T. \quad (8)$$

Here, $\mathbf{W}_{\text{res}}^{[k]}$ is the residual matrix, and $\mathbf{W}_{\text{bool}}^{[k]}$, $\mathbf{s}_{\text{out}}^{[k]}$ and $\mathbf{s}_{\text{in}}^{[k]}$ are the extracted parameters for the k -th kernel, while $\mathbf{W}_{\text{input}}^{[k]}$ represents the input FP matrix for step k . For the first step, this is the original weight matrix, and for subsequent steps, it is the residual matrix obtained from the previous step.

Fig. 4 illustrate this process. Although using multiple kernels effectively captures the original weight matrix, a residual error still remains at the end of the process. While this residual error is small, it can accumulate as it propagates through the layers, finally leading to predictions that diverge from those of the original FP model. To address this issue, it is necessary to further finetune the resulting model to compensate for these errors and make it better suited to the target task. We will discuss this in § 6.1.2. In the following section, we will introduce knowledge distillation to achieve this goal.

Figure 4: Illustration of successive extractions of Boolean kernels from a given FP weight matrix.

4.3.2 FINETUNING WITH KNOWLEDGE DISTILLATION

Knowledge distillation (KD) (Hinton et al., 2015) trains a student network to mimic a more powerful teacher, usually with greater efficiency. The student learns from the teacher’s output distribution and/or intermediate states as “soft targets”. Here, the FP model is the teacher and the Boolean model is the student. Specifically, the output probability distribution of an LLM for a token $\mathbf{X}_{[i]}$ is:

$$p(\mathbf{X}_{[i]}; \tau) = \frac{\exp(\mathbf{X}_{[i]}/\tau)}{\sum_{j=1}^{N_V} \exp(\mathbf{X}_{[j]}/\tau)}, \quad (9)$$

where N_V is the vocabulary size and τ is the softmax temperature. The logit-based knowledge distillation (KD) loss across the sequence of all output tokens is defined as follows:

$$\mathcal{L}_{\text{logits}} = \frac{1}{L} \sum_{j=1}^L D_{\text{logits}}(p_{\text{FP}}(\mathbf{X}_{[j]}; \tau), p_{\text{bool}}(\mathbf{X}_{[j]}; \tau)). \quad (10)$$

Here, $p_{\text{FP}}(\mathbf{X}_{[j]}; \tau)$ and $p_{\text{bool}}(\mathbf{X}_{[j]}; \tau)$ denote the distributions over the j -th token from the FP and Boolean models, respectively, with L as the sequence length. We find that $\tau = 1$ works best in practice. Among possible measures for D_{logits} (Ko et al., 2024), the forward Kullback–Leibler (KL) divergence gives the strongest results; further discussion is in Appendix G.2.

270 To further reduce distributional discrepancies in intermediate layers, we additionally employ an
 271 intermediate state-based KD loss over a sequence of hidden states:
 272

$$273 \quad \mathcal{L}_{\text{is}} = \frac{1}{L} \sum_{h \in H} \sum_{j=1}^L \left\| \mathbf{Q}_{\text{FP}}^{j,h} - \mathbf{Q}_{\text{bool}}^{j,h} \right\|_2^2, \quad (11)$$

274 where $\mathbf{Q}_{\text{FP}}^{j,h}$ and $\mathbf{Q}_{\text{bool}}^{j,h}$ represent the h -th hidden states of the FP and Boolean models for the j -th
 275 token, respectively; H is the set of chosen intermediate states. Finally, the overall loss is then
 276 computed as $\mathcal{L} = \mathcal{L}_{\text{logits}} + \gamma \mathcal{L}_{\text{is}}$, where γ is a weighted factor that balances the contribution of the
 277 two losses. We empirically found that $\gamma = 10$ works best.
 278

280 5 KERNEL ALLOCATION

281 Using more kernels enhances the Boolean model’s representational capacity but also increases its size.
 282 We propose a method to automatically allocate kernels per weight under a fixed budget. Let $N_{\mathbf{W}}$
 283 be the number of weights in the FP teacher model, and K_l for $l \in [1, N_{\mathbf{W}}]$ the number of Boolean
 284 kernels for the l -th weight. Our goal is to determine $\mathbf{k} \triangleq \{K_l\}_{l \in [1, N_{\mathbf{W}}]}$ subject to design constraints.
 285 Key factors include:

286 (1) *Residual error*: Let $e_l^{[k]} \in \mathbb{R}$ denote the approximation error from applying the successive SVID
 287 extraction to the k -th kernel of the l -th weight, measured by the Frobenius norm of $\mathbf{W}_{\text{res}}^{[k]}$ (Eq. 8).
 288

289 (2) *Weight importance*: Let h_l denote the importance of the l -th weight in the FP teacher model.
 290 Higher scores indicate the need for more Boolean kernels. We propose estimating h_l using projection
 291 weighted canonical correlation analysis (PWCCA) (Morcos et al., 2018), a reliable method for
 292 analyzing deep model representations. Details are provided in Appendix E.1.

293 (3) *Weight size*: The size of the l -th weight is denoted by s_l and $p_l \triangleq s_l / \sum_{k=1}^{N_{\mathbf{W}}} s_k$ represents its
 294 relative size in the model.

295 For a given \mathbf{k} , the size of the target Boolean model, in terms of the number of weights, is $\sum_{l=1}^{N_{\mathbf{W}}} K_l s_l$.
 296 Relative to the source FP model, this represents an expansion ratio, defined as:

$$297 \quad \rho(\mathbf{k}) \triangleq \frac{\sum_{l=1}^{N_{\mathbf{W}}} K_l s_l}{\sum_{l=1}^{N_{\mathbf{W}}} s_l} = \sum_{l=1}^{N_{\mathbf{W}}} K_l p_l. \quad (12)$$

301 **Optimization objective.** To control model size, we constrain the expansion ratio to a target
 302 $T \geq 1$ and limit the kernel size by K_{\max} , with $T \leq K_{\max} \leq \infty$. The optimization space is thus
 303 $\mathcal{K} \triangleq [1, K_{\max}]^{N_{\mathbf{W}}}$, and the problem is formulated as:

$$304 \quad \mathbf{k}^* = \arg \min_{\mathbf{k} \in \mathcal{K}} \mathcal{E}(\mathbf{k}), \quad \text{s.t.} \quad \rho(\mathbf{k}) \leq T, \quad \text{where } \mathcal{E}(\mathbf{k}) \triangleq \sum_{l=1}^{N_{\mathbf{W}}} h_l e_l^{[K_l]} f(p_l). \quad (13)$$

307 Here, $\mathcal{E}(\mathbf{k})$ is the objective (energy) function, and $f(\cdot)$ is a monotonically decreasing function. In
 308 practice, we use $f(p_l) = (1/p_l) \log(1/p_l)$. Intuitively, the goal is to minimize residual error while
 309 prioritizing weights with higher importance and smaller size, balancing accurate knowledge transfer
 310 with model efficiency.

311 **Optimization algorithm.** The problem has complexity $\mathcal{O}(K_{\max}^{N_{\mathbf{W}}})$, which is prohibitive for LLMs.
 312 To tackle this NP-hard problem efficiently, we note that $e_l^{[k]}$ decreases with k for all l , and $\mathcal{E}(\mathbf{k})$ is
 313 maximized at $\mathbf{k} = \mathbf{1}$, with any increase in k_l reducing $\mathcal{E}(\mathbf{k})$. This motivates a heuristic iterative
 314 approach: at each step, increment the K_l that yields the largest reduction in $\mathcal{E}(\mathbf{k})$. The full algorithm
 315 is given in Algorithm 9 in the Appendix. We will demonstrate in § 6.5 the practicality of our method.

316 6 EXPERIMENTS

317 **Setups.** In all experiments, we follow the protocol from Jo et al. (2024), without quantizing
 318 activations. The training set combines WikiText2 (Merity et al., 2017) and a selected partition of C4
 319 (Raffel et al., 2020) data, using sequences of length 2048. We apply a cosine decay learning rate with
 320 a 3% warm-up over 3 epochs and batch size 8. Boolean parameters use a maximum learning rate of
 321 5×10^{-3} , while remaining FP parameters are optimized with AdamW (Loshchilov & Hutter, 2019)
 322 at a maximum learning rate of 2×10^{-5} , with $\beta_1 = 0.9$ and $\beta_2 = 0.999$. Following standard practice
 323 (Jo et al., 2024), performance is evaluated via perplexity on WikiText2 and C4 (lower is better).

324 6.1 ABLATION STUDIES AND ANALYSIS
325326 6.1.1 EFFECT OF THE NUMBER OF KERNELS
327335 Figure 5: Normalized L1 norm difference between the approximated weights at initialization and
336 after finetuning against the FP weights ($\|\mathbf{W}_{\text{approx}} - \mathbf{W}_{\text{FP}}\|_1 / \|\mathbf{W}_{\text{FP}}\|_1$), and the final results.
337

338 We begin by examining the effect of the number of Boolean kernels on OPT-125M model (Zhang et al.,
339 2022). Fig. 5 shows the normalized difference between weights approximated via successive SVID and
340 the original FP weights, both at initialization and after finetuning. Increasing the number of kernels
341 reduces approximation error and improves perplexity, unlike MoS (Jo et al., 2024), where adding
342 more experts does not always help and can even hurt performance. Using 3–4 kernels yields a good
343 approximation, with diminishing improvements beyond that. Interestingly, the normalized difference
344 relative to the full FP weights is larger after KD finetuning. We hypothesize that KD compensates the
345 errors due to the lower expressiveness of a small number of kernels, further emphasizing its role in
346 adapting the model to approximate the FP model rather than exactly replicating each weight.

347 6.1.2 OPTIMIZATION STRATEGY
348354 Figure 6: The progression of training losses, number of flips, and perplexity of the resulting models
355 (OPT-125M) is examined with respect to the optimization of different kernel configurations.
356

357 Next, we study the effect of optimizing kernels on the OPT-125M model. We consider four Boolean
358 kernels but train only one at a time, keeping the others frozen. Fig. 6 shows the loss convergence.
359 Training the first kernel converges slowest, while higher-order kernels improve progressively. As
360 shown in Proposition 4.1 and Proposition 4.3, the SVID effectively extracts optimal Boolean weights
361 and scaling factors. In our successive SVID framework, the first kernel is well extracted and captures
362 the most important information, and higher-order kernels approximate residuals. Since the kernels are
363 related in a successive manner, modifying lower-order kernels affects higher-order ones. We observe
364 that training only the first kernel results in many weight flips, indicating optimization difficulty,
365 whereas fine-tuning only the last kernel efficiently compensates for residual errors, showing the
366 lowest flip rates and best performance. This is in line with the observation by Liu et al. (2024b),
367 where they compress “delta” induced by the finetuning process by using 1-bit weights. This further
368 highlights the advantage of our approach, as training complexity is significantly reduced by only
369 optimizing the last kernel. Thus, we apply this strategy in all our experiments.

370 6.2 MAIN BENCHMARK RESULTS
371

372 Table 2 compares our method with recent baselines in binarization and 2-bit quantization, evaluating
373 perplexity and accuracy on zero-shot tasks including Winogrande (Sakaguchi et al., 2021), HellaSwag
374 (Zellers et al., 2019), PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), and ARC (Clark et al.,
375 2018). For our method, we use 2 Boolean kernels, an ultra low-bit setting. Due to space constraints,
376 the results for LLaMA2-7B and LLaMA2-13B (Touvron et al., 2023b) and different number of Boolean
377 kernels are provided in Appendix G.4 and Appendix G.3. We note that our method is close to scalar
378 quantization while being completely orthogonal to vector quantization (VQ) which adds substantial
379 overhead (Gray, 1984). For completeness, we encourage the reader refer to Appendix G.11 for VQ
380 comparisons, and Appendix G.6 for further baselines.

Our method consistently and significantly outperforms the baselines in both perplexity and zero-shot accuracy, achieving results close to the FP16 baseline despite using only a budget of 2 bits for weight. As expected, QAT methods like OneBit and MoS perform better than PTQ methods, but this comes at the cost of extensive finetuning. In contrast, our approach efficiently address this problem by optimizing parameters directly in Boolean space, avoiding the need for optimizing in FP latent sapce.

Table 2: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLMs.

Model	Method	Wbits	Perplexity (↓)				Zero-shot Accuracy (↑)				
			Wiki2	C4	BoolQ	PIQA	Hella.	WinoG.	ARC-e	ARC-c	Average
OPT-1.3B	FP16	16	14.62	14.72	57.82	72.42	53.70	59.51	50.97	29.52	53.99
	PB-LLM	1.7	272.83	175.42	62.17	54.24	27.25	50.27	27.98	23.72	40.94
	BiLLM	1.11	69.45	63.92	61.92	59.52	33.81	49.32	34.38	22.35	43.55
	OneBit	1	20.36	20.76	57.85	66.53	39.21	54.61	42.80	23.97	47.50
	MoS	1	18.45	18.83	60.34	68.66	41.99	53.99	44.87	26.19	49.34
	OPTQ	2	9.5e3	3.8e3	39.60	52.07	25.57	49.33	26.68	23.63	35.15
	LLM-QAT	2	4.9e3	2.1e3	37.83	50.05	25.72	49.72	25.76	25.09	34.07
	OmniQuant	2	42.43	55.64	56.45	60.94	33.39	51.85	38.76	23.38	44.13
	MBOK [Ours]	2×1	16.13	16.61	58.53	70.67	48.11	56.75	48.19	27.90	51.69
	FP16	16	5.68	7.08	73.21	77.42	72.99	66.85	52.53	41.38	64.06
LLaMA-7B	PB-LLM	1.7	198.37	157.35	60.51	53.53	27.23	49.17	27.48	26.02	40.66
	BiLLM	1.11	41.66	48.15	62.23	58.65	34.64	51.14	33.08	25.68	44.24
	OneBit	1	8.48	10.49	62.50	70.40	54.03	55.32	41.07	30.88	52.36
	MoS	1	7.97	9.72	64.59	71.82	58.18	58.88	42.09	31.31	54.48
	OPTQ	2	1.9e3	7.8e2	43.79	49.95	25.63	49.41	25.84	27.47	37.02
	LLM-QAT	2	7.1e2	3.0e2	37.83	50.87	24.76	51.78	26.26	25.51	36.17
	OmniQuant	2	15.34	26.21	58.69	62.79	43.68	52.96	41.54	29.35	48.17
	MBOK [Ours]	2×1	6.83	8.53	69.20	74.32	64.80	60.30	49.05	34.90	58.76
	FP16	16	5.09	6.61	68.47	79.05	76.24	70.17	59.85	44.54	66.39
	PB-LLM	1.7	35.83	39.79	62.17	58.70	33.97	52.17	31.86	23.63	43.75
LLaMA-13B	BiLLM	1.11	14.56	16.67	62.53	68.17	52.24	59.43	41.91	29.94	52.37
	OneBit	1	7.65	9.56	63.30	71.98	60.61	59.43	42.85	32.42	55.10
	MoS	1	7.16	8.81	63.82	73.88	64.05	60.93	44.28	33.11	56.68
	OPTQ	2	3.2e3	9.9e2	42.39	50.00	25.27	50.67	26.14	27.39	36.98
	LLM-QAT	2	1.8e3	1.2e3	37.83	50.33	25.40	51.62	27.02	26.87	36.51
	OmniQuant	2	13.43	19.33	62.20	68.99	54.16	53.83	45.50	30.38	52.51
	MBOK [Ours]	2×1	6.17	7.88	68.10	76.33	69.88	64.17	52.34	37.88	61.45

6.3 ACCURACY-COMPRESSTION TRADE-OFFS

We further investigate the accuracy-compression trade-offs of our method, quantization methods, and the FP model. Specifically, we compare 3-bit quantization using round-to-nearest (RTN) (Yao et al., 2022; Dettmers et al., 2022) and OPTQ (Frantar et al., 2023) methods against our approach using 3 Boolean kernels. We evaluate these methods on OPT models of varying sizes. The results, presented in Table 3 and Fig. 1, show that with 3 kernels, our method closely approaches the performance of the FP model. Given the same weight budget, our method clearly sits on the Pareto frontier, delivering the best performance for the same model size.

Table 3: OPT perplexity results (*lower is better*) on WikiText2 and C4. The results of FP, round-to-nearest (RTN) and OPTQ are taken from (Frantar et al., 2023).

OPT Model	WBits	Wiki2				C4					
		125M	350M	1.3B	2.7B	6.7B	125M	350M	1.3B	2.7B	6.7B
FULL-PRECISION	16	27.65	22.00	14.63	12.47	10.86	26.56	22.59	16.07	14.34	12.71
RTN (Yao et al., 2022; Dettmers et al., 2022)	3	1.3e3	64.57	1.3e4	1.6e4	5.8e3	834	55.49	5.2e3	1.1e4	5.3e3
OPTQ (Frantar et al., 2023)	3	53.85	33.79	20.97	16.88	14.86	42.41	31.33	21.63	18.17	17.14
MBOK [Ours]	3×1	29.10	23.12	15.30	13.09	11.03	28.62	22.10	15.68	14.00	12.33

6.4 COMPARISON WITH LATENT-WEIGHT APPROACHES

We compare our method with latent-weight approaches on OPT models, using MoS with 3 experts and our method with 3 Boolean kernels. We also introduce a baseline using our SVID framework to construct 3 binary weights that rely on FP latent weights for training. Results in Fig. 7 show that our method converges much faster, as it directly optimizes Boolean parameters without the need for STE to approximate gradient signals. Both our approach and the latent-weight method outperform MoS, demonstrating the benefit of using additional Boolean kernels and our successive SVID framework. Our method is also more efficient, avoiding the need for FP latent weights and extra momentum.

Figure 7: Comparisons between our method and latent-weight approaches.

6.5 KERNEL ALLOCATION AND COMPARISON TO BITNET B1.58

We next evaluate our kernel allocation method on the OPT-125M model. It supports bit allocation at any granularity, including fractional averages, providing practitioners with a flexible model selection tool under deployment constraints. Fig. 10 reports results for varying average bit budgets, showing consistent improvements as the budget increases. Fig. 9 illustrates kernel allocation with a 3.5-bit average, where more kernels are assigned to FC2 and output projection layers in the final blocks. This aligns with prior observations (Bondarenko et al., 2023; Frantar et al., 2023) that these layers are particularly important and sensitive to compression.

In addition, our framework’s flexibility enables direct comparison with BitNet-b1.58 (Ma et al., 2024), which employs ternary weights. With a 1.58-bit budget, our model achieves reasonable results, whereas BitNet-b1.58 reaches a C4 perplexity of 10199.89 due to finetuning instability, consistent with Xu et al. (2024). We also compare against ShiftAddLLM (You et al., 2024), a PTQ method supporting bit allocation. Our approach performs substantially better (32.23 with a 2-bit budget vs. 435.84 for their mixed 2.2-bit allocation, see Table 17 in ShiftAddLLM).

6.6 DISCUSSION ON COMPLEXITY

We emphasize the efficiency of our method during finetuning by comparing MoS (Jo et al., 2024) with our approach using 3 Boolean kernels on the OPT-6.7B model. Because we optimize directly in the Boolean domain, each weight requires only 1 bit, whereas MoS relies on 16-bit latent weights. Moreover, we finetune only the last Boolean kernel, with the optimizer storing a single 16-bit momentum per weight. In contrast, Adam (Kingma & Ba, 2015) for latent weights needs two 16-bit momenta per weight. Fig. 11 shows the estimated memory for a minibatch of one, highlighting the substantial memory savings of our method. These gains could be further amplified by incorporating optimizer state compression techniques such as GaLore (Zhao et al., 2024). We also provide a theoretical analysis of finetuning complexity in Appendix F, and empirical evidence (Appendix G.11) demonstrating significant GPU latency gains: using BitBlas library (Wang et al., 2024), our method achieves up to over 8.7 \times speedup for LLaMA2 layers compared to FP16, with even more improvements expected on native Boolean accelerators.

7 CONCLUSIONS

We introduced Multiple Boolean Kernels (MBOK), a novel framework for low-bit finetuning LLMs. By utilizing Boolean weights and optimizing them directly in the Boolean domain, our framework significantly reduces both memory and computation costs during *both* finetuning and inference. The flexible multi-Boolean structure, along with the proposed successive SVID, effectively transfers knowledge from a source FP model. Through extensive experiments on LLMs of various sizes, we demonstrate that our method approaches FP performance while achieving the best accuracy-compression trade-off compared to existing quantization and binarization methods.

Limitations. Our method, like other binarized neural networks, could not be assessed on native Boolean accelerators due to hardware being optimized for real arithmetic. Nevertheless, we demonstrated strong results even on modern hardware, underscoring the promise of our approach and motivating future development of accelerators tailored to Boolean computation.

OPT	Method	Wiki2	C4
125M	MoS (3 experts)	38.62	34.72
	3 Latent weights	29.47	27.18
	MBOK (3 kernels) [Ours]	29.10	26.48
350M	MoS (3 experts)	29.93	28.25
	3 Latent weights	23.58	22.65
	MBOK (3 kernels) [Ours]	23.12	22.10

Figure 9: Allocated kernels for OPT-125M.

Figure 10: OPT-125M performance w.r.t. bit budget.

Figure 11: Estimated memory for finetuning for weights (orange) and optimizer states (green).

486 REFERENCES
487

488 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
489 Geist, and Olivier Bachem. On-Policy Distillation of Language Models: Learning from Self-
490 Generated Mistakes. In *The Twelfth International Conference on Learning Representations*, 2024.
491 URL <https://openreview.net/forum?id=3zKtaqxLhW>.

492 Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael Lyu, and
493 Irwin King. BinaryBERT: Pushing the Limit of BERT Quantization. In *Proceedings of the*
494 *59th Annual Meeting of the Association for Computational Linguistics and the 11th International*
495 *Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4334–4348,
496 Online, 2021. Association for Computational Linguistics. URL <https://aclanthology.org/2021.acl-long.334/>.

497 E Beltrami. Sulle funzioni bilineari, giomale di mathematiche ad uso studenti delle uninersita. 11,
498 98–106.(an english translation by d boley is available as university of minnesota, department of
499 computer science). Technical report, Technical Report 90–37, 1990.

500

501 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
502 Through Stochastic Neurons for Conditional Computation. *arXiv preprint arXiv:1308.3432*, 2013.

503

504 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about Physical Com-
505 monsense in Natural Language. In *Proceedings of the AAAI conference on artificial intelligence*,
506 volume 34, pp. 7432–7439, 2020.

507

508 Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable Transformers:
509 Removing Outliers by Helping Attention Heads Do Nothing. In *Advances in Neural*
510 *Information Processing Systems*, volume 36, pp. 75067–75096. Curran Associates, Inc.,
511 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/edbcb7583fd8921dad78adecfe06a99b-Paper-Conference.pdf.

512

513 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
514 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
515 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
516 Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
517 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
518 ford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In *Ad-
519 vances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Asso-
520 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

521

522 Adrian Bulat, Yassine Ouali, and Georgios Tzimiropoulos. QBB: Quantization with Binary Bases for
523 LLMs. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
524 URL <https://openreview.net/forum?id=Kw6MRGFx0R>.

525

526 Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. QuIP: 2-
527 Bit Quantization of Large Language Models With Guarantees. In *Advances in Neu-
528 ral Information Processing Systems*, volume 36, pp. 4396–4429. Curran Associates, Inc.,
529 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf.

530

531 Hong Chen, Chengtao Lv, Liang Ding, Haotong Qin, Xiabin Zhou, Yifu Ding, Xuebo Liu, Min Zhang,
532 Jinyang Guo, Xianglong Liu, and Dacheng Tao. DB-LLM: Accurate Dual-Binarization for Efficient
533 LLMs. In *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 8719–8730,
534 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
535 v1/2024.findings-acl.516. URL [https://aclanthology.org/2024.findings-acl.516/](https://aclanthology.org/2024.findings-acl.516).

536

537 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
538 Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In *Pro-
539 ceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp.

540 2924–2936, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
 541 10.18653/v1/N19-1300. URL <https://aclanthology.org/N19-1300/>.

542

543 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 544 Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
 545 Challenge. *arXiv preprint arXiv:1803.05457*, 2018.

546 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep
 547 Neural Networks with Binary Weights during Propagations. In *Advances in Neural Information
 548 Processing Systems*, volume 28. Curran Associates, Inc., 2015.

549 Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit Inference Scaling Laws.
 550 In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of
 551 *Proceedings of Machine Learning Research*, pp. 7750–7774. PMLR, 23–29 Jul 2023. URL
 552 <https://proceedings.mlr.press/v202/dettmers23a.html>.

553

554 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit Matrix
 555 Multiplication for Transformers at Scale. In *Advances in Neural Information Processing Systems*,
 556 2022. URL <https://openreview.net/forum?id=dXiGWqBoxaD>.

557 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Effi-
 558 cient Finetuning of Quantized LLMs. In *Advances in Neural Information Process-
 559 ing Systems*, volume 36, pp. 10088–10115. Curran Associates, Inc., 2023. URL
 560 https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf.

561

562 Tim Dettmers, Ruslan A. Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
 563 Ashkboos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. SpQR: A Sparse-Quantized
 564 Representation for Near-Lossless LLM Weight Compression. In *The Twelfth International Confer-
 565 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Q1u25ahSuy>.

566

567 Peijie Dong, Lujun Li, Yuedong Zhong, DaYou Du, Ruibo FAN, Yuhan Chen, Zhenheng Tang,
 568 Qiang Wang, Wei Xue, Yike Guo, and Xiaowen Chu. STBLLM: Breaking the 1-Bit Barrier with
 569 Structured Binary LLMs. In *The Thirteenth International Conference on Learning Representations*,
 570 2025. URL <https://openreview.net/forum?id=6XUSDvBFkV>.

571

572 C. Eckart and G. Young. The Approximation of One Matrix by Another of Lower Rank. *Psychome-
 573 trika*, 1936.

574

575 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. OPTQ: Accurate Quantization
 576 for Generative Pre-trained Transformers. In *The Eleventh International Conference on Learning
 577 Representations*, 2023. URL <https://openreview.net/forum?id=tcbBPnfwxS>.

578

579 Eberhard Fuchs, Gabriele Flügge, et al. Adult Neuroplasticity: More than 40 Years of Research.
 580 *Neural plasticity*, 2014, 2014.

581

582 Robert Gray. Vector Quantization. *IEEE ASSP Magazine*, 1(2):4–29, 1984.

583

584 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The Unre-
 585 sonable Ineffectiveness of the Deeper Layers. In *The Thirteenth International Conference on Learn-
 586 ing Representations*, 2025. URL <https://openreview.net/forum?id=ngmEcEer8a>.

587

588 Donald Olding Hebb. *The Organization of Behavior: A Neuropsychological Theory*. Psychology
 589 press, 2005.

590

591 Geoffrey Hinton, Vinyals Oriol, and Jeff Dean. Distilling the Knowledge in a Neural Network. *arXiv
 592 preprint arXiv:1503.02531*, 1, 2015.

593

594 Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
 595 and Xiaojuan Qi. BiLLM: Pushing the Limit of Post-Training Quantization for LLMs. In
 596 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings
 597 of Machine Learning Research*, pp. 20023–20042. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/huang24q.html>.

594 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
 595 neural networks. In *Advances in neural information processing systems*, pp. 4107–4115, 2016.
 596

597 Dongwon Jo, Taesu Kim, Yulhwa Kim, and Jae-Joon Kim. Mixture of Scales: Memory-Efficient
 598 Token-Adaptive Binarization for Large Language Models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=pGOBEYcXzs>.
 600

601 Charles Jordan. *Calculus of Finite Differences*. Chelsea Publishing Company, New York, 2nd edition,
 602 1950. doi: <https://doi.org/10.1017/S0025557200230271>.
 603

604 Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng
 605 Shen, Michael W. Mahoney, and Kurt Keutzer. SqueezeLLM: Dense-and-Sparse Quantization. In
 606 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 23901–23923. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/kim24f.html>.
 607

608 Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In *International Conference on Learning Representations*, 2015.

609 Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. DistiLLM: Towards Streamlined
 610 Distillation for Large Language Models. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 24872–
 611 24895. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/ko24c.html>.
 612

613 Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muennighoff,
 614 Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling Laws for
 615 Precision. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 616 <https://openreview.net/forum?id=wg1PCg3CUP>.
 617

618 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: Outlier-aware
 619 Weight Quantization for Efficient Fine-tuning and Inference of Large Language Models. In
 620 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13355–13364, 2024.
 621

622 Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, Zhongchao Shi,
 623 Linghe Kong, Yulun Zhang, and Xiaokang Yang. ARB-LLM: Alternating Refined Binarizations for
 624 Large Language Models. In *The Thirteenth International Conference on Learning Representations*,
 625 2025. URL <https://openreview.net/forum?id=ZU8OdDLTts>.
 626

627 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang,
 628 Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware
 629 Weight Quantization for On-Device LLM Compression and Acceleration. In
 630 *Proceedings of Machine Learning and Systems*, volume 6, pp. 87–100, 2024. URL
 631 https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf.
 632

633 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 634 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 Technical Report. *arXiv preprint arXiv:2412.19437*, 2024a.
 635

636 James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, and Tianle
 637 Cai. BitDelta: Your Fine-Tune May Only Be Worth One Bit. In *Advances in Neural Information Processing Systems*, volume 37, pp. 13579–13600. Curran Associates, Inc.,
 638 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/187d94b3c93343f0e925b5cf729eadd5-Paper-Conference.pdf.
 639

640 Zechun Liu, Barlas Oguz, Aasish Pappu, Lin Xiao, Scott Yih, Meng Li, Raghuraman Krish-
 641 namoorthi, and Yashar Mehdad. BiT: Robustly Binarized Multi-distilled Transformer. In *Ad-
 642 vances in Neural Information Processing Systems*, volume 35, pp. 14303–14316. Curran As-
 643 sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/5c1863f711c721648387ac2ef745facb-Paper-Conference.pdf.
 644

648 Zechun Liu, Barlas Oguz, Aasish Pappu, Yangyang Shi, and Raghuraman Krishnamoorthi. Binary
 649 and Ternary Natural Language Generation. In *Proceedings of the 61st Annual Meeting of the*
 650 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 65–77, Toronto, Canada,
 651 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.5. URL <https://aclanthology.org/2023.acl-long.5/>.

652

653 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
 654 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-Free Quantization Aware
 655 Training for Large Language Models. In *Findings of the Association for Computational Linguistics:*
 656 *ACL 2024*, pp. 467–484, Bangkok, Thailand, 2024c. Association for Computational Linguistics.
 657 URL <https://aclanthology.org/2024.findings-acl.26/>.

658

659 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In *International*
 660 *Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

661

662 Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
 663 Ruiping Wang, Jilong Xue, and Furu Wei. The Era of 1-bit LLMs: All Large Language Models
 664 are in 1.58 Bits. *arXiv preprint arXiv:2402.17764*, 1, 2024.

665

666 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
 667 Models. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Byj72udxe>.

668

669 Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on Representational Simi-
 670 larity in Neural Networks with Canonical Correlation. In *Advances in Neural In-*
 671 *formation Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL
 672 https://proceedings.neurips.cc/paper_files/paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf.

673

674 Van Minh Nguyen. Variation and Boolean Logic BackPropagation. *arXiv preprint arXiv:2311.07427*,
 675 2023.

676

677 Van Minh Nguyen, Cristian Ocampo, Aymen Askri, Louis Leconte, and Ba-Hien Tran. BOLD:
 678 Boolean Logic Deep Learning. In *The Thirty-eighth Annual Conference on Neural Infor-*
 679 *mation Processing Systems*, 2024. URL <https://openreview.net/forum?id=DO9wPZOPjk>.

680

681 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 682 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 683 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 684 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
 685 Deep Learning Library. In *Advances in Neural Information Processing Systems*, volume 32. Curran
 686 Associates, Inc., 2019.

687

688 Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua YAN, Aishan Liu, Qingqing Dang, Ziwei Liu,
 689 and Xianglong Liu. BiBERT: Accurate Fully Binarized BERT. In *International Conference on*
 690 *Learning Representations*, 2022. URL https://openreview.net/forum?id=5xEgrl_5FAJ.

691

692 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 693 Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
 694 Text-to-Text Transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL
 695 <http://jmlr.org/papers/v21/20-074.html>.

696

697 Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
 698 Classification Using Binary Convolutional Neural Networks. In *Proceedings of the European*
 699 *Conference on Computer Vision (ECCV)*, October 2016.

700

701 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 702 Adversarial Winograd Schema Challenge at Scale. *Communications of the ACM*, 64(9):99–106,
 2021.

702 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 703 Peng Gao, Yu Qiao, and Ping Luo. OmniQuant: Omnidirectionally Calibrated Quantization for
 704 Large Language Models. In *The Twelfth International Conference on Learning Representations*,
 705 2024. URL <https://openreview.net/forum?id=8Wuvhh0LYW>.

706 Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
 707 Christopher Re, Ion Stoica, and Ce Zhang. FlexGen: High-Throughput Generative Inference of
 708 Large Language Models with a Single GPU. In *Proceedings of the 40th International Conference on
 709 Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 31094–31116.
 710 PMLR, 23–29 Jul 2023.

711 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 712 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
 713 Efficient Foundation Language Models. *arXiv preprint arXiv:2302.13971*, 2023a.

714 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 715 Bashlykov, Soumya Batra, Prajwyal Bhargava, Shruti Bhosale, et al. Llama 2: Open Foundation
 716 and Fine-Tuned Chat Models. *arXiv preprint arXiv:2307.09288*, 2023b.

717 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#: Even
 718 Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks. In *Proceedings of
 719 the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine
 720 Learning Research*, pp. 48630–48656. PMLR, 21–27 Jul 2024a.

721 Albert Tseng, Qingyao Sun, David Hou, and Christopher De. QTIP: Quantiza-
 722 tion with Trellises and Incoherence Processing. In *Advances in Neural Infor-
 723 mation Processing Systems*, volume 37, pp. 59597–59620. Curran Associates, Inc.,
 724 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf.

725 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
 726 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In *Ad-
 727 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 728 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

729 Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
 730 Ruijing Wang, Yi Wu, and Furu Wei. BitNet: Scaling 1-bit Transformers for Large Language
 731 Models. *arXiv preprint arXiv:2310.11453*, 2023.

732 Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng, Ziming
 733 Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. Ladder: Enabling Efficient Low-
 734 Precision Deep Learning Computing through Hardware-aware Tensor Transformation. In *18th
 735 USENIX Symposium on Operating Systems Design and Implementation (OSDI 24)*, pp. 307–
 736 323, Santa Clara, CA, 2024. USENIX Association. ISBN 978-1-939133-40-3. URL <https://www.usenix.org/conference/osdi24/presentation/wang-lei>.

737 Xinghao Wang, Pengyu Wang, Bo Wang, Dong Zhang, Yunhua Zhou, and Xipeng Qiu. BitStack: Any-
 738 Size Compression of Large Language Models in Variable Memory Environments. In *The Thirteenth
 739 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=1BntjGbyv0>.

740 Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-Divergence Minimization for Sequence-
 741 Level Knowledge Distillation. In *Proceedings of the 61st Annual Meeting of the Association
 742 for Computational Linguistics (Volume 1: Long Papers)*, pp. 10817–10834, Toronto, Canada,
 743 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.605. URL
 744 <https://aclanthology.org/2023.acl-long.605/>.

745 Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
 746 Wanxiang Che. OneBit: Towards Extremely Low-bit Large Language Models. In *The Thirty-
 747 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=ZwiG9KjfHV>.

756 Zifei Xu, Sayeh Sharify, Wanzin Yazar, Tristan J Webb, and Xin Wang. Understanding the Difficulty
 757 of Low-Precision Post-Training Quantization for LLMs. In *ICLR 2025 Workshop on Sparsity in*
 758 *LLMs*, 2025. URL <https://openreview.net/forum?id=fx9eAKwZKk>.

759
 760 Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
 761 ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers.
 762 In *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=f-fVCE1Z-G1>.

763
 764 Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu,
 765 Amir Yazdanbakhsh, and Yingyan (Celine) Lin. ShiftAddLLM: Accelerating Pretrained
 766 LLMs via Post-Training Multiplication-Less Reparameterization. In *Advances in Neural*
 767 *Information Processing Systems*, volume 37, pp. 24822–24848. Curran Associates, Inc.,
 768 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2c30a37c75f062e0bf79297c73db8c6c-Paper-Conference.pdf.

769
 770 Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: Partially Binarized Large Language
 771 Models. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 772 <https://openreview.net/forum?id=BifeBRhikU>.

773
 774 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
 775 Machine Really Finish Your Sentence? In *Proceedings of the 57th Annual Meeting of the*
 776 *Association for Computational Linguistics*, pp. 4791–4800, Florence, Italy, 2019. Association
 777 for Computational Linguistics. doi: 10.18653/v1/P19-1472. URL <https://aclanthology.org/P19-1472>.

778
 779 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 780 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer Language
 781 Models. *arXiv preprint arXiv:2205.01068*, 2022.

782
 783 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 784 Tian. GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection. In *Proceedings*
 785 *of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine*
 786 *Learning Research*, pp. 61121–61143. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/zhao24s.html>.

787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **Appendix**
811812 **TABLE OF CONTENTS**
813

814 A Primer on Boolean Neural Networks	17
815 A.1 Neuron Design	17
816 A.2 Mathematical Foundation of Boolean Variation	18
817 A.3 Boolean Backpropagation	22
818 A.4 Boolean Optimizer	23
819	
820	
821 B Discussion on Hardware Considerations	24
822 B.1 Computation Proposed in § 4.1	24
823 B.2 Multi-core Computation Strategy in § 4.2	24
824	
825	
826 C Code Samples of Core Implementation	25
827 C.1 Boolean Linear Layer and Optimizer	25
828 C.2 Successive SVID for Kernel Extraction	27
829	
830	
831 D Proof of Propositions	28
832 D.1 Proof of Boolean Linear Reformulation using SVID	28
833 D.2 Proof of Proposition 4.1	29
834 D.3 Proof of Proposition 4.3	30
835	
836	
837 E Details on Kernel Allocation	32
838 E.1 Weight Importance Estimation	32
839 E.2 Kernel Allocation Algorithm	33
840	
841	
842 F Theoretical Analysis of Training Complexity	33
843	
844 G Additional Experimental Results	34
845 G.1 Additional Information of Experimental Settings	34
846 G.2 On the Choice of KD Loss	34
847 G.3 Results of Different Number of Kernels on LLMs	34
848	
849 G.4 Additional Results on LLaMA-2	35
850 G.5 Generation Quality	35
851 G.6 Additional Baselines	36
852 G.7 Effects of Knowledge Distillation	38
853	
854 G.8 Analysis of Scaling Values	38
855 G.9 Convergences of OPT Models	38
856	
857 G.10 Effects of Successive SVID Initialization	40
858 G.11 Discussion on Latency and Comparison with Vector Quantization	40
859	
860	
861 H Ethics Statement	41
862	
863 I Reproducibility Statement	41
864	
865 J The Use of Large Language Models	41

864

865

866

867

A PRIMER ON BOOLEAN NEURAL NETWORKS

868

869 For completeness, this section reviews the concepts and methodology of Boolean neural networks as
870 proposed by [Nguyen \(2023\)](#); [Nguyen et al. \(2024\)](#).

871

872

A.1 NEURON DESIGN

873

874 **Boolean Neuron.** Consider the l -th Boolean linear layer; in the forward pass, the output of the next
875 layer is defined as [Nguyen et al. \(2024\)](#):

876

877
$$\mathbf{Y}_{[k,j]}^{(l)} = \mathbf{b}_{[j]}^{(l)} + \sum_{i=1}^n L(\mathbf{X}_{[k,i]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)}), \quad 1 \leq j \leq m, \quad (14)$$
 878

879

880 where k denotes the sample index in the batch, and L is a logic gate such as **and**, **or**, **xor**, or **xnor**;
881 The weights $\mathbf{W}_{[i,j]}^{(l)}$ are Boolean values {TRUE, FALSE} or $\{-1, +1\}$, as typically used in practical
882 implementations. n and m are the number of input and output neurons, respectively. As the most
883 extreme use case, the input data are also Boolean values. The above summation is understood as the
884 counting of TRUE values. We emphasize that the framework is flexible, as it allows Boolean linear
885 layers to be connected through activation layers, layer normalization, arithmetic layers, or other types
886 of layers.

887

888 **Mixed Boolean-Real Neuron.** To enable flexible integration and coexistence of Boolean designs
889 with real-valued components in deep models, we consider two cases of mixed-type data: (i) Boolean
890 weights with real-valued inputs, and (ii) real-valued weights with Boolean inputs. This paper focuses
891 on the first case. These scenarios are addressed through an extension of Boolean logic to accommodate
892 mixed-type data. To proceed, we introduce the essential notations and definitions. Specifically, we
893 define $\mathbb{B} \triangleq \{\text{TRUE}, \text{FALSE}\}$ as the Boolean domain, equipped with standard Boolean logic operations.
894

895

896 **Definition A.1** (Three-valued logic). *We define the mixed logic domain as $\mathbb{M} \triangleq \mathbb{B} \cup \{0\}$, where 0
897 represents an undefined or neutral value. The logic connectives in \mathbb{M} are defined in alignment with
898 standard Boolean logic, as follows. First, the negation operator is extended as: $\neg \text{TRUE} = \text{FALSE}$,
899 $\neg \text{FALSE} = \text{TRUE}$, and $\neg 0 = 0$. Next, let L denote a generic logic connective (e.g., AND, OR). We
900 distinguish its use in \mathbb{M} and \mathbb{B} by writing $L_{\mathbb{M}}$ and $L_{\mathbb{B}}$, respectively. The extended connective $L_{\mathbb{M}}$ is
defined by:*

901
$$L_{\mathbb{M}}(a, b) = \begin{cases} L_{\mathbb{B}}(a, b) & \text{for } a, b \in \mathbb{B}, \\ 0 & \text{otherwise.} \end{cases}$$
 902

903

904 **Notation A.2.** Denote by \mathbb{L} a logic set (e.g., \mathbb{B} or \mathbb{M}), \mathbb{R} the real set, \mathbb{Z} the set of integers, \mathbb{N} a numeric
905 set (e.g., \mathbb{R} or \mathbb{Z}), and \mathbb{D} a certain set of \mathbb{L} or \mathbb{N} .

906

907 **Definition A.3.** For $x \in \mathbb{N}$, its logic value denoted by x_{logic} is given as $x_{\text{logic}} = \text{TRUE} \Leftrightarrow x > 0$,
908 $x_{\text{logic}} = \text{FALSE} \Leftrightarrow x < 0$, and $x_{\text{logic}} = 0 \Leftrightarrow x = 0$.

909

910 **Definition A.4.** The magnitude of a variable x , denoted by $|x|$, is defined as follows. If $x \in \mathbb{N}$,
911 then $|x|$ is the standard absolute value. For $x \in \mathbb{L}$, the magnitude is given by:

912
$$|x| = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{otherwise.} \end{cases}$$
 913

914

915 **Definition A.5** (Mixed-type logic). For L a logic connective of \mathbb{L} and variables a, b , operation
916 $c = L(a, b)$ is defined such that $|c| = |a||b|$ and $c_{\text{logic}} = L(a_{\text{logic}}, b_{\text{logic}})$.

918 A.2 MATHEMATICAL FOUNDATION OF BOOLEAN VARIATION
919920 In this section, we present the mathematical foundation of Boolean variation which is the corner
921 stone of the method for training Boolean weights directly within the Boolean domain, without relying
922 on FP latent weights (Nguyen et al., 2024).923
924 A.2.1 BOOLEAN VARIATION
925926 **Definition A.6.** Order relations ‘<’ and ‘>’ in \mathbb{B} are defined as follows:

927
$$\text{FALSE} < \text{TRUE}, \quad \text{TRUE} > \text{FALSE}. \quad (15)$$

928

929 **Definition A.7.** For $a, b \in \mathbb{B}$, the variation from a to b , denoted $\delta(a \rightarrow b)$, is defined as:

930
931
$$\delta(a \rightarrow b) \triangleq \begin{cases} \text{TRUE}, & \text{if } b > a, \\ 0, & \text{if } b = a, \\ \text{FALSE}, & \text{if } b < a. \end{cases} \quad (16)$$

932
933
934

935 **Definition A.8** (Type conversion). Define:

936
937
$$p: \mathbb{N} \rightarrow \mathbb{L}$$

938
$$x \mapsto p(x) = \begin{cases} \text{TRUE}, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ \text{FALSE}, & \text{if } x < 0. \end{cases} \quad (17)$$

939
940
941

942
943 **Proposition A.9.** (Nguyen, 2023; Nguyen et al., 2024) The following properties hold:944
945 1. $\forall x, y \in \mathbb{N}: p(xy) = \text{xnor}(p(x), p(y))$.
946 2. $\forall a, b \in \mathbb{L}: e(\text{xnor}(a, b)) = e(a) e(b)$.
947 3. $\forall x, y \in \mathbb{N}: x = y \Leftrightarrow |x| = |y| \text{ and } p(x) = p(y)$.948 In particular, property **Proposition A.9**(2) implies that by the embedding map $e(\cdot)$, we have:

949
950
$$(\{\text{TRUE}, \text{FALSE}\}, \text{xor}) \cong (\{\pm 1\}, -\times), \quad (18)$$

951
$$(\{\text{TRUE}, \text{FALSE}\}, \text{xnor}) \cong (\{\pm 1\}, \times), \quad (19)$$

952 where \cong and \times stand for isomorphic relation, and the real multiplication, resp. A consequence is that
953 by $e(\cdot)$, a computing sequence of pointwise XOR or XNOR, counting, and majority vote is equivalent
954 to a sequence of pointwise multiplications and accumulation performed on the embedded data.
955956 **Proposition A.10.** The following properties hold:957
958 1. $a \in \mathbb{L}, x \in \mathbb{N}: \text{xnor}(a, x) = e(a)x$.
959 2. $x, y \in \mathbb{N}: \text{xnor}(x, y) = xy$.
960 3. $x \in \{\mathbb{L}, \mathbb{N}\}, y, z \in \mathbb{N}: \text{xnor}(x, y + z) = \text{xnor}(x, y) + \text{xnor}(x, z)$.
961 4. $x \in \{\mathbb{L}, \mathbb{N}\}, y, \lambda \in \mathbb{N}: \text{xnor}(x, \lambda y) = \lambda \text{xnor}(x, y)$.
962 5. $x \in \{\mathbb{L}, \mathbb{N}\}, y \in \mathbb{N}: \text{xor}(x, y) = -\text{xnor}(x, y)$.
963964 *Proof.* The proof follows definitions A.5 and A.8.
965966
967 • Following **Definition A.1** we have $\forall t \in \mathbb{M}, \text{xnor}(\text{TRUE}, t) = t, \text{xnor}(\text{FALSE}, t) = \neg t$,
968 and $\text{xnor}(0, t) = 0$. Put $v = \text{xnor}(a, x)$. We have $|v| = |x|$ and $p(v) = \text{xnor}(a, p(x))$.
969 Hence, $a = 0 \Rightarrow p(v) = 0 \Rightarrow v = 0; a = \text{TRUE} \Rightarrow p(v) = p(x) \Rightarrow v = x; a = \text{FALSE} \Rightarrow$
970 $p(v) = \neg p(x) \Rightarrow v = -x$. Hence (1).
971 • The result is trivial if $x = 0$ or $y = 0$. For $x, y \neq 0$, put $v = \text{xnor}(x, y)$, we have
972 $|v| = |x||y|$ and $p(v) = \text{xnor}(p(x), p(y))$. According to **Definition A.8**, if $\text{sign}(x) =$

972 sign(y), we have $p(v) = \text{TRUE} \Rightarrow v = |x||y| = xy$. Otherwise, i.e., $\text{sign}(x) = -\text{sign}(y)$,
 973 $p(v) = \text{FALSE} \Rightarrow v = -|x||y| = -xy$. Hence (2).

975 • (3) and (4) follow (1) for $x \in \mathbb{L}$ and follow (2) for $x \in \mathbb{N}$.

977 • For (5), write $u = \text{xor}(x, y)$ and $v = \text{xnor}(x, y)$, we have $|u| = |v|$ and $p(u) =$
 978 $\text{xor}(p(x), p(y)) = \neg\text{xnor}(p(x), p(y)) = \neg p(v)$. Thus, $\text{sign}(u) = -\text{sign}(v) \Rightarrow u =$
 979 $-v$. \square

980 **Notation A.11.** We denote $\mathcal{F}(\mathbb{S}, \mathbb{T})$ the set of all functions from source \mathbb{S} to image \mathbb{T} .

983 **Definition A.12.** For $f \in \mathcal{F}(\mathbb{B}, \mathbb{D})$, $\forall x \in \mathbb{B}$, write $\delta f(x \rightarrow \neg x) := \delta(f(x) \rightarrow f(\neg x))$. The
 984 variation of f w.r.t. x , denoted $f'(x)$, is defined as:

$$f'(x) \triangleq \text{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x)).$$

987 **Remark A.13.** For convenience and consistency of notation, we intentionally adopt the standard
 988 symbol for the continuous derivative, f' , to also denote Boolean variation. The intended meaning
 989 — whether it represents a continuous derivative or a Boolean variation — can be inferred from the
 990 context in which the function f is defined. Intuitively, the variation of f w.r.t x is TRUE if f varies in
 991 the same direction with x .

992 **Example A.14.** Let $a \in \mathbb{B}$, $f(x) = \text{xor}(x, a)$ for $x \in \mathbb{B}$, the variation of f w.r.t. x can be derived by
 993 establishing a truth table (see Table 4) from which we obtain $f'(x) = \neg a$.

995 Table 4: Variation truth table of $f(x) = \text{xor}(a, x)$, $a, x \in \mathbb{B}$.

a	x	$\neg x$	$\delta(x \rightarrow \neg x)$	$f(a, x)$	$f(a, \neg x)$	$\delta f(x \rightarrow \neg x)$	$f'(x)$
TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE
FALSE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE

1005 A.2.2 BOOLEAN VARIATION CALCULUS

1008 Below are some rules of Boolean variation which are necessary for training Boolean neural networks.

1009 **Proposition A.15.** (Nguyen, 2023; Nguyen et al., 2024) For $f, g \in \mathcal{F}(\mathbb{B}, \mathbb{B})$, $\forall x, y \in \mathbb{B}$ the
 1010 following properties hold:

1. $\delta f(x \rightarrow y) = \text{xnor}(\delta(x \rightarrow y), f'(x))$.
2. $(\neg f(x))' = \neg f'(x)$.
3. $(g \circ f)'(x) = \text{xnor}(g'(f(x)), f'(x))$.

1017 *Proof.* The proof is by definition:

1020 1. $\forall x, y \in \mathbb{B}$, there are two cases. If $y = x$, then the result is trivial. Otherwise, i.e., $y = \neg x$,
 1021 by definition we have:

$$\begin{aligned} f'(x) &= \text{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x)) \\ \Leftrightarrow \delta f(x \rightarrow \neg x) &= \text{xnor}(\delta(x \rightarrow \neg x), f'(x)). \end{aligned}$$

1025 Hence the result.

1026 2. $\forall x, y \in \mathbb{B}$, it is easy to verify by truth table that $\delta(\neg f(x \rightarrow y)) = \neg \delta f(x \rightarrow y)$. Hence, by
 1027 definition,

$$\begin{aligned} 1029 (\neg f)'(x) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta(\neg f(x \rightarrow \neg x))) \\ 1030 &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \neg \delta f(x \rightarrow \neg x)) \\ 1031 &= \neg \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x)) \\ 1032 &= \neg f'(x). \\ 1033 \end{aligned}$$

1034 3. Using definition, property (i), and associativity of **xnor**, $\forall x \in \mathbb{B}$ we have:

$$\begin{aligned} 1036 (g \circ f)'(x) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta g(f(x) \rightarrow f(\neg x))) \\ 1037 &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \mathbf{xnor}(\delta f(x \rightarrow \neg x), g'(f(x)))) \\ 1038 &= \mathbf{xnor}(g'(f(x)), \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x))) \\ 1039 &= \mathbf{xnor}(g'(f(x)), f'(x)). \\ 1040 \end{aligned}$$

□

1043 **Proposition A.16.** (Nguyen, 2023; Nguyen et al., 2024) For $f \in \mathcal{F}(\mathbb{B}, \mathbb{N})$, the following
 1044 properties hold:

- 1046 1. $x, y \in \mathbb{B}$: $\delta f(x \rightarrow y) = \mathbf{xnor}(\delta(x \rightarrow y), f'(x))$.
- 1047 2. $\alpha \in \mathbb{N}$: $(\alpha f)'(x) = \alpha f'(x)$.
- 1048 3. $g \in \mathcal{F}(\mathbb{B}, \mathbb{N})$: $(f + g)'(x) = f'(x) + g'(x)$.

1049 *Proof.* The proof is as follows:

1050 1. For $x, y \in \mathbb{B}$. Firstly, the result is trivial if $y = x$. For $y \neq x$, i.e., $y = \neg x$, by definition:

$$1054 f'(x) = \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x)).$$

1055 Hence, $|\delta f(x \rightarrow \neg x)| = |f'(x)|$ since $|\delta(x \rightarrow \neg x)| = 1$, and

$$\begin{aligned} 1057 p(f'(x)) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), p(\delta f(x \rightarrow \neg x))) \\ 1058 \Leftrightarrow p(\delta f(x \rightarrow \neg x)) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), p(f'(x))), \end{aligned}$$

1059 where $p(\cdot)$ is the logic projector Eq. 17. Thus, $\delta f(x \rightarrow \neg x) = \mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x))$.
 1060 Hence the result.

1062 2. Firstly $\forall x, y \in \mathbb{B}$, we have

$$1064 \delta(\alpha f(x \rightarrow y)) = \alpha f(y) - \alpha f(x) = \alpha \delta f(x \rightarrow y).$$

1065 Hence, by definition,

$$\begin{aligned} 1067 (\alpha f)'(x) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta(\alpha f(x \rightarrow \neg x))) \\ 1068 &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \alpha \delta f(x \rightarrow \neg x)) \\ 1069 &= \alpha \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x)), \text{ due to Proposition A.10(4)} \\ 1070 &= \alpha f'(x). \\ 1071 \end{aligned}$$

1072 3. For $f, g \in \mathcal{F}(\mathbb{B}, \mathbb{N})$,

$$\begin{aligned} 1074 (f + g)'(x) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta(f + g)(x \rightarrow \neg x)) \\ 1075 &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x) + \delta g(x \rightarrow \neg x)) \\ 1076 &\stackrel{(*)}{=} \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta f(x \rightarrow \neg x)) + \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta g(x \rightarrow \neg x)), \\ 1077 &= f'(x) + g'(x), \\ 1078 \end{aligned}$$

1079 where $(*)$ is due to Proposition A.10(3). □

1080 For $f \in \mathcal{F}(\mathbb{Z}, \mathbb{N})$, its derivative, also known in terms of *finite differences*, has been defined in the
 1081 literature as $f'(x) = f(x+1) - f(x)$, see e.g. [Jordan \(1950\)](#). With the logic variation as introduced
 1082 above, we can make this definition more generic as follows.

1083 **Definition A.17.** For $f \in \mathcal{F}(\mathbb{Z}, \mathbb{D})$, the variation of f w.r.t $x \in \mathbb{Z}$ is defined as $f'(x) \triangleq \delta f(x \rightarrow x+1)$, where δf is in the sense of the variation defined in \mathbb{D} .

1086 **Proposition A.18.** ([Nguyen, 2023](#); [Nguyen et al., 2024](#)) The following composition rules (chain
 1087 rules) hold:

1088 1. For $\mathbb{B} \xrightarrow{f} \mathbb{B} \xrightarrow{g} \mathbb{D}$: $(g \circ f)'(x) = \mathbf{xnor}(g'(f(x)), f'(x))$, $\forall x \in \mathbb{B}$.

1089 2. For $\mathbb{B} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{D}$, $x \in \mathbb{B}$, if $|f'(x)| \leq 1$ and $g'(f(x)) = g'(f(x) - 1)$, then:
 1090
$$(g \circ f)'(x) = \mathbf{xnor}(g'(f(x)), f'(x)).$$

1093 *Proof.* The proof is as follows.

1094 1. The case of $\mathbb{B} \xrightarrow{f} \mathbb{B} \xrightarrow{g} \mathbb{B}$ is obtained from [Proposition A.15\(3\)](#). For $\mathbb{B} \xrightarrow{f} \mathbb{B} \xrightarrow{g} \mathbb{N}$, by using
 1095 [Proposition A.16\(1\)](#), the proof is similar to that of [Proposition A.15\(3\)](#).

1096 2. By definition, we have

$$(g \circ f)'(x) = \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta g(f(x) \rightarrow f(\neg x))). \quad (20)$$

1097 Using property (1) of [Proposition A.16](#), we have:

$$\begin{aligned} f(\neg x) &= f(x) + \delta f(x \rightarrow \neg x) \\ &= f(x) + \mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x)). \end{aligned} \quad (21)$$

1098 Applying [Eq. 21](#) back to [Eq. 20](#), the result is trivial if $f'(x) = 0$. The remaining case is
 1099 $|f'(x)| = 1$ for which we have $\mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x)) = \pm 1$. First, for $\mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x)) = 1$, we have:

$$\begin{aligned} \delta g(f(x) \rightarrow f(\neg x)) &= \delta g(f(x) \rightarrow f(x) + 1) \\ &= g'(f(x)) \\ &= \mathbf{xnor}(g'(f(x)), 1) \\ &= \mathbf{xnor}(g'(f(x)), \mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x))). \end{aligned} \quad (22)$$

1100 Substitute [Eq. 22](#) back to [Eq. 20](#), we obtain:

$$\begin{aligned} (g \circ f)'(x) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta g(f(x) \rightarrow f(\neg x))) \\ &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \mathbf{xnor}(g'(f(x)), \mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x)))) \\ &= \mathbf{xnor}(g'(f(x)), f'(x)), \end{aligned}$$

1101 where that last equality is by the associativity of \mathbf{xnor} and that $\mathbf{xnor}(x, x) = \text{True}$ for
 1102 $x \in \mathbb{B}$. Similarly, for $\mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x)) = -1$, we have:

$$\begin{aligned} \delta g(f(x) \rightarrow f(\neg x)) &= \delta g(f(x) \rightarrow f(x) - 1) \\ &= -g'(f(x) - 1) \\ &= \mathbf{xnor}(g'(f(x) - 1), -1) \\ &= \mathbf{xnor}(g'(f(x) - 1), \mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x))). \end{aligned} \quad (23)$$

1103 Substitute [Eq. 23](#) back to [Eq. 20](#) and use the assumption that $g'(f(x)) = g'(f(x) - 1)$, we
 1104 have:

$$\begin{aligned} (g \circ f)'(x) &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \delta g(f(x) \rightarrow f(\neg x))) \\ &= \mathbf{xnor}(\delta(x \rightarrow \neg x), \mathbf{xnor}(g'(f(x) - 1), \mathbf{xnor}(\delta(x \rightarrow \neg x), f'(x)))) \\ &= \mathbf{xnor}(g'(f(x)), f'(x)). \end{aligned}$$

1105 Hence the preposition is proved. \square

1106 **Example A.19.** From [Example A.14](#), we have $\delta \mathbf{xor}(x, a) / \delta x = \neg a$ for $a, x \in \mathbb{B}$. Using [Proposition A.15-\(2\)](#) we have: $\delta \mathbf{xnor}(x, a) / \delta x = a$ since $\mathbf{xnor}(x, a) = \neg \mathbf{xor}(x, a)$.

1134
1135 A.2.3 MULTIVARIATE CASE1136 The properties of Boolean variation described above can be extended to the multivariate case in a
1137 straightforward manner. For example, in the case of multivariate Boolean functions, the extension is
1138 as follows.1139
1140
1141
1142
1143

Definition A.20. For $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{B}^n$, denote $\mathbf{x}_{-i} \triangleq (x_1, \dots, x_{i-1}, \neg x_i, x_{i+1}, \dots, x_n)$ for $n \geq 1$ and $1 \leq i \leq n$. For $f \in \mathcal{F}(\mathbb{B}^n, \mathbb{B})$, the (partial) variation of f w.r.t. x_i , denoted $f'_i(\mathbf{x})$ or $\delta f(\mathbf{x})/\delta x_i$, is defined as: $f'_i(\mathbf{x}) \equiv \delta f(\mathbf{x})/\delta x_i \triangleq \mathbf{x}\text{nor}(\delta(x_i \rightarrow \neg x_i), \delta f(\mathbf{x} \rightarrow \mathbf{x}_{-i}))$.

1144
1145

The composition rule then becomes:

1146
1147
1148

Proposition A.21. (Nguyen et al., 2024) Let $f \in \mathcal{F}(\mathbb{B}^n, \mathbb{B})$, $n \geq 1$, and $g \in \mathcal{F}(\mathbb{B}, \mathbb{B})$. For $1 \leq i \leq n$:

$$(g \circ f)'_i(\mathbf{x}) = \mathbf{x}\text{nor}(g'(f(\mathbf{x})), f'_i(\mathbf{x})), \quad \forall \mathbf{x} \in \mathbb{B}^n. \quad (24)$$

1149
1150
1151
1152
1153

Example A.22. Apply Proposition A.16-(3) to $\mathbf{Y}_{[k,j]}^{(l)}$ from Eq. 14: $\delta \mathbf{Y}_{[k,j]}^{(l)} / \delta \mathbf{W}_{[i,j]}^{(l)} = \delta L(\mathbf{X}_{[k,i]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)}) / \delta \mathbf{W}_{[i,j]}^{(l)}$ and $\delta \mathbf{Y}_{[k,j]}^{(l)} / \delta \mathbf{X}_{[k,i]}^{(l)} = \delta L(\mathbf{X}_{[k,i]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)}) / \delta \mathbf{X}_{[k,i]}^{(l)}$. Then, for $L = \mathbf{x}\text{nor}$ as an example, we have: $\delta \mathbf{Y}_{[k,j]}^{(l)} / \delta \mathbf{W}_{[i,j]}^{(l)} = \mathbf{X}_{[k,i]}^{(l)}$ and $\delta \mathbf{Y}_{[k,j]}^{(l)} / \delta \mathbf{X}_{[k,i]}^{(l)} = \mathbf{W}_{[i,j]}^{(l)}$.

1154
1155

A.3 BOOLEAN BACKPROPAGATION

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

This section presents how to apply the above principles of Boolean variation to define backpropagation for Boolean neural networks. The l -th layer (Eq. 14), receives the backpropagation signal from the downstream layer $l + 1$. Specifically, $\mathbf{Z}_{[k,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{Y}_{[k,j]}^{(l)}}$ denotes the variation of the loss function \mathcal{L} w.r.t. the output at layer l . To optimize the Boolean weights, we need to compute the corresponding loss signal, denoted as $\mathbf{Q}_{[i,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{W}_{[i,j]}^{(l)}}$. In addition, we also have to compute the loss signal for the upstream layer, defined as $\mathbf{P}_{[k,i]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{X}_{[k,i]}^{(l)}}$. Hereafter, we consider the logic gate $L = \mathbf{x}\text{nor}$ as a concrete example.

1166
1167

First, using Proposition A.15, Proposition A.16, Proposition A.18 and its extension to the multivariate case by Proposition A.21 in the same manner as shown in Example A.22, we have:

1168
1169
1170
1171
1172
1173
1174
1175

$$\frac{\delta \mathbf{Y}_{[k,j]}^{(l)}}{\delta \mathbf{W}_{[i,j]}^{(l)}} = \frac{\delta \mathbf{x}\text{nor}(\mathbf{X}_{[k,i]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)})}{\delta \mathbf{W}_{[i,j]}^{(l)}} = \mathbf{X}_{[k,i]}^{(l)} \quad (25)$$

$$\frac{\delta \mathbf{Y}_{[k,j]}^{(l)}}{\delta \mathbf{X}_{[k,i]}^{(l)}} = \frac{\delta \mathbf{x}\text{nor}(\mathbf{X}_{[k,i]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)})}{\delta \mathbf{X}_{[k,i]}^{(l)}} = \mathbf{W}_{[i,j]}^{(l)} \quad (26)$$

1176
1177

Using the chain rules given by Proposition A.18, we have the following atomic variations:

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

$$\mathbf{Q}_{[k,i,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{W}_{[i,j]}^{(l)}}|_k = \mathbf{x}\text{nor} \left(\frac{\delta \mathcal{L}}{\delta \mathbf{Y}_{[k,j]}^{(l)}}, \frac{\delta \mathbf{Y}_{[k,j]}^{(l)}}{\delta \mathbf{W}_{[i,j]}^{(l)}} \right) = \mathbf{x}\text{nor} \left(\mathbf{Z}_{[k,j]}^{(l)}, \mathbf{X}_{[k,i]}^{(l)} \right), \quad (27)$$

$$\mathbf{P}_{[k,i,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{X}_{[k,i]}^{(l)}}|_j = \mathbf{x}\text{nor} \left(\frac{\delta \mathcal{L}}{\delta \mathbf{Y}_{[k,j]}^{(l)}}, \frac{\delta \mathbf{Y}_{[k,j]}^{(l)}}{\delta \mathbf{X}_{[k,i]}^{(l)}} \right) = \mathbf{x}\text{nor} \left(\mathbf{Z}_{[k,j]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)} \right). \quad (28)$$

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

The variations $\mathbf{Q}_{[i,j]}^{(l)}$ and $\mathbf{G}_{[k,i]}^{(l)}$ can be then obtained by aggregating the above atomic variations over the batch dimension k and output dimension j , respectively. More specifically, denote $\mathbf{1}(\cdot)$ the indicator function. Additionally, for $b \in \mathbb{B}$ and a variable x , we define $\mathbf{1}(x = b) = 1$ if $x_{\text{logic}} = b$

1188 and $\mathbf{1}(x = b) = 0$ otherwise. Then, we have:

1189

$$\mathbf{Q}_{[i,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{W}_{[i,j]}^{(l)}} = \sum_k \mathbf{1}(\mathbf{Q}_{[k,i,j]}^{(l)} = \text{TRUE}) |\mathbf{Q}_{[k,i,j]}^{(l)}| - \sum_k \mathbf{1}(\mathbf{Q}_{[k,i,j]}^{(l)} = \text{FALSE}) |\mathbf{Q}_{[k,i,j]}^{(l)}|, \quad (29)$$

1190

$$\mathbf{P}_{[i,j]}^{(l)} \triangleq \frac{\delta \mathcal{L}}{\delta \mathbf{X}_{[k,i]}^{(l)}} = \sum_j \mathbf{1}(\mathbf{P}_{[k,i,j]}^{(l)} = \text{TRUE}) |\mathbf{P}_{[k,i,j]}^{(l)}| - \sum_j \mathbf{1}(\mathbf{P}_{[k,i,j]}^{(l)} = \text{FALSE}) |\mathbf{P}_{[k,i,j]}^{(l)}|. \quad (30)$$

1195

A.4 BOOLEAN OPTIMIZER

1198 **Algorithm 1:** Boolean learning process for a linear layer.

1199 **Input** : Learning rate η , number of iterations T ;

1200 **Initialize** : $\mathbf{M}_{[i,j]}^{(l),0} = 0$; $\beta^0 = 1$;

1201 **for** $t = 0, \dots, T - 1$ **do**

1202 /* 1. Forward */

1203 Compute $\mathbf{Y}^{(l),t}$ following Eq. 14;

1204 /* 2. Backward */

1205 Receive $\frac{\delta \mathcal{L}}{\delta \mathbf{Y}_{[k,i]}^{(l),t}}$ from downstream layer;

1206 /* 2.1 Backpropagation */

1207 Compute and backpropagate $\mathbf{P}^{(l),t}$ to the upstream following Eq. 30;

1208 /* 2.2 Weight update process */

1209 $N_{\text{total}} := 0$, $N_{\text{unchanged}} := 0$;

1210 **foreach** $\mathbf{W}_{i,j}^l$ **do**

1211 Compute $\mathbf{Q}_{[i,j]}^{(l),t+1}$ following Eq. 29;

1212 Update $\mathbf{M}_{[i,j]}^{(l),t+1} = \beta^t \mathbf{M}_{[i,j]}^{(l),t} + \eta^t \mathbf{Q}_{[i,j]}^{(l),t+1}$;

1213 $N_{\text{total}} \leftarrow N_{\text{total}} + 1$;

1214 **if** $\text{xnor}(\mathbf{M}_{[i,j]}^{(l),t+1}, \mathbf{W}_{[i,j]}^{(l),t}) = \text{TRUE}$ **then**

1215 /* Flip weight */

1216 $\mathbf{W}_{[i,j]}^{(l),t+1} = \neg \mathbf{W}_{[i,j]}^{(l),t}$;

1217 /* Reset corresponding accumulator */

1218 $\mathbf{M}_{[i,j]}^{(l),t+1} = 0$;

1219 **else**

1220 /* Weight is unchanged */

1221 $\mathbf{W}_{[i,j]}^{(l),t+1} = \mathbf{W}_{[i,j]}^{(l),t}$;

1222 /* Update statistics to update β */

1223 $N_{\text{unchanged}} \leftarrow N_{\text{unchanged}} + 1$;

1224 Update η^{t+1} , $\beta^{t+1} = N_{\text{unchanged}} / N_{\text{total}}$;

1228 Given the above variations, the rule for updating the Boolean weight $\mathbf{W}_{[i,j]}^{(l)}$ to minimize the loss

1229 function \mathcal{L} is as follows:

1231

$$\mathbf{W}_{[i,j]}^{(l)} = \neg \mathbf{W}_{[i,j]}^{(l)} \quad \text{if } \text{xnor}(\mathbf{Q}_{[i,j]}^{(l)}, \mathbf{W}_{[i,j]}^{(l)}) = \text{TRUE}. \quad (31)$$

1233 Based on this update rule, we can develop an optimizer that accumulates the signal $\mathbf{Q}_{[i,j]}^{(l)}$ over

1234 training iterations. Specifically, let $\mathbf{W}_{[i,j]}^{(l),t}$ denotes the weight at iteration t , and $\mathbf{M}_{[i,j]}^{(l),t}$ represents its

1235 accumulator, initialized as $\mathbf{M}_{[i,j]}^{(l),0} = 0$. The update rule for the accumulator is then defined as: The

1236 update rule for the accumulator is then defined as:

1239

$$\mathbf{M}_{[i,j]}^{(l),t+1} \leftarrow \beta^t \mathbf{M}_{[i,j]}^{(l),t} + \eta \mathbf{Q}_{[i,j]}^{(l),t}, \quad (32)$$

1240 where η is the accumulation factor acting as a learning rate, and β^t is an auto-regularizing factor

1241 that reflects the system's state at time t . In our work, we use brain plasticity (Fuchs et al., 2014)

and Hebbian theory (Hebb, 2005) to adaptively set β^t , that force the weights to adapt to their neighborhood during. For the chose weight’s neighborhood, for instance, neuron, layer, or network level, β^t is set as:

$$\beta^t = \frac{\text{Number of unchanged weights at } t}{\text{Total number of weights}}. \quad (33)$$

It to temper the importance of weight variational according to how much neurons have changed. In our experiments, β^t is set to per-layer basis and initialized as $\beta^0 = 1$ The learning process for a linear layer is described in [Algorithm 1](#).

B DISCUSSION ON HARDWARE CONSIDERATIONS

B.1 COMPUTATION PROPOSED IN § 4.1

The Boolean framework supports both full and partial binary settings. The aforementioned Boolean variation calculus shows that:

$$\mathbf{xnor}(x_{\text{real}}, w_{\text{logic}}) = x_{\text{real}} \times w_{\text{binary}}, \quad (34)$$

under the mapping $\text{TRUE} \rightarrow +1$ and $\text{FALSE} \rightarrow -1$. Consequently, matrix multiplication (**matmul**) between a real tensor \mathbf{X} and a logic tensor \mathbf{W} can be implemented as follows:

- **Using binary weights** $\{-1, +1\}$: Simply represent the logic weights in binary format. Then, **matmul**($x_{\text{real}}, w_{\text{logic}}$) is directly computed as **matmul**($x_{\text{real}}, w_{\text{binary}}$).
- **Using native logic** $\{\text{TRUE}, \text{FALSE}\}$: The multiplication reduces to:

$$\mathbf{matmul}(x_{\text{real}}, w_{\text{logic}}) = \begin{cases} x_{\text{real}}, & \text{if } w_{\text{logic}} = \text{TRUE} \\ -x_{\text{real}}, & \text{if } w_{\text{logic}} = \text{FALSE} \end{cases} \quad (35)$$

Thus, a sign flip of x_{real} conditioned on w_{logic} , followed by accumulation, suffices to perform **matmul**($\mathbf{X}_{\text{real}}, \mathbf{W}_{\text{logic}}$).

The first approach is well-supported by modern hardware such as CPUs, GPUs, etc, where different bit-widths can be used to represent and simulate weight values in $\{-1, +1\}$. Additionally, this approach can be implemented directly in PyTorch (Paszke et al., 2019). The second approach, in contrast, requires a specialized Boolean accelerator. Such hardware can massively accelerate the computation by directly leveraging logic operations instead of real-arithmetic.

B.2 MULTI-CORE COMPUTATION STRATEGY IN § 4.2

Boolean design, as used in the paper, employs Boolean weights and operates using logic operations. It is distinct from bit-level operations.

Boolean design: Weights are Boolean logic variables, taking values TRUE/FALSE or $-1/+1$. Operations are logic-based, such as **xnor**, and **or**, etc. See [Eq. 35](#) for an example.

Bit-level operations: These, such as bit-serial implementations in C/C++, operate bit-by-bit on multi-bit variables. For instance, a bit-level AND between two n -bit variables produces an n -bit result, where each bit is the AND of corresponding pair of bits from the inputs. Bit-level operations like bit-serial are inefficient in terms of latency, whereas Boolean logic operations are significantly faster compared to real-arithmetic operations such as multiplication.

1296 C CODE SAMPLES OF CORE IMPLEMENTATION

C.1 BOOLEAN LINEAR LAYER AND OPTIMIZER

In this section, we provide example Python code for

In this section, we provide example Python code for implementing a Boolean linear layer based on the xor logic gate. This implementation is based on the PyTorch framework (Paszke et al., 2019). As done in Nguyen et al. (2024), the class definition for the Boolean linear layer is presented in Algorithm 2, and its backpropagation mechanism—customized via PyTorch’s autograd system—is detailed in Algorithm 3. Each Boolean kernel is primarily implemented using this Boolean linear layer.

1306 We consider both cases of the incoming backpropagation signal: Boolean-valued (see [Algorithm 4](#)),
1307 and real-valued (see [Algorithm 5](#)). The latter is the main use case in this paper. An example
1308 implementation of the Boolean optimizer used to update the layer’s parameters is provided in
1309 [Algorithm 6](#).

Algorithm 2: Python code of XOR linear layer

```
1312 1 import torch
1313 2
1314 3 from torch import Tensor, nn, autograd
1315 4 from typing import Any, List, Optional, Callable
1316 5
1317 6
1318 7 class XORLinear(nn.Linear):
1319 8
1320 9     def __init__(self, in_features: int, out_features: int, bool_bprop: bool, **kwargs):
1321 10         super(XORLinear, self).__init__(in_features, out_features, **kwargs)
1322 11         self.bool_bprop = bool_bprop
1323 12
1324 13     def reset_parameters(self):
1325 14         self.weight = nn.Parameter(torch.randint(0, 2, self.weight.shape))
1326 15
1327 16         if self.bias is not None:
1328 17             self.bias = nn.Parameter(torch.randint(0, 2, (self.out_features,)))
1329 18
1330 19     def forward(self, X):
1331 20         return XORFunction.apply(X, self.weight, self.bias, self.bool_bprop)
```

Algorithm 3: Python code of the backpropagation logic of XOR linear layer

```

1  class XORFunction(autograd.Function):
2
3      @staticmethod
4      def forward(ctx, X, W, B, bool_bprop: bool):
5          ctx.save_for_backward(X, W, B)
6          ctx.bool_bprop = bool_bprop
7
8          # Elementwise XOR logic
9          S = torch.logical_xor(X[:, None, :, :], W[None, :, :, :])
10
11         # Sum over the input dimension
12         S = S.sum(dim=2) + B
13
14         # 0-centered for use with BatchNorm when preferred
15         S = S - W.shape[1]/2
16
17         return S
18
19     @staticmethod
20     def backward(ctx, Z):
21         if ctx.bool_bprop:
22             G_X, G_W, G_B = backward_bool(ctx, Z)
23         else:
24             G_X, G_W, G_B = backward_real(ctx, Z)
25
26         return G_X, G_W, G_B, None

```

1350
1351**Algorithm 4:** Backpropagation logic with Boolean received backpropagation

```

1352 1 def backward_bool(ctx, Z):
1353 2     """
1354 3     Variation of input:
1355 4         - delta(xor(x,w))/delta(x) = neg w
1356 5         - delta(Loss)/delta(x) = xnor(z,neg w) = xor(z,w)
1357 6     Variation of weights:
1358 7         - delta(xor(x,w))/delta(w) = neg x
1359 8         - delta(Loss)/delta(x) = xnor(z,neg x) = xor(z,x)
1360 9     Variation of bias:
1361 10        - bias = xnor(bias,True) ==> Variation of bias is driven in
1362 11            the same basis as that of weight with xnor logic and input True.
1363 12     Aggregation:
1364 13        - Count the number of TRUEs = sum over the Boolean data
1365 14        - Aggr = TRUEs - FALSEs = TRUEs - (TOT - TRUEs) = 2TRUEs - TOT
1366 15            where TOT is the size of the aggregated dimension
1367 16        """
1368 17     X, W, B = ctx.saved_tensors
1369 18
1370 19     # Boolean variation of input
1371 20     G_X = torch.logical_xor(Z[:, :, None], W[None, :, :])
1372 21
1373 22     # Aggregate over the out_features dimension
1374 23     G_X = 2 * G_X.sum(dim=1) - W.shape[0]
1375 24
1376 25     # Boolean variation of weights
1377 26     G_W = torch.logical_xor(Z[:, :, None], X[:, None, :])
1378 27
1379 28     # Aggregate over the batch dimension
1380 29     G_W = 2 * G_W.sum(dim=0) - X.shape[0]
1381 30
1382 31     # Boolean variation of bias
1383 32     if B is not None:
1384 33         # Aggregate over the batch dimension
1385 34         G_B = 2 * Z.sum(dim=0) - Z.shape[0]
1386 35
1387 36     # Return
1388 37     return G_X, G_W, G_B

```

1376

Algorithm 5: Backpropagation logic with real received backpropagation

```

1379 1 def backward_real(ctx, Z):
1380 2     X, W, B = ctx.saved_tensors
1381 3
1382 4     """
1383 5     Boolean variation of input processed using torch avoiding loop:
1384 6         -> xor(Z: Real, W: Boolean) = -Z * emb(W)
1385 7         -> emb(W): T->1, F->-1 => emb(W) = 2W-1
1386 8         => delta(Loss)/delta(X) = Z*(1-2W) """
1387 9     G_X = Z.mm(1-2*W)
1388 10
1389 11     """
1390 12     Boolean variation of weights processed using torch avoiding loop:
1391 13         -> xor(Z: Real, X: Boolean) = -Z * emb(X)
1392 14         -> emb(X): T->1, F->-1 => emb(X) = 2X-1
1393 15         => delta(Loss)/delta(W) = Z^T * (1-2X) """
1394 16     G_W = Z.t().mm(1-2*X)
1395 17
1396 18     """ Boolean variation of bias """
1397 19     if B is not None:
1398 20         G_B = Z.sum(dim=0)
1399 21
1400 22     # Return
1401 23     return G_X, G_W, G_B

```

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405 **Algorithm 6:** Python code of Boolean optimizer

```
1406 1 class BooleanOptimizer(torch.optim.Optimizer):
1407 2     def __init__(self, params, lr: float):
1408 3         super(BooleanOptimizer, self).__init__(params, dict(lr=lr))
1409 4         for param_group in self.param_groups:
1410 5             param_group['accums'] = [torch.zeros_like(p.data) for p in param_group['
1411 6             params']]
1412 7             param_group['ratios'] = [0 for p in param_group['params']]
1413 8             self._nb_flips = 0
1414 9
1415 10 @property
1416 11     def nb_flips(self):
1417 12         n = self._nb_flips
1418 13         self._nb_flips = 0
1419 14         return n
1420 15
1421 16     def step(self):
1422 17         for param_group in self.param_groups:
1423 18             for idx, p in enumerate(param_group['params']):
1424 19                 self.update(p, param_group, idx)
1425 20
1426 21     def update(self, param: Tensor, param_group: dict, idx: int):
1427 22         accum = param_group['ratios'][idx] * param_group['accums'][idx] + param_group[
1428 23             'lr'] * param.grad.data
1429 24         param_group['accums'][idx] = accum
1430 25         param_to_flip = accum * (2*param.data-1) >= 1
1431 26         param.data[param_to_flip] = torch.logical_not(param.data[param_to_flip])
1432 27         param_group['accums'][idx][param_to_flip] = 0.
1433 28         param_group['ratios'][idx] = 1 - param_to_flip.float().mean()
1434 29         self._nb_flips += float(param_to_flip.float().sum())
1435 30
```

1433 C.2 SUCCESSIVE SVID FOR KERNEL EXTRACTION

1437 **Algorithm 7** illustrate the Python code of the SVID algorithm to extract the optimal Boolean weights
1438 and scaling factors for one kernel. Based on this, **Algorithm 8** illustrates the successive SVID algorithm
1439 to extract all kernels.
1440

Algorithm 7: Python code of SVID approximation of a FP matrix.

```

1442
1443 1 def svid_approximation(w):
1444     """
1445         Approximate the input matrix 'w' by a boolean matrix and a rank-1 matrix:
1446         w = w_bool * (s_out * s_in.T)
1447
1448     Args:
1449         w (torch.Tensor): Input tensor of shape (*, m, n).
1450
1451     Returns:
1452         tuple:
1453             - w_bool (torch.Tensor): Boolean matrix of the same shape as 'w'.
1454             - w_res (torch.Tensor): Residual matrix, w - w_bool * (s_out * s_in.T).
1455             - s_in (torch.Tensor): Scaled first left singular vector of 'w'.
1456             - s_out (torch.Tensor): Scaled first right singular vector of 'w'.
1457     """
1458     U, S, Vh = torch.linalg.svd(abs(w.data.clone()).float(), full_matrices=False)
1459
1460     w_bool = torch.sign(w)
1461     s_in = torch.sqrt(S[0]) * Vh[0, :].reshape(1, -1)
1462     s_out = torch.sqrt(S[0]) * U[:, 0].reshape(-1, 1)
1463
1464     w_res = w - w_bool * torch.matmul(s_out, s_in)
1465
1466     return w_bool, w_res, s_in, s_out

```

1458
1459**Algorithm 8:** Python code of successively extracts kernels from FP matrix using SVID.

```

1460 1 def successive_svid(w_fp, n_kernels):
1461 2     """
1462 3     Perform successive SVID on the input matrix to extract Boolean kernels.
1463 4
1464 5     Args:
1465 6         w_fp (torch.Tensor): Input weight matrix.
1466 7         n_kernels (int): Number of iterations to extract kernels.
1467 8
1468 9     Returns:
1469 10        list: List of dictionaries containing 'n_kernels' kernels, each has:
1470 11            - w_bool (torch.Tensor): Boolean matrix.
1471 12            - s_in (torch.Tensor): Input scaling vector.
1472 13            - s_out (torch.Tensor): Output scaling vector.
1473 14        """
1474 15    boolean_kernels = []
1475 16
1476 17    w = w_fp # The input to SVID at first iteration is the original weight
1477 18
1478 19    for k in range(n_kernels):
1479 20        # Extract the Boolean weights, residual, and scaling vectors
1480 21        w_bool, w_res, s_in, s_out = svid_approximation(w)
1481 22
1482 23        # Save the extracted kernel
1483 24        boolean_kernels.append({'w_bool': w_bool, 's_in': s_in, 's_out': s_out})
1484 25
1485 26        # The input to SVID for the next iteration is the current residual matrix
1486 27        w = w_res
1487 28
1488 29    return boolean_kernels

```

1479

1480

D PROOF OF PROPOSITIONS

1482

1483

For completeness, we include the proofs of Propositions related to SVID approximation used in the main paper.

1485

1486

D.1 PROOF OF BOOLEAN LINEAR REFORMULATION USING SVID

1487

1488

1489

Proposition D.1. (Xu et al., 2024) Given the weight matrix \mathbf{W}_{FP} and input \mathbf{X} , the linear layer can be reformulated as the following using SVID approximation, $\mathbf{W}_{\text{FP}} \approx \mathbf{W}_{\text{bool}} \odot (\mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top)$, as follows:

1490

1491

1492

1493

$$\mathbf{X} \mathbf{W}_{\text{FP}}^\top \approx \left[(\mathbf{X} \odot \mathbf{s}_{\text{in}}^\top) \mathbf{W}_{\text{bool}}^\top \right] \odot \mathbf{s}_{\text{out}}^\top. \quad (36)$$

1494

Proof. Due to the SVID approximation, we have $\mathbf{W}_{\text{FP}[i,j]} \approx \mathbf{W}_{\text{bool}[i,j]} \mathbf{s}_{\text{out}[i]} \mathbf{s}_{\text{in}[j]}$. Then, we have:

1495

1496

1497

$$\left(\mathbf{X} \mathbf{W}_{\text{FP}}^\top \right)_{[i,j]} \approx \sum_k \mathbf{X}_{[i,k]} \mathbf{W}_{\text{FP}[k,j]}^\top \quad (37)$$

1498

1499

$$= \sum_k \mathbf{X}_{[i,k]} \mathbf{W}_{\text{FP}[j,k]} \quad (38)$$

1500

1501

$$= \sum_k \mathbf{X}_{[i,k]} \mathbf{W}_{\text{bool}[j,k]} \mathbf{s}_{\text{out}[j]} \mathbf{s}_{\text{in}[k]} \quad (39)$$

1502

1503

$$= \sum_k \mathbf{X}_{[i,k]} \mathbf{s}_{\text{in}[k]} \mathbf{W}_{\text{bool}[j,k]} \mathbf{s}_{\text{out}[j]} \quad (40)$$

1504

1505

$$= \sum_k \left(\mathbf{X} \odot \mathbf{s}_{\text{in}}^\top \right)_{[i,k]} \mathbf{W}_{\text{bool}[k,j]}^\top \mathbf{s}_{\text{out}[j]} \quad (41)$$

1506

1507

$$= \left[\left(\mathbf{X} \odot \mathbf{s}_{\text{in}}^\top \right) \mathbf{W}_{\text{bool}}^\top \right]_{[i,j]} \mathbf{s}_{\text{out}[j]} \quad (42)$$

1508

1509

$$= \left\{ \left[\left(\mathbf{X} \odot \mathbf{s}_{\text{in}}^\top \right) \mathbf{W}_{\text{bool}}^\top \right] \odot \mathbf{s}_{\text{out}}^\top \right\}_{[i,j]}. \quad (43)$$

1510

1511

Thus, the proposition is proved. \square

1512 D.2 PROOF OF PROPOSITION 4.1
15131514 **Lemma D.2.** (Xu et al., 2024) Denote $\sigma_i(\mathbf{W})$ the i -th biggest singular value of matrix \mathbf{W} . The
1515 following inequality holds:
1516

1517
$$\sigma_1(|\mathbf{W}|) \geq \sigma_1(\mathbf{W}). \quad (44)$$

1518

1519 *Proof.* By the definition of induced norm, we have:
1520

1521
$$\sigma_1(\mathbf{W}) = \|\mathbf{W}\|_2 = \max_{\mathbf{x}, \|\mathbf{x}\|_2=1} \|\mathbf{W}\mathbf{x}\|_2, \quad (45)$$

1522

1523
$$\sigma_1(|\mathbf{W}|) = \||\mathbf{W}|\|_2 = \max_{\mathbf{y}, \|\mathbf{y}\|_2=1} \||\mathbf{W}|\mathbf{y}\|_2. \quad (46)$$

1524

1525 In addition, because $\forall \mathbf{x}, \|\mathbf{x}\|_2 = 1$, we have:
1526

1527
$$\||\mathbf{W}|\mathbf{x}\|_2^2 = \sum_i \left(\sum_j |\mathbf{W}_{[i,j]}| |\mathbf{x}_{[j]}| \right)^2 \quad (47)$$

1528

1529
$$\geq \sum_i \left(\left| \sum_j \mathbf{W}_{[i,j]} \mathbf{x}_{[j]} \right| \right)^2 \quad (48)$$

1530

1531
$$= \sum_i \left(\sum_j \mathbf{W}_{[i,j]} \mathbf{x}_{[j]} \right)^2 \quad (49)$$

1532

1533
$$= \|\mathbf{W}\mathbf{x}\|_2^2. \quad (50)$$

1534

1535 Therefore
1536

1537
$$\max_{\mathbf{y}, \|\mathbf{y}\|_2=1} \||\mathbf{W}|\mathbf{y}\|_2 \geq \max_{\mathbf{x}, \|\mathbf{x}\|_2=1} \|\mathbf{W}\mathbf{x}\|_2 \quad (51)$$

1538

1539
$$\Leftrightarrow \sigma_1(|\mathbf{W}|) \geq \sigma_1(\mathbf{W}). \quad (52)$$

1540

1541 Thus, the lemma is proved. \square
15421543 **Proposition D.3** (Restated from Xu et al. (2024)). For $\mathbf{W} \in \mathbb{R}^{m \times n}$, write $\mathbf{W} = \tilde{\mathbf{U}}\tilde{\Sigma}\tilde{\mathbf{V}}^\top$ its
1544 SVD. Let $\mathbf{a} = \sqrt{\tilde{\sigma}_1} \tilde{\mathbf{U}}[:,1]$, and $\mathbf{b} = \sqrt{\tilde{\sigma}_1} \tilde{\mathbf{V}}[:,1]$. Similarly, denote $|\mathbf{W}| = \mathbf{U}\Sigma\mathbf{V}^\top$ its SVD; \mathbf{s}_{in}
1545 and \mathbf{s}_{out} are given as: $\mathbf{s}_{\text{in}} = \sqrt{\sigma_1} \mathbf{V}[:,1]$, and $\mathbf{s}_{\text{out}} = \sqrt{\sigma_1} \mathbf{U}[:,1]$. We decompose the matrix as
1546 $\mathbf{W} = \mathbf{W}_{\text{bool}} \odot |\mathbf{W}| \approx \mathbf{W}_{\text{bool}} \odot (\mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top)$. We then have:
1547

1548
$$\|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 \leq \|\mathbf{W} - \mathbf{a} \mathbf{b}^\top\|_F^2. \quad (53)$$

1549

1550 *Proof.* We denote the following error matrices:
1551

1552
$$\mathbf{E}_1 = \mathbf{W} - \mathbf{a} \mathbf{b}^\top, \quad (54)$$

1553

1554
$$\mathbf{E}_2 = |\mathbf{W}| - \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top. \quad (55)$$

1555

1556 Multiplying \mathbf{W}_{bool} with both sides of Eq. 55, we have:
1557

1558
$$\mathbf{W}_{\text{bool}} \odot |\mathbf{W}| - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top = \mathbf{W}_{\text{bool}} \odot \mathbf{E}_2 \quad (56)$$

1559

1560
$$\Leftrightarrow \mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top = \mathbf{W}_{\text{bool}} \odot \mathbf{E}_2. \quad (57)$$

1561

1566 Thus, we have:
 1567

$$1568 \quad \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 = \|\mathbf{W}_{\text{bool}} \odot \mathbf{E}_2\|_F^2 \quad (58)$$

$$1569 \quad = \sum_{i,j} \mathbf{W}_{\text{bool}[i,j]}^2 + \mathbf{E}_2^2_{[i,j]} \quad (59)$$

$$1571 \quad = \sum_{i,j} \mathbf{E}_2^2_{[i,j]} \quad (60)$$

$$1574 \quad = \|\mathbf{E}_2\|_F^2 \quad (61)$$

1575 For SVD decomposition, the norm of the above error matrices in the rank-1 approximation is the sum
 1576 of squares of all singular values except the largest one. In particular, we have:
 1577

$$1578 \quad \|\mathbf{E}_1\|_F^2 = \sum_{i=2}^n \sigma_i^2(\mathbf{W}), \quad (62)$$

$$1581 \quad \|\mathbf{E}_2\|_F^2 = \sum_{i=2}^n \sigma_i^2(|\mathbf{W}|). \quad (63)$$

1584 Since $\|\mathbf{W}\|_F^2 = \|\mathbf{W}\|_F^2$, we have:
 1585

$$1586 \quad \sum_{i=1}^n \sigma_i^2(\mathbf{W}) = \sum_{i=1}^n \sigma_i^2(|\mathbf{W}|) \quad (64)$$

$$1589 \quad \Leftrightarrow \|\mathbf{E}_1\|_F^2 + \sigma_1^2(\mathbf{W}) = \|\mathbf{E}_2\|_F^2 \sigma_1^2(|\mathbf{W}|). \quad (65)$$

1590 Thus, according to [Lemma D.2](#) and [Eq. 61](#), we have:
 1591

$$1592 \quad \|\mathbf{E}_2\|_F^2 \leq \|\mathbf{E}_1\|_F^2 \quad (66)$$

$$1593 \quad \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 \leq \|\mathbf{W} - \mathbf{a} \mathbf{b}^\top\|_F^2. \quad (67)$$

1595 Thus, the proposition is proved. □
 1596

1597 D.3 PROOF OF [PROPOSITION 4.3](#)

1599 **Proposition D.4.** For $\mathbf{W} \in \mathbb{R}^{m \times n}$, we denote $|\mathbf{W}| = \mathbf{U} \Sigma \mathbf{V}^\top$ its SVD. \mathbf{s}_{in} and \mathbf{s}_{out} are given as:
 1600 $\mathbf{s}_{\text{in}} = \sqrt{\sigma_1} \mathbf{V}_{[:,1]}$, and $\mathbf{s}_{\text{out}} = \sqrt{\sigma_1} \mathbf{U}_{[:,1]}$. We decompose the matrix as $\mathbf{W} = \mathbf{W}_{\text{bool}} \odot |\mathbf{W}| \approx$
 1602 $\mathbf{W}_{\text{bool}} \odot (\mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top)$. We then have:

$$1603 \quad \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 \leq \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{c} \mathbf{d}^\top\|_F^2, \quad \forall \mathbf{c} \in \mathbb{R}^{m \times 1}, \forall \mathbf{d} \in \mathbb{R}^{n \times 1}. \quad (68)$$

1606 *Proof.* Similar to the proof of [Proposition 4.3](#), we denote the following error matrices $\mathbf{E}_1 = |\mathbf{W}| -$
 1607 $\mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top$ and $\mathbf{E}_2 = |\mathbf{W}| - \mathbf{c} \mathbf{d}^\top$. We have that
 1608

$$1609 \quad \mathbf{W}_{\text{bool}} \odot |\mathbf{W}| - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top = \mathbf{W}_{\text{bool}} \odot \mathbf{E}_1 \quad (69)$$

$$1611 \quad \Leftrightarrow \mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top = \mathbf{W}_{\text{bool}} \odot \mathbf{E}_1. \quad (70)$$

1612 Therefore,

$$1613 \quad \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 = \|\mathbf{W}_{\text{bool}} \odot \mathbf{E}_1\|_F^2 = \sum_{i,j} \mathbf{W}_{\text{bool}[i,j]}^2 \mathbf{E}_1^2_{[i,j]} = \sum_{i,j} \mathbf{E}_1^2_{[i,j]} = \|\mathbf{E}_1\|_F^2. \quad (71)$$

1617 Similarly, we have that
 1618

$$1619 \quad \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{a} \mathbf{b}^\top\|_F^2 = \|\mathbf{E}_2\|_F^2. \quad (72)$$

1620 Thus, we need to show that
 1621

$$1622 \quad \|\mathbf{E}_1\|_F^2 \leq \|\mathbf{E}_2\|_F^2 \quad (73)$$

1623
 1624 Additionally, we denote the rank- k approximation to $|\mathbf{W}|$ by SVD as \mathbf{S}_k :
 1625

$$1626 \quad \mathbf{S}_k = \sum_{i=1}^k \sigma_i \mathbf{U}_{[:,i]} \mathbf{V}_{[:,i]}^\top. \quad (74)$$

1627
 1628 With this notation, we have that $\mathbf{S}_1 = \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top$ is the rank-1 approximation of $|\mathbf{W}|$ by SVD.
 1629

1630 From Eq. 73, we need to show that if there is an arbitrary rank-1 approximation to $|\mathbf{W}|$, $\mathbf{P}_1 = \mathbf{c} \mathbf{d}^\top$,
 1631 we then have
 1632

$$1633 \quad \|\|\mathbf{W}| - \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 \leq \|\|\mathbf{W}| - \mathbf{c} \mathbf{d}^\top\|_F^2. \quad (75)$$

1634
 1635 This can be done by using the Eckart-Young-Mirsky theorem (Eckart & Young, 1936). First, we have
 1636 that
 1637

$$1638 \quad \|\|\mathbf{W}| - \mathbf{S}_1\|_F^2 = \|\|\mathbf{W}| - \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2 = \left\| \sum_{i=2}^n \sigma_i \mathbf{U}_{[:,i]} \mathbf{V}_{[:,i]}^\top \right\|_F^2 = \sum_{i=2}^n \sigma_i^2. \quad (76)$$

1640
 1641 By the triangle inequality with the spectral norm, if $|\mathbf{W}| = \mathbf{C} + \mathbf{D}$ then $\sigma_1(|\mathbf{W}|) \leq \sigma_1(\mathbf{C}) + \sigma_1(\mathbf{D})$.
 1642 Suppose the \mathbf{C}_k and \mathbf{D}_k denote the rank- k approximation to \mathbf{C} and \mathbf{D} by SVD method, respectively.
 1643 Then, for any $i, j \geq 1$ we have
 1644

$$1645 \quad \sigma_i(\mathbf{C}) + \sigma_j(\mathbf{D}) = \sigma_1(\mathbf{C} - \mathbf{C}_{i-1}) + \sigma_1(\mathbf{D} - \mathbf{D}_{j-1}) \quad (77)$$

$$1646 \quad \geq \sigma_1(|\mathbf{W}| - \mathbf{C}_{i-1} - \mathbf{D}_{j-1}) \quad (78)$$

$$1647 \quad \geq \sigma_1(|\mathbf{W}| - \mathbf{S}_{i+j-2}) \quad (\text{since } \text{rank}(\mathbf{C}_{i-1} + \mathbf{D}_{j-1}) \leq i + j - 2) \quad (79)$$

$$1648 \quad = \sigma_{i+j-1}(|\mathbf{W}|). \quad (80)$$

1649
 1650 Because $\sigma_2(\mathbf{P}_1) = 0$, when $\mathbf{C} = |\mathbf{W}| - \mathbf{P}_1$ and $\mathbf{D} = \mathbf{P}_1$ we have that for $i \geq 1, j = 2$,
 1651 $\sigma_i(|\mathbf{W}| - \mathbf{P}_1) \geq \sigma_{i+1}(|\mathbf{W}|)$. As a result,

$$1652 \quad \|\|\mathbf{W}| - \mathbf{P}_1\|_F^2 = \sum i = 1^n \sigma_i(|\mathbf{W}| - \mathbf{P}_1)^2 \geq \sum i = 2^n \sigma_i(|\mathbf{W}|)^2 = \|\|\mathbf{W}| - \mathbf{S}_1\|_F^2 \quad (81)$$

$$1653 \quad \Leftrightarrow \|\mathbf{E}_2\|_F^2 \geq \|\mathbf{E}_1\|_F^2 \quad (82)$$

$$1654 \quad \Leftrightarrow \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{c} \mathbf{d}^\top\|_F^2 \geq \|\mathbf{W} - \mathbf{W}_{\text{bool}} \odot \mathbf{s}_{\text{out}} \mathbf{s}_{\text{in}}^\top\|_F^2. \quad (83)$$

1655
 1656 Hence the proposition is proved. \square
 1657

1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674
1675

E DETAILS ON KERNEL ALLOCATION

1676
1677

E.1 WEIGHT IMPORTANCE ESTIMATION

1678
1679
1680
1681
1682
1683
1684

We assess the importance of a linear weight in the original FP model by comparing the representations at its input and output. Let $\mathbf{X} \in \mathbb{R}^{d \times n}$ and $\mathbf{Y} \in \mathbb{R}^{d \times m}$ denote the input and output matrices of a linear layer, respectively, where d is the number of samples, and n and m are the input and output feature dimensions. We hypothesize that a weight is important if it significantly transforms the input representations. For example, a weight matrix equivalent to the identity does not alter the representations and thus would be considered unimportant. To quantify this transformation, we use a robust metric for comparing neural representations.

1685
1686
1687
1688
1689

Various similarity measures can be used for this purpose, such as cosine similarity, as done in (Gromov et al., 2025). In this work, we adopt PWCCA Morcos et al. (2018), which is particularly well-suited for our setting: it is invariant to linear transformations—an essential property given that large language models (LLMs) are primarily composed of linear layers—and effectively captures shared structure while filtering out noise Morcos et al. (2018).

1690

Specifically, we define the importance score as:

1691
1692
1693

$$h = 1 - \frac{1}{c} \sum_{i=1}^c \rho_{\text{PWCCA},i}(\mathbf{X}, \mathbf{Y}), \quad (84)$$

1694
1695
1696
1697
1698

where c denotes the number of canonical vectors used in the comparison (typically, $c = \min(n, m)$). The matrices \mathbf{X} and \mathbf{Y} are obtained by simply forwarding a set of data samples through the network. In our experiments, we use 128 random samples from the WikiText2 training set to estimate the importance score. Here, $\rho_{\text{PWCCA},i}$ represents the projection-weighted correlation along the i -th canonical direction. The following section describes in detail how this correlation is computed.

1699
1700**Algorithm 9:** Kernel allocation.1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

```

1 Input
2    $T \geq 1$ ; /* model expansion limit */
3    $\mathbf{E} = [e_l^{[k]}] \in \mathbb{R}^{N_{\mathbf{W}} \times K_{\max}}$  for  $k \in [1, K_{\max}], l \in [1, N_{\mathbf{W}}]$ ; /* residual approx error */
4    $\mathbf{h} = [h_l] \in \mathbb{R}^{N_{\mathbf{W}} \times 1}$ ; /* weight importance scores */
5    $\mathbf{p} = [p_l] \in \mathbb{R}^{N_{\mathbf{W}} \times 1}$ ; /* weight size ratios */
6 Initialize
7    $\mathbf{k} = [1, \dots, 1]^T$  of length  $N_{\mathbf{W}}$ ; /* starting choice */
8    $\mathbf{f} = \mathbf{k} < K_{\max}$ ; /* feasible indicator */
9    $\mathbf{C} = \left( \frac{1}{\mathbf{p}} \log \frac{1}{\mathbf{p}} \right) \odot \mathbf{h} \odot \mathbf{E}$ ; /* where  $\odot$  is broadcasted over  $\mathbf{E}$  columns */
10 While not all  $\mathbf{f}$  is False do
11    $\mathbf{g} := \emptyset, \mathbf{l} := \emptyset$ ;
12   for  $l = 1 : N_{\mathbf{W}}$  do
13     if  $\mathbf{f}[l] = \text{True}$  then
14        $\mathbf{g} := \mathbf{C}[l, \mathbf{k}[l]] - \mathbf{C}[l, \mathbf{k}[l] + 1]$ ; /* gain by increasing kernel size by 1 */
15       Append  $l$  to  $\mathbf{l}$ , append  $\mathbf{g}$  to  $\mathbf{g}$ ;
16   Sort  $\mathbf{g}$  in decreasing order, and arrange  $\mathbf{l}$  accordingly;
17   for  $(g, l)$  in  $(\mathbf{g}, \mathbf{l})$  do
18      $\mathbf{k}_l := \mathbf{k}$ ;
19      $\mathbf{k}_l[l] = \mathbf{k}_l[l] + 1$ ;
20     if  $\mathbf{k}_l^T \mathbf{p} \leq T$  then
21        $\mathbf{k}_l[l] = \mathbf{k}_l[l] + 1$ ;
22       break; /* escape the for loop */
23     else
24        $\mathbf{f}[l] := \text{False}$ ;
25    $\mathbf{f} \leftarrow \text{and}(\mathbf{f}, \mathbf{k} < K_{\max})$ ; /* element-wise logical and */
26 return  $\mathbf{k}$ 

```

1726
1727

Projection-weighted Canonical Correlation Analysis. Canonical Correlation Analysis (CCA) finds bases for two matrices such that, when the original matrices are projected onto these bases, the

resulting projections are maximally correlated. Without loss of generality, we assume that $n \leq m$. For $1 \leq i \leq n$, the i -th canonical correlation coefficient ρ_i is given by:

$$\begin{aligned} \rho_i &= \max_{\mathbf{w}_X^i, \mathbf{w}_Y^i} \text{corr}(\mathbf{X}\mathbf{w}_X^i, \mathbf{Y}\mathbf{w}_Y^i) \\ \text{subject to } &\mathbf{X}\mathbf{w}_X^i \perp \mathbf{X}\mathbf{w}_X^j \quad \forall j < i \\ &\mathbf{Y}\mathbf{w}_Y^i \perp \mathbf{Y}\mathbf{w}_Y^j \quad \forall j < i. \end{aligned} \quad (85)$$

The vectors $\mathbf{w}_X^i \in \mathbb{R}^n$ and $\mathbf{w}_Y^i \in \mathbb{R}^m$ that maximize ρ_i are called the canonical weights. These weights transform the original data into the canonical variables $\mathbf{X}\mathbf{w}_X^i$ and $\mathbf{Y}\mathbf{w}_Y^i$. The constraints in Eq. 85 enforce orthogonality among the canonical variables, ensuring that each successive pair captures a distinct mode of correlation.

The mean CCA correlation is then computed as:

$$\bar{\rho}_{\text{CCA}} = \frac{\sum_{i=1}^n \rho_i}{n}, \quad (86)$$

where n is the number of canonical correlation coefficients considered.

CCA is sensitive to perturbation when the condition number of \mathbf{X} and \mathbf{Y} is large. To improve robustness, [Morcos et al. \(2018\)](#) propose a strategy to reduce this sensitivity, which they term “projection-weighted CCA” (PWCCA).

$$\rho_{\text{PWCCA},i} = \frac{\sum_{i=1}^c \alpha_i \rho_i}{\sum_{i=1}^c \alpha_i}, \quad \alpha_i = \sum_j |\langle \mathbf{h}_i, \mathbf{x}_j \rangle|, \quad (87)$$

where \mathbf{x}_j is the j -th column of \mathbf{X} , and $\mathbf{h}_i = \mathbf{X}\mathbf{w}_X^i$ is the vector of canonical variables formed by projecting \mathbf{X} to the i -th canonical coordinate frame.

E.2 KERNEL ALLOCATION ALGORITHM

[Algorithm 9](#) illustrates the details of our algorithm for kernel allocation.

F THEORETICAL ANALYSIS OF TRAINING COMPLEXITY

Consider a linear layer without bias, defined as $\mathbf{Y} = \mathbf{X}\mathbf{W}$ where $\mathbf{X} \in \mathbb{R}^{B \times L \times N}$ and $\mathbf{W} \in \mathbb{R}^{N \times M}$. Here, B is the mini-batch size, L is the sequence length, N is the input dimension, and M is the output dimension. We analyze the number of multiplications (MULs) required.

Latent-weight approach (same cost as full-precision training):

- Forward: $B \times L \times N \times M$ (FP16–FP16 MULs)
- Backward w.r.t. weights: $B \times L \times N \times M$ (FP16–FP16 MULs)
- Backward w.r.t. inputs: $B \times L \times N \times M$ (FP16–FP16 MULs)
- **Total:** $3 \times B \times L \times N \times M$ FP16–FP16 MULs

Boolean approach with K kernels: (assuming FP16 gradients for a fair comparison). As shown in the main text, only the final Boolean kernel needs to be fine-tuned. The number of multiplications becomes:

- Forward: $K \times B \times L \times N \times M$ (BOOL–FP16 MULs, using all K kernels)
- Backward w.r.t. weights: $1 \times B \times L \times N \times M$ (FP16–FP16 MULs, for last kernel only)
- Backward w.r.t. inputs: $1 \times B \times L \times N \times M$ (BOOL–FP16 MULs, for last kernel only)
- **Total:** $(K + 1) \times B \times L \times N \times M$ BOOL–FP16 MULs, and $B \times L \times N \times M$ FP16–FP16 MULs

Since K is typically small (e.g., 2–4) while B and L are large (thousands), most computation shifts from FP16–FP16 to the more efficient BOOL–FP16 operations. If we ignore the BOOL–FP16 MULs,

1782 the FP16–FP16 operations are reduced by a factor of $2/3$ (i.e., a 66.7% reduction). Remarkably,
 1783 this reduction is achieved while using more kernels and attaining better performance, yet with
 1784 significantly lower training complexity. According to BitNet (Wang et al., 2023) (Table 1), for
 1785 $L = 512$ and a LLaMA-like 13B model on 7 nm hardware, 1Bit–FP16 operations yield an energy
 1786 saving of approximately **56**× compared to FP16–FP16. Hence, our method achieves substantial
 1787 training efficiency. Importantly, BitNet is a latent-weight approach, with efficiency gains realized
 1788 primarily during inference, whereas our method provides significant benefits already during training
 1789 and fine-tuning.

1790 We note that the above analysis does not include optimizer cost. The latent-weight approach typically
 1791 relies on Adam, which requires two full-precision momenta per parameter and a complex update rule
 1792 involving multiple normalization statistics. By contrast, our Boolean approach employs a Boolean
 1793 optimizer requiring only one full-precision momentum per parameter, coupled with a much simpler
 1794 update rule (see Eq. 3). This further underscores the reduction in overall training complexity offered
 1795 by our method.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL INFORMATION OF EXPERIMENTAL SETTINGS

1802 We use 12 Nvidia GPUs of Tesla V100 for our experiments. We follow exactly the experimental
 1803 settings in Jo et al. (2024). The results of the baselines in Table 2 are taken from Xu et al. (2024); Jo
 1804 et al. (2024).

G.2 ON THE CHOICE OF KD LOSS

1820 Figure 12: The training convergence of \mathcal{L}_{is} , and \mathcal{L}_{logits} , measured by Forward KL, and the final
 1821 results with respect to the choice of D_{logits} .

1824 Fig. 12 illustrates the convergence and results of using different choices for D_{logits} in Eq. 10. Despite
 1825 its simplicity, forward KL achieves the best performance. More complex measures, such as total
 1826 variance (TV) distance (Wen et al., 2023) and Jensen-Shannon (JS) divergence (Agarwal et al., 2024),
 1827 offer no significant benefits in our case. Furthermore, we observe that the final perplexity is strongly
 1828 correlated with \mathcal{L}_{logits} using forward KL, but not with \mathcal{L}_{is} , as shown in Fig. 12 and Fig. 6. As a result,
 1829 we employ the forward KL in all experiments.

G.3 RESULTS OF DIFFERENT NUMBER OF KERNELS ON LLMs

1833 To complement the Table 2, Table 5 shows the benchmarking results of LLMs using our MBOk
 1834 method with varying numbers of kernels per weight. Consistent with the observations made on
 1835 smaller models in § 6.1.1, we observe that increasing the number of kernels generally improves
 1836 performance. However, the performance gains begin to diminish noticeably beyond three kernels.

1836 Table 5: Perplexity and zero-shot accuracy results of our MBOK method with different number of
1837 kernels.
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849	1840 1841 1842 1843 1844 1845 1846 1847 1848 1849	1841 1842 1843 1844 1845 1846 1847 1848 1849	1842 1843 1844 1845 1846 1847 1848 1849	1843 1844 1845 1846 1847 1848 1849	1844 1845 1846 1847 1848 1849	1845 1846 1847 1848 1849		1846 1847 1848 1849			
						1845 1846 1847 1848 1849	1846 1847 1848 1849	1847 1848 1849	1848 1849	1849	1849
OPT-1.3B	MBOK (2 kernels)	2×1	16.13	16.61	58.53	70.67	48.11	56.75	48.19	27.90	51.69
	MBOK (3 kernels)	3×1	15.30	15.68	60.64	70.78	50.71	56.83	48.82	28.49	52.71
	MBOK (4 kernels)	4×1	14.83	14.92	60.95	70.85	51.02	56.85	49.13	29.24	53.01
LLaMA-7B	MBOK (2 kernels)	2×1	6.83	8.53	69.20	74.32	64.80	60.30	49.05	34.90	58.76
	MBOK (3 kernels)	3×1	6.20	7.76	67.89	76.15	68.91	63.30	48.94	37.62	60.47
	MBOK (4 kernels)	4×1	6.01	7.53	68.16	76.71	69.85	62.09	49.24	38.14	60.70
LLaMA-13B	MBOK (2 kernels)	2×1	6.17	7.88	68.10	76.33	69.88	64.17	52.34	37.88	61.45
	MBOK (3 kernels)	3×1	5.58	7.15	67.39	77.74	73.37	66.61	54.04	41.21	63.39
	MBOK (4 kernels)	4×1	5.38	6.91	68.69	77.63	74.23	66.53	56.14	41.38	64.10

1850
1851 G.4 ADDITIONAL RESULTS ON LLaMA-2
18521853
1854 Table 6 shows the results on LLaMA2-13B (Touvron et al., 2023b). Similar to the Table 2, the
1855 results of the baselines are taken from Xu et al. (2024) and Jo et al. (2024). It is clear that our
1856 method consistently outperforms the baselines across different metrics and model sizes. This further
1857 emphasizes the robustness of our approach across various types of models.
1858
18591860 Table 6: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLaMA2
1861 models.
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883		1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883						
			1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1874 1875 1876 1877 1878 1879 1880 1881 1882 1883	1875 1876 1877 1878 1879 1880 1881 1882 1883
LLaMA-7B	FP16	16	5.47	6.97	71.10	76.88	72.94	67.09	53.58	40.61	63.70
	PB-LLM	1.7	76.75	85.92	62.17	52.82	26.87	50.11	26.89	24.31	40.53
	BiLLM	1.11	27.72	36.34	62.14	59.19	35.18	53.11	34.22	26.54	45.06
	OneBit	1	8.60	10.74	63.06	70.40	54.24	56.67	40.82	29.35	52.42
	MoS	1	7.88	9.75	65.02	71.55	59.41	56.18	41.84	30.03	54.01
	OPTQ	2	7.7e3	NaN	42.97	49.46	26.19	50.28	26.77	28.58	37.38
	LLM-QAT	2	1.1e3	6.6e2	59.14	50.12	25.10	49.08	26.26	26.96	35.89
	OmniQuant	2	31.21	64.34	58.69	56.53	33.87	51.22	33.63	24.32	43.12
	MBOK [Ours]	2×1	6.87	8.74	66.94	74.97	65.59	61.72	44.82	34.21	58.04
	MBOK [Ours]	3×1	6.12	7.81	65.46	75.79	69.59	62.04	49.11	37.80	59.97
LLaMA-13B	FP16	16	4.88	6.47	68.99	79.05	76.62	69.77	57.95	44.20	66.10
	PB-LLM	1.7	155.25	151.15	37.82	53.26	28.89	49.48	28.28	23.72	36.91
	BiLLM	1.11	20.71	27.19	62.20	62.51	38.05	56.35	40.69	27.73	47.92
	OneBit	1	7.56	9.67	65.66	71.60	60.07	56.91	45.76	31.74	55.29
	MoS	1	7.08	8.91	66.12	73.72	63.80	58.98	45.71	33.19	57.09
	OPTQ	2	2.1e3	3.2e2	40.61	51.74	25.67	51.85	25.46	27.30	37.11
	LLM-QAT	2	5.1e2	1.1e3	39.85	49.08	24.37	51.38	27.15	24.32	36.03
	OmniQuant	2	16.88	27.02	62.05	62.24	50.34	53.20	40.66	29.61	49.68
	MBOK [Ours]	2×1	5.97	7.85	66.32	75.84	70.24	62.51	50.00	37.46	60.40
	MBOK [Ours]	3×1	5.35	7.07	66.80	77.59	73.79	65.27	54.47	41.89	63.30

1884
1885 G.5 GENERATION QUALITY
18861887
1888 Table 7 illustrates the generated text given zero-shot arbitrary questions from LLaMA-13B with FP16
1889 weights and MBOK using three kernels. It is clearly that our model is able to produce meaningful and
coherennt text compared to the original FP16 model.

1890 Table 7: Comparison of generation quality (*non-curated*) on LLaMA-13B models with FP16 and MBOK
 1891 using three kernels.

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

Prompt: What are the capitals of China, US and Russia?

FP16: The capital of China is Beijing. The capital of the United States is Washington D.C. and the capital of Russia is Moscow.

MBOK: The capital of China is Beijing. The capital of the US is Washington D.C. and the capital of Russia is Moscow.

Prompt: I have a friend who lives in London and I would like to visit him. How would I go there from Paris?

FP16: You can take the Eurostar from Gare du Nord in Paris to St. Pancras Station in London. The trip takes about 2 hours and 15 minutes.

MBOK: The fastest way to get from Paris to London is to take the Eurostar train. The Eurostar departs from the Gare du Nord station in Paris and arrives at the St. Pancras International station in London. The trip takes about 2 hours and 15 minutes.

Prompt: What is Fete du Travail?

FP16: It is an annual holiday celebrated all over the world that resulted from the labour union movement, to celebrate the economic and social achievements of workers. The majority of countries celebrate Labour Day on May Day, or May 1, and it is popularly known as May Day and International Workers' Day

MBOK: In France, May 1st is a public holiday. It is also known as Labour Day, International Workers_ Day, or May Day. It is a celebration of the social and economic achievements of the labour movement. It originated from the eight-hour day movement, which advocated eight hours for work, eight for recreation, and eight for rest.

Prompt: What are the main ingredients in pho, Vietnam_s iconic noodle soup?

FP16: Rice noodles, beef or chicken, onions, ginger, cilantro, bean sprouts, basil, lime, hoisin sauce, Sriracha, and fish sauce.

MBOK: Bone broth, rice noodles, fish sauce, herbs and spices, and beef, chicken, or seafood, depending on the type of pho you're eating. Pho is usually served with bean sprouts, Thai basil, lime wedges, and hoisin and sriracha sauces.

G.6 ADDITIONAL BASELINES

G.6.1 COMPARIONS WITH QUIP AND SHIFTADDELLM

Both QuIP (Chee et al., 2023) and ShiftAddLLM (You et al., 2024) are PTQ method for LLMs. QuIP is a two-step process that leverages the insight that quantization performs better when weight and Hessian matrices are incoherent. It uses an adaptive rounding procedure to minimize a quadratic proxy objective, which measures the error between the original and quantized weights. Additionally, it applies pre- and post-processing steps using random orthogonal matrices to ensure the weight and Hessian matrices are incoherent. Conversely, our method does not employ either these complicated pre- and post-processing steps or costly Hessian matrices. Meanwhile, ShiftAddLLM is a post-training

1944 reparameterization process, which quantizes each weight matrix in the LLM into a set of binary
 1945 matrices and group-wise scaling factors. The original multiplication between activations and weights
 1946 is then reparameterized into: (1) bitwise shifts for the activations, using the power-of-two quantized
 1947 scaling factors, and (2) additions of the results, guided by the binary weight matrices; this process
 1948 can be implemented using look-up tables (LUTs) on GPUs.

1949 **Table 8** presents results on OPT models, with competitor results extracted from their respective
 1950 original papers. Notably, ShiftAddLLM utilizes a more computationally expensive group quantization,
 1951 whereas our method does not. Our results clearly demonstrate that our approach consistently and
 1952 significantly outperforms these baselines, particularly in the 2-bit scenario.

1953

1954

1955 Table 8: Comparisons with QuIP, ShiftAddLLM using OPT models.

1956

1957

BIT-WIDTH	METHOD	OPT-125M	OPT-350M	OPT-1.3B
2	QuIP (Chee et al., 2023)	34.22	25.19	16.21
	ShiftAddLLM (You et al., 2024)	31.29	24.24	21.53
	MBOK [Ours]	29.10	23.12	15.03
3	QuIP (Chee et al., 2023)	347.40	672.30	41.64
	ShiftAddLLM (You et al., 2024)	51.15	40.24	29.03
	MBOK [Our]	28.60	24.54	16.13

1965

1966

1967

1968 G.6.2 COMPARIONS WITH BITSTACK, DB-LLM AND AWQ

1969

1970 While BitStack (Wang et al., 2025) also decompose weights using SVD, its core method and goal
 1971 fundamentally differ from our method. BitStack is a training-free method primarily aimed at saving
 1972 storage for inference. In contrast, our method not only converts FP models into Boolean models but
 1973 also includes further fine-tuning, with the goal of achieving low complexity in both training and
 1974 inference. Furthermore, while BitStack packs the extracted binary matrix into GPU-supported data
 1975 types to reduce inference memory, and its approach to loading residual blocks relies on their influence
 1976 on perplexity, our approach to residual block management is distinct.

1977 DB-LLM (Chen et al., 2024) is limited to a fixed decomposition into two binary matrices, whereas our
 1978 MBOK method generalizes to an arbitrary number of Boolean kernels. In DB-LLM, the full-precision
 1979 knowledge is preserved only through scaling factors and binary matrices derived implicitly via
 1980 thresholding. There is no formal analysis proving the optimality of this formulation. In contrast,
 1981 thanks to the SVID in our approach, each extracted kernel is accompanied by an optimal scaling
 1982 vector and Boolean matrix. This allows us to only finetune the last kernel to calibrate the entire model.
 1983 Like most existing binary LLMs, DB-LLM relies on full-precision latent weights during training
 1984 and finetuning. Our method does not require this, as it directly operates in the Boolean domain.
 1985 This distinction is particularly important in the LLM context, where training and finetuning can be
 1986 computationally expensive.

1987 **Table 9** compares our method, MBOK (with 2 kernels), against BitStack, DB-LLM, and AWQ (Lin et al.,
 1988 2024) on LLaMA2-7B. It is evident that our method consistently outperforms all baselines.

1989

1990

1991

1992 Table 9: Comparisons with AWQ, BitStack, DB-LLM using LLaMA2-7B with 2-bit setting.

1993

1994

1995

1996

1997

METHOD	Wiki2 (↓)	ARC-e (↑)	ARC-c (↑)	PIQA (↑)	Hella. (↑)	WinoG. (↑)
AWQ (Lin et al., 2024)	1.8e5	26.3	26.7	50.9	26.5	49.3
BitStack (Wang et al., 2025)	29.93	32.3	25.6	62.4	42.8	53.6
DB-LLM (Chen et al., 2024)	7.23	45.2	33.5	73.1	61.9	61.7
MBOK [Ours]	6.87	44.8	34.2	75.0	65.6	61.7

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

G.7 EFFECTS OF KNOWLEDGE DISTILLATION

Figure 13: Study on the effect of using knowledge distillation on OPT-125M with 2 Boolean kernels.

Fig. 13 presents a comparison between training with and without Knowledge Distillation (KD). It is evident that employing KD outperforms the baseline in terms of test perplexity on the Wiki2 and C4 datasets, as it provides more informative guidance during training. To investigate this behavior further, we visualize the convergence of $\mathcal{L}_{\text{logits}}$ and \mathcal{L}_{is} . Aided by the informative guidance from the teacher, convergence with KD is significantly faster. Furthermore, the model learns more effectively—leveraging the additional signal from the teacher—as evidenced by the higher flipping rates compared to training without KD.

G.8 ANALYSIS OF SCALING VALUES

Figure 14: Histogram of output-scaling values for the first linear layer of OPT-125M with four kernels, shown at initialization and after finetuning. The Kolmogorov-Smirnov (KS) statistic is also reported to quantify the difference between the scaling-value distributions before and after finetuning.

Fig. 14 illustrates how the output-scaling values of the four kernels in the first linear layer change from initialization to after finetuning. All output-scaling values are learnable; however, only those associated with the last kernel exhibit a substantial shift during training. This is evident from both the histogram changes and the corresponding Kolmogorov-Smirnov distance.

After finetuning, the scaling values of the last kernel become significantly larger and more dominant, whereas the scaling values of the other kernels change only minimally. This observation supports our theoretical analysis: successive SVID extraction provides sufficiently strong initialization for the low-order kernels, and finetuning primarily the last kernel is already adequate.

G.9 CONVERGENCES OF OPT MODELS

Fig. 15 shows the training convergences of MBOK using 3 kernels with OPT models.

Figure 15: The training convergences of MBOK using 3 kernels with OPT models.

2106 **G.10 EFFECTS OF SUCCESSIVE SVID INITIALIZATION**
21072115
2116 Figure 16: Study on the effect of using our successive SVID strategy and random initialization on
2117 OPT-125M with 2 Boolean kernels.
21182119 Fig. 16 compares our proposed successive SVID initialization with a random initialization. It is clear
2120 that our method delivers far better results, while the random initialization often fails to converge.
2121 Moreover, our initialization enables the model to learn efficiently, whereas the random initialization
2122 causes the model to struggle, as reflected by the large number of Boolean flips.
21232124 **G.11 DISCUSSION ON LATENCY AND COMPARISON WITH VECTOR QUANTIZATION**
21252126 **Scalar and Vector Quantization.** In the context of LLMs, scalar quantization and vector quantiza-
2127 tion are two different approaches for compressing weights. Scalar quantization maps each weight or
2128 activation independently to a smaller set of discrete levels (e.g., 32-bit floating-point to 8- or 4-bit
2129 integers). It is simple, hardware-friendly, and widely used in practice, but it ignores correlations
2130 across dimensions, potentially discarding fine-grained structure. Vector quantization (VQ) instead
2131 compresses entire vectors (e.g., weight groups) by replacing them with indices into a learned code-
2132 book of representative vectors. By capturing cross-dimensional correlations, VQ often achieves
2133 higher compression, particularly for large embedding tables. However, codebook training is more
2134 complex, and inference requires index lookups to reconstruct vectors. This adds significant overhead
2135 to both quantization and dequantization, leading to much higher latency compared to scalar methods.
21362137 Our method is native 1-bit weight design, its nearest baselines are scalar weight quantization. As a
2138 result, for a fair comparison, in the main text we mainly consider state-of-the-art scalar quantization
2139 like OmniQuant (Shao et al., 2024), OPTQ (Frantar et al., 2023), LLM-QAT (Liu et al., 2024c) as the
2140 main baselines. Nevertheless, for completeness, we also compare our approach against state-of-the-art
2141 ultra low-bit vector quantization (VQ) methods for LLMS, including QTIP (Tseng et al., 2024b) and
2142 QUIP# (Tseng et al., 2024a) in a 2-bit setting, specifically on LLaMA-7B with a sequence length of
2143 2048 (results taken from the QTIP paper). The results are summarized in Table 10. Remarkably, our
2144 method’s performance is comparable to these state-of-the-art (SOTA) VQ methods. This is noteworthy
2145 given that our approach directly utilizes native Boolean weights, eliminating the need for the very
2146 costly quantization and dequantization of high-dimensional vectors inherent in VQ.
21472148 Table 10: Perplexity comparison with SOTA vector quantization methods using LLaMA-7B.
2149

METHOD	Wiki2 (↓)	C4 (↓)
QUIP# (Tseng et al., 2024a)	6.86	8.36
QTIP (Tseng et al., 2024b)	6.52	7.99
MBOK [Ours]	6.83	8.53

2150 **Empirical Evidence of Latency Gains.** To demonstrate the practicality of our approach even on
2151 modern hardware such as GPUs, we leverage the recently introduced BitBLAS library ¹ (Wang et al.,
2152 2024) for 1-bit matrix multiplications. Using FP16 activations with INT1 weights, we measure the
2153 latency of linear layers in LLaMA-7B (Table 11) and LLaMA-13B (Table 12) under an inference batch
2154 size of 1, evaluating our method MBOK with two kernels. Our results show that MBOK achieves up to
21552156 ¹<https://github.com/microsoft/BitBLAS>
2157

2160 an 8.7 \times speedup over FP16 baselines, while substantially outperforming existing binarization and
 2161 scalar quantization methods, as detailed in the main text. We also benchmark against 2-bit QUIP#
 2162 and QTIP using the authors' official implementations²³. All experiments are conducted on a Google
 2163 Cloud A100 GPU.

2164 Remarkably, our method is not only much faster than these VQ baselines but also delivers comparable
 2165 performance. This is expected, as VQ-based methods incur significant overhead from the costly
 2166 encoding and decoding steps required to realize their high compression ratios. Taken together, the
 2167 results highlight that our native Boolean approach offers a compelling and efficient alternative to
 2168 state-of-the-art vector quantization methods. With dedicated Boolean hardware accelerators, the
 2169 performance gains would be even more pronounced.

2170
 2171 Table 11: Measured latency (ms) of linear layers in LLaMA-7B, with values in parentheses denoting
 2172 speed-up relative to the FP16 baseline.

WEIGHT SIZE	FP16	QUIP# (Tseng et al., 2024a)	QTIP (Tseng et al., 2024b)	MBOK (Ours)
4096×4096	0.10697	0.46196 (0.23 \times)	1.37137 (0.08 \times)	0.04989 (2.14\times)
4096×11008	0.27935	0.55526 (0.50 \times)	3.13633 (0.09 \times)	0.05136 (5.44\times)
11008×4096	0.27664	0.55988 (0.49 \times)	3.16067 (0.09 \times)	0.05117 (5.41\times)

2173
 2174 Table 12: Measured latency (ms) of linear layers in LLaMA-13B, with values in parentheses denoting
 2175 speed-up relative to the FP16 baseline.

WEIGHT SIZE	FP16	QUIP# (Tseng et al., 2024a)	QTIP (Tseng et al., 2024b)	MBOK (Ours)
5120×5120	0.16540	0.62260 (0.27 \times)	1.96368 (0.08 \times)	0.05074 (3.25\times)
5120×13824	0.42830	0.62836 (0.68 \times)	5.23681 (0.09 \times)	0.05098 (8.40\times)
13824×5120	0.43411	0.62840 (0.69 \times)	5.21193 (0.08 \times)	0.04987 (8.70\times)

H ETHICS STATEMENT

2191 This work makes a fundamental contribution to machine learning methodology. It does not involve
 2192 human subjects, sensitive data, or applications with direct societal or ethical risks. We do not foresee
 2193 any immediate ethical concerns arising from this research.

I REPRODUCIBILITY STATEMENT

2194 We provide detailed descriptions of all algorithms and illustrative code for the core components.
 2195 Experiments are conducted on standard benchmarks using established testing procedures, and all
 2196 experimental details and settings are fully declared to facilitate independent reproduction of our
 2197 results.

J THE USE OF LARGE LANGUAGE MODELS

2198 We used large language models (LLMs) solely for non-substantive assistance, including grammar
 2199 refinement and summarizing relevant literature. All research ideas, analyses, and conclusions are the
 2200 authors' own.

2211
 2212 ²<https://github.com/Cornell-RelaxML/quip-sharp>

2213 ³<https://github.com/Cornell-RelaxML/qtip>