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ABSTRACT

We introduce a simple modification to the standard maximum likelihood estima-
tion (MLE) framework. Rather than maximizing a single unconditional model
likelihood, we maximize a family of noise conditional likelihoods consisting of
the data perturbed by a continuum of noise levels. We find that models trained
this way are more robust to noise, obtain higher test likelihoods, and generate
higher quality images. They can also be sampled from via a novel score-based
sampling scheme which combats the classical covariate shift problem that occurs
during sample generation in autoregressive models. Applying this augmentation
to autoregressive image models, we obtain 3.32 bits per dimension on the Ima-
geNet 64x64 dataset, and substantially improve the quality of generated samples
in terms of the Frechet Inception distance (FID) — from 37.50 to 12.09 on the
CIFAR-10 dataset.

1 INTRODUCTION

Maximum likelihood estimation (MLE) is arguably the gold standard for probabilistic model fit-
ting, and serves as the de facto method for parameter estimation in countless statistical problems
Bishop (2006), across a variety of fields. Estimators obtained via MLE enjoy a number of theoret-
ical guarantees, including consistency, efficiency, asymptotic normality, and equivariance to model
reparameterizations Van der Vaart (2000). In the field of density estimation and generative model-
ing, MLE models have played a key role, where autoregressive models and normalizing flows have
boasted competitive performance in a bevy of domains, including images Child et al. (2019), text
Vaswani et al. (2017), audio Oord et al. (2016), and tabular data Papamakarios et al. (2017).

However, while log-likelihood is broadly agreed upon as one of the most rigorous metrics for
goodness-of-fit in statistical and generative modeling, models with high likelihoods do not nec-
essarily produce samples of high visual quality. This phenomenon has been discussed at length by
Theis et al. (2015); Huszár (2015), and corroborated in empirical studies Grover et al. (2018); Kim
et al. (2022). Autoregressive models suffer an additional affliction: they have notoriously unstable
dynamics during sample generation Bengio et al. (2015); Lamb et al. (2016) due to their sequential
sampling algorithm, which can cause errors to compound across time steps. Such errors cannot
usually be corrected ex post facto due to the autoregressive structure of the model, and can substan-
tially affect downstream steps as we find that model likelihoods are highly sensitive to even the most
minor of perturbations.

Score-based diffusion models Song et al. (2020b); Ho et al. (2020) offer a different perspective on the
data generation process. Even though sampling is also sequential, diffusion models are more robust
to perturbations because, in essence, they are trained as denoising functions Ho et al. (2020). More-
over, the update direction in each step is unconstrained (unlike token-wise autoregressive models,
which can only update one token at a time, and only once), meaning the model can correct errors
from previous steps. However, likelihood evaluations have no closed form, requiring ODE/SDE
solvers and hundreds to thousands of calls to the underlying network, and rendering the models
incapable of being trained via MLE. Diffusion models also do not inherit any of the asymptotic
guarantees Hyvärinen & Dayan (2005); Song et al. (2020a) of score matching, even though they
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Figure 1: Generated samples on CelebA 64x64 (above) and CIFAR-10 (below). Autoregressive
models trained via vanilla maximum likelihood (left) are brittle to sampling errors and can quickly
diverge, producing nonsensical results. Those trained by our algorithm (right) are more robust and
ultimately generate more coherent sequences.

are thusly trained 1. These details make diffusion models theoretically inferior and less viable for
many downstream tasks that involve the likelihood, such as anomaly and out-of-distribution (OOD)
detection Ren et al. (2019), adversarial defense Song et al. (2017), among others. Thus we wonder:
is there a conceptual middle ground?

In this paper, we offer such a framework. We further analyze the likelihood-sample quality mis-
match in autoregressive models, and propose techniques inspired by diffusion models to alleviate it.
In particular, we leverage the fact that the score function is naturally learned as a byproduct of max-
imum likelihood estimation. This allows a novel two-part sampling strategy with noisy sampling
and score-based refinement.

Our contributions are threefold. 1) We investigate the pitfalls of training and inference under the
maximum likelihood estimation framework, particularly regarding sensitivity to noise corruptions.
2) We propose a simple sanity test for checking the robustness of likelihood models to minor pertur-
bations, and find that many models fail this test. 3) We introduce a novel framework for the training
and sampling of MLE models that significantly improves the noise-robustness and generated sample
quality. As a result, we obtain a model that can generate samples at a quality approaching that of dif-
fusion models, without losing the maximum likelihood framework and O(1) likelihood evaluation
speed of MLE models.

2 BACKGROUND AND RELATED WORK

Let our dataset X consist of i.i.d. samples drawn from an unknown target density x ∼ pdata(x).
The goal of likelihood-based generative modeling is to approximate pdata via a parametric model
pθ, where samples x ∼ pθ can be easily obtained.

1Though each conditional score is trained via score matching, the final model depends heavily on the solu-
tion of a chosen SDE which is not specified by the framework. Thus score matching does not directly produce
a diffusion model.
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2.1 BACKGROUND

We first discuss fundamental techniques for estimating and sampling from pθ in generative model-
ing.

Score-based Modeling A technique for generative modeling that has recently grown in popular-
ity is score-based modeling, which involves minimizing a sum of weighted score matching losses
Hyvärinen & Dayan (2005) on noise-corrupted data

argmin
pθ,t

∫
t

Ex∼pdata
Ex̃∼p(x̃|x)||∇x log pθ,t(x̃)−∇x log pdata(x̃)||2µ(t)dt, (1)

where p(x̃|x) describes a corruption process and ∇x log p(x) is also known as the (Stein) score
function. Sampling from pθ can then be achieved via annealed Langevin dynamics Song & Ermon
(2019), variational denoising Ho et al. (2020), or reversing a diffusion process Song et al. (2020b).

To obtain a proper likelihood value, score-based models must be framed as a diffusion process,
where the density is then obtained as the solution of a related ordinary differential equation (ODE).
Here, each data point is modeled as a function x : [0, T ] → Rd such that x(0) ∼ pdata and
x(T ) ∼ pprior. The forward diffusion process is an Ito stochastic differential equation (SDE)

dx = f(x, t) + g(t)dw, (2)

for some drift and diffusion terms f and g, where w is the standard Wiener process. By a result in
Anderson (1982), this diffusion can be tractably reversed

dx = [f(x, t) + g2(t) +∇x log pt(x)]dt+ g(t)dw̄, (3)

and depends additionally on the noise-conditional score function, where w̄ is a backwards Wiener
process. Sampling then consists of drawing x(T ) ∼ pprior, and solving the reverse diffusion pro-
cess.

Maximum Likelihood Estimation (MLE) The standard MLE framework consists in solving

argmax
pθ

Ex∼pdata
log pθ(x) ≈ argmax

pθ

1

|X |
∑
x∈X

log pθ(x). (4)

Likelihood models draw samples x ∼ pθ one of two ways. Normalizing flows Dinh et al. (2014);
Rezende & Mohamed (2015); Grathwohl et al. (2018) apply a series of invertible transformations to
a latent variable z ∈ Rd ∼ pprior. On the other hand, autoregressive models sample x sequentially
and coordinate-wise by drawing from each conditional likelihood.

In this work, we draw an explicit distinction between MLE and other parameter estimation tech-
niques that increase the likelihood, such as score-based modeling or variational lower bound maxi-
mization, which is sometimes regarded as maximum likelihood Song et al. (2021). The key differ-
ence is that MLE provides theoretical guarantees on the resulting model — including consistency,
efficiency, asymptotic normality Van der Vaart (2000) — whereas score-based modeling and varia-
tional lower bound maximization do not.

2.2 RELATED WORK

A number of other works combine score- and energy-based modeling with autoregressive archi-
tectures. Hoogeboom et al. (2021) propose an order-agnostic autoregressive model for simulating
discrete diffusions via a variational lower bound. Meng et al. (2020) use unnormalized autoregres-
sive models to learn distributions in an augmented score-matching framework. Nash & Durkan
(2019) design an energy-based model with an autoregressive structure such that the normalizing
constant can be estimated coordinate-wise via importance sampling. Similar to our approach, Meng
et al. (2021) decompose the data generation process into a noisy sampling step and a denoising step,
but their formulation introduces latent variables and does not support adaptive refinement strategies.
Ultimately, each approach relinquishes the ability to compute exact likelihoods in their framework,
which is one of the motivating advantages of using autoregressive structures.

A closely related vein of research explores alternative training and inference strategies so as to im-
prove sampling stability in autoregressive models. Bengio et al. (2015) propose training models
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Figure 2: Images from CIFAR-10 (top) versus their pπ perturbed counterparts for π = 0.5 (middle)
and π = 1 (bottom). The differences are nearly indistinguishable to the human eye, yet cause
drastic deviations in average log-likelihood for standard likelihood models (Section 3 and Table 1).

with a mixture of true and generated samples over time, where the proportion of generated samples
gradually grows to take up the majority of training sequences. This is initially promising, except
Huszár (2015) note that this technique is biased and not guaranteed to produce solutions that con-
verge on the true distribution. Lamb et al. (2016) subsequently suggest incorporating an adversarial
loss provided by a discriminator that ”teaches” the model to produce more realistic samples over
multiple sampling steps. Both techniques again depart from the maximum likelihood framework.
Jun et al. (2020) considers alternative forms of data augmentation, which experimentation in Kingma
et al. (2021) show is synergistic with noise conditional perturbations during training. Perhaps most
similar to our approach is Jayaram & Thickstun (2021), who also suggest sampling via the score
function with Langevin dynamics, but they crucially do not train with noise, which Song & Ermon
(2019) found to be essential for stable sampling in a Langevin algorithm. As a result, they are not
able to sample images unconditionally.

Ultimately, our approach uniquely provides a principled and generalized framework for modeling
stochastic processes (including diffusions) that retains the asymptotic guarantees of maximum like-
lihood estimation while producing samples of superior quality.

3 THE PITFALLS OF MAXIMUM LIKELIHOOD ESTIMATION

We first show that density models trained to maximize the standard log-likelihood are surprisingly
sensitive to minor perturbations. We then discuss why this is bad for generative modeling perfor-
mance.

3.1 A SIMPLE SANITY TEST

Consider the class of minimally corrupted probability densities on a discrete k-bit integer space (e.g.,
8-bit images, or 16-bit digital audio signals):

pπ(x̃) =

2k∑
x=1

qπ(x̃|x)p(x), q(x̃|x) =
{
x w.p. 1− π

bitflip(x, k) w.p. π
, (5)

where π ∈ [0, 1] and bitflip(x, ℓ) is the bit flip operation on the ℓth bit of x. pπ is minimally
corrupted in the sense that pπ describes the distribution of points in pdata that have been perturbed
by flipping the least significant bit (LSB) with probability π.

In 8-bit images, the difference between samples drawn from pπ and pdata is imperceptible to the
human eye, even for π = 1 (see Fig 2). However, for likelihood models, this perturbation drastically
increases the negative log-likelihood (Table 1). In the next section, we provide three reasons for why
failing this test is problematic, especially for autoregressive models.

3.2 WHAT THIS MEANS (FOR GENERATIVE MODELING AND DENSITY ESTIMATION)

First, noise is natural — and being less robust to noise also means being a poorer fit to natural
data, especially in the ways that matter to the end user. Outside of the log-likelihood, measures
of generative success in generative models fall under two categories: qualitative assessments (e.g.,
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the no-reference perceptual quality assessment Wang et al. (2002) or ’eyeballing’ it) and quantitative
heuristics (e.g., computing statistics of hidden activations of pretrained CNNs Salimans et al. (2016);
Heusel et al. (2017); Sajjadi et al. (2018)). Both strategies either rely directly on the human visual
system, or are known to be closely related to it Güçlü & van Gerven (2015); Yamins et al. (2014);
Khaligh-Razavi & Kriegeskorte (2014); Eickenberg et al. (2017); Cichy et al. (2016). Therefore,
implicit in the use of these criteria is the existence of a human (or human-like) model of images
qhuman, where qhuman ≈ pdata Huszár (2015). Our sanity test thus shows that we are still quite far
from obtaining qhuman. We summarize this observation with the following lemma.

Lemma 3.1. (Informal) Let qhuman be a human-like distribution on images, and pθ be a likelihood
model that is not robust to a visually imperceptible perturbation qπ . Then pθ cannot be equal to
qhuman almost surely.

Second, generative sample quality suffers, especially for autoregressive models. Due to the sequen-
tial nature of autoregressive sampling and the fact that models are presented only with data from the
true distribution during training, autoregressive models are already known to be poorly-equipped to
handle the sequences they encounter during sampling Bengio et al. (2015); Lamb et al. (2016); Meng
et al. (2021). Any sampling error introduces a distributional shift that can affect the modeled dis-
tribution on downstream tokens. This will increase the risk of mis-sampling the next token, which,
in turn, further affects downstream modeling. This is related to the well-known covariate shift phe-
nomenon Shimodaira (2000). Sensitivity to minor perturbations only exacerbates the problem, and
Table 1 shows that in vanilla autoregressive likelihood models, mis-sampling pixels by even a single
bit can cause drastic changes to the overall likelihood. This can explain why such models commonly
produce nonsensical results (Fig 1).

Third, we may need to re-evaluate our research trajectory in image-based density estimation. One
way to interpret Table 1 is via the following lemma.
Lemma 3.2. Let q be a distribution on d-dimensional k-bit data x ∈ {0, . . . , 2k}d. Denote xi ∈
{0, 1}d as the bit mask containing the ith bit of x. When π = 1

2 , we have

Ex̃∼pπ
[q(x̃)] = Ex∼pdata

[q(x1, . . . ,xk−1)], (6)

where q(x1, . . . ,xk−1) :=
∫
xk

q(x)dx is the marginal of q(x) (after marginalizing out xk).

In other words, the expected likelihood with the full k-bit image over p 1
2

is equivalent to the expected
likelihood with the first k−1 most significant bits over pdata. Table 1 shows that while there is a large
variance in likelihoods with π = 0, most models achieve between 3.75 − 3.85 BPD with π = 0.5.
This suggests that most gains so far in likelihood modeling have been focused on modeling the
least significant bit, which ultimately bears little significance to the inherent content of the image.
Conversely, NCML trained models are significantly more effective at modeling the remaining bits.

For these reasons, we find that improving noise-robustness is of central importance to likelihood-
based generative modeling, and especially likelihood-based autoregressive generative models.

4 NOISE CONDITIONAL MAXIMUM LIKELIHOOD

To alleviate the problems discussed in Section 3, we propose a simple modification to the standard
objective in maximum likelihood estimation. Rather than evaluating a single likelihood as in the
vanilla formulation, we consider a family of noise conditional likelihoods

Et∼µEx∼pt
log pθ,t(x), (7)

where pt is a stochastic process indexed by noise scales t modeling a noise-corrupting process
on pdata, and µ is a distribution over such scales. We call this the noise conditional maximum
likelihood (NCML) framework. In general, Eq 7 is an all-purpose plug-in objective that can be
used with any likelihood model adapted to accept a noise conditioning vector2. We now explore
various perspectives of NCML that may help with reasoning about this framework.

2Though a continuous likelihood or a discretization of it (e.g. normalizing flows Dinh et al. (2014) or
autoregressive models with non-softmax probabilities Salimans et al. (2017); Li & Kluger (2022)) is necessary
for computation of the score function.
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Figure 3: An overview of the NCML generative algorithm. There are three steps: 1) We train the
noise conditional density model pθ,t via NCML. 2) We sample from the modeled noisy distribution,
i.e., pθ,t with some t > 0. 3) We refine the sample by solving a reverse diffusion involving the
learned score function ∇xpθ,t(x).

NCML as Regularized Maximum Likelihood When the set of noise scales t ∈ T is finitely large,
a natural and mathematically equivalent formulation of NCML is as a form of data- and model-
dependent regularization of the standard maximum likelihood estimation objective:

Et∼µEx∼pt
log pθ,t(x) ∝ Ex∼pdata

log pθ,0(x)︸ ︷︷ ︸
MLE objective

+
∑
t∈T

λtEx∼pt
log pθ,t(x)︸ ︷︷ ︸

regularization term

, (8)

where T comprises the set of nonzero noise scales and λt := µ(t)/µ(0). Clearly, the standard
likelihood can be considered a special case of our proposed method where λt = 0 for all t ∈ T .
Furthermore, since the NCML framework can simply be seen as formulating |T | simultaneous and
separate MLE problems, it retains all the statistical properties of standard MLE.

Of course, any form of regularization introduces bias to the model framework. Whereas L0/L1/L2
regularizations bias towards solutions of minimal or sparse weight norm, our experiments suggest
that NCML biases towards solutions that are less sensitive to noisy perturbations (see Section 4.1).

NCML as a Diffusion Model Letting t be the time index of a diffusion process, our approach
becomes closely related to score-based diffusion models Song et al. (2020b), albeit with two crucial
differences.

First, instead of merely estimating the noise-conditional score ∇x log pt(x) for t ∈ T , we directly
estimate pt itself. However, ∇x log pt(x) is still learned as a by-product of NCML, as it is the
derivative of the log of the learned quantity. We may then access our approximated score via standard
backpropagation techniques. Therefore, like diffusion models, we can draw samples via Langevin
dynamics. This provides an alternative strategy for sampling from pθ,t, which we explore in 4.2.

Second, we need not design our diffusion so that pT approximates the limiting stationary distribution
of the process. This is necessary in diffusion models as the limiting prior is the only tractable
distribution to initialize the sampling algorithm with. Since we have learned the density itself for
all t ∈ T , we may initialize from any point of the diffusion, which increases the flexibility of the
sampling strategy, and can drastically reduce the steps required to solve the reverse diffusion.

For our models, we consider the three diffusion processes proposed in Song et al. (2020b): variance
exploding (VE), variance preserving (VP), or sub-variance preserving (sub-VP), and choose µ to be
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Figure 4: Noise robustness of NCML-trained models with Variance Preserving (VP), sub- Variance
Preserving (sub-VP), and Variance Exploding (VE) noise schedules, measured in terms of ∆ log p
(defined in 9) between pdata and pπ , for π = 0.5 (left) and π = 1 (middle). (Right) shows that
robustness is closely related to the average absolute perturbation per pixel of each noise schedule,
as a function of t. More details in Section 4.1.

the uniform distribution over T . Due to space constraints, we refer to the aforementioned paper for
more details on these SDEs.

4.1 NOISE-ROBUSTNESS OF NCML MODELS

We find that models trained via NCML are more robust to noise, suggesting increased stability
during autoregressive sampling and improved modeling of more visually salient features (Section
3.2). Surprisingly, this is not only the case for noise conditions t > 0, where the model is exposed
to noisy samples. Indeed, even in the t = 0 condition, noise-robustness is improved (Table 1), and
our models surpass state-of-the-art likelihood models on minimally perturbed data (as defined in Eq
5) in terms of average log-likelihood. This is somewhat unexpected: by passing the noise condition,
the model should theoretically be able to separate the NCML loss into distinct problems at each
noise scale. If this occurs, then the t = 0 case should simplify to a vanilla MLE problem, where
behavior would not differ from standard likelihood models.

This lends credence to the regularization perspective provided in 4. In essence, noise robustness is
explicitly enforced for t > 0. For t = 0, NCML leverages the limited capacity of the underlying
network to implicitly impose robustness. To quantify the noise-robustness at each t, we define the
simple measure ∆ log p as the absolute difference between the negative model log likelihood (as
measured in bits per dimension) evaluated on pdata minus that on pπ , i.e.,

∆ log p := |Epdata
log pθ − Epπ

log pθ|. (9)

The left and middle graphs in Fig 4 show ∆ log p as a function of t for π = 0.5 and π = 1,
respectively. Here, we can clearly see that noise robustness increases with increasing t. Moreover,
the regularization effect of NCML enforces greater robustness than competing models even at t = 0,
as seen by the dotted line showing the next lowest ∆ log p, indicating that NCML enforces some
degree of noise-robustness as regularization.

As expected, the correlation between noise-robustness and t follows closely to the noise schedules
of VP, sub-VP, and VE SDEs in [0, T ] respectively. This can be seen in the rightmost plot of Figure
4, which shows the average absolute perturbation per pixel of each SDE over time. The dotted line
represents 1, i.e., the absolute perturbation of corrupted images in our sanity test pπ . The point at
which each model attains robustness to pπ corrupted noise is more or less the same time the noise
schedule begins to perturb each pixel by at least one bit, on average.

The increased noise-robustness of NCML-trained models at larger t motivates our improved autore-
gressive sampling algorithm, which we introduce below.

4.2 SAMPLING WITH AUTOREGRESSIVE NCML MODELS

Our framework allows for two sampling strategies. The first is to draw directly from the noise-free
distribution pθ,0, in which case the conditional likelihood simplifies to a standard (unconditional)
likelihood, and sampling is identical to that for a vanilla autoregressive model.

However, as discussed in Section 3, this strategy is unstable and tends to quickly accumulate errors.
This motivates an alternative two-part sampling strategy, which involves drawing from pθ,t for t > 0
(the noisy sampling phase), then solving a reverse diffusion process back to t = 0 (the score-based
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CIFAR-10 ImageNet 64x64

Model FID NLL NLL NLL NLL NLL NLL
π = 0* π = 0.5 π = 1 π = 0* π = 0.5 π = 1

ELBO
VDM 7.41 2.49 3.76 3.96 3.40 3.76 3.87
ScoreFlow 5.40 2.90 3.83 3.98 - - -
VDVAE - 2.84 3.89 4.10 3.52 3.63 3.82
Likelihood
Flow++ - 3.09 3.84 4.09 3.69 3.82 3.99
DenseFlow 48.15 2.98 3.79 4.02 3.35 3.69 3.85
PixelCNN++ 55.72 2.92 3.85 4.02 3.52 3.81 3.99
PixelSNAIL 36.62 2.85 3.83 3.99 - - -
Sparse Transformer 37.50 2.80 3.82 3.97 3.44 3.73 3.89
NCPN (ML) 46.72 2.91 3.82 3.99 3.49 3.68 3.90
NCPN (NCML-VE) 32.71 2.87 3.73 3.94 3.32 3.67 3.85
NCPN (NCML-subVP) 23.42 2.95 3.68 3.93 3.36 3.66 3.80
NCPN (NCML-VP) 12.09 3.20 3.61 3.89 3.43 3.62 3.76

Table 1: Results on CIFAR-10 and ImageNet 64x64. Negative log-likelihood (NLL) is in bits per
dimension. Lower is better. *NLL with π = 0 is equivalent to NLL of the original data.

refinement phase). The tractability of the latter is due to the fact that NCML-trained models learn
the score as a byproduct of likelihood estimation. This is identical to the sampling procedure in
score-based diffusion models Song et al. (2020b), except for the key difference that we need not
initialize with the prior distribution, as we can sample from any t ∈ T .

This two-part strategy has several benefits. First, we saw in Section 4.1 that NCML-trained models
are more robust to noise at higher t, which improves stability during sampling. This is reflected in
the improved FID of NCML-trained NCPNs compared to ML- (i.e., maximum likelihood-) trained
NCPNs in Table 1. Second, the refinement phase allows the model to make fine-tuned adjustments
to the sample, which can further improve quality. This is not possible in standard autoregressive
models by construction.

5 EXPERIMENTS

We demonstrate that incorporating noise in the maximum likelihood framework provides signifi-
cant improvements in terms of density estimation, sample generation, and anomaly detection. In
all experiments, we fix pt to be one of the variance exploding (VE), variance preserving (VP), or
sub-variance preserving (sub-VP) SDEs, and µ to be the uniform distribution over t ∈ T . For our
architecture, we introduce the noise conditional pixel network (NCPN), which consists of a Pixel-
CNN++ Salimans et al. (2017) backbone with added attention layers. More experimental details can
be found in A.2.

Unconditional Modeling We evaluate our models on minimally perturbed transformations (see
Section 3.1) of unconditional CIFAR-10 and ImageNet 64x64 for π ∈ {0, 1

2 , 1}, where we note
that pπ = pdata when π = 0. All noise conditional models, i.e., ours, VDM Kingma et al. (2021),
and ScoreFlow Song et al. (2021), are evaluated at t = 0. We show our results in Table 1. We
additionally evaluate our model on the CelebA 64x64 dataset; autoregressive comparisons on this
dataset are limited, so we defer results to the appendix.

On the standard unperturbed dataset π = 0, our models attain competitive likelihoods on CIFAR-10
and state-of-the-art likelihoods on ImageNet 64x64. On all perturbed datasets, our models achieve
state-of-the-art likelihoods. Furthermore, we significantly improve on the state-of-the-art in terms of
sample quality among MLE models on CIFAR-10, from 37.50 to 12.09 in terms of FID. In general,
our results indicate that the NCML framework improves generative modeling performance of the
underlying models in terms of both test log-likelihoods and sample quality.
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Figure 5: Class-conditional sampling on CIFAR-10 (left). Image completion on CIFAR-10 (right).
See Section 5 for more details.

Class-conditional Modeling We find that NCML-trained models exhibit stable sampling even in
class-conditional generation. For this experiment, we train a class-conditional model under our
framework on the CIFAR-10 dataset. We show our results in Figure 5, where each row shows data
sampled from a different class of CIFAR-10.

Image Completion We further examine NCML-trained models in a controllable generation context
through the image completion task, which involves conditioning an autoregressive model on the first
half of an image, and drawing the second half from the modeled conditional distribution. We again
use the CIFAR-10 dataset, and compare models trained under our framework against those trained
with MLE. All images are taken from the test set to minimize data memorization. Our results are in
figure 5 (right). The leftmost and rightmost four columns are outputs generated by an MLE-trained
model and an NCML-trained model, respectively, with the middle column depicting the masked
input to the sampling algorithm. Both models use the same architecture. Our model demonstrates
improved stability over the course of sampling, and produces completed images with greater realism
and fidelity, while maintaining a high diversity of sampled trajectories.

Data/Model PixelCNN++ GLOW EBM AR-CSM NCPN (VP)
SVHN 0.32 0.24 0.63 0.68 0.74
Const Uniform 0.0 0.0 0.30 0.57 0.68
Uniform 1.0 1.0 1.0 0.95 1.0
Average 0.44 0.41 0.64 0.73 0.80

Table 2: AUROC scores of models trained on
CIFAR-10 on the OOD detection task.

Out-of-distribution (OOD) Detection We
show that robustness to minimally perturbed
data confers benefits that extend beyond en-
hanced sample quality, including marked im-
provements in anomaly detection. In this task,
the network is trained on in-distribution points,
then tasked to produce a statistic that success-
fully differentiates in-distribution points from
out-of-distribution points. Following Du &
Mordatch (2019); Meng et al. (2020), we train models on CIFAR-10, and let the OOD points be
SVHN Netzer et al. (2011), constant uniform, and random uniform images. We compare the Area
Under the Receiving Operator Curve (AUROC) of our model statistic to vanilla PixelCNN++ Sali-
mans et al. (2017), GLOW Kingma & Dhariwal (2018), EBM Du & Mordatch (2019), and AR-CSM
Meng et al. (2020) models, and see that our model performs equally or better in every respect (Table
2).
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6 CONCLUSION AND FURTHER WORK

We proposed a simple sanity test for checking the robustness of likelihoods to visually imperceptible
levels of noise, and found that most models are highly sensitive to perturbations under this test. We
argue that this is further evidence of a fundamental disconnect between likelihoods and other sample
quality metrics. To alleviate this issue, we developed a novel framework for training likelihood
models that combines autoregressive and diffusion models in a principled manner. Finally, we find
that models trained under this setting have substantial improvements in both training and evaluation.

While models trained under the NCML framework show greater invariance to imperceptible noise,
they are by no means robust, indicating that the underlying model still differs significantly from the
theoretical human model qhuman proposed in Huszár (2015). We hope that further research can help
close this gap, and furnish us with a more intuitive grasp on the maximum likelihood as a framework
for assessing goodness-of-fit in generative models.
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A APPENDIX

A.1 PROOFS

Lemma 3.1. (Formal) Let qhuman and pθ be continuous and bounded distributions supported on
Rd. We assume that qhuman is human-like. Therefore, if there exists a perturbation qπ such that
samples drawn from pdata and pπ (as defined in 2) are visually indistinguishable to the human eye,
then Ex∼pπ [log qhuman(x)] = Ex∼pdata

[log qhuman(x)]. Further assume that Ex∼pπ [log pθ(x)] =
Ex∼pdata

[log pθ(x)]. Then pθ cannot be equal to qhuman almost surely.

Proof. We show this by contradiction. Suppose that qhuman = pθ almost everywhere. Then for any
distribution ν,

Ex∼ν [pθ(x)] = Ex∼ν [qhuman(x)].

Let pdata and pπ be two distributions, where by assumption

Ex∼pdata
[qhuman(x)] = Ex∼pπ [qhuman(x)],

while
Ex∼pdata

[pθ(x)] ̸= Ex∼pπ
[pθ(x)].

Thus we have

Ex∼pdata
[pθ(x)] = Ex∼pdata

[qhuman(x)] = Ex∼pπ
[qhuman(x)] = Ex∼pπ

[pθ(x)], (10)

but we assumed that Ex∼pdata
[pθ(x)] ̸= Ex∼pπ [pθ(x)], which is a contradiction. Thus we have the

desired result.

Lemma 3.2. Let q be a distribution on d-dimensional k-bit data x ∈ {0, . . . , 2k}d. Denote xi ∈
{0, 1}d as the bit mask containing the ith bit of x. When π = 1

2 , we have

Ex̃∼pπ [q(x̃)] = Ex∼pdata
[q(x1, . . . ,xk−1)], (11)

where q(x1, . . . ,xk−1) :=
∫
xk

q(x)dx is the marginal of q(x) (after marginalizing out xk).

Proof. To see this, we first note that any p(x) can always be decomposed as p(x1,x2, . . . ,xk).
Thus, letting pπ = Ex∼p[qπ(x̃|x)] (as defined in 5),

Ex̃∼pπ [q(x̃)] = Ex̃∼qπ(x̃|x)Ex∼pdata
[q(x̃)] (12)

= Ex∼pdata

[
2∑

i=1

q(x1,x2, . . . ,xk−1, x̃k = i)

]
(13)

= Ex∼pdata
[q(x1, . . . ,xk−1)], (14)

as desired.

A.2 ADDITIONAL EXPERIMENTAL DETAILS

Our proposed NCPN architecture consists of the PixelCNN++ backbone Salimans et al. (2017) with
axial attention layers Ho et al. (2019b) after each residual block. We retain the hyperparameters
of PixelCNN++, changing only the dropout on the CIFAR-10 dataset (from 0.5 to 0.25), which
we reduced due to the regularization properties of NCML. For the axial attention layers, we use 8
heads and skip connection rescaling as in Song et al. (2020b). Finally, we add noise conditioning to
each residual block via a Gaussian Fourier Projection layer, much like Ho et al. (2020); Song et al.
(2020b).

For our NCML-trained models, the diffusion times of the VE, VP, and sub-VP SDEs were chosen
to be T = 0.5, T = 0.1, and T = 0.025, respectively. The values are selected such that the standard
deviation of the per-pixel differences between samples in pdata and their noised counterparts in pT
was ≈ 10 bits. We suspect that further improvements can be made to the empirical results if these
numbers were chosen more judiciously.
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Model NLL NLL NLL
π = 0* π = 0.5 π = 1

NCPN (ML) 2.25 3.72 4.35
NCPN (NCML VE) 2.22 3.63 4.21
NPCN (NCML sub-VP) 2.31 3.44 3.98
NCPN (NCML VP) 2.48 3.14 3.67

Table 3: Results on CelebA 64x64. Negative log-likelihood (NLL) is in bits per dimension. Lower
is better. *NLL with π = 0 is equivalent to NLL of the original data.

Data/Model MLE NCML-VE NCML-subVP NCML-VP
SVHN ↑ 0.35 0.43 0.65 0.74
Const Uniform ↑ 0.1 0.56 0.59 0.68
Uniform ↑ 1.0 1.0 1.0 1.0
Average ↑ 0.48 0.66 0.73 0.80
CIFAR-10 BPD (π = 1) ↓ 3.99 3.94 3.93 3.89

Table 4: AUROC scores of our NCPN models trained on CIFAR-10 on the OOD detection task,
with either MLE or different noise schedules.

All NCPN models were trained on RTX 2080 Ti GPUs for 500,000 iterations. This is approximately
1.5 weeks of training. We use the same NCPN architecture and hyperparameters across all datasets
(except for dropout, which is set to 0.25 on CIFAR-10 and 0.00 on ImageNet 64x64 and CelebA
64x64). All NCPN models have 73M parameters.

A.2.1 DENSITY ESTIMATION AND GENERATIVE MODELING EXPERIMENTS

For experiments on CIFAR-10 and ImageNet 64x64, we compare against Kingma et al. (2021);
Song et al. (2021); Child (2020); Ho et al. (2019a); Grcić et al. (2021); Salimans et al. (2017); Chen
et al. (2018); Child et al. (2019). Some results could not be included due to the irreproducibility of
the techniques. There is limited existing work on likelihood-based modeling on CelebA 64x64, so
we do not provide comparisons, however the performance of our model is summarized in Table 3.

A.2.2 OUT-OF-DISTRIBUTION DETECTION EXPERIMENTS

We directly use the CIFAR-10 models trained in A.2.1 and thus retain all hyperparameters from the
previous experiment. All NCPN are evaluated with the time condition t = 0. Judicious choice of
the statistic is important for the performance of the model. For example, Du & Mordatch (2019) use
the unnormalized energy function log(Z ·p(x)) where Z =

∫
exp f(x) is the partition function, and

Meng et al. (2020) use
∑d

i=1[∇ log p(x)]i, where p(x)i denotes the ith coordinate of the score. We
use ||∇p(x)||2 = |p(x)| ∗ ||∇ log p(x)||2. Additionally, we show that performance on the OOD de-
tection task is closely associated with robustness to minimally perturbed data (Table 4), in the sense
that improved robustness to pπ is associated with improved performance on OOD detection. One
possible explanation for this correlation is that robustness to visually inconsequential high frequency
content forces the model to rely on more intrinsic features of the image to assign probabilities, which
allows the model to better classify OOD images.

A.3 ADDITIONAL FIGURES
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Figure 6: Samples from NCPN trained on ImageNet 64x64, with pt as a variance preserving (VP)
diffusion process.
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Figure 7: Samples from NCPN trained on CelebA 64x64, with pt as a variance preserving (VP)
diffusion process.
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Figure 8: Samples from NCPN trained on CIFAR-10, with pt as a variance preserving (VP) diffusion
process.
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Figure 9: Samples from NCPN trained on CIFAR-10, with pt as a sub-variance preserving (sub-VP)
diffusion process.
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Figure 10: Samples from NCPN trained on CIFAR-10, with pt as a variance exploding (VE) diffu-
sion process.
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