
Multiple Modes for Continual Learning

Siddhartha Datta
Department of Computer Science

University of Oxford
siddhartha.datta@cs.ox.ac.uk

Nigel Shadbolt
Department of Computer Science

University of Oxford
nigel.shadbolt@cs.ox.ac.uk

Abstract

Adapting model parameters to incoming streams of data is a crucial factor to
deep learning scalability. Interestingly, prior continual learning strategies in online
settings inadvertently anchor their updated parameters to a local parameter subspace
to remember old tasks, else drift away from the subspace and forget. From this
observation, we formulate a trade-off between constructing multiple parameter
modes and allocating tasks per mode. Mode-Optimized Task Allocation (MOTA),
our contributed adaptation strategy, trains multiple modes in parallel, then optimizes
task allocation per mode. We empirically demonstrate improvements over baseline
continual learning strategies and across varying distribution shifts, namely sub-
population, domain, and task shift.

1 Introduction

As the world changes, so must our models of it. The premise of continual (or incremental or lifelong)
learning is to build adaptive systems that enable a model to return accurate predictions as the test-time
distribution changes, such as a change in domain or task. Training sequentially on multiple different
task distributions tends to result in catastrophic forgetting (McCloskey & Cohen, 1989), where
parameter updates benefiting the inference of the new task may worsen that of prior tasks. Alleviating
this is the motivation for our work.

To enable flexibility in adoption, we do not assume parameter adaptation w.r.t. known task boundaries
at test-time, and we assume only access to model parameters alone (no conditioning inputs, query
sets, rehearsal or replay buffers, N -shot metadata, or any historical data). This carries positive
implications for adoption in online learning settings, and robustness towards different distribution
shifts (e.g. sub-population, domain, task shifts). Interestingly. prior work in non-rehearsal methods
(notably regularization and parameter isolation methods) tend to "anchor" the parameter updates with
respect to a local parameter subspace. These methods begin with a model initialization, then update
the model with respect to the first task, and henceforth all future parameter updates on new tasks are
computed with respect to this local subspace. The key question we ask here: what happens when we
consider the global geometry of the parameter space?

Contributions. We introduce a new rehearsal-free continual learning algorithm (Algorithm 1). We
initialize pre-trained parameters, maximize the distance between the parameters on the first task,
then on subsequent tasks we optimize each parameter based on the loss with respect to their joint
probability distribution as well as the each parameter’s drift from its prior position (and reinforce with
backtracking). Evaluating forgetting per capacity, MOTA tends to outperform baseline algorithms
(Table 3), and adapts parameters to sub-population, domain, and task shifts (Tables 1, 2).

Related Work. Lange et al. (2019) taxonomized continual learning algorithms into replay, regular-
ization, and parameter isolation methods. Replay (or rehearsal) methods store previous task samples
to supplement retraining with the new task, such as iCaRL (Rebuffi et al., 2017), ER (Ratcliff, 1990;
Robins, 1995; Riemer et al., 2018; Chaudhry et al., 2019), and A-GEM (Chaudhry et al., 2018b).

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

Parameter isolation methods allocate different models or subnetworks within a model to different
tasks, such as PackNet (Mallya & Lazebnik, 2017), HAT (Serrà et al., 2018), and SupSup (Wortsman
et al., 2020). Task oracles may be required to activate the task-specific parameters. Regularization
methods add regularization terms to the loss function to consolidate prior task knowledge, such as
EWC (Kirkpatrick et al., 2017b), SI (Zenke et al., 2017), and LwF (Li & Hoiem, 2016). These
methods tend to rely on no other task-specific information or supporting data other than the model
weights alone. We are amongst the first to leverage the global geometry of the loss landscape for task
adaptation. Though our method leverages multiple models, we do not assume known task boundaries
through a task oracle, and we use smaller models for fair capacity comparison.

2 Trade-off between Multiple Modes and Task Allocation

First we introduce the problem set-up of continual learning (with assumptions extendable to broader
online learning settings. Then we share the observations that motivate our study into multiple modes.
Finally we present a trade-off, which motivates our proposed learning algorithm.

Problem Setup. A base learner receives T tasks sequentially. Dt = {xt, yt} denotes the dataset of the
t-th task. In the continual learning setting, given loss function L, a neural network f(θ;x) optimizes
its parameters θ such that it can perform well on the t-th task while minimizing performance drop on
the previous (t− 1) tasks: θ∗ := argminθ

∑T
t=1 L(f(θ;xt), yt). We assume the only information

available at test-time is the model(s) parameters and the new task’s data points. The learner cannot
access any prior data points from previous tasks, and capacity is not permitted to increase after each
task. Additionally, we do not assume parameter adaptation at test-time can be conditioned on task
boundaries or conditioning inputs (task index, K-shot query data, etc).

Trade-off. We denote θinit as the initialization parameter, θMTL(1,...,T) as the multi-task parameter
trained on tasks 1, ..., T , and θi,t as the parameter of mode index i updated on task t.

Many regularization-based methods are grounded on minimizing drift (change in parameters) to
reduce forgetting on prior tasks. Yet in Figure 3, a multi-task learner has a higher average drift
consistently between tasks than EWC, even when both begin from a shared starting point (init→
task 1). When given visibility to prior tasks, a multi-task learner will depart the subspace of the
previous parameter, and drift far. This contradicts with the notion of forcing parameters to reside
in the subspace of the previous parameter. The regularization-based methods essentially anchor all
future parameters to the first task observed.

Results in mode connectivity (Fort & Jastrzebski, 2019; Draxler et al., 2019; Garipov et al., 2018)
show that a single task can have multiple parameters ("modes") that manifest functional diversity.
We explored computing multiple modes with respect to task 1 to incorporate the broader geometry
of the parameter space beyond the subspace of one mode. To bring performance gains and capacity
efficiency, we further obtained this trade-off between the number of modes, number of tasks allocated
per mode, and capacity (Theorem 1).

Theorem 1 If the number of modes N is optimized against capacity |θ| and the set of tasks allocated
per mode |T (i) = {t}| for i ∈ N , t ∈ T , then the total task drift is lower in the multi-mode setting
than single-mode setting:

ΣN
i=1

[
Σ

T (i)
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 − ΣT
t=2

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
]
< 0

Proof. See Appendix A.3.

As a result, our proposed algorithm is motivated to train multiple modes while optimizing for tasks
learnt per mode.

3 Mode-Optimized Task Allocation

Mode-Optimized Task Allocation (MOTA) Once the first task is received, we train N models
in parallel such that the distance between them is maximized. Then for each subsequent task, we
coordinate the parameter updates of the modes such that the drift per mode is minimized, and only
the minimum number of modes needed to solve the task will be updated.

2

3.1 Mode initialization

We begin with a pre-trained initialization. We instantiate N models on this initialization of a fixed
model architecture, and denote this set of parameters {θi,t}N for i ∈ N and t ∈ T . We train the
parameters in parallel such that the distance between each other is maximized. For each batch per
epoch, we randomly generate weights {αi}N that sum to 1 to compute an interpolated parameter
θ̂ = ΣN

i αiθi,t. We compute the distance (cosine similarity) between the N modes ΣN
j,j ̸=i dist(θi,t,

θj,t to be maximized (adjusted with a penalty coefficient βmax). We update each mode with respect to
the input loss (evaluated with θ̂) and the distance maximization term.

3.2 Mode adaptation

For each mode per epoch, we compute the loss with respect to a joint probability distribution. We
also compute a distance term between each mode’s parameters and its parameters at the (t− 1)-th
task dist(θi,t, θi,t−1) to be minimized (adjusted with a penalty coefficient βmin). We use the EWC
regularization term for distance minimization. We update each mode with respect to the joint loss
and its respective parameter drift, and checkpoint each update.

We compute the gradient update for each mode with respect to the joint probability distribution
between all the modes. Specifically, we compute the average probability distribution returned at the
last (softmax) layer ℓ = −1 of each model ρ{θi,t}N = 1

NΣN
i f(θ

ℓ=−1
i,t ;x). If a task has a high level

of certainty, then only a small subset of models would need to be updated and return a probability
distribution skewed toward the target class while the other non-updated / minimally-updated models
would return a random distribution, and the resulting averaged distribution would still be slightly
skewed towards the target class. For a task of low certainty, then more models (of high functional
diversity) would be updated to return a robust probability distribution. By the time we have jointly-
accurate modes, it is likely most of the modes have been over-optimized, and thus over-drifted. Thus,
we need to backtrack and find the optimal checkpoints across modes that minimize loss with respect
to their checkpointed joint probability distribution and drift. We adopted the simplest backtracking
algorithm: we enumerate through every combination of model checkpoint per epoch across the modes,
and select the checkpoint combination that minimizes the loss with respect to the joint probability
distribution for task t and minimizes total parameter drift.

4 Evaluation

We review our main results on MOTA’s improvement in task adaptation here. Detailed experimental
configurations and supplementary results can be found in the Appendix.

We evaluate MOTA against different types of distribution shifts (Table 1, Table 2). Evaluating on task
shift in CIFAR100 and TinyImageNet, we observe improved backward and forward transfer with
MOTA, indicating lower forgetting as well as improved feature transferability between tasks. As
task boundaries are not necessary for parameter adaptation, we can evaluate our method on settings
that do not require an assumption of task boundaries, namely sub-population and domain shift. We
find that our method also outperforms on backward/forward transfer on Instance-IL CIFAR100
(sub-population shift) and Task-IL DomainNet (domain shift).

We primarily baseline MOTA against other regularization-based methods (Table 3). Though MOTA
aims to find a combination of parameters that can perform close to the multi-task learning strategy, it
falls shortly behind. By optimizing (i) the number of modes throughout the parameter space against
(ii) optimal task allocation per parameter, MOTA can outperform other regularization and replay
methods. In particular, MOTA outperforms its component baselines: EWC (where this baseline and
MOTA use the EWC regularization term in minimizing mode drift), and ensembling (where this
baseline and MOTA use the same distance maximization procedure from init to return modes). We
show that the optimal combination of these components can yield superior performance.

3

Table 1: Metrics evaluation: Instance-IL (a) presumes the coarse labels are the same between task
(5 tasks, 20 labels), thus is representative of sub-population shift. Task-IL (b) presumes unique fine
labels per task (10 tasks, 10 labels), and is representative of the general continual learning setting.

(a) Split-CIFAR100 Instance-IL

Method Average Accuracy ↑ Average Task Drift ↓ Capacity ↓ Backward Transfer ↑ Forward Transfer ↑ Remembering ↑ Forgetting ↓
Single-Task Learning 47.1 1.0 23,528,522 -20.2 40.8 79.8 27.0
EWC 48.8 0.360 23,528,522 -12.7 47.2 87.3 17.0
MOTA 52.3 3.13 ×10−5 22,363,284 -11.6 55.4 88.4 13.9
Multi-Task Learning 64.1 0.910 23,528,522 0 0 1 0

(b) Split-CIFAR100 Task-IL

Method Average Accuracy ↑ Average Task Drift ↓ Capacity ↓ Backward Transfer ↑ Forward Transfer ↑ Remembering ↑ Forgetting ↓
Single-Task Learning 54.8 1.0 23,528,522 -24.7 46.9 75.3 23.7
EWC 66.9 0.521 23,528,522 -8.03 62.7 92.0 6.69
MOTA 70.5 7.85 ×10−6 22,363,284 -5.08 69.5 94.9 2.89
Multi-Task Learning 77.1 0.725 23,528,522 0 0 1 0

Table 2: Varying Datasets: We evaluate on a task shift dataset (a), and domain shift dataset (b).

(a) TinyImageNet Task-IL

Method Average Accuracy ↑ Backward Transfer ↑ Forward Transfer ↑ Remembering ↑ Forgetting ↓
Single-Task Learning 65.2 -14.7 65.0 85.3 16.5
EWC 76.7 -4.49 74.7 95.5 3.45
MOTA 82.7 -1.70 81.2 98.3 1.57
Multi-Task Learning 90.2 0 0 1 0

(b) DomainNet Task-IL

Method Average Accuracy ↑ Backward Transfer ↑ Forward Transfer ↑ Remembering ↑ Forgetting ↓
Single-Task Learning 34.8 -17.5 22.2 82.5 27.1
EWC 40.2 -9.82 31.6 90.2 8.57
MOTA 57.5 -1.62 55.9 98.4 2.43
Multi-Task Learning 70.4 0 0 1 0

Table 3: Baseline comparison: Evaluating on Task-IL Split-CIFAR100, we evaluate MOTA against
Single/Multi-Task learning, regularization-based and replay-based methods, and ensemble ablations.

Method Average Accuracy ↑ Storage: Model parameters ↓ Storage: Replay buffer ↓
Single-Task Learning 54.8 23,528,522 –
EWC (Kirkpatrick et al., 2017b) 66.9 2 × 23,528,522 –
SI (Zenke et al., 2017) 63.7 3 × 23,528,522 –
LwF (Li & Hoiem, 2016) 61.2 23,528,522 –
ER (Riemer et al., 2018) 68.2 23,528,522 10,000
A-GEM (Chaudhry et al., 2018b) 67.2 2 × 23,528,522 10,000
MOTA 70.5 2 × 11,181,642 –
Ensembles (distance max.) 60.1 2 × 11,181,642 –
Ensembles (independent seeds) 55.5 2 × 11,181,642 –
Multi-Task Learning 77.1 23,528,522 –

5 Conclusion

Driven by observations in the optimization behavior of multi-task learners, we hypothesize incorpo-
rating the broader geometry of the parameter space into a continual learner for improved adaptation
between data distributions. Supported by the formulation of a trade-off between the number of modes
and task allocation per mode, we demonstrate that Mode-Optimized Task Allocation (MOTA) can
outperform existing baselines. It can retain a high average accuracy on current and previous data in
sub-population, domain, and task shift settings.

4

References
Arslan Chaudhry, Puneet Kumar Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Rie-

mannian walk for incremental learning: Understanding forgetting and intransigence. In ECCV,
2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. ArXiv, abs/1812.00420, 2018b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning, 2019. URL https://arxiv.org/abs/1902.10486.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially no barriers
in neural network energy landscape, 2019.

Natalia Díaz-Rodríguez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget, there
is more than forgetting: new metrics for continual learning, 2018. URL https://arxiv.org/abs/
1810.13166.

Stanislav Fort and Stanislaw Jastrzebski. Large scale structure of neural network loss landscapes,
2019.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks, 2017a.

James N Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, and et. al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of
the United States of America, 114 13:3521–3526, 2017b.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Matthias Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ale Leonardis, Gregory G.
Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to defy forgetting
in classification tasks. ArXiv, abs/1909.08383, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Neural Information Processing Systems, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In ECCV, pp. 614–629. Springer, 2016.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7765–7773,
2017.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. 1989.

Adam Paszke, Sam Gross, Francisco Massa, and et. al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation, 2019.

5

https://arxiv.org/abs/1902.10486
https://arxiv.org/abs/1810.13166
https://arxiv.org/abs/1810.13166

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
forgetting functions. Psychological Review, 97(2):285–308, 1990. doi: 10.1037/0033-295X.97.2.
285.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In CVPR, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910, 2018.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995. doi: 10.1080/09540099550039318. URL https://doi.org/10.1080/
09540099550039318.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Experience
replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.

Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423, 2018.

Stanford. Tiny ImageNet Challenge, CS231N Course. URL https://tiny-imagenet.herokuapp.
com/.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 3987–3995. JMLR.org, 2017.

6

https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/

A Appendix

A.1 Experimental configurations

Incremental Learning (IL) Settings. A task is a subsequent training phase with a new batch of
data, pertaining to a new label set, new domain, or different output space. In instance-IL, each new
task bring new instances from known classes. In class/task-IL, each new task bring instances from
new classes only. Class-IL performs inference w.r.t. all observed classes. Task-IL performs inference
w.r.t. the label set of the task. We evaluate on task-IL unless otherwise specified.

Datasets. Task-IL Split-CIFAR100 (Krizhevsky, 2009) is constructed by dividing 100 fine labels
into 10 tasks (10 fine labels per task). Instance-IL Split-CIFAR100 (Krizhevsky, 2009) is constructed
by dividing 100 fine labels (mapped to 5 coarse labels) into 5 tasks (20 coarse labels per task).
Instance-IL DomainNet (Peng et al., 2019) is composed of 6 domains with 345 labels. Task-IL
TinyImageNet (Stanford) is constructed by dividing 200 labels into 10 tasks (20 labels per task).

Architectures. We utilize ResNets-{18, 50, 152} (He et al., 2015), loading weights from PyTorch
(Paszke et al., 2019) pretrained on ImageNet, with { 11, 181, 642 || 23, 528, 522 || 58, 164, 298 } trainable
parameters respectively. To retain comparable capacity, ResNet-50 (-18) is the default model for
baselines (MOTA). We loaded pre-trained ImageNet weights for each ResNet architecture with
PyTorch (Paszke et al., 2019). We trained for 200 epochs, with batch size 512, using AdamW
optimizer (learning rate 0.1 with 1cycle learning rate policy) train/val/test split of 70/10/20%, We
train and evaluate (including when averaging the joint probability distribution) using a cross-entropy
loss function. We used seed 3407 through all operations; for those requiring multiple unique random
values (e.g. multiple randomly initialized models), the seed is the index of the object (1, 2, ...).

MOTA. The distance maximization coefficient βmax is 100.0. For the distance minimization
procedure in subsequent epochs, we retain the elastic weights consolidation procedure of computing
the Fisher information matrix and computing its corresponding regularization term. We retain EWC’s
lambda βmin = λ = 1, 000.

Baselines & Ablations. We do not assume task boundaries at test-time for parameter adaptation,
and do not use task index to recompute task-specific parameters. We evaluate against regularization
methods (Elastic Weight Consolidation (Kirkpatrick et al., 2017b), Synaptic Intelligence (Zenke et al.,
2017), Learning without Forgetting (Li & Hoiem, 2016)). The regularization strength for weight
penalty for EWC and SI is 1, 000 and 100 respectively, with SI dampening term 0.1, and LwF’s
temperature for distillation loss 2.0. We also compare against two replay baselines (Experience
Replay (Rolnick et al., 2018), Averaged Gradient of Episodic Memory (Chaudhry et al., 2018b)),
though they require a task replay buffer for parameter adaptation. The memory buffer’s budget per
class is 100, with A-GEM epsilon (parameter to ensure numerical stability of A-GEM) 10−7. We
introduce two ablations: Ensemble (distance max.) which is an ensemble of modes obtained using
MOTA’s distance maximization procedure and trained on all tasks, and Ensemble (independent seeds)
which is an ensemble of modes trained on all tasks but from independent random initializations. We
used the same number of models in ensemble as the number of modes of the comparable MOTA
(N = 2 for Table 3). We retain the same distance maximization coefficients as MOTA, and use
unique seeds (1,2,...) for each model’s random initialization.

Metrics. Single-Task Learning trains on each task independently. Multi-Task Learning trains on
all seen tasks simultaneously. Primarily baselined against regularization methods, capacity is the
number of trainable model parameters. When considering replay methods as well, we distinguish
capacity w.r.t. model parameters from repay buffer, where the replay budget is 100 per class. The
average drift distance between tasks is the distance between the updated parameters and previous
parameters, averaged for each task update instance. For multiple model parameters, we take the
cumulative distance. We compute this from 1

T−1Σ
T
t=2Σ

N
i dist(θi,t, θi,t−1). Given Acc(θ, xt) as the

validation accuracy on the t-th task, average accuracy is the average validation accuracy across all
seen tasks w.r.t. the parameters updated at the t-th task. We compute this from 1

t

∑t
v=1 Acc(θt, xv).

Backward Transfer (Lopez-Paz & Ranzato, 2017) measures the influence that learning a task has
on the performance on previous tasks. We compute this from 1

t−1

∑t−1
v=1 Acc(θt, xv)− Acc(θv, xv).

Forward Transfer (Lopez-Paz & Ranzato, 2017) measures the influence that learning a task has on
the performance of future tasks. We compute this from 1

t−1

∑t
v=2 Acc(θv−1, xv) − Acc(θinit, xv).

Remembering (Díaz-Rodríguez et al., 2018) computes the forgetting part of Backward Transfer. We

7

compute this from 1− |min(0, 1
t−1

∑t−1
v=1 Acc(θt, xv)− Acc(θv, xv))|. Forgetting (Chaudhry et al.,

2018a) is calculated by the difference of the peak accuracy and ending accuracy of each task. We
compute this from 1

T−1

∑T−1
v=1 maxt∈{1,...,T−1} (Acc(θt, xv)− Acc(θT , xv)).

A.2 Distance regularization term

Distance maximization term. For this distance maximization procedure, we used the
average cosine similarity between each layer ℓ between every pair of models dist =

1
M
2 (N2−N)

ΣM
ℓ ΣN−1

i=1 ΣN
j=i+1

θℓ
i ·θ

ℓ
j

||θℓ
i || ||θℓ

j ||
, out of M and N layers and models respectively.

Distance minimization term. Importance of each parameter is computed for each task by the
parameter’s corresponding diagonal element from its Fisher Information matrix F . Given the index
of the parameters i (ith element of θt, ith diagonal element of F), importance of the previous task
compared to the next task λ, we can compute the EWC regularization term (Kirkpatrick et al., 2017a):∑|θt−1|

i=1
λ
2Fi(θt − θt−1)

2.

A.3 Analysis on Multiple Modes vs Task Allocation Trade-off

First we denote θinit as the initialization parameter, θMTL(1,...,T) as the multi-task parameter trained on
tasks 1, ..., T , and θi,t as the parameter of mode index i updated on task t.

Lemma 1 Iterating through each task t, for a reference multi-task parameter θMTL, the cumulative
distance between an updated θi,t and previous θi,t−1 parameter with respect to θMTL will exceed the
drift between θi,t and θi,t−1:

ΣT
t=2(θi,t − θMTL) > ΣT

t=2(θi,t − θi,t−1)

Proof. By the triangle inequality, the sum of the distances between the previous and the updated
parameter with respect to θMTL will exceed the drift between the previous and the updated parameter:

(θi,t − θMTL) + (θi,t−1 − θMTL) > (θi,t − θi,t−1) (1)

Thus, we can show that that the cumulative distance between an updated parameter with respect to
θMTL will exceed the drift between the updated and previous parameters. Hence, this cumulative
distance also measures the task drift.

ΣT
t=2(θi,t − θMTL) > ΣT

t=2(θi,t − θi,t−1) (2)

Definition 1 (Task Allocation) Task Allocation is defined as a procedure that allocates a set of tasks
T (i) = {t} to be learnt by a parameter mode θi,t of index i.

Definition 1.1 (Optimal Task Allocation) Optimal Task Allocation is defined as a procedure
that maximizes the number of tasks |{t}| allocated per mode of index i, while minimizing
the total drift between parameter updates ΣN

i=1Σ
T (i)
t (θi,t − θi,t−1).

Corollary 1 We can approximate Optimal Task Allocation by optimizing the number of
tasks |{t}| allocated to mode i against the cumulative distance between an updated θi,t and
previous θi,t−1 parameter with respect to θMTL (Lemma 1). This results in:

T (i) := min
|{t}|≥1

N∑
i=1

T (i)∑
t

(θi,t − θMTL) (3)

In other words, T (i) ∝ 1
θi,t−θMTL . At least one task must be allocated per mode |T (i)| ≥ 1.

Corollary 2 Given L(f(θMTL(1,...,T);xT (i)), yT (i)) ≈ L(f(θT (i);xT (i)), yT (i)), we use
θMTL = θMTL(1,...,T) as the reference multi-task parameter.

Theorem 1 If the number of modes N is optimized against capacity |θ| and the set of tasks allocated
per mode |T (i) = {t}| for i ∈ N , t ∈ T , then the total task drift is lower in the multi-mode setting
than single-mode setting:

ΣN
i=1

[
Σ

T (i)
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 − ΣT
t=2

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
]
< 0

8

Proof. Based on Lemma 1, given N modes and optimal task allocation T (i) with respect to
the distance between each θi and θMTL, we can compute the total drift with respect to θMTL as
ΣN

i=1Σ
T (i)
t (θi,t − θMTL).

Note that the capacity of an evaluated mode changes between the multi-mode and single-mode setting.
We can compute the total drift normalized by capacity (specifically the number of parameter values)
with the squared Euclidean distance averaged by number of dimensions 1

|θMTL|Σ
|θMTL|
d=1 (θi,t,d − θMTL

d)2,
given |θMTL| ≡ |θi,t|.

From Corollary 1, |T (i)| is larger when θi is closer to θMTL. Thus for a threshold T , we can
decompose the total drift into:

ΣN
i=1Σ

T (i)
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2

=ΣN
i=1

[
Σ

T (i)

∣∣|T (i)|>T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2
] (4)

Consequently, taking the difference in total drift (Eqt 4) between multiple-mode against single-mode
settings result in the follow trade-off function:

minπ = ΣN
i=1

[
Σ

T (i)
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 − ΣT
t=2

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
]

= ΣN
i=1

[
Σ

T (i)

∣∣|T (i)|>T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2
]

− ΣN
i=1

[
Σ

T (i)

∣∣|T (i)|>T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
]

(5)

Notably, for small T (e.g. T = 1), the Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 term only learns a
few tasks per mode, lowers the capacity available per mode |θ|/N , and thus these capacity-inefficient
modes are redundant. Furthermore, as T decreases, the functional diversity of a mode is less
important, and any random mode can generalize the set of tasks T (i)

∣∣|T (i)| ≤ T . Hence,

Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 ≈ Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2 (6)

If N = 1, then π = 0, given:

Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2

≡Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
(7)

Performance would be identical to the single-mode sequential learning case.

If N →∞ (and redundant modes dominate), then π > 0, given:

Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2

>Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
(8)

Though the terms where |T (i)| > T may reduce the cumulative distance compared to a single-
mode setting, an extremely large number of modes will result in excess modes only storing one/few
tasks. These excess terms will increase, and the cumulative distance from θMTL will be greater in
the multi-mode setting than the single-mode setting.

If 0 < N <∞ is optimized, then π < 0, given:

Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2

<Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2 +Σ
T (i)

∣∣|T (i)|≤T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2
(9)

9

For |T (i)| ≤ T , any sampled mode will be similarly distant from θMTL, thus we can cancel this
term on both sides.

Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 < Σ
T (i)

∣∣|T (i)|>T
t

1
|θ|Σ

|θ|
d=1(θ1,t,d − θMTL

d)2 (10)

This result shows that, compared to single-mode sequential learning, if we optimize the number of
modes N , then we can minimize the cumulative distance with respect to θMTL, and thus minimize
the total task drift.

In other words, we conclude that optimizing the number of modes N against capacity |θ| and tasks
allocated per parameter |T (i)| can outperform training on a single mode. If we increase N , then we
can minimize the total task drift. If N is too large, however, then the number of tasks allocated per
parameter |T (i)| decreases, and thus increases the number of redundant mode terms (and total task
drift).

ΣN
i=1

[
Σ

T (i)
t

1
|θ|/NΣ

|θ|/N
d=1 (θi,t,d − θMTL

d)2 − ΣT
t=2

1
|θ|Σ

|θ|
d=1(θ

t(1)
d − θMTL

d)2
]
< 0 (11)

A.4 Tradeoff between accuracy and capacity

0 10 20 30 40 50 60 70 80 90 100 110 120
Capacity %

65

66

67

68

69

70

71

72

73

74

A
ve

ra
ge

 A
cc

ur
ac

y
%

2xResNet18

2xResNet50

3xResNet18

3xResNet50

4xResNet18
5xResNet18 6xResNet18

EWC (ResNet50) EWC (ResNet152)

Figure 1: Varying modes count: Compared to EWC
(ResNet50/152), we evaluate the trade-off between
accuracy against capacity (number of modes), given
a constant number of tasks.

We learn from ensemble performance in Ta-
ble 3 that utilizing global geometry alone is
not sufficient to improve average accuracy,
and that we need to optimally allocate tasks
per mode. Similarly in Figure 1, we observe a
similar inclination for a balance between cap-
turing global geometry and optimizing tasks
per mode. We would expect that, given a
constant number of tasks, an increasing num-
ber of modes would result in improved av-
erage accuracy. Instead, the average accu-
racy gain between 2-6 ResNet18s is minimal.
We also observe a trade-off between the num-
ber of modes and optimal task allocation per
mode. Considering EWC (ResNet50; i.e. 1×
ResNet50) and 2− 3× ResNet50, an increase
in the number of modes results in an increase
in average accuracy. Considering constant ca-

pacity, 4× ResNet18 outperforms 2× ResNet50; however, 3× ResNet50 outperforms 6× ResNet18.

10

A.5 Changes to the geometry of the parameter space

From Table 1, the average task drift (drift distance between the next and previous task’s parameters)
tends to be lower for MOTA than EWC, Single-Task, and Multi-Task Learning. This can be visually
observed in the trajectory of the parameters in Figure 2.

We also observe from Figure 2 that the loss landscape changes drastically between tasks. A region
considered to be low-loss by a parameter at task t becomes a high-loss region with respect to the next
task t+ 1. As each task is added, the sharpness of the basin upon which the EWC parameter exists
tends to increase. This change in sharpness tends to be much smaller for the regions in which MOTA
modes are located, where the basin still retains a similar level of flatness.

EW
C

Task 1 Task 2 Task 3 Task 4 Task 5

Task 6 Task 7 Task 8 Task 9 Task 10

M
od

e
1

M
od

e
2

loss

PC
1 (21.1%

)

PC0 (58.8%)

PC
1 (3.8%

)

PC0 (93.8%)

PC
1 (51.1%

)

PC0 (93.2%)

EW
C

M
od

e
1

M
od

e
2

PC
1 (21.1%

)
PC

1 (3.8%
)

PC
1 (51.1%

)

PC0 (58.8%)

PC0 (93.2%)

PC0 (93.8%)

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

4
3
2
1
0

-1
-2
-3
-4

40

20

0

-20

-40

40

20

0

-20

-40

40

20

0

-20

-40

40

20

0

-20

-40

40

20

0

-20

-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

40

20

0

-20

-40

40

20

0

-20

-40

40

20

0

-20

-40

40

20

0

-20

-40

40

20

0

-20

-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

30
20
10

0
-10
-20
-30
-40

-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2-5 -4 -3 -2 -1 0 1 2

-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2-5 -4 -3 -2 -1 0 1 2

-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40-40 -20 0 20 40

-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40-40 -20 0 20 40

-40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30-40 -30 -20 -10 0 10 20 30

-40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30-40 -30 -20 -10 0 10 20 30

Figure 2: Loss Landscape: In-line with Li et al. (2018), we visualize the loss landscape by storing
the model parameters along the optimization trajectory per epoch from Task 1-10 (including the
last parameter θ∗), identify the top two components/directions δ, η with PCA, and with respect to
each task’s dataset xt, yt we plot the loss function L(θ∗ + αδδ + αηη) with varying interpolation
coefficients αδ, αη. We plot each set per method across the tasks to show the relative change in
flatness/sharpness between tasks. We normalize the loss values of all plots jointly between 0 and 1.
The trajectory (white line) is the position of the parameter in the parameter space at the t-th task.
Note that the loss values are not necessarily synchronized for each parameter between tasks (e.g. the
init parameter) as the loss for the same parameter may be different for different tasks.

11

Algorithm 1 update_parameters

1: procedure update_parameters(Dt, {θi,t}Ni=1) ▷ Pass a new task Dt to our current parameters {θi,t}Ni=1

2: if t=1 then ▷ Check if initializing parameters for the first time

3: {θi,t}Ni=1 ← initialize_task1(D1, {θi,t}Ni=1)
4: else
5: {θi,t−1}Ni=1 ← {θi,t}Ni=1 ▷ Retain a copy of the last task’s parameters

6: for e in epochs do
7: for θi,t in {θi,t}Ni=1 do
8: for (xt, yt) in Dt do
9: ρ{θi,t}N

i=1
= joint_inference(xt, {θi,t}Ni=1)

10: Lt = L(ρ{θi,t}N , yt) + βmin dist(θi,t, θi,t−1) ▷ Compute loss w.r.t. joint probability and drift

11: θi,t := θi,t − ∂Lt

∂θi,t
▷ Update each parameter independently

12: {t∗, e∗}N := argmin{t,e}N L(ρ{θi,t,e}N , yt) ▷ Backtracking: Enumerate through parameter combinations

+ ΣN
i=1 dist(θi,t,e, θi,t−1) for {θi,t,e}Ni=1 ∼ {θi,t,e}

N×epochs
i=1

13: {θi,t}Ni=1 ← {θi,t∗,e∗}Ni=1

14: return {θi,t}Ni=1

Algorithm 2 initialize_task1

1: procedure initialize_task1(D1, {θi,t}Ni=1) ▷ Initialize parameters on task D1 and empty parameters set {θi,t}Ni=1

2: {θi,t}Ni=1 ← {θinit}Ni=1
3: for e in epochs do
4: for (xt, yt) in D1 do
5: αi ∼ [0, 1] ∀i ∈ N s.t. ΣN

i=1αi ≡ 1

6: θ̂ = ΣN
i=1αiθi,t ▷ Sample interpolated parameter θ̂

7: Lt = L(f(θ̂);xt, yt) + βmax Σ
N
j=1,j ̸=i dist(θi,t, θj,t) ▷ Compute loss and distance term

8: θi,t := θi,t − ∂Lt

∂θi,t
▷ Update each parameter independently

9: return {θi,t}Ni=1

Algorithm 3 joint_inference

1: procedure joint_inference(x, {θi,t}Ni=1) ▷ Inference using the set of parameters {θi,t}Ni=1

2: ρ{θi,t,e}N = 1
NΣN

i=1f(θ
ℓ=−1
i,t ;x) ▷ Taking average of the joint probability distribution returned at the softmax layer ℓ = −1

3: return ρ{θi,t,e}N

12

	Introduction
	Trade-off between Multiple Modes and Task Allocation
	Mode-Optimized Task Allocation
	Mode initialization
	Mode adaptation

	Evaluation
	Conclusion
	Appendix
	Experimental configurations
	Distance regularization term
	Analysis on Multiple Modes vs Task Allocation Trade-off
	Tradeoff between accuracy and capacity
	Changes to the geometry of the parameter space

