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ABSTRACT

Large language models (LLMs) have proven invaluable for code generation,
particularly in interactive settings. However, existing code generation bench-
marks fail to capture the diverse feedback encountered in multi-turn interac-
tions, limiting our ability to evaluate LLMs in these contexts. To address this
gap, we present a set of novel benchmarks that explicitly model the quality
of feedback provided to code generation LLMs. Our contributions are three-
fold: First, we introduce CONVCODEWORLD, a novel and reproducible environ-
ment for benchmarking interactive code generation. CONVCODEWORLD simu-
lates 9 distinct interactive code generation scenarios while systematically com-
bining three types of feedback: (a) compilation feedback; (b) execution feed-
back with varying test coverage; (c) verbal feedback generated by GPT-4o with
different levels of expertise. Second, we introduce CONVCODEBENCH, a fast,
static version of benchmark that uses pre-generated feedback logs, eliminat-
ing the need for costly dynamic verbal feedback generation while maintaining
strong Spearman’s rank correlations (0.82 to 0.99) with CONVCODEWORLD.
Third, extensive evaluations of both closed-source and open-source LLMs on
CONVCODEWORLD reveal key insights: (a) LLM performance varies signifi-
cantly based on the feedback provided; (b) Weaker LLMs, with sufficient feed-
back, can outperform single-turn results of state-of-the-art LLMs without feed-
back; (c) Training on a specific feedback combination can limit an LLM’s abil-
ity to utilize unseen combinations; (d) LLMs solve problems in fewer turns
(high MRR) may not solve as many problems overall (high Recall), and vice
versa. All implementations and benchmarks will be made publicly available at
https://huggingface.co/spaces/ConvCodeWorld/ConvCodeWorld.

1 INTRODUCTION

Human-AI pair programming has become a promising approach to boost software development pro-
ductivity, where large language models (LLMs) iteratively refine the code from developers’ feed-
back. However, most existing benchmarks focus on single-turn scenarios, where LLMs are expected
to generate executable code in one attempt Chen et al. (2021); Hendrycks et al. (2021); Austin et al.
(2021); Li et al. (2022); Zhuo et al. (2024).

To address these gaps, we introduce CONVCODEWORLD (§2; left panel in Figure 1), a novel envi-
ronment for benchmarking interactive multi-turn code generation across diverse feedback combina-
tions. CONVCODEWORLD features nine scenarios by combining three feedback types: (a) compila-
tion feedback, (b) execution feedback with partial and full test coverage, and (c) novice and expert
level verbal human feedback. We simulate human feedback using GPT-4o (OpenAI, 2024) to gener-
ate verbal responses, ensuring reproducibility and cost-efficiency at only 1.5% of the cost of human
annotation (Appendix A.2).

While replacing expensive human intervention with LLMs in CONVCODEWORLD reduces costs, it
can still be expensive due to computational overhead or API fees, and latency due to LLM response.
To address these issues, we introduce CONVCODEBENCH (§3; right panel in Figure 1), a static
benchmark using pre-generated feedback logs. CONVCODEBENCH eliminates the need for real-
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Figure 1: (Left) CONVCODEWORLD is a dynamic, reproducible environment that simulates nine
distinct feedback scenarios by combining three types of feedback. (Right) CONVCODEBENCH is
a static version of the benchmark that uses pre-generated logs and strongly correlates with CON-
VCODEWORLD. Together, these frameworks provide a comprehensive, cost-effective approach for
evaluating LLMs in multi-turn, feedback-driven code generation, enabling scalable and consistent
benchmarking across diverse feedback combinations.

time feedback generation while maintaining strong correlation with CONVCODEWORLD (Spear-
man’s rank 0.82-0.99; §4.3), offering a cost-effective and scalable solution for large-scale LLM
benchmarking.

Existing benchmarks like InterCode (Yang et al., 2023) and MINT (Wang et al., 2024) lack the
variety feedback combinations needed for comprehensive LLM performance assessment (§5). Ad-
ditionally, their reliance on LLM calls for verbal feedback increases costs. Our study stands out by
(a) offering a reproducible environment with 9 unique feedback combinations, and (b) providing a
cost-effective benchmark using pre-generated logs, avoiding costly LLM calls for verbal feedback
while maintaining strong correlation with live results.

Through extensive experiments using both CONVCODEWORLD and CONVCODEBENCH across 17
different open and closed-source models, we have gathered several key insights: (§4.2):

• Feedback Combinations Diversifying Evaluation: LLM performance varies across feedback
settings, with feedback combinations affecting model rankings, highlighting the need for evalu-
ation across diverse scenarios.

• Weaker Models with Feedback Surpassing Single-Turn SOTA: Weaker LLMs, with suffi-
cient multi-turn feedback, can surpass state-of-the-art models in single-turn scenarios without
feedback. This emphasizes the importance of interactive multi-turn code generation.

• Generalization Challenges: Models trained on limited feedback struggle to generalize to un-
seen combinations, highlighting the difficulty of adapting LLMs to new scenarios.

• MRR and Recall Trade-off: LLMs that efficiently solve problems in fewer turns (high MRR)
may not solve as many problems in total (high Recall), highlighting a trade-off between effi-
ciency and problem coverage.
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2 CONVCODEWORLD: REPRODUCIBLE FEEDBACK ENVIRONMENTS

In real-world settings of interactive code generation, the types and combinations of feedback can
vary significantly due to factors such as the availability of feedback from code execution (e.g., er-
ror messages, output) and the expertise of the feedback provider. These variations, particularly the
provider’s expertise, can strongly influence the quality of the verbal feedback when it is offered.

To effectively evaluate LLMs under these varying conditions, we propose CONVCODEWORLD, a
novel and reproducible environment designed to simulate a wide range of interactive code generation
scenarios. Two key features of CONVCODEWORLD are as follows: (a) Encompassing Diverse
Real-World Scenarios: CONVCODEWORLD covers nine distinct feedback combinations that occur
in practical settings; (b) Ensure the Reproducibility of Evaluation: CONVCODEWORLD provides
a consistent and repeatable framework for assessing the performance of LLMs.

2.1 FEEDBACK CATEGORIZATION

Table 1: By providing diverse feedback
types, with different coverage levels in
execution and natural language feedback,
ours encompasses a broader range of re-
alistic scenarios. △ indicates partial cov-
erage with specific limitations: 1Syntax
errors only, 2Limited by test coverage
or feedback provider, 3Potential misguid-
ance due to limited expertise.

Feedback Fault Guidance for
Localization Refinement

fc △1 ✗

fe △2 ✗

f˚
e ✓ ✗

fv △2 △3

f˚
v ✓ ✓

To accurately simulate real-world feedback in interac-
tive code generation, we focus on two critical compo-
nents: (a) Fault Localization: Identifying the specific
parts of the code where issues or errors occur; (b) Guid-
ance for Refinement: Offering suggestions or instruc-
tions on how to correct the identified issues.

As means of obtaining such information, we consider
three different types of feedback: compilation feedback,
execution feedback, and verbal feedback.

Compilation Feedback (fc) Originated from the
compiler, this feedback identifies syntax and type-
checking errors but cannot localize logical or runtime
errors. As a result, Table 1 marks this with △ for par-
tial fault localization. Additionally, compilation errors
do not offer refinement guidance.

Execution Feedback Derived from executing the
code, this feedback includes runtime errors and test run
results. Full or partial fault localization is provided, de-
pending on test coverage (TC): (a) Full TC (f˚

e ): With complete test cases, precise fault localization
identifies where and under what conditions the code fails, providing details on the failure’s location
and triggering inputs; (b) Partial TC (fe): In more realistic settings with partial test coverage, fault
localization is limited to tested code lines, potentially leaving faults in untested sections undetected.
This type of feedback simulates incomplete real-world test suites, where only a subset of possible
execution paths is covered. Refinement guidance is not provided in either full or partial test coverage
executions.

Verbal Feedback Verbal feedback in our benchmark is generated by LLMs simulating human
feedback, ranging from novice to expert levels. This feedback could emulate responses from hu-
mans, such as experts guiding LLMs to generate code, or novices without coding expertise. Both
fault localization and refinement guidance are provided verbally, but the extent and accuracy of this
feedback depend on the simulated provider: (a) Novice-Level (fv): At this level, the LLM sim-
ulates novice feedback, which tends to rely heavily on other feedback types (e.g., compilation or
execution feedback) and often restates observed errors without deeper understanding. Refinement
guidance may be incorrect or absent, due to the simulated novice’s limited expertise or the LLM’s
potential hallucinations. (b) Expert-Level (f˚

v ): Expert feedback reflects scenarios where expert
programmers use LLMs to automate simpler tasks, allowing them to concentrate on more complex
coding challenges. This feedback is simulated by the LLM to provide detailed fault localization and
code refinement guidance. It generates the feedback an expert programmer might give, focusing on
resolving issues with a deep understanding of programming concepts and the expected functionality.
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2.1.1 VERBAL FEEDBACK GENERATION

We generate fv and f˚
v by GPT-4o with in-context learning (Dong et al., 2022). We chose GPT-4o

as we found it to be best at following instructions and minimizing risks such as ground truth code
leakage, as discussed in Appendix A.3.

• Generation of fv: Novice-level verbal feedback is constructed by verbalizing outputs from com-
pilation and/or execution feedback, possibly supplemented with language model predictions.

• Generation of f˚
v : Expert-level verbal feedback is produced by showing the agent’s code with

the correct reference code (Wang et al., 2024), enabling a comparison and subsequent detailed
feedback on required modifications. We perform extensive analysis to ensure no ground truth
code is leaked during f˚

v generation (see Appendix A.3 for analysis on this).

See appendices A.4 for comparative analysis of verbal feedback using different LLMs, F for the
in-context examples, and G for a generated example of f˚

v .

Reproducibility and Cost-Efficiency Compared to Human Annotation Manual annotation of
verbal feedback is costly and lacks reproducibility. Instead, we use GPT-4o, as supported by prior
studies demonstrating the effectiveness of LLM-generated feedback in benchmarks (Wang et al.,
2024; Yao et al., 2024). This approach improves reproducibility by using a consistent feedback
provider and reduces annotation costs to about 1.5% (Appendix A.2) of those for human annotators.

2.2 FEEDBACK COMBINATIONS

In each of our turns, we simulate different real-world interactive code generation scenarios by com-
bining representative feedback combinations. We represent feedback settings by taking a Cartesian
product across compilation feedback settings, execution feedback settings, and verbal feedback set-
tings. In particular, we formalize a feedback combination Ω as a tuple of feedback expressed by
regular expression notation:

Ω “ xfc, rϕ|fe|f˚
e s, rϕ|fv|f˚

v sy. (1)

The choices of feedback settings is simply dictated by these observations: (a) Compilation feedback
fc is always present since it is cheap and universally available; (b) Execution feedback varies among
being unavailable (ϕ), available with partial test coverage (fe), or with full test coverage (f˚

e ); (c)
Verbal feedback can be also unavailable (ϕ), available with novice-level (fv), or with expert-level
(f˚

v ). By combining these options—1 for compilation feedback, 3 for execution feedback, and 3 for
verbal feedback—we obtain 9 distinct feedback combinations.

Each feedback combination Ω reflects a unique real-world scenario, allowing us to comprehensively
evaluate LLMs under diverse conditions as listed in Table 6.

Now it is easy to formalize the interactive code generation in CONVCODEWORLD: For each turn
t, the target code generation model M iteratively generates the next version of code CM

t`1 from the
problem description x, the generated code CM

t , and the corresponding tuple of feedback Ωt:

CM
t`1 “ Mpx; CM

t ; Ωtq. (2)

3 CONVCODEBENCH: A STATIC BENCHMARK FOR EFFICIENT EVALUATION

While CONVCODEWORLD provides a comprehensive live benchmark for evaluating LLMs in in-
teractive code generation scenarios, it requires access to an LLM for verbal feedback generation.
Although this approach is more efficient and reproducible than using human annotators, it still intro-
duces additional overhead, cost, and potential reproducibility issues, especially when using closed
API models like GPT-4o. To address these challenges, we propose CONVCODEBENCH, a static
benchmark designed to complement CONVCODEWORLD.

CONVCODEBENCH leverages feedback logs generated by a fixed reference model interacting with
GPT-4o. The benchmark presents pre-generated conversations—including the code produced by the
reference model and the corresponding feedback, such as verbal feedback by GPT-4o—and tasks the
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target code model with refining the code. We revise Equation 2 to formalize CONVCODEBENCH as
follows. For each turn t, the target code generation model M is provided generated code C ĎM

t from
a reference model ĎM, and the corresponding tuple of feedback sΩt provided to outputs generated
by ĎM. Given the model and feedback corresponding to a reference model, the target model M
generates the next version of code CM

t`1:

CM
t`1 “ Mpx; C ĎM

t ; sΩtq. (3)

This approach offers several advantages:

• Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation:
By using static feedback logs, CONVCODEBENCH reduces costs and latency associated with
real-time LLM interactions.

• Parallel Processing of Inference Calls: The static nature of the benchmark allows for batched
evaluation requests across all turns, enabling faster turnaround times.

• Enhanced Reproducibility: Utilizing fixed logs ensures consistent evaluations, further increas-
ing reproducibility.

Table 2: Performance of three different LLMs
at turn 0 (i.e. the initial code generation with-
out feedback) and at turn 10 on CONVCODE-
WORLD where Ω “ xfc, ϕ, f

˚
v y.

Model Pass@1
Turn 0 Turn 10

CodeLlama-7B-Instruct 21.8 55.2
DeepSeek-Coder-6.7B-Instruct 35.2 83.1
GPT-4-0613 46.0 92.5

One key concern when using CONVCODEBENCH
is the bias introduced by pre-generated interaction
logs prompting the question: Can we ensure high
correlation between static and live benchmarks by
an appropriate choice of reference model?

We hypothesize that using logs from a weaker
model, where the generated code still requires re-
finement even after multiple turns, allows for better
differentiation among models based on their ability
to improve unsolved code.

Based on this rationale, we used CodeLlama-7B-
Instruct as a reference model, as it is worse than many other models at both turns 0 and 10 (see
Table 2). We find that creating CONVCODEBENCH with this model yields a very strong correla-
tions with live settings. When comparing models on two settings, we obtained Spearman’s rank
correlations between 0.82 and 0.99. We find that using CodeLlama-7B-Instruct as the base model
outperforms both DeepSeek-Coder-6.7B-Instruct (a stronger code model) and GPT-4 (one of the
state-of-the-arts) as reference models (§4.3).

In summary, we find that CONVCODEBENCH is a great way of comparing code models within the
framework of CONVCODEWORLD despite relying on logs from a reference model because of strong
rank correlations across the two setups.

4 EXPERIMENTS

Using CONVCODEWORLD and CONVCODEBENCH, we conduct comprehensive experiments to
evaluate LLMs’ interactive code generation capabilities across diverse feedback combinations. This
section outlines our experimental setup (§4.1), results on CONVCODEWORLD (§4.2), and results on
CONVCODEBENCH (§4.3).

4.1 SETUP

To implement CONVCODEWORLD, we extended BigCodeBench-Instruct (Zhuo et al., 2024), a
single-turn Python code generation benchmark, into an interactive framework using a custom prompt
pipeline built using DSPy (Khattab et al., 2024) (see Appendix B for the implementation details).
BigCodeBench was selected for three key reasons: (a) its highly challenging problem sets (as of
the writing of this paper, the highest performance on this data is 29%); (b) its large scale, with
1,140 problems, offering higher generalizability than smaller benchmarks like HumanEval (Chen
et al., 2021; 164 problems) and MBPP-sanitized (Austin et al., 2021; 399-427 problems); and (c)
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its comprehensive test coverage—an average of 5.6 cases per problem with 99% branch coverage—
enabling the evaluation of a wide spectrum of execution feedback scenarios, ranging from partial to
full test coverage.

Evaluation Metrics In the interactive scenario, where code is iteratively refined based on feed-
back, we focus on two aspects for evaluation: (a) the number of turns it takes to produce correct
code, with fewer turns being preferable, and (b) whether the model can eventually solve the problem
within a set number of turns n. In our experiments, we set n “ 10.

To capture these aspects, we use Pass@1 (Chen et al., 2021) as the core metric to assess code
correctness at each turn and adapt two complementary metrics from information retrieval: (a) Mean
Reciprocal Rank (MRR): 1

k where k is the turn at which the model produces correct code. If no
correct code is generated within n turns, the score is set to 0; (b) Recall: 1 if the model produces
correct code within n turns.

Baseline LLMs We extensively evaluated 3 closed-source and 14 open-source LLMs rang-
ing from 7B to 70B:1 (a) Closed-Source: We select three OpenAI LLMs—GPT-4-0613, GPT-
4-Turbo-2024-04-09, and GPT-4o-2024-05-13; (b) Open-Source: Llama-3.1-70B-Instruct (Dubey
et al., 2024), Llama-3.1-8B-Instruct, DeepSeek-Coder-V2-Lite-Instruct (Zhu et al. (2024); an MoE
model; total params: 16B; active params: 2.4B), DeepSeek-Coder-33B-Instruct (Guo et al., 2024),
DeepSeek-Coder-6.7B-Instruct, ReflectionCoder-DS-33B (Ren et al., 2024), ReflectionCoder-
DS-6.7B, Qwen1.5-72B-Chat (Bai et al., 2023), Qwen1.5-32B-Chat, CodeQwen1.5-7B-Chat,
StarCoder2-15B-Instruct-v0.1,2 CodeLlama-34B-Instruct (Roziere et al., 2023),3 CodeLlama-13B-
Instruct, and CodeLlama-7B-Instruct.

4.2 RESULTS ON CONVCODEWORLD

Tables 3 and 4 present MRR and Recall scores, respectively, for both closed-source and open-source
LLMs across various feedback combinations. These results provide a comprehensive view of model
performance in CONVCODEWORLD.

Overview of Results While closed-source models generally outperformed most open-source mod-
els, Llama-3.1-70B-Instruct demonstrated competitive Recall performance, surpassing both GPT-4-
Turbo and GPT-4o in certain scenarios like xfc, rfe|f˚

e s, fvy and xfc, rϕ|fe|f˚
e s, f˚

v y.

Notably, this Recall gap between closed-source and open-source models narrows significantly under
specific feedback settings, particularly when expert-level verbal feedback f˚

v is provided. For in-
stance, in the xfc, ϕ, f

˚
v y setting, DeepSeek-Coder6.7B-Instruct (82.8) outperformed GPT-4o (82.3),

and DeepSeek-Coder33B-Instruct (85.4) outperformed GPT-4-Turbo (84.7).

Another key observation is that, among open-source models smaller than 30B, no clear winner
emerges across all feedback combinations. This emphasizes the importance of selecting models
based on the specific type of feedback available.

4.2.1 FEEDBACK COMBINATIONS: DIVERSIFIED EVALUATION

We observed significant performance variation within the same model across different feedback
combinations, emphasizing the necessity of CONVCODEWORLD for evaluating code generation
models under diverse feedback conditions.

Specifically, we summarize the effect of providing different feedback combinations:

Impact of Novice-Level Verbal Feedback on Execution Feedback Utilization Without novice-
level verbal feedback (fv), some models—DeepSeek-Coder-33B-Instruct, DeepSeek-Coder-6.7B-
Instruct, CodeQwen1.5-7B-Chat, StarCoder2-15B-Instruct-v0.1, CodeLlama-13B-Instruct, and

1While we attempted smaller models like DeepSeek-Coder-1.3B-Instruct, it failed to follow interactive code
generation format, resulting degeneration.

2https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1
3We excluded CodeLlama-70B-Instruct due to its 4K token length limitation, which is too small for inter-

active code generation.
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Table 3: MRR results on CONVCODEWORLD. ✗ indicates that no feedback of that type is provided
(ϕ). The leftmost results, with three ✗, represent Ω “ xϕ, ϕ, ϕy, corresponding to single-turn code
generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place
performance within the same model group.

Compilation Feedback ✗ fc fc fc fc fc fc fc fc fc
Execution Feedback ✗ ✗ fe f˚

e ✗ fe f˚
e ✗ fe f˚

e

Verbal Feedback ✗ ✗ ✗ ✗ fv fv fv f˚
v f˚

v f˚
v

Closed-Source Models
GPT-4-0613 46.0 46.0 52.1 56.1 46.0 52.4 56.4 63.1 64.3 64.8
GPT-4-Turbo-2024-04-09 48.0 48.0 51.8 54.8 48.0 52.6 56.4 62.4 64.3 64.5
GPT-4o-2024-05-13 50.8 50.8 55.0 57.9 50.8 55.1 58.6 63.3 64.7 65.3

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 45.4 45.4 49.9 53.4 45.4 50.8 55.2 60.7 62.6 63.3
DeepSeek-Coder-33B-Instruct 41.6 41.6 43.4 43.6 41.6 45.5 48.0 58.6 58.5 58.8
ReflectionCoder-DS-33B 41.6 41.6 42.9 42.9 41.6 45.6 48.1 57.7 58.2 58.9
Qwen1.5-72B-Chat 32.9 33.0 35.8 38.3 33.0 38.6 41.4 50.6 52.0 52.7
Qwen1.5-32B-Chat 32.0 32.0 35.3 36.7 32.0 36.6 39.7 47.4 42.6 40.8
CodeLlama-34B-Instruct 28.8 28.8 31.0 31.9 28.8 32.5 35.1 48.7 49.2 49.8

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 31.4 31.5 34.0 34.6 31.5 36.1 39.1 49.4 49.8 51.3
DeepSeek-Coder-V2-Lite-Instruct 38.3 38.3 40.5 41.7 38.3 42.0 43.8 52.7 52.9 53.3
DeepSeek-Coder-6.7B-Instruct 35.2 35.2 36.2 36.1 35.2 38.8 40.5 53.3 53.2 53.9
ReflectionCoder-DS-6.7B 37.4 37.4 38.3 38.7 37.4 40.4 42.4 53.3 53.8 53.6
CodeQwen1.5-7B-Chat 39.3 39.4 39.7 40.1 39.3 42.0 43.7 53.7 53.5 54.8
StarCoder2-15B-Instruct-v0.1 37.1 37.1 37.9 38.3 37.1 39.4 40.5 52.7 52.8 52.1
CodeLlama-13B-Instruct 28.4 28.4 29.0 29.0 28.4 31.2 33.0 43.9 44.3 44.8
CodeLlama-7B-Instruct 21.8 21.8 22.3 22.3 21.8 23.5 25.2 35.0 33.4 33.9

CodeLlama-7B-Instruct—showed minimal performance differences between partial (xfc, fe, ϕy)
and full (xfc, f˚

e , ϕy) test coverage in execution feedback. However, these models showed greater re-
liance on fv , especially in xfc, f

˚
e , fvy compared to xfc, fe, fvy, indicating that they need fv to fully

leverage f˚
e . In contrast, high-performing models—GPT-4, GPT-4-Turbo, GPT-4o, and Llama-3.1-

70B—demonstrated a larger performance boost from xfc, fe, ϕy to xfc, f
˚
e , ϕy compared to the boost

from xfc, fe, ϕy to xfc, fe, fvy. This suggests these models can infer refinement strategies directly
from raw execution feedback without heavily relying on fv .

Impact of Expert-Level Verbal Feedback on Execution Feedback Utilization Most models
demonstrated performance improvements with richer execution feedback, progressing through the
sequences xfc, ϕ, f

˚
v y, xfc, fe, f

˚
v y, and xfc, f

˚
e , f

˚
v y. However, exceptions arise: (a) DeepSeek-

Coder family and ReflectionCoder-DS-6.7B exhibited no performance difference with the inclusion
of execution feedback; (b) Llama-3.1-8B-Instruct, ReflectionCoder-DS-33B, and CodeQwen1.5-
7B-Chat showed no significant difference between xfc, ϕ, f

˚
v y and xfc, fe, f

˚
v y, but performance im-

proved when full test coverage (xfc, f˚
e , f

˚
v y) was ensured; (c) In some weaker models—Qwen1.5-

32B-Chat and StarCoder2-15B-Instruct-v0.1—increasing the test coverage from xfc, fe, f
˚
v y to

xfc, f
˚
e , f

˚
v y resulted in negative performance impacts. Additionally, the highest performance of

Qwen1.5-32B-Chat was observed with xfc, ϕ, f
˚
v y, while adding execution feedback (fe or f˚

e ) led
to decreased performance. We hypothesize that weaker models struggle to utilize complex feedback
effectively, resulting in lower performance.

4.2.2 MULTI-TURN FEEDBACK: WEAKER MODELS OUTPERFORMING SINGLE-TURN SOTA

Weaker LLMs with sufficient feedback outperformed the single-turn, no-feedback performance
(xϕ, ϕ, ϕy) of state-of-the-art models like GPT-4 and GPT-4-Turbo.

MRR When expert-level verbal feedback (f˚
v ) was incorporated, most weaker models, including

DeepSeek-Coder-6.7B-Instruct and Llama-3.1-8B-Instruct, surpassed the single-turn code genera-
tion performance of state-of-the-art single-turn models such as GPT-4, GPT-4-Turbo, and GPT-4o.
Additionally, with the inclusion of novice-level verbal feedback (fv) and either partial or full execu-
tion feedback (fe or f˚

e ), DeepSeek-Coder-33B-Instruct and ReflectionCoder-DS-33B matched or
exceeded the single-turn performance of GPT-4 and GPT-4-Turbo.

Recall Most open-source models exhibited significant improvements when novice-level ver-
bal feedback with execution feedback (xfc, rfe|f˚

e s, fvy) or expert-level verbal feedback
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Table 4: Recall results on CONVCODEWORLD. ✗ indicates that no feedback of that type is provided
(ϕ). The leftmost results, with three ✗, represent Ω “ xϕ, ϕ, ϕy, corresponding to single-turn code
generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place
performance within the same model group.

Compilation Feedback ✗ fc fc fc fc fc fc fc fc fc
Execution Feedback ✗ ✗ fe f˚

e ✗ fe f˚
e ✗ fe f˚

e

Verbal Feedback ✗ ✗ ✗ ✗ fv fv fv f˚
v f˚

v f˚
v

Closed-Source Models
GPT-4-0613 46.0 46.0 60.3 70.5 46.0 61.9 72.5 89.7 91.1 92.5
GPT-4-Turbo-2024-04-09 48.0 48.0 56.7 63.8 48.0 58.6 68.1 84.7 87.5 88.5
GPT-4o-2024-05-13 50.8 50.8 60.5 67.6 50.8 60.8 69.6 82.3 84.9 86.2

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 45.4 45.4 56.2 64.8 45.4 59.5 70.8 86.7 88.9 91.8
DeepSeek-Coder-33B-Instruct 41.6 41.6 45.5 46.1 41.6 50.4 56.6 85.4 84.6 85.6
ReflectionCoder-DS-33B 41.6 41.6 45.3 44.9 41.6 51.4 57.2 81.4 81.8 84.2
Qwen1.5-72B-Chat 32.9 33.2 39.9 47.5 33.2 47.5 57.9 84.4 86.1 87.2
Qwen1.5-32B-Chat 32.0 32.0 41.1 45.3 32.0 44.6 54.3 75.9 61.8 57.1
CodeLlama-34B-Instruct 28.8 28.8 33.7 35.8 28.8 37.5 44.6 80.0 82.0 82.3

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 31.4 31.8 38.4 40.0 31.7 43.2 51.8 80.9 80.2 83.7
DeepSeek-Coder-V2-Lite-Instruct 38.3 38.3 43.4 46.1 38.3 47.0 51.4 76.3 75.8 76.9
DeepSeek-Coder-6.7B-Instruct 35.2 35.2 37.7 37.5 35.2 43.3 48.2 82.8 82.5 83.1
ReflectionCoder-DS-6.7B 37.4 37.4 39.6 40.7 37.4 44.7 50.4 79.1 79.6 78.9
CodeQwen1.5-7B-Chat 39.3 39.6 40.1 41.1 39.5 45.8 49.5 74.4 74.7 77.4
StarCoder2-15B-Instruct-v0.1 37.1 37.1 39.3 40.0 37.1 42.6 46.3 76.9 76.8 75.6
CodeLlama-13B-Instruct 28.4 28.4 29.7 30.0 28.4 35.1 41.1 69.0 70.7 71.6
CodeLlama-7B-Instruct 21.8 21.8 22.9 23.0 21.8 26.2 30.5 61.7 53.9 55.2

(xfc, rϕ|fe|f˚
e s, fvy) was provided. Remarkably, providing execution feedback with full test cov-

erage while omitting any verbal feedback (xfc, f˚
e , ϕy) enabled some models, such as DeepSeek-

Coder-V2-Lite-Instruct, DeepSeek-Coder-33B-Instruct, and Qwen1.5-72B-Chat, to achieve or even
exceed GPT-4’s single-turn performance.

4.2.3 GENERALIZATION: UNSEEN FEEDBACK COMBINATION

ReflectionCoder-DS family were initialized from DeepSeek-Coder-Instruct, and trained to refine
code on a specific scenario of xfc, f

˚
e , fvy. As a result, ReflectionCoder-DS-6.7B outperformed

DeepSeek-Coder-6.7B-Instruct on xfc, rfe|f˚
e s, fvy. However, with unseen feedback like expert-

level verbal feedback (f˚
v ), the performance gap narrows significantly, with minimal MRR difference

and DeepSeek-Coder-Instruct generally outperforming in Recall. This tendency is more pronounced
in ReflectionCoder-DS-33B; except for xfc, rfe|f˚

e s, fvy, ReflectionCoder-DS-33B consistently per-
formed at or below the level of DeepSeek-Coder-33B-Instruct across all feedback combinations in
both MRR and Recall. This indicates that training on a specific feedback combination can reduce
the performance on the other combinations.

4.2.4 TRADE-OFF: MULTI-TURN MRR AND RECALL

We observed that an LLM requiring fewer turns to solve a problem (high MRR) may not excel
at solving as many problems as possible (high Recall), and vice versa: (a) Closed-Source Mod-
els: GPT-4o achieved the highest MRR, while GPT-4 had the best Recall.4; (b) Open-Source
Models ě 30B: Llama-3.1-70B led in both MRR and Recall. DeepSeek-Coder-33B-Instruct and
ReflectionCoder-DS-33B followed in MRR. However, with f˚

e or f˚
v feedback, Qwen1.5-72B-

Chat generally outperformed them in Recall, despite having a lower MRR; (c) Open-Source
Models ă 30B: MRR and Recall tendencies were similar without verbal feedback. With ver-
bal feedback, CodeQwen1.5-7B-Chat excelled in MRR, while DeepSeek-Coder-V2-Lite-Instruct
(xfc, rfe|f˚

e s, fvy), and DeepSeek-Coder-6.7B-Instruct (xfc, rϕ|fe|f˚
e s, f˚

v y) led in Recall.

4.3 RESULTS ON CONVCODEBENCH

While CONVCODEWORLD provides valuable insights into interactive code generation across var-
ious feedback combinations, CONVCODEBENCH offers a faster, cheaper, and more reproducible

4This quantitatively confirms what some accounts observed on x.com

8

https://x.com/voooooogel/status/1793782669970706433


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.35 0.40 0.45 0.50 0.55
ConvCodeWorld MRR

0.35

0.40

0.45

0.50

0.55

Co
nv

Co
de

Be
nc

h 
M

RR

Spearman Rank Correlation: 0.99
Pearson Correlation: 0.99

(a) Ω “ xfc, fe, fvy

0.35 0.40 0.45 0.50 0.55
ConvCodeWorld MRR

0.40

0.45

0.50

0.55

0.60

Co
nv

Co
de

Be
nc

h 
M

RR

Spearman Rank Correlation: 0.97
Pearson Correlation: 0.99

(b) Ω “ xfc, f
˚
e , fvy

0.45 0.50 0.55 0.60
ConvCodeWorld MRR

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Co
nv

Co
de

Be
nc

h 
M

RR

Spearman Rank Correlation: 0.95
Pearson Correlation: 0.97

(c) Ω “ xfc, ϕ, f
˚
v y

0.45 0.50 0.55 0.60 0.65
ConvCodeWorld MRR

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Co
nv

Co
de

Be
nc

h 
M

RR

Spearman Rank Correlation: 0.95
Pearson Correlation: 0.97

(d) Ω “ xfc, fe, f
˚
v y

0.40 0.45 0.50 0.55 0.60 0.65
ConvCodeWorld MRR

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Co
nv

Co
de

Be
nc

h 
M

RR
Spearman Rank Correlation: 0.96

Pearson Correlation: 0.97

(e) Ω “ xfc, f
˚
e , f

˚
v y

GPT-4-0613
GPT-4-Turbo-2024-04-09
GPT-4o
Llama-3.1-70B-Instruct
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CodeLlama-13B-InstructCodeLlama-7B-Instruct

Figure 2: Correlation between MRR on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and
MRR on CONVCODEWORLD with different feedback combinations Ω.

alternative. As discussed in §3, we chose CodeLlama-7B-Instruct as the reference model, and ex-
cluded scenarios without verbal feedback, as they do not require LLM intervention. Additionally,
xfc, ϕ, fvy scenario was omitted. as CodeLlama-7B-Instruct achieved a 100% compilation success
rate in the initial generation, eliminating the need for novice-level verbal feedback on compilation.

CONVCODEBENCH as a Reliable Proxy We conducted a comparative analysis of CON-
VCODEBENCH and CONVCODEWORLD to validate CONVCODEBENCH as a proxy, comparing
the MRR (Figure 2) and Recall (Appendix E.1) results across target models and feedback combina-
tions Spearman’s rank correlations ranged from 0.82–0.99, indicating that CONVCODEBENCH is a
reliable, efficient, and cost-effective proxy for CONVCODEWORLD.

Additionally, Table 5 presents the results on CONVCODEBENCH, showing that MRR ranking trends
closely aligned with CONVCODEWORLD (Table 3), with minor deviations. While absolute recall
and MRR scores are slightly lower compared to CONVCODEWORLD, the rankings amongst mod-
els remained roughly consistent between CONVCODEBENCH and CONVCODEWORLD. Based on
approximately consistent rankings across CONVCODEWORLD and CONVCODEBENCH, we rec-
ommend code LLMs use CONVCODEBENCH as a solid alternative to compare against other
baselines.

5 RELATED WORK

Code generation benchmarks have traditionally focused on single-turn generation from natural lan-
guage problem descriptions (Chen et al., 2021; Austin et al., 2021; Li et al., 2022; Zhuo et al.,
2024). More recently, LLM performance has improved through interactions with external tools,
such as interpreters for compiling, executing test cases, and verbal feedback, resulting in more ac-
curate outputs (Shinn et al., 2023; Madaan et al., 2024; Chen et al., 2024). This shift has led to the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: MRR and Recall results on CONVCODEBENCH using logs of CodeLlama-7B-Instruct in
CONVCODEWORLD. ✗ indicates that no feedback of that type is provided (ϕ). For each column,
bold and underscore indicate 1st and 2nd place performance within the same model group.

MRR Recall

Compilation Feedback fc fc fc fc fc fc fc fc fc fc
Execution Feedback fe f˚

e ✗ fe f˚
e fe f˚

e ✗ fe f˚
e

Verbal Feedback fv fv f˚
v f˚

v f˚
v fv fv f˚

v f˚
v f˚

v

Closed-Source Models
GPT-4-0613 53.0 55.8 63.1 62.7 63.4 59.5 65.7 85.9 82.3 83.1
GPT-4-Turbo-2024-04-09 55.7 58.3 65.4 64.0 65.3 61.8 68.2 86.8 81.4 84.2
GPT-4o-2024-05-13 57.4 59.9 66.4 65.7 66.8 62.1 68.1 86.2 81.9 84.7

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 54.2 56.6 63.7 63.1 63.9 60.2 65.7 85.9 81.5 84.0
DeepSeek-Coder-33B-Instruct 48.2 50.6 60.1 58.8 59.8 51.9 58.0 83.2 78.2 79.7
ReflectionCoder-DS-33B 47.9 49.9 59.5 59.1 59.6 51.2 56.2 82.2 77.8 79.6
Qwen1.5-72B-Chat 42.6 45.7 54.7 54.1 55.2 47.8 55.7 80.3 76.8 78.7
Qwen1.5-32B-Chat 41.1 43.2 52.2 48.7 48.5 45.7 51.4 76.2 67.2 66.8
CodeLlama-34B-Instruct 36.1 37.6 50.2 49.2 49.7 40.2 43.9 78.3 72.4 73.8

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 42.6 45.3 54.7 54.0 54.9 47.9 54.6 80.9 75.9 78.0
DeepSeek-Coder-V2-Lite-Instruct 46.3 48.4 58.2 56.0 57.1 51.1 55.6 82.0 74.7 77.9
DeepSeek-Coder-6.7B-Instruct 43.0 45.4 56.5 55.6 56.0 46.8 52.9 81.3 77.5 78.7
ReflectionCoder-DS-6.7B 43.4 45.4 55.7 55.1 55.2 46.7 51.6 79.3 74.8 75.9
CodeQwen1.5-7B-Chat 45.8 47.4 56.3 55.6 56.3 49.1 53.2 78.0 74.1 76.3
StarCoder2-15B-Instruct-v0.1 43.1 44.2 54.1 53.0 53.3 45.8 49.0 78.0 72.2 72.7
CodeLlama-13B-Instruct 34.8 36.9 47.2 46.9 47.2 37.8 43.2 73.1 68.9 68.9

development of multi-turn benchmarks like InterCode (Yang et al., 2023) and MINT (Wang et al.,
2024).

Table 6: Feedback combinations (Ω; §2.2) across
InterCode, MINT and CONVCODEWORLD, con-
structed by different feedback types (§2.1).

Ω InterCode MINT CONVCODEWORLD
xfc, ϕ, ϕy ✗ ✗ ✓
xfc, fe, ϕy ✗ ✓ ✓

xfc, f
˚
e , ϕy ✓ ✗ ✓

xfc, ϕ, fvy ✗ ✗ ✓
xfc, fe, fvy ✗ ✓ ✓

xfc, f
˚
e , fvy ✗ ✗ ✓

xfc, ϕ, f
˚
v y ✗ ✗ ✓

xfc, fe, f
˚
v y ✗ ✓ ✓

xfc, f
˚
e , f˚

v y ✗ ✗ ✓

However, existing multi-turn benchmarks re-
main limited in feedback diversity. InterCode
focuses on compilation and partial execution
feedback but lacks full test coverage and ver-
bal feedback. MINT generates verbal feedback
via GPT-4, reducing human-in-the-loop evalua-
tion costs, but its feedback scope is narrow and
requires costly LLM calls for each evaluation.

Our study presents (a) CONVCODEWORLD,
a reproducible environment with nine unique
feedback combinations (Table 6), and (b)
CONVCODEBENCH, a cost-effective bench-
mark that maintains high correlation with live
environment by using pre-generated logs, elim-
inating the need for costly LLM calls to provide verbal feedback.

6 CONCLUSION

This paper recognizes the need for benchmarks with diverse type of interactions in conversational
code generation. To address this gap, we introduce CONVCODEWORLD, a novel and reproducible
environment designed to assess LLM code generation abilities across nine varied feedback scenarios.
Additionally, for scenarios where API call costs are prohibitive, we offer CONVCODEBENCH, a
zero-call benchmark from pre-generated feedback logs, providing a highly correlated evaluation
of the conversational code generation capabilities of LLMs with CONVCODEWORLD. Our work
contributes to a more thorough evaluation of diverse multi-turn evaluation objectives, and highlights
a gap to invite for future models in the new design space.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/
abs/2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
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A VERBAL FEEDBACK

A.1 DISCUSSION ON EMPLOYING LLMS FOR VERBAL FEEDBACK GENERATION

A key challenge in creating CONVCODEWORLD is generating verbal feedback. Human annotation
is both impractical and inconsistent (§2.1.1), which led us to employ GPT-4o for this task. While
GPT-4o may not fully replicate the nuances of human feedback, it ensures reproducibility and af-
fordability, both critical for maintaining consistency across benchmark evaluations. As demonstrated
by direct comparisons between LLM-generated and human feedback in prior studies (Wang et al.,
2024), we find this method sufficiently effective for our benchmarking purposes.

A.2 COST-EFFICIENCY OF CONVCODEWORLD COMPARED TO HUMAN ANNOTATION

In the worst-case scenario, CodeLlama-7B-Instruct, which requested the most verbal feedback due
to its low performance, incurred a total cost of $215 (26.4M input tokens and 5.5M output tokens)
for 15,905 turns using GPT-4o-2024-05-13 pricing ($5/1M input tokens and $15/1M output tokens).
By comparison, assuming human annotation takes 96 seconds per turn (Wang et al., 2024) and the
average U.S. private non-farmer worker’s hourly wage is $35.04 according to US Bureau of Labor
Statistics (2024), the human annotation cost would be approximately $14,792.

A.3 ANALYSIS OF GROUND TRUTH CODE LEAKAGE IN GENERATED EXPERT-LEVEL
VERBAL FEEDBACK

Table 7: Pass@1 results of various LLMs with expert-level verbal feedback f˚
v generated by GPT-4o

compared to direct ground truth code feedback. The total number of turns n “ 1. For each column,
bold and underscore indicate 1st and 2nd place performance while keeping the code generation
model fixed.

Feedback Code Generation
GPT-4-0613 GPT-4-Turbo-2024-04-09 GPT-4o-2024-05-13

w/o Feedback 46.0 48.0 50.8
+ Expert-Level Verbal Feedback 70.0 69.0 68.5
+ Ground Truth Code 97.9 88.2 79.7

Table 8: Ground truth code leakage ratio (%) by incorporating different models for expert-level
verbal feedback generation. The lower the better.

f˚
v Generation

Mentioning Including
ground truth code (Ó) Refined Code (Ó)

GPT-4-0613 51.1 0.0
GPT-4-Turbo-2024-04-09 31.4 0.0
GPT-4o-2024-05-13 2.5 0.1

The generation of expert-level verbal feedback f˚
v involves comparing the generated code with the

ground truth code to provide modification suggestions, raising concerns about potential code leak-
age. As shown in Table 7, providing the ground truth code significantly outperforms providing f˚

v ,
empirically confirming that f˚

v is unlikely to be a copy-pasted version of the ground truth code. Fur-
thermore, Table 8 estimates leakage rates, based on how often a model referenced ground truth code
in f˚

v (e.g., ”Unlike the ground truth code, the current code omits exception handling of Divide-
ByZero...”, etc.), with GPT-4o showing the lowest at 2.5%, indicating its ability to generate f˚

v with
minimal leakage. This suggests that, when f˚

v generated by GPT-4o is provided, the performance
improvement is not driven by exposure to correct code.

A.4 COMPARATIVE ANALYSIS OF VERBAL FEEDBACK ACROSS DIFFERENT LLMS

In our main experiments, we utilized GPT-4o for verbal feedback generation and investigated its
performance in comparison to other models. To see the effect of using other LLMs for verbal feed-
back generation, we conducted a single iteration of code generation using three closed-source LLMs
as both code generators and expert-level verbal feedback generators, examining the Pass@1 perfor-
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Table 9: Pass@1 results over different model combinations of expert-level verbal feedback f˚
v gen-

eration and code generation on CONVCODEWORLD where Ω “ xfc, ϕ, f
˚
v y and the total number of

turns n “ 1. For each column, bold and underscore indicate 1st and 2nd place performance while
keeping the code generation model fixed.

f˚
v Generation

Code Generation
GPT-4-0613 GPT-4-Turbo-2024-04-09 GPT-4o-2024-05-13

GPT-4-0613 65.1 61.4 63.4
GPT-4-Turbo-2024-04-09 62.9 59.9 62.5
GPT-4o-2024-05-13 67.1 65.4 64.2

mance. The results, as shown in Table 9, consistently showed superior performance when employing
GPT-4o for feedback generation.

B IMPLEMENTATION DETAILS

Table 10: Pass@1 results over different implementation for initial code generation without feedback.
CONVCODEWORLD chose Direct Generation by BigCodeBench implementation, which showed the
highest performance. For each column, bold and underscore indicate 1st and 2nd place performance
while keeping the code generation model fixed.

Implementation DeepSeek-Coder-6.7B-Instruct GPT-4o-2024-05-13
w/o Feedback (Ω “ xϕ, ϕ, ϕy)

Reported 35.5 51.1
Direct Generation (BigCodeBench impl.) 35.2 50.8
DSPy.Predict 33.6 1.8
DSPy.ChainOfThought 20.2 49.3

Compilation Feedback only (Ω “ xfc, ϕ, ϕy; n “ 1)
Direct Generation (BigCodeBench impl.) 35.2 50.8
DSPy.Predict 33.7 50.1
DSPy.ChainOfThought 32.8 50.5

We utilize DSPy (Khattab et al., 2024)5 manage the interactive code generation flow for CON-
VCODEWORLD and CONVCODEBENCH. For both code and verbal feedback generation fol-
low DSPy’s default prompt format, incorporating ChaingOfThought (CoT) (Wei et al., 2022)
reasoning by DSPy.ChainOfThought function. The exception is initial code generation,
where we adopt BigCodeBench’s (Zhuo et al., 2024) implementation,6 without CoT reason-
ing. As shown in Table 10, we attribute this choice to the observation that, for initial code
generation (without prior feedback), models tend to perform better without additional reason-
ing steps like CoT (DSPy.ChainOfThought) or prompting (both in DSPy.Predict and
DSPy.ChainOfThought).

Hyperparameters are set as follows: The total number of turns n “ 10, with a maximum token length
of 8K for all code generation models. For models with a lower token limit, we use their respective
maximum length. For verbal feedback generation, we use GPT-4o-2024-05-13 with a token limit of
2K. Regarding the partial test coverage of execution feedback, we utilize the first three test cases.

5https://github.com/stanfordnlp/dspy
6https://github.com/bigcode-project/bigcodebench
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C CONVCODEWORLD
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(b) Ω “ xfc, fe, ϕy
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(d) Ω “ xfc, ϕ, fvy
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(e) Ω “ xfc, fe, fvy
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(g) Ω “ xfc, ϕ, f
˚
v y
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(h) Ω “ xfc, fe, f
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(i) Ω “ xfc, f
˚
e , f

˚
v y

GPT-4-0613
GPT-4-Turbo-2024-04-09
GPT-4o
Llama-3.1-70B-Instruct
Llama-3.1-8B-Instruct
DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Coder-33B-instruct
DeepSeek-Coder-6.7B-instruct
ReflectionCoder-DS-33B
ReflectionCoder-DS-6.7B
Qwen1.5-72B-Chat
Qwen1.5-32B-Chat
CodeQwen1.5-7B-Chat
StarCoder2-15B-Instruct-v0.1
CodeLlama-34B-Instruct
CodeLlama-13B-InstructCodeLlama-7B-Instruct

Figure 3: Iterative Pass@1 results on CONVCODEWORLD with different feedback combinations Ω.
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(c) GPT-4o-2024-05-13
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(d) Llama-3.1-70B-
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(e) Llama-3.1-8B-
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(f) DeepSeek-Coder-V2-
Lite-Instruct
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(g) DeepSeek-Coder-
33B-Instruct

0 1 2 3 4 5 6 7 8 9 10
No. Turns

35

40

45

50

55

60

65

70

75

80

85

Pa
ss

@
1
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Figure 4: Iterative Pass@1 results of each LLM on CONVCODEWORLD with different feedback
combinations Ω (continued on Figure 5).
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(b) Qwen1.5-32B-Chat
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(c) CodeQwen1.5-7B-
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(d) StarCoder2-15B-
Instruct-v0.1
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(e) CodeLlama-34B-
Instruct
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(f) CodeLlama-13B-
Instruct
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Figure 5: Iterative Pass@1 results of each LLM on CONVCODEWORLD with different feedback
combinations Ω (continued from Figure 4).
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D CONVCODEBENCH

D.1 MRR AND RECALL RESULTS

D.1.1 REFERENCE MODEL: DEEPSEEK-CODER-6.7B-INSTRUCT

Table 11: MRR and Recall results on CONVCODEBENCH using logs of DeepSeek-Coder-6.7B-
Instruct in CONVCODEWORLD. ✗ indicates that no feedback of that type is provided (ϕ). For each
column, bold and underscore indicate 1st and 2nd place performance within the same model group.

MRR Recall

Compilation Feedback fc fc fc fc fc fc fc fc fc fc
Execution Feedback fe f˚

e ✗ fe f˚
e fe f˚

e ✗ fe f˚
e

Verbal Feedback fn fn f˚
n f˚

n f˚
n fn fn f˚

n f˚
n f˚

n

Closed-Source Models
GPT-4-0613 56.2 59.1 66.9 67.4 68.2 61.8 68.9 89.9 90.6 91.0
GPT-4-Turbo-2024-04-09 57.4 60.1 67.6 68.3 69.0 61.7 68.3 89.0 89.9 90.0
GPT-4o-2024-05-13 58.8 61.3 69.0 69.3 70.2 63.1 68.9 89.8 90.1 90.5

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 57.2 59.2 67.2 67.7 68.5 62.3 67.0 89.4 89.7 90.4
DeepSeek-Coder-33B-Instruct 52.4 54.0 63.4 64.4 65.3 56.2 60.7 86.8 87.8 88.6
ReflectionCoder-DS-33B 52.6 54.7 64.0 64.5 65.3 56.4 62.0 86.8 87.8 88.2
Qwen1.5-72B-Chat 49.1 52.0 61.4 61.9 62.7 54.6 61.8 87.6 88.2 88.8
Qwen1.5-32B-Chat 48.6 50.8 60.4 59.9 60.1 54.1 59.2 86.3 84.8 84.8
CodeLlama-34B-Instruct 47.2 48.8 60.6 61.1 61.6 51.7 56.4 87.4 88.2 88.2

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 50.6 52.5 62.3 62.8 63.4 55.8 61.2 87.3 88.3 88.2
DeepSeek-Coder-V2-Lite-Instruct 52.4 54.4 63.1 63.8 64.7 56.4 61.7 86.2 87.1 87.7
ReflectionCoder-DS-6.7B 48.5 50.2 61.0 61.2 61.8 52.5 56.9 85.8 85.9 86.4
CodeQwen1.5-7B-Chat 51.5 53.6 62.8 63.5 64.0 55.2 60.8 86.1 86.8 87.4
StarCoder2-15B-Instruct-v0.1 49.7 51.7 62.3 62.2 62.8 52.9 58.1 86.6 85.9 86.6
CodeLlama-13B-Instruct 47.4 49.3 60.4 60.4 61.1 51.8 56.8 86.6 86.2 87.4
CodeLlama-7B-Instruct 44.2 45.7 57.9 57.9 58.3 48.9 53.2 86.3 86.1 85.4

D.1.2 REFERENCE MODEL: GPT-4-0613

Table 12: MRR and Recall results on CONVCODEBENCH using logs of GPT-4-0613 in CON-
VCODEWORLD. ✗ indicates that no feedback of that type is provided (ϕ). For each column, bold
and underscore indicate 1st and 2nd place performance within the same model group.

MRR Recall

Compilation Feedback fc fc fc fc fc fc fc fc fc fc
Execution Feedback fe f˚

e ✗ fe f˚
e fe f˚

e ✗ fe f˚
e

Verbal Feedback fv fv f˚
v f˚

v f˚
v fv fv f˚

v f˚
v f˚

v

Closed-Source Models
GPT-4-Turbo-2024-04-09 60.3 64.1 69.9 70.9 71.6 67.2 76.7 91.6 92.8 94.2
GPT-4o-2024-05-13 61.6 65.0 70.6 71.5 72.3 68.6 77.2 91.9 93.0 94.3

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 60.9 64.2 69.9 70.9 71.5 68.8 77.7 92.2 93.5 94.6
DeepSeek-Coder-33B-Instruct 58.3 61.9 68.2 69.3 69.9 66.5 75.9 91.9 93.2 94.3
ReflectionCoder-DS-33B 58.9 62.4 68.8 70.0 70.3 66.5 75.9 91.8 93.3 94.5
Qwen1.5-72B-Chat 57.5 60.4 67.3 68.3 69.1 66.0 73.9 91.5 92.5 94.2
Qwen1.5-32B-Chat 56.6 60.6 66.8 67.6 67.7 65.4 75.7 91.4 92.7 92.9
CodeLlama-34B-Instruct 56.2 59.9 66.8 67.8 68.4 64.7 74.8 92.2 93.1 94.4

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 56.9 60.6 67.4 68.3 68.9 65.4 74.8 91.8 92.8 94.3
DeepSeek-Coder-V2-Lite-Instruct 58.8 62.4 68.9 69.7 70.1 66.4 75.5 91.8 92.6 93.9
DeepSeek-Coder-6.7B-Instruct 57.5 61.1 67.4 68.7 69.2 65.7 75.5 91.2 93.1 94.4
ReflectionCoder-DS-6.7B 57.9 61.5 68.0 69.1 69.7 65.7 75.2 91.9 93.0 94.1
CodeQwen1.5-7B-Chat 59.0 62.4 68.5 69.6 70.2 67.1 76.1 91.8 92.9 94.4
StarCoder2-15B-Instruct-v0.1 58.3 61.8 68.0 68.9 69.7 66.0 75.3 91.2 92.5 94.0
CodeLlama-13B-Instruct 56.1 59.9 66.4 67.5 68.1 64.9 74.6 91.5 92.6 94.4
CodeLlama-7B-Instruct 54.8 58.4 65.5 66.4 67.0 63.7 73.4 91.9 92.5 93.6
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E RANK CORRELATIONS BETWEEN CONVCODEBENCH AND
CONVCODEWORLD

E.1 REFERENCE MODEL: CODELLAMA-7B-INSTRUCT-HF
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Figure 6: Correlation between Recall on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and Re-
call on CONVCODEWORLD with different feedback combinations Ω.
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E.1.1 REFERENCE MODEL: DEEPSEEK-CODER-6.7B-INSTRUCT
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Figure 7: Correlation between MRR on CONVCODEBENCH (ref. DeepSeek-Coder-6.7B-Instruct)
and MRR on CONVCODEWORLD with different feedback combinations Ω.
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Figure 8: Correlation between Recall on CONVCODEBENCH (ref. DeepSeek-Coder-6.7B-Instruct)
and Recall on CONVCODEWORLD with different feedback combinations Ω.
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E.1.2 REFERENCE MODEL: GPT-4-0613
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Figure 9: Correlation between MRR on CONVCODEBENCH (ref. GPT-4-0613) and MRR on CON-
VCODEWORLD with different feedback combinations Ω.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6
ConvCodeWorld Recall

0.64

0.65

0.66

0.67

0.68

0.69

Co
nv

Co
de

Be
nc

h 
Re

ca
ll

Spearman Rank Correlation: 0.91
Pearson Correlation: 0.93

(a) Ω “ xfc, fe, fvy

0.3 0.4 0.5 0.6 0.7
ConvCodeWorld Recall

0.74

0.75

0.76

0.77

Co
nv

Co
de

Be
nc

h 
Re

ca
ll

Spearman Rank Correlation: 0.68
Pearson Correlation: 0.82

(b) Ω “ xfc, f
˚
e , fvy

0.65 0.70 0.75 0.80 0.85
ConvCodeWorld Recall

0.912

0.914

0.916

0.918

0.920

0.922

Co
nv

Co
de

Be
nc

h 
Re

ca
ll

Spearman Rank Correlation: 0.17
Pearson Correlation: 0.09

(c) Ω “ xfc, ϕ, f
˚
v y

0.6 0.7 0.8 0.9
ConvCodeWorld Recall

0.926

0.928

0.930

0.932

0.934

Co
nv

Co
de

Be
nc

h 
Re

ca
ll

Spearman Rank Correlation: 0.49
Pearson Correlation: 0.51

(d) Ω “ xfc, fe, f
˚
v y

0.6 0.7 0.8 0.9
ConvCodeWorld Recall

0.9300

0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

Co
nv

Co
de

Be
nc

h 
Re

ca
ll

Spearman Rank Correlation: 0.49
Pearson Correlation: 0.81

(e) Ω “ xfc, f
˚
e , f

˚
v y

GPT-4-Turbo-2024-04-09
GPT-4o
Llama-3.1-70B-Instruct
Llama-3.1-8B-Instruct
DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Coder-33B-instruct
DeepSeek-Coder-6.7B-instruct
ReflectionCoder-DS-33B
ReflectionCoder-DS-6.7B
Qwen1.5-72B-Chat
Qwen1.5-32B-Chat
CodeQwen1.5-7B-Chat
StarCoder2-15B-Instruct-v0.1
CodeLlama-34B-Instruct
CodeLlama-13B-InstructCodeLlama-7B-Instruct

Figure 10: Correlation between Recall on CONVCODEBENCH (ref. GPT-4-0613) and Recall on
CONVCODEWORLD with different feedback combinations Ω.
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F IN-CONTEXT LEARNING EXAMPLES

F.1 NOVICE-LEVEL VERBAL FEEDBACK

1 Example Input:
2 Sort a list of integers in ascending order. The function should take a

list of integers and return a sorted list. Ensure that the function
handles negative numbers and zeros correctly. Check if the function's
output is a sorted list.

ãÑ

ãÑ

ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12

13 Ground Truth Code:
14 ```python
15 def sort_func(int_list):
16 return sorted(int_list)
17 ```
18

19 Previous Code:
20 ```python
21 def sort_func(int_list):
22 for i in range(len(int_list)):
23 for j in range(len(int_list) - 1):
24 if int_list[j] < int_list[j + 1]:
25 int_list[j], int_list[j + 1] = int_list[j + 1],

int_list[j]ãÑ

26 return int_list
27

28 test_list = [3, -1, 0, 5, -10, 2]
29 print(sort_func(test_list))
30 ```
31

32 Compilation Feedback:
33 Traceback (most recent call last):
34 File "tmp.py", line 6
35 return int_list
36 ˆ
37 IndentationError: unindent does not match any outer indentation level
38

39 Reasoning:
40 Let's think step by step in order to produce the novice-level

`user_feedback`.ãÑ

41

42 User Feedback:
43 I got this error:
44 ```
45 Traceback (most recent call last):
46 File "tmp.py", line 6
47 return int_list
48 ˆ
49 IndentationError: unindent does not match any outer indentation level
50 ```
51 I think there might be something wrong with the indentation of the

`return int_list` line. Also, I think there exists a simpler way to
sort a list in Python.

ãÑ

ãÑ

Figure 11: The in-context example of fv generation where Ω “ xfc, ϕ, fvy.
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1 Example Input:
2 Sort a list of integers in ascending order. The function should take a

list of integers and return a sorted list. Ensure that the function
handles negative numbers and zeros correctly. Check if the function's
output is a sorted list.

ãÑ

ãÑ

ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12

13 Previous Code:
14 ```python
15 def sort_func(int_list):
16 for i in range(len(int_list)):
17 for j in range(len(int_list) - 1):
18 if int_list[j] < int_list[j + 1]:
19 int_list[j], int_list[j + 1] = int_list[j + 1],

int_list[j]ãÑ

20 return int_list
21

22 test_list = [3, -1, 0, 5, -10, 2]
23 print(sort_func(test_list))
24 ```
25

26 Compilation Feedback:
27 No syntax errors
28

29 Execution Feedback:
30 TEST_CASE_1
31 Traceback (most recent call last):
32 File "__test__.py", line 78, in test_case_1
33 AssertionError: sort_func([3, -1, 0, 5, -10, 2]) != [-10, -1, 0, 2, 3, 5]
34

35 Reasoning:
36 Let's think step by step in order to produce the novice-level

`user_feedback`.ãÑ

37

38 User Feedback:
39 I got this error:
40 ```
41 Traceback (most recent call last):
42 File "__test__.py", line 78, in test_case_1
43 AssertionError: sort_func([3, -1, 0, 5, -10, 2]) != [-10, -1, 0, 2, 3, 5]
44 ```
45 It seems like the function didn't sort the list correctly. The list is in

descending order instead of ascending order. Also, I think there
exists a simpler way to sort a list in Python.

ãÑ

ãÑ

Figure 12: The in-context example of fv generation where Ω “ xfc, fer˚s, fvy.
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F.2 EXPERT-LEVEL VERBAL FEEDBACK

1 Example Input:
2 Sort a list of integers in ascending order. The function should take a list of integers and

return a sorted list. Ensure that the function handles negative numbers and zeros
correctly. Check if the function's output is a sorted list.

ãÑ

ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12
13 Ground Truth Code:
14 ```python
15 def sort_func(int_list):
16 return sorted(int_list)
17 ```
18
19 Previous Code:
20 ```python
21 def sort_func(int_list):
22 for i in range(len(int_list)):
23 for j in range(len(int_list) - 1):
24 if int_list[j] < int_list[j + 1]:
25 int_list[j], int_list[j + 1] = int_list[j + 1], int_list[j]
26 return int_list
27
28 test_list = [3, -1, 0, 5, -10, 2]
29 print(sort_func(test_list))
30 ```
31
32 Reasoning:
33 Let's think step by step in order to produce the user_feedback. We need to compare the

`previous_code` with the `ground_truth_code` and identify specific areas where the
`previous_code` deviates from the expected behavior. We should focus on the sorting
algorithm, handling of edge cases like negative numbers and zeros, and the overall
performance of the code.

ãÑ

ãÑ

ãÑ

ãÑ

34
35 User Feedback:
36 1. **Sorting Algorithm**: The `previous_code` implements a bubble sort algorithm, but it sorts

the list in descending order due to the condition `if int_list[j] < int_list[j + 1]`. The
correct approach should use `if int_list[j] > int_list[j + 1]` to sort in ascending order.

ãÑ

ãÑ

37
38 2. **Edge Case Handling**: While the `previous_code` attempts to handle all integers, it

incorrectly sorts the list in the reverse order. Ensure that the sorting condition
correctly compares elements to achieve ascending order.

ãÑ

ãÑ

39
40 3. **Code Simplicity and Readability**: The bubble sort implementation in the `previous_code`

is more complex and less readable compared to using the built-in `sorted()` function.
Simplifying the code to use `sorted()` will enhance readability and maintainability.

ãÑ

ãÑ

41
42 4. **Performance**: The bubble sort algorithm used in the `previous_code` has a time

complexity of O(nˆ2), which can be inefficient for large lists. The `sorted()` function,
on the other hand, uses Timsort, which has a time complexity of O(n log n) and is more
suitable for sorting large datasets.

ãÑ

ãÑ

ãÑ

43
44 5. **Test Case Verification**: The `previous_code` includes a print statement to verify the

function's output. While this is useful for debugging, consider using assertions or test
functions to automate the verification process in a more scalable way.

ãÑ

ãÑ

45
46 Overall, the `previous_code` functions incorrectly by sorting the list in descending order.

Using the correct comparison in the bubble sort condition or utilizing Python's built-in
sorting capabilities would improve the function's correctness and performance.

ãÑ

ãÑ

47

Figure 13: The in-context example of f˚
v generation where Ω “ xfc, ϕ, f

˚
v y.
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1 Example Input:
2 Sort a list of integers in ascending order. The function should take a list of integers and

return a sorted list. Ensure that the function handles negative numbers and zeros
correctly. Check if the function's output is a sorted list.

ãÑ

ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12
13 Ground Truth Code:
14 ```python
15 def sort_func(int_list):
16 return sorted(int_list)
17 ```
18
19 Previous Code:
20 ```python
21 def sort_func(int_list):
22 for i in range(len(int_list)):
23 for j in range(len(int_list) - 1):
24 if int_list[j] < int_list[j + 1]:
25 int_list[j], int_list[j + 1] = int_list[j + 1], int_list[j]
26 return int_list
27
28 test_list = [3, -1, 0, 5, -10, 2]
29 print(sort_func(test_list))
30 ```
31
32 Execution Feedback:
33 TEST_CASE_1
34 Traceback (most recent call last):
35 File "__test__.py", line 78, in test_case_1
36 AssertionError: sort_func([3, -1, 0, 5, -10, 2]) != [-10, -1, 0, 2, 3, 5]
37
38 Reasoning:
39 Let's think step by step in order to produce the user_feedback. We need to compare the

`previous_code` with the `ground_truth_code` and identify specific areas where the
`previous_code` deviates from the expected behavior. We should focus on the sorting
algorithm, handling of edge cases like negative numbers and zeros, and the overall
performance of the code.

ãÑ

ãÑ

ãÑ

ãÑ

40
41 User Feedback:
42 1. **Sorting Algorithm**: The `previous_code` implements a bubble sort algorithm, but it sorts

the list in descending order due to the condition `if int_list[j] < int_list[j + 1]`. The
correct approach should use `if int_list[j] > int_list[j + 1]` to sort in ascending order.

ãÑ

ãÑ

43
44 2. **Edge Case Handling**: While the `previous_code` attempts to handle all integers, it

incorrectly sorts the list in the reverse order. Ensure that the sorting condition
correctly compares elements to achieve ascending order.

ãÑ

ãÑ

45
46 3. **Code Simplicity and Readability**: The bubble sort implementation in the `previous_code`

is more complex and less readable compared to using the built-in `sorted()` function.
Simplifying the code to use `sorted()` will enhance readability and maintainability.

ãÑ

ãÑ

47
48 4. **Performance**: The bubble sort algorithm used in the `previous_code` has a time

complexity of O(nˆ2), which can be inefficient for large lists. The `sorted()` function,
on the other hand, uses Timsort, which has a time complexity of O(n log n) and is more
suitable for sorting large datasets.

ãÑ

ãÑ

ãÑ

49
50 5. **Test Case Verification**: The `previous_code` includes a print statement to verify the

function's output. While this is useful for debugging, consider using assertions or test
functions to automate the verification process in a more scalable way.

ãÑ

ãÑ

51
52 Overall, the `previous_code` functions incorrectly by sorting the list in descending order.

Using the correct comparison in the bubble sort condition or utilizing Python's built-in
sorting capabilities would improve the function's correctness and performance.

ãÑ

ãÑ

53

Figure 14: The in-context example of f˚
v generation where Ω “ xfc, fer˚s, f˚

v y.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G CASE STUDY

Input Code

1 import smtplib
2 from email.message import EmailMessage
3 import getpass
4 import socket
5
6 SERVER_ADDRESS = "localhost"
7 SERVER_PORT = 25
8 BUFFER_SIZE = 1024
9 SMTP_SERVER = "smtp.gmail.com"

10 SMTP_PORT = 587
11
12 def task_func(client_socket):
13 # Ensure the socket is connected
14 if not client_socket:
15 print("Client socket is not connected.")
16 return
17
18 # Receive the message from the client
19 try:
20 message = client_socket.recv(BUFFER_SIZE).decode()
21 except socket.error as e:
22 print(f"Failed to receive message from client: {e}")
23 return
24
25 # If the message is empty, do not send the email
26 if not message:
27 print("Received an empty message. Not sending email.")
28 return
29
30 # Ask for the sender's email, recipient's email, and sender's email password for authentication
31 sender_email = input("Enter sender's email: ")
32 recipient_email = input("Enter recipient's email: ")
33 password = getpass.getpass("Enter sender's email password: ")
34
35 # Create the email message
36 email_message = EmailMessage()
37 email_message.set_content(message)
38 email_message["Subject"] = "Message from client"
39 email_message["From"] = sender_email
40 email_message["To"] = recipient_email
41
42 # Connect to the SMTP server and send the email
43 try:
44 with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as smtp:
45 smtp.starttls()
46 smtp.login(sender_email, password)
47 smtp.send_message(email_message)
48 print("Email sent successfully.")
49 except Exception as e:
50 print(f"Failed to send email: {e}")

Execution Feedback with Partial Test Coverage (fe)

1 TEST_SMTP_SERVER_CONNECTION_ERROR
2 Traceback (most recent call last):
3 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
4 return func(*newargs, **newkeywargs)
5 File "__test__.py", line 125, in test_smtp_server_connection_error
6 File "__test__.py", line 39, in task_func
7 File "/tmp/utils.py", line 251, in readline
8 raise IOError
9 OSError

10
11
12 TEST_SUCCESSFUL_EMAIL_SEND
13 Traceback (most recent call last):
14 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
15 return func(*newargs, **newkeywargs)
16 File "__test__.py", line 81, in test_successful_email_send
17 File "__test__.py", line 39, in task_func
18 File "/tmp/utils.py", line 251, in readline
19 raise IOError
20 OSError

Figure 15: Case study of GPT-4 on CONVCODEWORLD (Ω “ xfc, fe, fvy; t “ 7): Input Code and
fe.
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Novice-Level Verbal Feedback (fv)

1 I got this error:
2 ```
3 Traceback (most recent call last):
4 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
5 return func(*newargs, **newkeywargs)
6 File "__test__.py", line 125, in test_smtp_server_connection_error
7 File "__test__.py", line 39, in task_func
8 File "/tmp/utils.py", line 251, in readline
9 raise IOError

10 OSError
11
12 Traceback (most recent call last):
13 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
14 return func(*newargs, **newkeywargs)
15 File "__test__.py", line 81, in test_successful_email_send
16 File "__test__.py", line 39, in task_func
17 File "/tmp/utils.py", line 251, in readline
18 raise IOError
19 OSError
20 ```
21 It seems like there is an issue with the socket connection or the way the code is handling the socket. The

`OSError` exceptions are being raised during the execution of the `task_func` function.ãÑ

Refined Code by Feedback

1 import smtplib
2 from email.message import EmailMessage
3 import getpass
4 import socket
5
6 SERVER_ADDRESS = "localhost"
7 SERVER_PORT = 25
8 BUFFER_SIZE = 1024
9 SMTP_SERVER = "smtp.gmail.com"

10 SMTP_PORT = 587
11
12 def task_func(client_socket):
13 # Ensure the socket is connected
14 if not client_socket:
15 print("Client socket is not connected.")
16 return
17
18 # Receive the message from the client
19 try:
20 message = client_socket.recv(BUFFER_SIZE).decode()
21 except socket.error as e:
22 print(f"Failed to receive message from client: {e}")
23 return
24
25 # If the message is empty, do not send the email
26 if not message:
27 print("Received an empty message. Not sending email.")
28 return
29
30 # Ask for the sender's email, recipient's email, and sender's email password for authentication
31 sender_email = input("Enter sender's email: ")
32 recipient_email = input("Enter recipient's email: ")
33 password = getpass.getpass("Enter sender's email password: ")
34
35 # Create the email message
36 email_message = EmailMessage()
37 email_message.set_content(message)
38 email_message["Subject"] = "Message from client"
39 email_message["From"] = sender_email
40 email_message["To"] = recipient_email
41
42 # Connect to the SMTP server and send the email
43 try:
44 with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as smtp:
45 smtp.starttls()
46 smtp.login(sender_email, password)
47 smtp.send_message(email_message)
48 print("Email sent successfully.")
49 except Exception as e:
50 print(f"Failed to send email: {e}")

Figure 16: Case study of GPT-4-0613 on CONVCODEWORLD (Ω “ xfc, fe, fvy; turn 7): fv and
Refined Code.
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Input Code

1 import matplotlib.pyplot as plt
2 import numpy as np
3 def task_func(n, seed=0):
4 np.random.seed(seed)
5 points = [(x, y) for x, y in np.random.rand(n, 2)]
6
7 fig, ax = plt.subplots()
8 ax.scatter([x for x, y in points], [y for x, y in points])
9 ax.set_title("Scatter plot of random points")

10 ax.set_xlabel("X")
11 ax.set_ylabel("Y")
12
13 return fig, points

Expert-Level Verbal Feedback (f˚
v )

1 1. **Random Points Generation**: The `previous_code` generates random points using a list
comprehension with `np.random.rand(n, 2)`, which is a valid approach. However, it can be
simplified by directly using `np.random.rand(n)` for both x and y coordinates separately.
This makes the code more readable and aligns with common practices.

ãÑ

ãÑ

ãÑ

2
3 2. **Plotting Process**: The `previous_code` correctly plots the scatter plot using

`ax.scatter()`. However, it extracts x and y coordinates from the `points` list using list
comprehensions. This step can be avoided by directly using the arrays generated for x and
y coordinates, which simplifies the code.

ãÑ

ãÑ

ãÑ

4
5 3. **Return Values**: The `previous_code` correctly returns the figure and the list of points.

However, the generation of points can be streamlined by using `zip(x, y)` directly on the
generated x and y arrays, which is more efficient and concise.

ãÑ

ãÑ

6
7 4. **Code Simplicity and Readability**: The `previous_code` is functional but can be

simplified for better readability. Using direct array operations for x and y coordinates
and avoiding unnecessary list comprehensions will make the code cleaner and easier to
understand.

ãÑ

ãÑ

ãÑ

8
9 5. **Reproducibility**: Both the `previous_code` and the expected implementation correctly set

the random seed for reproducibility, which is good practice.ãÑ

10
11 Overall, while the `previous_code` is functional, it can be improved for simplicity and

readability by directly using the generated x and y arrays for plotting and point
generation. This will make the code more concise and maintainable.

ãÑ

ãÑ

Refined Code by Feedback

1 import matplotlib.pyplot as plt
2 import numpy as np
3 def task_func(n, seed=0):
4 np.random.seed(seed)
5 x, y = np.random.rand(2, n)
6 points = list(zip(x, y))
7
8 fig, ax = plt.subplots()
9 ax.scatter(x, y)

10 ax.set_title("Scatter plot of random points")
11 ax.set_xlabel("X")
12 ax.set_ylabel("Y")
13
14 return fig, points

Figure 17: Case study of DeepSeek-Coder-6.7B-Instruct on CONVCODEWORLD (Ω “ xfc, ϕ, f
˚
v y;

turn 1).
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Move backward  Move forward

Expert Feedback Analysis Home Statistics Help Finished 20/20 Current_id 17  go Currently logged in as youngwon.lee@snowflake.com

[Expert Feedback]
That's great except I have a few modifications. The setup is as follows: next to each showtime there is a button which may or may not have
the text "Sold out", the goal here is to check if any of those buttons \*do not\* have that text, and then click it. What you've done is look to
see whether there are \*any\* buttons that say sold out, so you kind of have it the wrong way round. Can you try again please, with the
addition that the button should be clicked if it is what we're looking for (i.e. not a "Sold out" button), as well as playing the sound. Don't give
me the surrounding text about substituting paths, I know what I'm doing.

[Problem]
Can you write me a script that visits the following url (https://www.barbican.org.uk/whats-on/2022/event/royal-shakespeare-company-my-neighbour-totoro), clicks the button that says "Check dates & book", and then in the dialog box that appears checks to see if any of the buttons that say "Sold out", have some other text such as "Book seats". If all of the buttons say "Sold out" then repeat this process, however if one of the button says "Book seats" or some other text value, it should click that button and then play a noise to alert me. In Python please.

[Previous Code]
import time
import os
from selenium.webdriver import Firefox
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.common.by import By

geckodriver_path = '/path/to/geckodriver'
service = Service(geckodriver_path)
service.start()

options = FirefoxOptions()
options.add_argument('-headless')  # run browser in headless mode

driver = Firefox(service=service, options=options)

def play_sound():
    os.system('afplay /path/to/sound.mp3')

while True:
    driver.get("https://www.barbican.org.uk/whats-on/2022/event/royal-shakespeare-company-my-neighbour-totoro")
    check_dates_button = driver.find_element(By.XPATH, '//a[text()="Check dates & book"]')
    check_dates_button.click()
    time.sleep(5)  # give time for the dialog box to appear

    sold_out_buttons = driver.find_elements(By.XPATH, '//button[text()="Sold out"]')
    if not sold_out_buttons:
        play_sound()
        break
    else:
        print("All buttons say sold out. Retrying.")
        time.sleep(60)

driver.quit()

Is this feedback helpful for refining the given code?

 Yes

 No

Does this feedback resemble what would be expected from expert human programmers?

 Yes

 No

Copyright © 2022 Blablablab

Fork on GitHub |  Cite Us

Figure 18: Annotation platform (Pei et al., 2022) for collecting human evaluation of expert user
feedback.
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