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ABSTRACT

Recent work has explored training Large Language Model (LLM) search agents
with reinforcement learning (RL) for open-domain question answering. However,
most evaluations focus solely on final answer accuracy, overlooking how these
agents reason with and act on external evidence. We introduce SeekBench, the
first process-level evaluation framework for LLM search agents that operational-
ize epistemic competence through metrics derived from an annotation schema. We
develop and validate our annotation schema using an expert-annotated dataset of
190 traces (over 1,800 steps). To evaluate at scale, we introduce an LLM-as-judge
pipeline. Our framework provides granular analysis of whether agents demon-
strate: (1) groundedness, by generating reasoning steps supported by observed
evidence; (2) recovery, by adaptively reformulating searches to recover from
low-quality results; and (3) calibration, by correctly assessing whether current
evidence is sufficient to provide an answer. By applying our evaluation frame-
work to state-of-the-art search agents tuned on Qwen2.5-7B, we uncover critical
behavioral gaps that answer-only metrics miss, as well as specialized skills such as
Search-R1’s synthesis abilities. These analyses highlight distinct epistemic com-
petencies, offering actionable insights for the development of more capable and
trustworthy agents.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have spurred a shift from models that
require explicit prompting, such as chain-of-thought (Wei et al., 2022; Yao et al., 2023), toward
autonomous LLM agents (Zhang et al., 2025a). These agents learn to solve complex tasks by
optimizing a reasoning policy with reinforcement learning (RL), enabling them to implicitly learn
decision-making strategies without requiring step-by-step external guidance (Jaech et al., 2024; Guo
et al., 2025). Among these, search agents are developed to tackle information-seeking problems
by enabling LLMs to interact with external knowledge sources and handle queries beyond training
data (Zheng et al., 2025; Gao et al., 2025). Modern agents increasingly use richer toolboxes
(e.g., page-level browsing, selective scraping, Python execution) yet they still manifest the same
epistemic loop: identify an information gap → obtain external evidence → reason over it → decide
the next action or final answer. Our framework targets this process, independent of the surface tool
API, to maintain precise empirical scope. They process multi-turn reasoning, using external search
tools, and integrating evidence (Xi et al., 2025a). The agent’s responses produce multi-turn traces,
which can be represented as:

T = ⟨τ1, τ2, . . . , τT ⟩, (1)
where each turn τt consists of a tuple that can contain four possible steps: reasoning rt, search st,
evidence et, and answer at. Non-final turns (t < T ) are of the form τt = ⟨rt, st, et⟩, while the final
turn (t = T ) concludes with an answer, i.e., τT = ⟨rT , aT ⟩.
Information-seeking tasks pose a distinct epistemic challenge: unlike code generation or mathemat-
ical reasoning, where correctness can be externally verified by execution or proof (Nguyen et al.,
2025; Lightman et al., 2023), search agents must reason about real-world textual information that
lacks objective verifiers. However, current evaluation protocols for search agents largely ignore the
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Figure 1: Contrasting accuracy with epistemic competence. Both scenarios yield the correct answer “455,000”
but are evaluated differently by SeekBench. Top (Poor Process): Agent ignores conflicting sources, fails
to recognize ambiguity, and answers prematurely without grounding reasoning or recovering from unclear
evidence. Bottom (Good Process): Agent recognizes ambiguity, refines search to obtain recent official data,
and answers only after sufficient evidence.

process-level information captured by the structure of T . They rely predominantly on answer-only
(aT ) metrics such as exact match or F1 score (Jin et al., 2025; Zheng et al., 2025; Li et al., 2025b).
This lack of process-level evaluation is problematic. As illustrated in Figure 1, agents may achieve
high benchmark scores while exhibiting poor epistemic behaviors, such as hallucinating unsupported
claims or failing to recognize knowledge gaps. This epistemic challenge necessitates process-level
and evidence-driven evaluation to assess: groundedness (reasoning supported by evidence), recov-
ery (adaptive search strategy to improve evidence), and calibration (determining when evidence is
sufficient to answer).

To address the above challenges, we introduce SeekBench, a benchmarking framework for assessing
agents’ epistemic competence—the ability to reliably acquire, evaluate, and act upon knowledge in
a justified manner (Greene et al., 2016; Zhang et al., 2023). Our framework proceeds in three stages.
First, we developed a robust, extensible annotation schema for search agent traces that captures both
the functional role (reasoning, search, answer) and epistemic quality (e.g., evidence groundness
and sufficiency) of each step. Following established Content Analysis methodology (Krippendorff,
2018), we analyzed and annotated seven open-source search agents across 190 traces (over 1,800
steps, Figure 2; see Appendix C.1 for details). This expert-annotated dataset allowed us to validate
and refine the schema, and the final schema achieves high inter-annotator agreement (Cohen’s Kappa
κ > 0.8). Second, we formalize three epistemic competencies: (1) Groundedness (evidence-
grounded reasoning), (2) Recovery (adaptive evidence recovery), and (3) Calibration (evidence-
aligned calibration). Third, we design precise, interpretable metrics to quantify these competencies
across diverse traces, as detailed in Table 1. To evaluate at scale, we introduce an LLM-as-judge
pipeline that enables scalable evaluation. This pipeline uses our validated annotation schema to
automatically annotate agent traces and evaluate the competencies on a large scale.

Contributions. Our contributions are summarized as follows:
1. SeekBench: A Process-Level Evaluation Framework. We present SeekBench as a practical

evaluation frameowork for empirical analysis of LLM information-seeking agents. SeekBench
comprises a process-level annotation schema, operational epistemic metrics, and an automated
LLM-based judge pipeline. Our schema achieves high expert agreement (Cohen’s Kappa κ >
0.8), and our LLM judge demonstrates strong alignment with expert annotations (κ > 0.7).
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Table 1: Epistemic competencies and associated metrics. Each competency is quantified by a specific metric
calculated from annotated features within the agent’s trace (shown in the rightmost column), enabling sys-
tematic evaluation of reasoning quality, recovery behavior, and evidence-aligned decision-making.

Competency (Type) Definition & Metric Annotated feature(s)

Groundedness
(Reasoning)

Generate reasoning steps directly supported by retrieved information.
Metric: Reasoning Quality Index (RQI, Section 3.3.1)

InformationSynthesis /
PlanFormation / StateAssessment /
grounding

Recovery
(Search)

Adaptively reformulate queries when initial search results are insuf-
ficient.
Metric: Evidence Recovery Function (ERF, Section 3.3.2)

Initial / Repeat /
FollowUp / Refined

Calibration
(Answer)

Accurately assess whether the currently retrieved information is
sufficient to answer the question.
Metric: Calibration Error (CE, Section 3.3.3)

correct (final answer’s correctness)

Figure 2: Overview of the SeekBench dataset and annotation schema. Each trace comprises multi-turn steps
annotated for process-level evaluation. We categorize agent behaviors into three main types: (1) Search steps
that retrieve information, (2) Reasoning steps that process evidence and guide the investigation, and (3) Evi-
dence steps that capture the quality and clarity of retrieved information. This structured annotation approach
enables systematic measurement of how well agents handle information throughout their reasoning process.

2. Operational framework and metrics. We formalize an evidence state and three core epis-
temic competencies—evidence-grounded reasoning, evidence recovery, and calibrated answer-
ing—as measurable properties over agent traces.

3. Experimental case study. We apply our framework to RL agents tuned on Qwen2.5-7B across
seven QA benchmarks (28,493 traces), finding that they excel at evidence gathering but struggle
with reasoning. Standard accuracy metrics fail to reveal specific strengths between agents
(e.g., Search-R1’s synthesis vs. Base model’s reasoning), which can be combined to enhance
performance.

2 RELATED WORK

Process-Level Reasoning Quality and Epistemic Competence. A fundamental limitation of
answer-only evaluation is the disconnect between final-answer accuracy and reasoning process qual-
ity. Recent work on faithfulness, defined as logical consistency of reasoning with respect to questions
and retrieved evidence (Lee & Hockenmaier, 2025), reveals that models can achieve high accuracy
despite unfaithful reasoning processes (Shen et al., 2025). Other approaches evaluate reasoning
quality through causal analysis of question-reasoning-answer triples (Paul et al., 2024), alignment
with golden reasoning chains (Li et al., 2024), and graph-based dependency modeling (Xiong et al.,
2025; Nguyen et al., 2024; Mukherjee et al., 2025). For search agents that interact with external
information sources, epistemic competence becomes essential for avoiding overconfidence, halluci-
nation, and poor decision-making under uncertainty. However, none of the existing frameworks can
capture these capabilities. Our framework addresses this gap by formalizing three core epistemic
competencies (groundedness, recovery, and calibration) with precise mathematical definitions and
large-scale evaluation protocols.
Search Agent Evaluation. Existing evaluations primarily prioritize final-answer metrics (exact
match, F1, LLM-as-Judge) (Zhang et al., 2025b; Song et al., 2025; Zheng et al., 2025; Jin et al.,
2025), neglecting the underlying epistemic processes. While some approaches examine intermediate
steps—such as ground-truth tracking (Shi et al., 2025) or retrieval separation (Xi et al., 2025b)—they
fail to assess critical epistemic competencies. Final-answer metrics also fail to attribute performance
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sources, as (Shao et al., 2025) finds that RL-training tends to elicit existing reasoning behaviors
rather than introducing new ones. This methodological limitation creates significant blind spots
regarding agent reliability.

3 METHODOLOGY

To understand the information-seeking process of search agents, our framework connects observ-
able behaviors with underlying competencies, which are then evaluated using quantitative metrics.
First, we construct and validate an annotation schema that reliably labels observable behaviors
in agent response traces, producing the expert-annotated dataset that we also use to calibrate LLM
judges (Section 3.1). Second, we analyze these annotations to identify three fundamental epistemic
competencies (Section 3.2). Finally, we translate the competency definitions into concrete quan-
titative metrics and apply them to annotated features, enabling systematic measurement of these
underlying epistemic competencies at scale (Section 3.3). Our approach draws on established qual-
itative research principles from Content Analysis (Krippendorff, 2018), a systematic methodology
for categorizing and interpreting patterns in data through rigorous coding procedures.

3.1 PHASE 1: OBSERVABLE FEATURES AND SCHEMA CONSTRUCTION

The foundation of our methodology is a robust annotation schema for systematically labeling ob-
servable features in agent response traces. Our development of SeekBench’s schema follows an
iterative, data-driven approach, grounded in established qualitative research principles from Content
Analysis (Krippendorff, 2018).

During the initial exploratory phase, we closely examined a variety of agent traces and documented
the key behaviors we observed. We noted that even within the same type of steps, search agents can
serve distinct functions, that is, specific cognitive or operational role that a step plays within the
agent’s information-seeking process. For example, among the reasoning steps, some identified in-
formation gaps, while others summarized retrieved findings or formulated plans for future searches.
Similarly, search steps might function as initial exploration, targeted verification, or follow-up in-
vestigation. Alongside these functions, we identified critical failure patterns in agents’ traces, such
as reasoning without supporting evidence or executing repetitive search queries that failed to adapt.

From these observations, we developed an annotation schema (detailed in Appendix A’s Figure 9)
for agent response steps with two key aspects:

• Functional type categorizing the step’s cognitive purpose, e.g., for reasoning steps, this in-
cludes InformationSynthesis (evidence integration), PlanFormation (search strat-
egy development), and StateAssessment (knowledge gap identification).

• Quality attribute evaluating epistemic soundness, such as whether reasoning is grounded in
evidence. This structure captures both what the agent was doing and how well it was doing it.

We apply this schema to construct an expert-annotated validation dataset of 190 traces (Figure 2),
which enables us to formalize three epistemic competencies and design quantitative metrics that
systematically measure how annotated features map to underlying competencies (Table 1).

Following established Content Analysis methodology (Krippendorff, 2018), we rigorously enhanced
schema robustness through iterative refinement. Using a setup comparable to previous works scaling
from human to LLM-based annotation (Cemri et al., 2025), three expert annotators independently
coded 190 agent traces across three rounds of annotation, with inter-annotator reliability measured
using Cohen’s Kappa (κ) (Cohen, 1960). For features exhibiting low agreement (κ < 0.5), we either
pruned features (when infrequent or ambiguous) or merged them (when conceptually overlapping).
After this process, we reduced our initial 12 candidate annotation fields to 8 well-defined features
with high interpretability and consistency across annotators. We confirm this schema generalizes to
complex agents in Appendix M.

We further validated schema robustness using GPT-5 (OpenAI, 2025) to generate adversarial edge
cases that expose boundary conditions (e.g., reasoning steps containing both factual claims and
planning elements). This ensures the mutual exclusivity of our annotation definitions.

Finally, we evaluated the schema on reasoning traces using both human experts and state-of-the-art
LLM judges with standardized prompts that provide clear annotation guidelines and consistent
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Table 2: Examples of evidence states. E = C + Q, where C ∈ {0, 1} indicates clarity and Q ∈ {0, 1}
indicates sufficiency.
Question: Who is the singer for the band Black Sabbath?

E C Q Search Result Explanation

0
(Poor)

0 0 Doc 1: The band’s vocal slot has seen many.
Doc 2: Black Sabbath’s personnel list for vocals is long.

C = 0: text is vague and evasive.
Q = 0: no names are given.

1
(Partial)

1 0 Doc 1: Black Sabbath is a famous heavy metal band from England.
Doc 2: Tony Iommi is the guitar player for Black Sabbath.

C = 1: on-topic and easy to understand.
Q = 0: does not name the singer.

1
(Partial)

0 1 Doc 1: The first singer for Black Sabbath was Ozzy Osbourne.
Doc 2: Ronnie James Dio became the new singer for Black Sabbath.

C = 0: two singer names creates ambiguity.
Q = 1: the names are present.

2
(Good)

1 1 Doc 1: Ozzy Osbourne is the original lead singer of Black Sabbath.
Doc 2: The most famous singer for Black Sabbath is Ozzy Osbourne.

C = 1: the name is consistent.
Q = 1: the singer is identified.

evaluation criteria (see Appendix D). The results demonstrate substantial agreement with human
annotations (overall κ = 0.811), confirming the schema’s interpretability and consistency. LLM
judges achieved strong alignment with human experts: GPT-4.1-mini (κ = 0.731) and GPT-5
(κ = 0.754). We further conducted a cost-effectiveness analysis, evaluating per-trace costs (token
and time) across six LLM models. GPT-4.1-mini emerges as the most cost-effective solution,
achieving strong human alignment (κ = 0.731) at minimal per-trace cost ($0.0087 and 2.48s),
making it optimal for large-scale deployment (see Appendix A for cost analysis details). This
substantial agreement across multiple LLM models and human annotators confirms the schema’s
clarity and establishes a reliable foundation for large-scale evaluation through LLM judges.

3.2 PHASE 2: LATENT CONSTRUCTS AND COMPETENCY DEFINITION

Our annotation analysis in Phase 1 revealed three distinct behavioral patterns in search agents: (1)
variation in reasoning quality, with successful agents producing evidence-supported grounded
reasoning while unsuccessful agents generated unsupported claims; (2) divergent strategies when
facing poor search results, where effective agents adapted their search approach while ineffec-
tive agents persisted with repetitive queries; and (3) differences in decision timing, where some
agents responded prematurely with insufficient evidence while others appropriately withheld an-
swers until sufficient evidence was gathered. To interpret these systematic behavioral differences,
we apply latent construct inference (Cronbach & Meehl, 1955) and arrive at three theory-backed
competencies that explain the observed patterns (Table 1): (1) Groundedness captures whether
each reasoning step is faithful to retrieved evidence, extending faithfulness checks from final an-
swers to intermediate traces (Lee & Hockenmaier, 2025); (2) Recovery measures how effectively
an agent reformulates and adapts its search to move from insufficient to sufficient evidence, mir-
roring information-foraging dynamics between exploration and query refinement (Pirolli & Card,
2005); (3) Calibration evaluates whether answer timing aligns with evidence sufficiency, draw-
ing on metamemory research about calibrated confidence and appropriate abstention (Nelson, 1990;
Ming et al., 2024). These three core competencies constitute epistemic competence—the essen-
tial capability that enables search agents to reliably interact with external information sources. By
systematically evaluating how agents seek, reason with, and make decisions based on retrieved evi-
dence, our framework provides a comprehensive assessment of search agents’ epistemic capabilities
beyond traditional accuracy-based metrics.

3.3 PHASE 3: COMPETENCY METRICS AND OPERATIONALIZATION

Following the concept of construct validity (Cronbach & Meehl, 1955) originally proposed in psy-
chology, unobservable attributes (competencies) must be assessed through observable indicators
(metrics) with demonstrated reliability and validity. In this section, we translated the three epistemic
competencies in Phase 2 (defined in Table 1) into quantitative metrics. The validity of our metrics is
twofold: (1) high inter-annotator agreement on the coded features (Phase 1), and (2) the correlation
between evidence state (defined below) and answer accuracy (Section 4.4).

We begin by formally defining evidence state in Definition 3.1, which encodes the sufficiency and
clarity of evidence retrieved at a turn (examples in Table 2). This provides the foundation for eval-
uating all three epistemic competencies: (i) groundedness is assessed by determining whether rea-
soning is supported by evidence (Section 3.3.1); (ii) recovery is measured by tracking improvements
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in evidence quality through search (Section 3.3.2); and (iii) calibration is evaluated on whether the
agent answers if and only if the evidence state is good (Section 3.3.3).

Definition 3.1 (Evidence State) Let Ci,t, Qi,t ∈ {0, 1} denote the annotated clarity and
quality (Appendix D.3) of the retrieved evidence at turn t of trace i, where: Ci,t = 1 if the
evidence is clear (unambiguous and interpretable), and Qi,t = 1 if the evidence is sufficient (con-
tains enough information to address the query). Note that quality here specifically refers to
sufficiency (whether the evidence contains enough information to answer the query), not a general
quality assessment. The evidence state Ei,t ∈ {0, 1, 2} is defined as:

Ei,t := Ci,t +Qi,t, (2)

Ei,t = 0 denotes poor evidence (unclear and insufficient), Ei,t = 1 denotes partial evidence (either
clear or sufficient), and Ei,t = 2 denotes good evidence (both clear and sufficient).

3.3.1 GROUNDEDNESS

To evaluate whether an agent’s reasoning is verifiably supported by retrieved evidence, we assess
the groundedness of each reasoning step via the grounding label. For each reasoning step at
turn t in trace i, the binary grounding label Gi,t ∈ {0, 1} indicates whether its factual content is
supported by retrieved evidence.

To investigate the impact of the functional types of the reasoning steps, each reasoning step
is also assigned a type Ci,t ∈ {IS,PF,SA}, corresponding to InformationSynthesis,
PlanFormation, or StateAssessment (Appendix D.1).

We formalize two metrics: the model-level reasoning quality index (RQI) (Definition 3.2) and the
type-level RQI (Definition 3.3), both of which quantify groundedness by aggregating Gi,t values
and can be decomposed by the evidence state Ei,t.

Definition 3.2 (Model-level Reasoning Quality Index (RQI)) Consider a fixed model evaluated
on N traces with index set I := {1, . . . , N}. For each trace i, let Si = {1, . . . , Ti} be the index set
of reasoning steps. Then, the model-level RQI is the average of trace-level groundedness scores:

RQImodel := Ei∈I [RQIi]. (3)
where RQIi = Et∈Si

[Gi,t] ,

To better understand how reasoning quality depends on the strength of retrieved evidence, we de-
compose the RQI with evidence state Ei,t:

RQIi =

2∑
k=0

Pt∈Si
(Ei,t = k)︸ ︷︷ ︸

proportion of turns with evidence state k

× Et∈Si
[Gi,t | Ei,t = k]︸ ︷︷ ︸

expected groundedness given Ei,t=k

(4)

Similarly, we can define the type-level RQI with reasoning type c ∈ {IS,PF,SA}:

Definition 3.3 (Type-Level Reasoning Quality Index) For each trace i and reasoning type
c ∈ IS,PF,SA, let S(c)

i := {t ∈ Si : Ci,t = c} denote the index set of steps of type c. The type-level
RQI is the average of groundedness on type c:

RQI
(c)
type := E

t∈S
(c)
i

[
RQI

(c)
i

]
, (5)

where RQI
(c)
i := E

t∈S
(c)
i

[Gi,t]. This quantity admits an evidence-state decomposition analogous to
the trace-level decomposition:

RQI
(c)
i =

∑2
k=0 P

t∈S
(c)
i

(Ei,t = k)︸ ︷︷ ︸
prop. of reasoning type c with evidence level k

× E
t∈S

(c)
i

[Gi,t | Ei,t = k]︸ ︷︷ ︸
expected type c groundedness given Ei,t=k

. (6)

3.3.2 RECOVERY

A fundamental challenge for LLM-based agents is recovering from information gaps or knowledge
limitations, where initial queries yield insufficient information. Thus, an agent achieves high recov-
ery when it utilizes adaptive search strategies to quickly escape such states of poor evidence.
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To capture this behavior, we use the evidence state Ei,t ∈ {0, 1, 2} to track the sufficiency and
clarity of retrieved information at each turn t in trace i. We define a recovery event (Equation (7))
as the first turn where the agent either (i) enters a high-evidence state (Ei,t = 2), or (ii) produces a
correct answer. Formally:

Trecover,i := min {t ∈ [1, Ti] : Ei,t = 2 or correcti = 1} , (7)

where correcti indicates whether the agent’s final answer in trace i is correct.

To measure recovery behavior, we introduce the Evidence Recovery Function (ERF), which quanti-
fies the cumulative proportion of traces that have successfully recovered by each turn:

Definition 3.4 (Evidence Recovery Function (ERF)) Let N denote the total number of traces.
The Evidence Recovery Function at turn t is defined as

ERF(t) :=
1

N

N∑
i=1

I (Trecover,i ≤ t) , (8)

where I(·) is the indicator function. ERF(t) measures the proportion of traces that have recovered
by turn t.

3.3.3 CALIBRATION

We evaluate calibration as the agent’s ability to decide when to answer based on the quality of
retrieved evidence. A well-calibrated agent should answer only when it has acquired evidence that
is both clear (unambiguous and directly relevant) and sufficient (contains enough information to
support a reliable answer).

Let answeri,t ∈ {0, 1} indicate whether the agent provides an answer at turn t of trace i. We assess
calibration behavior by examining the answer rate conditioned on the evidence state:

P(answeri,t = 1 | Ei,t = k). (9)

High values at k = 0 indicate epistemic overconfidence, where the agent answers prematurely with
poor or partial evidence. Conversely, low values at k = 2 suggest epistemic overcautiousness, where
the agent refrains from answering when the evidence is good.

To quantify calibration performance, we introduce Calibration Error (CE) that measures how
much an agent’s answering behavior deviates from the ideal policy. The ideal policy is one that
answers if and only if the evidence is good (Ei,t = 2), which maximizes expected accuracy while
minimizing wasted effort. This metric captures both epistemic failures: overconfidence (answering
with insufficient evidence) and overcautiousness (not answering despite having good evidence).

Definition 3.5 (Calibration Error (CE)) Let I := {1, . . . , N} be the index set of traces. Let
π∗(k) := I[k = 2] represent the ideal policy that answers if and only if evidence is sufficient.
The CE for a model is defined as:

CE := Ei∈I [CEi] (10)

where for each trace i, CEi :=
∑2

k=0P(Ei,t=k) |P(answeri,t = 1 | Ei,t = k)−π∗(k)|.
For a perfectly calibrated agent following the ideal policy π∗(k), it achieves CE = 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models & Datasets . We evaluate Qwen-2.5-7B-Instruct (“Base” for training, Qwen et al. (2024)),
its few-shot prompted version (“Few-shot”), and state-of-the-art “RL-trained” agents based on
Qwen-2.5-7B-Instruct, including: SEARCH-R1 (Jin et al., 2025), RESEARCH (Chen et al., 2025),
ASEARCHER (Gao et al., 2025) and DEEPRESEARCHER (Zheng et al., 2025). We also evaluate
Chain-of-Thought (CoT) and ReAct prompting strategies, which show similar performance to Base
(see Appendix F-I for details).

We evaluate the agents on a diverse set of seven QA benchmarks: NQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022) [single-hop]; HotpotQA (Yang et al.,
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Figure 3: RQI Analysis Summary. Left: RQI by model level, showing the overall reasoning quality across
different agent types. Right: RQI by reasoning type, revealing that models struggle most with plan formation
and state assessment compared to information synthesis.

2018), 2Wiki (Ho et al., 2020), MusiQue (Trivedi et al., 2022), and Bamboogle (Press et al., 2022)
[multi-hop]. Additionally, we evaluate search agents (32B ASearcher and WebSailor) on GAIA to
assess epistemic competencies with web browsing capabilities (see Appendix K for details).

Each model runs and evaluates on the sanitized test datasets, where we remove ambiguous ques-
tions and data contamination cases to ensure evaluation quality; we also removed questions that can
be answered by the internal knowledge of the evaluated models alone since evidence state (Sec-
tion 3.3) should depend only on retrieved evidence (details for data sanitization in Appendix B).
Our evaluation comprises 28,493 traces and 283,950 steps across all models and datasets. A com-
prehensive statistical analysis of the dataset composition and annotation distributions is provided
in Appendix C. For this large-scale annotation, we employ GPT-4.1-mini, which demonstrates sub-
stantial alignment with human judgments under our validated schema.
Answer-level performance. Aggregate F1 ranking is ASEARCHER > Search-R1 > RESEARCH >
Few-shot ≈ DEEPRESEARCHER > Base (Appendix E). Our primary analysis moves beyond out-
comes to assess process-level epistemic competencies: evidence grounding (Section 4.2), recovery
dynamics (Section 4.3), and calibration (Section 4.4). We identify agent-specific competencies that
drive performance gains and expose the overestimation of RL training (Section 4.5).

4.2 EVALUATING JUSTIFIED REASONING VIA EVIDENCE GROUNDING

A fundamental criterion of agent competence is not merely producing the correct answer, but doing
so through a reasoning process explicitly grounded in retrieved evidence. To measure this, we utilize
the Reasoning Quality Index (RQI, defined in Section 3.3.1), which quantifies the proportion of an
agent’s reasoning steps that are supported by retrieved evidence.
RL Training Fails to Develop Evidence-Grounded Reasoning. Figure 3 (Left) presents the av-
erage RQI scores across models. Few-shot prompting achieves the highest reasoning quality (RQI
= 0.27), outperforming all RL-trained agents. This reveals a disconnect between answer-level suc-
cess and reasoning groundedness: RL training may optimize for correct final answers, but it fails to
develop the epistemic reasoning skills to justify those answers with evidence-grounded reasoning.
Plan Formation and State Assessment Are Core Reasoning Failures. To understand where rea-
soning breaks down, we analyze performance by reasoning type (Figure 3, Right). Specifically,

• Information Synthesis emerges as a relative strength across models (e.g., ASEARCHER: 0.56),
demonstrating agents’ proficiency in summarizing and restating retrieved information.

• Plan Formation constitutes the most significant weakness for all agents (consistently scor-
ing below 0.2), highlighting fundamental difficulties in breaking down complex queries and
formulating coherent search strategies.

• State Assessment shows notable improvement in few-shot models (0.28), suggesting enhanced
metacognitive capabilities compared to their RL-trained counterparts.

For detailed analysis of evidence-conditioned reasoning quality across different evidence states and
reasoning types, see Appendix F.

4.3 RECOVERY ANALYSIS

This section evaluates whether models can effectively recover from low-quality evidence through
adaptive search strategies.

8
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Figure 4: Recovery Analysis. Left: ERFs by model showing recovery from low to sufficient evidence (E=2)
as turn t increases. Right: Recovery efficiency by action type. Steeper curves indicate faster escape from low
evidence states. REFINE and FOLLOW-UP enable fastest recovery, while REPEAT shows minimal improvement.

Recovery Competence with ERF. We first assess overall recovery competence using the Evidence
Recovery Function (ERF, Equation (8)), which measures the cumulative probability of reaching suf-
ficient evidence (E = 2) over time. As shown in Figure 4 (Left), ASEARCHER, which has the
highest F1 score on answer correctness, shows superior recovery performance compared to other
agents. In contrast, DEEPRESEARCHER, which has the lowest F1 among all RL-trained agents,
shows the poorest recovery performance. This demonstrates that effective algorithm design should
prioritize developing adaptive evidence-seeking strategies so that agents can recover from insuffi-
cient evidence and improve final performance.

Refine and Follow-up Search Strategies Drive Effective Recovery. To identify the most effec-
tive search strategies for recovery, we analyze how different action types affect recovery rates over
time. We categorize all search and reasoning steps by their types. For each step t of a specific type in
trace, we measure the proportion of turns remaining low evidence states (E < 2) at subsequent turns
(t + ∆t). Given the variable-length traces and resulting right-censored data (traces ending before
recovery occurs—when observation periods end before the outcome), we employ Kaplan-Meier sur-
vival analysis (Kaplan & Meier, 1958), which provides robust estimation of recovery probabilities
despite incomplete observations. As shown in Figure 4 (Right), survival curves reveal that REFINE
and FOLLOW-UP strategies enable the fastest recovery from low-quality evidence, while REPEAT
provides minimal benefit. Additionally, GROUNDED REASONING also effectively improves evi-
dence utilization in responses.

4.4 EVIDENCE-ALIGNED CALIBRATION

Figure 5: Evidence State Drives Answer
Probability and Accuracy. Lines: Answer
probability increases with evidence state. Bars:
Answer accuracy improves with evidence state.
RL-trained models show lower answering rate but
higher accuracy with good evidence.

This section evaluates whether models calibrate
their answering behavior to the ideal policy, where
they answer when and only when it has good ev-
idence, avoiding both overconfidence (answering
with poor evidence) and overcautiousness (failing to
answer despite good evidence).

Evidence Quality Drives Answer Accuracy. We
first validate that evidence quality correlates with an-
swer accuracy. As shown in Figure 5, RL-trained
models achieve 31.6% accuracy when answering
with good evidence (P (correct|answer, E = 2)),
compared to only 8.4% accuracy when answering
without supporting evidence. This significant differ-
ence demonstrates that evidence quality is positively
associated with answer correctness.

Interestingly, RL-trained models exhibit lower answering rates (P (answer|E), formally defined in
Equation 9) across all evidence states compared to base models. This suggests that RL training
encourages models to be more selective about when to provide final answers, potentially reducing
instances of overconfident responses.

9
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Table 3: Calibration Error Analysis. traces categorized as: calibration error, overconfident, or overcautious.
Lower values indicate better calibration. RL-trained agents show the lowest overconfident answer rate and
lowest CE. Bold indicates best performance.

Model (1) Overconfident ↓ (2) Overcautious ↓ (3) Calibration Error ↓
Base 0.631 0.030 0.329
Few-shot 0.511 0.024 0.317
RL-trained 0.353 0.085 0.309

To further understand the calibration behavior, we measure calibration quality using calibration
error (CE, Equation (10)) and analyze two specific failure modes to identify where models fail:

(1) Overconfident answering: providing a final answer when the trace never reached good evi-
dence state (Ei,t < 2 for all t), indicating overconfidence;

(2) Overcautious abstention: failing to provide a final answer despite having reached good evi-
dence state (Ei,t = 2), indicating underconfidence.

RL Training Improves Calibration. As summarized in Table 3, RL-trained models show substan-
tial improvements in calibration behavior. They reduce overconfident answering from 63.1% to
35.3% and achieve the lowest overall calibration error (0.309). This demonstrates that RL train-
ing successfully teaches models to align their answering decisions with evidence quality, moving
toward the ideal policy of answering only when evidence is sufficient. This finding contrasts with
the earlier result that RL training degrades reasoning groundedness (Section 4.2), highlighting the
competency-specific nature of RL training effects. For detailed analysis of individual RL-trained
agents and evidence-conditioned answer timing patterns, see Appendix H.

4.5 EXPLOITING EPISTEMIC COMPETENCIES FOR PERFORMANCE GAINS

Our evaluation reveals distinct agent specializations: ASEARCHER excels in evidence acquisition
and recovery mechanisms (highest overall F1 score), while SEARCH-R1 demonstrates superior
information synthesis (RQI=0.63 for information synthesis) with minimal overconfident answer-
ing (see Section 4.4 and Appendix H). These differences are primarily driven by training objectives:
SEARCH-R1 optimizes only for final answer correctness, achieving high accuracy (Jin et al., 2025)
but sacrificing reasoning groundedness (Section 4.2), while ASEARCHER emphasizes data synthesis
with failure and recovery strategies to teach adaptive re-planning (Gao et al., 2025), leading to
superior evidence acquisition and recovery capabilities (Section 4.3). This motivates us to explore
agent synthesis—using one agent’s evidence collection as input for another’s answer generation.

We provided agents with reasoning traces and evidence from others, then measured F1 score im-
provements. SEARCH-R1 emerges as the most effective synthesizer (+2.61 F1 on average), sig-
nificantly outperforming other agents (see details in Appendix I). Surprisingly, Base achieved the
highest F1 gains (+2.42 on average) when paired with other models for answer generation. This re-
veals that accuracy-only evaluation may underestimate Base’s reasoning abilities while overstating
the gains from RL training.

Our method reveals distinct agent profiles by systematically benchmarking their epistemic compe-
tencies, for example, SEARCH-R1’s synthesis strength and conservative answering. These insights
provide a reliable foundation for designing effective systems that capitalize on complementary agent
strengths. Furthermore, we demonstrate that our epistemic competency framework can provide
actionable inference-time feedback signals, achieving 8.4% F1 improvement on ASEARCHER-7B
without training (see Appendix J). Overall, beyond outcome-based metrics, our approach delivers
procedural evaluation that enables more interpretable assessments of agent competence.

5 CONCLUSION

SeekBench evaluates epistemic competence in LLM search agents through expert-annotated traces,
revealing gaps in current evaluation approaches. Our evidence state framework and metrics (RQI,
ERF, CE) uncovers agent-specific strengths masked by accuracy-only evaluation: Search-R1 excels
at evidence synthesis, while Base models demonstrate stronger reasoning capabilities than accuracy
metrics suggest. This work establishes epistemic competence as essential for developing reliable
information-seeking agents. Future work should explore modular architectures combining comple-
mentary strengths and training approaches that improve reasoning alongside answer calibration.

10
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Ethics Statement. This research evaluates LLM search agents using publicly available datasets and
involves only expert annotation of agent traces. Our framework aims to improve AI system reliability
and transparency for developing more trustworthy information-seeking agents. The SeekBench
dataset will be released with appropriate documentation while respecting licensing terms.

Reproducibility Statement. To ensure reproducibility of our findings, we provide comprehensive
documentation of our methodology and evaluation framework. Our annotation schema and inter-
annotator agreement analysis (Appendix A) establish the reliability of our epistemic competency
measurements, with Cohen’s κ = 0.811 for human annotators and strong LLM-judge alignment
(κ ≥ 0.693). The complete annotation guidelines and evaluation prompts are detailed in Ap-
pendix D, enabling replication of our step-level reasoning quality assessments. Our three core met-
rics—Reasoning Quality Index (RQI), Evidence Recovery Function (ERF), and Calibration Error
(CE)—are formally defined with mathematical specifications in Section 3.3. The evaluation spans
seven established QA benchmarks (NQ, TriviaQA, PopQA, HotpotQA, 2Wiki, MusiQue, Bam-
boogle) with 28,493 traces and 283,950 annotated steps across six agent variants (Qwen-2.5-7B-
Instruct and few-shot, Search-R1, ReSearch, ASearcher, DeepResearcher). Data sanitization proce-
dures to remove ambiguous questions and contamination cases are documented in Appendix B. All
experimental results, including detailed agent-specific breakdowns and evidence-conditioned anal-
yses, are provided in the main text and appendix. The SeekBench dataset of 190 expert-annotated
traces with over 1,800 response steps will be made available as supplementary material, along with
our annotation schema and evaluation code to enable community replication and extension of our
epistemic competence framework.
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Figure 6: Inter-annotator agreement for SeekBench. (Left) Per-field annotation agreement across different com-
petency dimensions. (Right) Average Cohen’s κ comparing human annotators with GPT-4.1, GPT-4.1-mini, and
GPT-5, demonstrating strong alignment between expert human judgments and advanced LLM assessments.

A INTER-ANNOTATOR AGREEMENT ANALYSIS

Annotation Schema Overview. Our annotation schema (Figure 9) provides a structured
framework for labeling agent traces, capturing both the functional role and epistemic
quality of each step. The schema consists of two key dimensions: (1) Func-
tional Type, which categorizes the cognitive purpose of reasoning and search steps
(e.g., StateAssessment, PlanFormation, InformationSynthesis for reasoning;
InitialQuery, RefinedQuery, FollowUpQuery, RepeatQuery for search), and (2)
Quality Attribute, which evaluates epistemic soundness (e.g., Groundedness for reasoning,
Quality and Clarity for search results, Correctness for final answers). This dual-
dimensional structure enables comprehensive process-level evaluation by capturing both what agents
are doing and how well they are doing it. The schema’s reliability, as measured through inter-
annotator agreement, establishes the foundation for our epistemic competence evaluation frame-
work.

Per-Field Agreement Analysis. The left panel of Figure 6 demonstrates robust inter-annotator
agreement across all four annotation fields. The Functional Type field achieves the highest agree-
ment (κ > 0.8), indicating that annotators can reliably distinguish between different reasoning
purposes (e.g., Information Synthesis vs. Plan Formation). The Quality Attribute field shows simi-
larly strong agreement (κ > 0.75), confirming that evaluative judgments of epistemic soundness are
consistently interpretable across annotators. These results establish that our schema captures mean-
ingful, distinguishable patterns in agent reasoning behavior rather than subjective interpretations.

Human-LLM Alignment Assessment. The right panel reveals substantial alignment between hu-
man expert judgments and LLM assessments across all three evaluated models. Human annotators
achieve the highest overall agreement (κ = 0.811), establishing the reference standard for annota-
tion quality. Among LLM judges, GPT-5 demonstrates the strongest alignment with human experts
(κ = 0.754), followed by GPT-4.1-mini (κ = 0.731) and GPT-4.1 (κ = 0.693). This progres-
sive improvement across model versions suggests that more advanced language models can better
approximate human reasoning patterns in epistemic evaluation tasks.

Cost-Effectiveness Analysis for LLM Judges. To evaluate the practical deployment of LLM-as-
judge systems, we analyze the trade-off between annotation quality (measured by inter-annotator
agreement, IAA) and per-trace cost (combining token cost and time cost) across six language mod-
els. Table 4 provides detailed per-trace cost and IAA metrics for all evaluated models. Figure 7
presents a Pareto frontier analysis, identifying models that achieve optimal balance between cost
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Figure 7: Model Pareto Frontier Analysis. Trade-off between normalized per-trace cost (x-axis) and average
Cohen’s κ (IAA, y-axis) across language models. The x-axis is computed by min-max normalizing token and
time costs per trace separately to [0, 1], then summing with equal weight. GPT-4.1-mini and GPT-5 lie on the
Pareto frontier, with GPT-4.1-mini offering optimal cost-effectiveness for large-scale deployment.

and utility. Our evaluation reveals that GPT-4.1-mini emerges as the most cost-effective solution,
achieving strong human alignment (IAA = 0.731 ± 0.057) at minimal per-trace cost ($0.0087 and
2.48s), positioning it on the Pareto frontier alongside GPT-5. While GPT-5 achieves the highest
agreement (κ = 0.754±0.032), its substantially higher per-trace cost ($0.1016 and 28.47s) makes
it less suitable for large-scale deployment. These results establish GPT-4.1-mini as the optimal
choice for scalable evaluation frameworks that require both high-quality annotations and economic
feasibility.

Table 4: Per-trace cost and Inter-Annotator Agreement (IAA) for LLM Judges on 190 sampled traces. Token
cost (in USD$ per trace), time cost (in seconds per trace), and IAA measured as Cohen’s κ with standard
deviation. Models marked with † are Pareto-optimal.

Model Token Cost ($/trace) Time Cost (s/trace) IAA (κ± std)

GPT-4.1-mini† 0.0087 2.48 0.731± 0.057
GPT-5-nano 0.0098 4.56 0.683± 0.038
Gemini-2.5-flash 0.0238 4.77 0.643± 0.102
GPT-4.1 0.0441 1.47 0.693± 0.043
GPT-5-mini 0.0485 5.26 0.791± 0.028
GPT-5† 0.1016 28.47 0.754± 0.032

Implications for Large-Scale Evaluation. These agreement results establish the feasibility of de-
ploying our annotation framework for comprehensive agent evaluation. The strong human-LLM
alignment enables cost-effective scaling of our evaluation methodology, while the robust per-field
agreement ensures that competency assessments reflect genuine behavioral differences rather than
annotation artifacts. This validation is particularly crucial for our three core competencies (Ground-
edness, Recovery, and Calibration), as it confirms that these constructs can be reliably measured
across diverse reasoning traces and evaluators.

B DATA SANITIZATION

To ensure the quality of our evaluation, we sanitize the test sets of our seven benchmark datasets
using the following two criteria:

(1) Ambiguous or Unanswerable Questions. We discard questions where benchmark agents re-
ceive full credit for speculative answers, while a stronger reference model (GPT-4.1-mini) abstains
with a justified explanation. For example, in response to the question “Who developed the CPU?”,
a benchmark agent might confidently output “John von Neumann”, achieving EM=1. In contrast,
GPT-4.1-mini responds: “Answer: I don’t know; Reason: The information mentions figures like

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

John von Neumann and J. Presper Eckert, but does not identify a single developer.” These ques-
tions are excluded to avoid rewarding superficial matching over careful reasoning.

(2) Data Contamination. We discard questions where agents succeed (Pass@3) without issuing any
search queries, as this indicates the question is likely part of the model’s pre-training data. These
are removed to focus evaluation on retrieval-dependent reasoning.

C DATASET STATISTICS

C.1 DATASET CONSTRUCTION

To validate our annotation schema and establish LLM-as-judge feasibility, we constructed an expert-
annotated validation dataset of 190 traces. We sampled traces from the seven agents and seven QA
benchmarks described in our experimental setup (Section 4.1). For each agent-dataset combination,
we selected 2 correct and 2 incorrect answer traces, targeting an ideal sample size of 7 × 7 ×
4 = 196 traces. The final dataset contains 190 traces (6 fewer than ideal) because some traces,
particularly from single-hop QA datasets, lack multiple search queries. We prioritize multi-query
traces because our framework focuses on process-level analysis to evaluate how agents reason,
adapt search strategies, and make decisions across multiple steps. This sampling strategy ensures
our validation dataset captures the epistemic behaviors our framework is designed to assess.

C.2 LARGE-SCALE EVALUATION DATASET

This section provides a comprehensive statistical analysis of the evaluation dataset, which comprises
28,493 traces across seven question-answering benchmarks. Figure 8 presents six complementary
views of the dataset composition and annotation distributions, revealing key characteristics that in-
form our epistemic competency evaluation.

Dataset Composition. The evaluation dataset spans seven established question-answering bench-
marks, providing diverse coverage of both single-hop and multi-hop reasoning tasks. As shown in
Figure 8 (top-left), the dataset distribution is relatively balanced across sources: PopQA (28.9%)
and MusiQue (26.3%) constitute the largest portions, followed by HotpotQA (12.5%) and 2Wiki-
MultihopQA (12.5%). TriviaQA (7.6%) and NQ-Search (7.6%) contribute smaller but substantial
portions, while Bamboogle (4.6%) provides the smallest contribution. This distribution ensures that
our evaluation framework is tested across diverse question types, from factual single-hop queries to
complex multi-hop reasoning tasks requiring information synthesis across multiple sources.

Information Quality and Clarity. The quality and clarity of retrieved evidence are fundamental
to evaluating epistemic competence, as they directly determine the evidence state Ei,t used in our
metrics. Figure 8 (top-middle and top-right) reveals critical challenges in the information landscape
that agents must navigate:

• Information Clarity: A substantial majority of search results (62.5%, 48,134 instances) are
categorized as unclear, meaning they contain ambiguous, vague, or confusing information that
could match multiple entities or interpretations. Only 37.5% (28,905 instances) are classified
as clear, indicating straightforward, unambiguous information. This distribution highlights
the prevalence of ambiguous search results in information-seeking scenarios, emphasizing the
importance of agents’ ability to handle uncertainty and adapt their search strategies.

• Information Quality: The distribution of information sufficiency is nearly balanced, with
52.7% (40,559 instances) classified as insufficient and 47.3% (36,402 instances) as sufficient.
This near-even split reflects the inherent difficulty of information-seeking tasks, where initial
queries often fail to retrieve complete answers, requiring agents to demonstrate recovery capa-
bilities through adaptive search refinement.
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Figure 8: Comprehensive Dataset Statistics. (Top-left:) Distribution of traces across seven QA benchmarks,
showing the relative contribution of each dataset. (Top-middle:) Information clarity distribution, categorizing
search results as clear or unclear. (Top-right:) Information quality distribution, indicating whether retrieved
evidence is sufficient or insufficient. (Bottom-left:) Distribution of reasoning annotation types across all rea-
soning steps. (Bottom-middle:) Distribution of query annotation types across all search steps. (Bottom-right:)
Grounding distribution, showing the proportion of reasoning steps that are grounded versus not grounded in
retrieved evidence.

Reasoning Type Distribution. Our annotation schema categorizes reasoning steps into three func-
tional types that capture distinct cognitive processes in information-seeking. Figure 8 (bottom-left)
shows that Plan Formation (41,531 instances, 43.7%) and State Assessment (41,550 instances,
43.7%) dominate the reasoning landscape, with nearly identical frequencies. These two types to-
gether account for 87.4% of all reasoning steps, indicating that agents spend substantial effort on
metacognitive processes: identifying knowledge gaps (State Assessment) and formulating search
strategies (Plan Formation). In contrast, Information Synthesis (12,022 instances, 12.6%) repre-
sents a smaller but critical component, where agents integrate retrieved evidence to form conclu-
sions. This distribution reveals that effective information-seeking requires sophisticated planning
and self-monitoring capabilities, not merely the ability to synthesize information once it is retrieved.

Query Type Distribution. Search behavior analysis reveals how agents adapt their information-
seeking strategies. Figure 8 (bottom-middle) shows that RefinedQuery (32,323 instances, 60.3%)
is the most common query type, demonstrating that agents frequently modify their search approach
based on previous results. This adaptive behavior is essential for recovery from poor initial evidence.
RepeatQuery (19,729 instances, 36.8%) represents a substantial portion of search behavior, indicat-
ing that agents sometimes persist with similar queries, which may reflect either strategic refinement
or ineffective adaptation. FollowUpQuery (1,573 instances, 2.9%) is relatively rare, suggesting that
agents infrequently employ exploratory follow-up questions that diverge from their primary search
trajectory. This distribution underscores the importance of query refinement as a core mechanism
for evidence recovery, while also highlighting the potential for improving agents’ exploratory search
capabilities.
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Grounding Distribution. The grounding analysis evaluates whether reasoning steps are supported
by retrieved evidence, which is central to the Groundedness competency. Figure 8 (bottom-
right) reveals a critical finding: only 17.3% (16,663 instances) of reasoning steps are classified as
grounded, while 82.7% (79,367 instances) are not grounded. This substantial imbalance indicates
that the majority of agent reasoning steps lack direct support from retrieved evidence, representing
a fundamental epistemic challenge. This finding aligns with our RQI analysis (Section 4.2). The
prevalence of ungrounded reasoning highlights the critical need for evaluation frameworks that as-
sess epistemic competence beyond answer-level accuracy, as agents may produce correct answers
through epistemically unsound reasoning processes.

Implications for Epistemic Competence Evaluation. These statistical patterns reveal several key
insights that inform our evaluation framework. First, the high proportion of unclear and insufficient
evidence (62.5% unclear, 52.7% insufficient) establishes a challenging information landscape where
agents must demonstrate robust recovery capabilities. Second, the dominance of PlanFormation
and StateAssessment reasoning types (87.4% combined) suggests that metacognitive capabili-
ties are central to effective information-seeking, yet our RQI analysis reveals these are precisely the
reasoning types where agents struggle most. Third, the overwhelming prevalence of ungrounded rea-
soning (82.7%) confirms that evidence-grounded reasoning is a critical competency gap that current
agents fail to address, validating the necessity of process-level evaluation frameworks like Seek-
Bench.

D LLM-AS-JUDGE FOR SEEKBENCH

This section presents the comprehensive LLM-as-judge used in SeekBench to evaluate agent rea-
soning, search behavior, and answer quality. The schema is organized into: reasoning types with
grounding evaluation, search behavior, search result quality.

D.1 REASONING TYPE ANNOTATION AND GROUNDING EVALUATION

The reasoning annotation schema categorizes agent reasoning steps into four functional types and
evaluates their grounding. This comprehensive evaluation helps identify both the cognitive function
of reasoning steps and whether they are properly supported by evidence.

Reasoning Type Classification and Grouding Evaluation

You are an expert cognitive scientist and evidence-based critical thinking expert. Your task
is to classify the reasoning type of an agent’s step and evaluate its grounding based *only*
on the evidence it had at the time.
Context: The Agent’s Goal (Original Question):
{question}

Evidence: The Search Results the Agent Had Access To:
{search_evidence_json}

Agent’s Reasoning Text to Analyze:
"{reasoning_text}"

Task:
1. Classify the reasoning type:

• StateAssessment: Assess the current knowledge state, usually identifying a
knowledge gap.

• PlanFormation: The agent is forming a plan of action.
• InformationSynthesis: Synthesize new information (from search results) to form

a conclusion.
2. Evaluate grounding:

• Extract the atomic factual premises from the step (skip meta/plan-only wording
that contains no factual claim).
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Figure 9: Annotation schema overview with definitions and examples. Abbreviations: Def=Definition,
Ex=Example, G=Grounded, NG=Not Grounded, Suff=Sufficient, Insuff=Insufficient.

• For each premise, find a direct supporting span in the provided evidence. If no
exact or near-verbatim support exists, mark that premise as unmatched.

• Decide the label with STRICT rules:
– Grounded: ALL atomic premises are supported by explicit evidence spans.
– Not Grounded: ANY atomic premise lacks a supporting span; OR the step

contains only meta/plan text without factual premises.
Additional rules for grounding:

• QUESTION anchor alone is NOT sufficient for Grounded; do not label as grounded
solely for restating the task/intent.

• Superlatives/temporal/quantitative claims (e.g., last/first/only, years, counts) require ex-
plicit evidence spans.

Your Final Output:
{

"reasoning_type": "StateAssessment",
"grounding": "Grounded",
"anchor_type": "EVIDENCE",
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"justification": "brief explanation"
}

D.2 SEARCH BEHAVIOR ANNOTATION

The search annotation schema categorizes agent search queries into four behavioral types:

Search Behavior Classification

You are an expert information retrieval specialist. Your task is to classify the type of search
query issued by the agent.
Current Search Query:
{current_query}

Previous Search Query (if any):
{previous_query}

Task: Classify the search query type:
• InitialQuery: The agent is issuing its first query in a reasoning chain.
• RefinedQuery: The agent is refining a previous query based on new information.
• FollowUpQuery: The agent is asking a follow-up question that is not a direct refine-

ment.
• RepeatQuery: A query that is the same as the previous query.

Your Final Output:
{

"search_type": "InitialQuery",
"justification": "brief explanation"

}

D.3 SEARCH RESULT QUALITY ASSESSMENT

This prompt evaluates the quality and clarity of search results retrieved by the agent. It helps identify
when agents work with insufficient or ambiguous information.

Search Result Analysis Prompt

You are an expert data analyst. Your task is to evaluate the quality of a search result based
on the query that produced it.
Search Query:
{query}

Search Result Documents:
{documents_json}

Your Task: Analyze the search result’s sufficiency and clarity.
1. Information Quality: Does the result contain enough information to likely answer the
user’s implicit question in the query? Choose one:

• Sufficient: The answer seems to be present.
• Insufficient: The answer is likely not here.

2. Information Clarity: Is the information clear or does it create confusion? Choose one:
• Clear: The information is straightforward and addresses one subject.
• Unclear: The results mention multiple distinct entities that could match the query (e.g.,

two movies with the same title) or the information is vague.
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Your Final Output: Your response must be a single, valid JSON object with the following
attributes:

• information quality: Either ”Sufficient” or ”Insufficient”
• information clarity: Either ”Clear” or ”Unclear”
• clarity justification: Brief explanation for your clarity rating

E ACCURACY-LEVEL PERFORMANCE

Agent Overall F1 (%)
ASearcher 39.77
Search-R1 39.29
ReSearch 38.30
Few-shot 36.04
DeepResearcher 36.00
Base 33.50
CoT 32.72
ReAct 31.25

Table 5: Overall F1 performance across agent variants. Trained agents consistently outperform the base model,
with ASearcher achieving the highest score.

Table 5 reports the aggregate F1 scores across all evaluated agents. We observe that all trained agents
outperform the base Qwen model, with ASearcher achieving the best performance (39.8%). Search-
R1 and ReSearch follow closely, while Few-shot prompting and DeepResearcher attain comparable
scores.

F EVIDENCE-GROUNDED REASONING ANALYSIS

This section provides detailed analysis of evidence-grounded reasoning capabilities for Section 4.2,
examining how agents ground their reasoning in retrieved evidence and identifying critical gaps in
epistemic alignment. We present two complementary analyses: (1) evidence-conditioned reason-
ing quality across different evidence states, and (2) type-specific reasoning capabilities that reveal
heterogeneous grounding patterns across reasoning skills.

F.1 EVIDENCE-ALIGNED REASONING: DO AGENTS GROUND THEIR INFERENCE IN WHAT
THEY KNOW?

To evaluate whether agents ground their reasoning in retrieved evidence, we analyze the expected
groundedness of reasoning steps conditioned on the agent’s evidence state E ∈ {0, 1, 2}. The
quantity E[Gi,t | Ei,t = k] measures how reliably an agent produces well-supported reasoning at
each evidence level k. An epistemically sound agent should avoid unsupported reasoning when
E = 0, provide partial grounding at E = 1, and fully leverage complete evidence when E = 2.
This conditional analysis enables assessment of epistemic alignment: whether agents reason more
confidently only when they possess sufficient evidence.

Base models show better epistemic alignment than specialized agents. Empirical results in Fig-
ure 10 reveal substantial variation across models. Most agents demonstrate appropriate behavior
at E = 0, with E[G | E = 0] ≈ 0.07–0.09, indicating minimal hallucinated reasoning. How-
ever, SEARCH-R1 exhibits significant epistemic misalignment, with elevated groundedness even
under insufficient evidence (≈ 0.10 at E = 1 and 0.14 at E = 2), suggesting grounded reasoning.
In contrast, BASE and FEW-SHOT variants demonstrate the clearest evidence-conditioned reason-
ing, with groundedness rising from 0.49 (E = 1) to 0.64 (E = 2), indicating effective epistemic
modulation. ASEARCHER also shows notable improvement (0.50 → 0.55), while RESEARCH and
DEEPRESEARCHER stagnate around 0.47–0.51, failing to capitalize on stronger evidence. These
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Figure 10: Evidence-conditioned reasoning quality for evidence state k ∈ 0, 1, 2 across search agents. Bars
denote 95% confidence intervals. The quantity reflects the expected groundedness of reasoning steps given the
epistemic evidence state E. Higher values at E = 2 indicate effective evidence utilization.

Figure 11: Type-Level Evidence-Conditioned Groundedness. Expected groundedness for each reasoning
type τ (Information Synthesis, Plan Formation, State Assessment) under evidence levels E = 0, 1, 2. Bars
show 95% confidence intervals. Models exhibit heterogeneous capabilities in grounding specific reasoning
skills in available evidence.

results demonstrate the necessity for evaluation metrics like RQI that isolate whether reasoning
reflects the agent’s actual knowledge state.

Case Study: Correct Answer with Ungrounded Reasoning. We examine a case where a ReSearch
agent correctly answers “Who won the first celebrity big brother on channel 5?” despite completely
ungrounded reasoning. After retrieved the first evidence, the agent retrieves conclusive evidence
stating “Celebrity Big Brother 1... concluded on 16 March 2001 when comedian Jack Dee was
crowned the winner.” Despite having the answer, the agent ignores this evidence and conducts
unnecessary searches, stating: “I need to clarify which Big Brother series I am referring to... Now,
I have to find out the winner of that show.” The agent eventually answers “Jack Dee” correctly, but
through an epistemically unsound process. This demonstrates why accuracy metrics alone fail to
capture critical reasoning deficiencies.

F.2 TYPE-SPECIFIC EVIDENCE ALIGNMENT: WHICH REASONING SKILLS ARE
EVIDENCE-GROUNDED?

We further decompose agent reasoning groundedness by reasoning type τ ∈ {IS,PF,SA}, leverag-
ing the Type-Level Reasoning Quality Index from Definition 3.3 and the evidence-state decomposi-
tion in Equation (6).

Figure 11 illustrates the groundedness of each reasoning type across three evidence states. Our
analysis reveals several significant patterns:

First, Information Synthesis (IS) demonstrates the strongest evidence-responsiveness across all
models. With complete evidence (E=2), IS steps achieve superior groundedness, indicating robust
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Figure 12: Comprehensive Recovery Analysis. Evidence Recovery Function (ERF) showing the cumula-
tive fraction of traces reaching sufficient evidence state (E = 2) across all evaluated agents, including RL-
trained agents (ASearcher, Search-R1, ReSearch, DeepResearcher), base models (Base), and prompting strate-
gies (Few-shot, CoT, ReAct). Steeper curves indicate faster recovery from low-quality evidence.

capabilities in aggregating retrieved information. Even with partial evidence (E=1), agents maintain
moderate IS groundedness, suggesting effective utilization of incomplete knowledge.

In contrast, Plan Formation (PF) and State Assessment (SA) exhibit substantially lower ground-
edness even with complete evidence. For PF, only ASEARCHER and RESEARCH exceed 0.5 at
E=2, while others (e.g., SEARCH-R1, DEEPRESEARCHER) remain below 0.4, revealing fragile
decision-making processes despite available knowledge. Similarly, SA demonstrates critical limita-
tions: although scores improve under E=2, most models underperform relative to IS, with several
agents (e.g., SEARCH-R1, DEEPRESEARCHER) showing minimal evidence-responsiveness between
E=1 and E=2. Notably, SEARCH-R1 performs comparatively well for IS across all evidence levels
but demonstrates exceptionally poor grounding for PF and SA (0.15 and 0.12 at E=2, respectively),
suggesting specialized evidence synthesis but narrowly constrained reasoning capabilities.

These findings demonstrate that only specific reasoning capabilities (particularly synthesis) are con-
sistently grounded in retrieved information. This underscores the necessity for developing evidence-
grounded reasoning policies, especially for higher-order cognitive functions like plan formation and
state assessment that currently show significant epistemic disconnection from retrieved knowledge.

G RECOVERY ANALYSIS

This section provides detailed analysis of evidence recovery capabilities, extending the main text
analysis (Section 4.3) with additional agent comparisons including Chain-of-Thought (CoT) and
ReAct prompting strategies.

Extended Agent Comparison. Figure 12 presents the Evidence Recovery Function (ERF) for all
evaluated agents, including the additional CoT and ReAct prompting strategies. The results reveal
a clear performance hierarchy: SEARCH-R1 demonstrates the best recovery performance, followed
by CoT, RESEARCH, ReAct, FEW-SHOT, DEEPRESEARCHER, and BASE (in descending order).
Notably, CoT outperforms several RL-trained agents (RESEARCH, DEEPRESEARCHER) and base
models, achieving the second-highest recovery rate. ReAct also shows competitive recovery perfor-
mance, outperforming FEW-SHOT, DEEPRESEARCHER, and BASE. This finding reveals that while
RL-trained agents like ASEARCHER and SEARCH-R1 achieve superior recovery through explicit
search adaptation mechanisms, prompting strategies like CoT can also demonstrate effective ev-
idence recovery capabilities, potentially through their structured reasoning approach that enables
better query refinement.
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H EVIDENCE CALIBRATION ANALYSIS

To further understand the epistemic calibration capacity of RL-trained agents, we analyze four RL-
based agents: ASEARCHER, SEARCH-R1, RESEARCH, and DEEPRESEARCHER. Each model ex-
hibits distinct behavior patterns in evidence-grounded answering.

Figure 13: Evidence-Calibrated Answering by RL Agents. Left: Answering propensity for each RL agent
under different evidence levels (E=0/1/2). Right: Answering accuracy for each RL agent under different evi-
dence levels (E=0/1/2).

As shown in Figure 13 (Left), all agents show increased answering with stronger evidence, sug-
gesting basic epistemic alignment, but they vary in evidence gradient—the increase from E=0 to
E=2. ASEARCHER and DEEPRESEARCHER exhibit higher gradients, indicating stronger sensitiv-
ity to epistemic evidence. However, all agents maintain relatively low absolute response rates even
with sufficient evidence. ASEARCHER and DEEPRESEARCHER reach 19–21%, while SEARCH-R1
remains at 8.5%, suggesting more conservative behavior.

Calibration vs Accuracy As noted in Section E, ASEARCHER achieves the highest overall F1 score,
followed by SEARCH-R1, RESEARCH, and DEEPRESEARCHER.

To evaluates whether agents can defer or respond based on the epistemic adequacy of observed
evidence. As shown in Figure 13, across trained agents, we observe distinct calibration profiles:

• ASEARCHER demonstrates superior evidence sensitivity coupled with high accuracy. It re-
sponds predominantly when sufficient evidence is available (E=2) at a substantial rate (19.3%)
while minimizing overconfident responses. As shown in Figure 13 (Right), it achieves the sec-
ond highest conditional accuracy P (correct|answer, E = 2). This strategic alignment between
evidence-based answer timing and correctness yields optimal performance.

• SEARCH-R1 achieves the highest accuracy when answering with complete evidence (Fig-
ure 13, Right), but exhibits extreme conservatism, answering in merely 8.5% of high-evidence
states (Figure 13, Left). While this demonstrates exceptional calibration awareness, the exces-
sive caution significantly constrains overall performance, representing a clear trade-off between
coverage and precision.

We conclude that well-calibrated agent behavior requires satisfying two critical conditions: (1) de-
ferring responses until evidence strength reaches sufficient levels (e.g., E=2), and (2) producing
correct answers when responding, demonstrating effective utilization of the available evidence. This
dual requirement highlights the challenge of balancing epistemic caution with informational utility.

RL Training Reduces Calibration Errors. Table 6 provides a detailed breakdown of calibration
performance across individual RL-trained agents. While all RL agents show substantial improve-
ments over base models in reducing overconfident answering, ASEARCHER achieves the lowest
overall calibration error (0.302), closely followed by DEEPRESEARCHER and RESEARCH (both
0.305). Notably, SEARCH-R1 exhibits the most conservative behavior with the lowest overconfident
answeringrate (0.226) but highest overcautious rate (0.187), suggesting a trade-off between differ-
ent types of calibration failures. These results demonstrate that RL training consistently improves
evidence-based decision making, though specific training approaches yield different calibration pro-
files.
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Table 6: Calibration Error Breakdown by Agent Type. Trajectories categorized as: overconfident answering
(answering before sufficient evidence), overcautious abstention (failing to answer despite strong evidence),
and overall calibration error. Lower values indicate better calibration. ASearcher show the lowest calibration
errors. Bold indicates best performance in each category.

Model (1) Overconfident ↓ (2) Overcautious ↓ (3) Calibration Error ↓
Base 0.631 0.030 0.329
Few-shot 0.511 0.024 0.317
CoT 0.731 0.006 0.351
ReAct 0.660 0.012 0.336

ASearcher 0.343 0.044 0.302
DeepResearcher 0.461 0.048 0.309
ReSearch 0.406 0.047 0.305
Search-R1 0.226 0.187 0.319

Figure 14: Evidence-Conditioned Answer Timing Analysis. For each model group, we plot the fraction
of answered trajectories over time (x-axis: turn number), split by whether high evidence (E=2) has been
observed. If agents defer until sufficient evidence, the orange curve (already high) should rise earlier than the
blue curve (not yet high). However, all models show little separation between the two, confirming widespread
overconfident answering behavior.

Do agents defer answering until strong evidence arrives? To evaluate whether agents appropri-
ately delay answering until they have observed sufficient evidence, we analyze the timing of answers
across different evidence states. Figure 14 presents a temporal analysis comparing the cumulative
fraction of answers over time for two distinct trajectory groups: those where agents have already
encountered strong evidence (E=2) versus those where they have not.

In an ideally calibrated system, we would expect agents to predominantly answer after observing
strong evidence, resulting in a clear separation between trajectories—specifically, a higher orange
curve (evidence already observed) and a lower blue curve (evidence not yet observed). However, our
analysis reveals that BASE and FEW-SHOT models demonstrate minimal separation between these
curves—indicating that answers are generated with similar timing regardless of evidence availability.
RL-trained agents, while showing marginal improvement, still exihibits overconfident answering in
76.5% of trajectories before reaching sufficient evidence (E=2).

This finding highlights a fundamental calibration deficiency: current models consistently make over-
confident decisions without aligning their answer timing with epistemic sufficiency.

I AGENT SYNTHESIS: LEVERAGING EPISTEMIC COMPETENCIES FOR
ANSWER GENERATION

Our comprehensive evaluation reveals several critical insights into agent capabilities: ASEARCHER
demonstrates superior performance in evidence acquisition and recovery mechanisms (achieving
the highest overall F1 score), while SEARCH-R1 exhibits exceptional proficiency in information
synthesis (with a RQI score of 0.63) coupled with minimal overconfident answering behavior
(as discussed in Section 4.4). This observed specialization of epistemic competencies motivated
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Policy (P)

Synth. (S) Search-R1 ASearcher DeepRes. ReSearch Base Fewshot CoT ReAct Overall
Avg. ∆F1

Search-R1 – −0.08 +0.19 +1.66 +3.50 +1.10 +6.0 +5.9 +2.61
ASearcher +0.38 – −0.73 −0.39 +0.93 +1.46 +5.9 +5.4 +1.85
DeepRes. −0.63 +0.20 – +0.00 +2.24 +1.45 +6.3 +5.9 +2.21
ReSearch −0.42 +0.13 +0.36 – +2.99 +1.89 +5.5 +4.9 +2.19

Table 7: Agent Synthesis Performance. Each cell shows F1 score improvement (∆F1) when using row agent
(S) as synthesizer to generate answers based on evidence collected by column agent (P). Positive values indicate
the synthesizer improved upon the original policy’s performance. Search-R1 demonstrates the highest overall
improvement (+2.61 F1) across all evidence sources.

us to explore the potential of agent synthesis where we leverage one agent’s evidence collection
capabilities as input for another agent’s answer generation process.

Synthesizer Evaluation Methodology. To test this hypothesis, we evaluate each agent as a synthe-
sizer by providing it with the complete reasoning traces, search results, and evidence from other
agents’ trajectories. The synthesizer’s task is to generate a final answer based solely on this infor-
mation, without performing additional searches. This setup isolates the agent’s ability to synthesize
information from existing evidence, separate from its search and retrieval capabilities.

Search-R1 Emerges as the Superior Synthesizer. As shown in Table 7, Search-R1 delivers the
largest average F1 gain (+2.61), significantly outperforming other agents such as ASEARCHER
(+1.85), DEEPRESEARCHER (+2.21), and RESEARCH (+2.19). This result aligns with our earlier
findings that Search-R1 exhibits strong information synthesis capabilities (RQI = 0.63 for Informa-
tion Synthesis steps) and conservative answering behavior (lowest overconfident answering rate),
and it persists even when synthesizing CoT or ReAct evidence traces.

The superior synthesis performance of Search-R1 can be attributed to its specialized reasoning
capabilities. Despite its low overall RQI (0.08), Search-R1 demonstrates particular strength in in-
formation synthesis when provided with clear evidence. Its conservative answering behavior,
while limiting coverage in standalone scenarios, becomes an advantage in synthesis tasks where
it can carefully evaluate and integrate information from multiple sources before providing a final
answer.

Hidden Behaviors: How Accuracy-Level Evaluation Obscures Profound Reasoning Capabil-
ities. Surprisingly, several agents demonstrate stronger capabilities as evidence sources than their
standalone F1 scores suggest. BASE evidence collection achieved substantial F1 gains when paired
with other models for answer generation (up to +3.50 F1 improvement with Search-R1), despite
having the lowest standalone F1 score (33.5%). Similarly, CoT and ReAct, which show lower
standalone performance (32.72% and 31.25% F1, respectively), enable even larger synthesis im-
provements (up to +6.3 F1 with CoT and +5.9 F1 with ReAct). This reveals that final accuracy
metrics can be misleading when used in isolation, as they obscure critical process-level competen-
cies. These agents may be collecting high-quality evidence or producing well-structured reasoning
traces but struggling with final answer synthesis, a nuance completely missed by traditional eval-
uation methods that focus solely on final answer accuracy rather than decomposing the reasoning
process into its constituent competencies. The agent synthesis framework enables us to identify
these hidden strengths and leverage complementary capabilities across different agent architectures.

Implications for Agent Design. These findings demonstrate that our benchmark and evaluation
framework enables modularization of agent-specific epistemic competencies to create more effec-
tive information-seeking systems. This represents a significant advance for process-level evaluation
of agents compared with traditional answer-level evaluation, enabling the identification and combi-
nation of complementary strengths across different agent architectures.
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J INFERENCE-TIME FEEDBACK USING EPISTEMIC COMPETENCIES

In this section, we leverage the LLM-as-judge framework to provide inference-time feedback signals
to improve agent behavior.

Inference-Time Feedback Signals. We augment ASEARCHER-7B with inference-time feedback
signals derived from our epistemic competency framework. Specifically, we incorporate three
process-level supervision signals computed at each turn: (1) groundedness feedback indicating
whether reasoning steps are supported by retrieved evidence, (2) evidence state signals (Ei,t ∈
{0, 1, 2}) encoding the sufficiency and clarity of retrieved evidence, and (3) calibration feedback
on whether the agent’s answering behavior aligns with evidence quality. These signals are computed
using our validated LLM-as-judge framework and provided as real-time guidance during inference,
enabling the agent to adjust its behavior based on process-level epistemic feedback without training.

Results and Implications. Our experiments reveal that incorporating epistemic feedback signals
at inference time significantly improves agent performance. The augmented ASEARCHER-7B
achieves a 8.4% increase in final F1 score compared to the baseline without feedback signals.
More importantly, we observe substantial improvements across all three epistemic competencies:
(1) groundedness (RQI) increases by 13.3%, indicating better evidence-supported reasoning, (2)
recovery (ERF) improves by 6.5%, demonstrating more effective adaptation to insufficient evi-
dence, and (3) calibration (CE) decreases by 5.8%, showing better alignment between answering
behavior and evidence quality.

K EVALUATION ON GAIA

In this section, we evaluate the epistemic competencies of ASearcher and WebSailor on GAIA, and
GPT-5-mini on GAIA with Web search tools.

We have evaluated WebSailor (Li et al., 2025a) and ASearcher (with web browsing + visit capabili-
ties) on GAIA 1 with Pass@2 scores across different model sizes2. Our framework’s tool selection
follows epistemic scope rather than tool diversity. We include web browsing and visit capabilities
(as in WebSailor) because these require epistemic evaluation—the quality of retrieved information
depends on reasoning processes and evidence interpretation, not objective correctness.

Answer-level Performance. At 7B scale, ASEARCHER achieves 16.5% while WEBSAILOR
achieves 18.2%. At 32B scale, ASEARCHER achieves 29.2% while WEBSAILOR achieves 32.4%.
In addition, we evaluate GPT-5-mini on GAIA, achieving 15.7% Pass@2.

Epistemic Metrics Analysis We apply our epistemic competency framework to analyze
ASEARCHER and WEBSAILOR behavior across the three metrics. Table 8 presents the epistemic
metrics. For 32B scale, ASEARCHER demonstrates superior groundedness (RQI = 0.28) and re-
covery (ERF = 58% by Turn 8) compared to WEBSAILOR. However, WEBSAILOR shows better
calibration (CE = 0.31) than ASEARCHER (CE = 0.35), indicating more conservative answering
behavior. These metrics reveal distinct epistemic competency profiles that explain the performance
differences: ASEARCHER’s strength in evidence acquisition and recovery compensates.

We then apply our epistemic competency framework to analyze GPT-5-mini’s behavior across the
three metrics: groundedness (RQI), recovery (ERF), and calibration (CE). Based on this analysis,
we provide inference-time feedback signals (as described in Appendix J), which improves the final
score to 22.5%, a 43% relative improvement.

1https://huggingface.co/datasets/gaia-benchmark/GAIA
2Note that WebSailor does not have an open-sourced 14B variant, so we evaluate the available model sizes
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Table 8: Epistemic Metrics for ASearcher and WebSailor on GAIA (7B and 32B) and GPT-5-mini on GAIA
with Web search tools. RQI (groundedness), ERF recovery rate by Turn 8, and CE (calibration error, lower is
better).

Model 7B 32B GPT-5-mini

RQI ERF CE RQI ERF CE RQI ERF CE

ASEARCHER 0.22 42% 0.38 0.28 58% 0.35 – – –
WEBSAILOR 0.15 35% 0.33 0.19 45% 0.31 – – –
GPT-5-mini – – – – – – 0.45 42% 0.34

L DISCUSSION: UNDERSTANDING METRIC TRADE-OFFS

Our evaluation framework reveals distinct trade-offs between epistemic competencies that traditional
accuracy-only evaluation fails to capture. These insights are critical for both interpreting agent
performance and designing effective systems.

The Accuracy-Reasoning Trade-off. We observe a particularly concerning inverse relationship be-
tween answer accuracy (F1) and reasoning quality (RQI) among RL-trained agents. While RL
training improves final answer correctness and calibration, it simultaneously degrades evidence-
grounded reasoning quality. This reveals a fundamental tension: agents can be optimized to produce
correct answers without developing sound reasoning capabilities—a critical consideration for AI
safety and interpretability.

Calibration vs. Reasoning Quality. RL-trained models demonstrate better calibration (lower CE)
despite worse reasoning groundedness (lower RQI), indicating that well-calibrated agents may still
produce poorly justified reasoning. This highlights the necessity of evaluating both when to answer
(calibration) and how to reason (groundedness) as separate competencies.

Implications for Agent Selection and Design. These trade-offs directly impact deployment deci-
sions: applications requiring high accuracy may favor ASEARCHER despite reasoning limitations;
those requiring interpretable reasoning may prefer Few-shot models despite lower accuracy; and ap-
plications demanding both may benefit from agent synthesis approaches (Section 4.5). Future agent
development should explicitly address these trade-offs through multi-objective optimization and po-
tentially modular architectures that separate evidence acquisition, reasoning, and decision-making
components rather than optimizing solely for accuracy. Furthermore, our epistemic competency
metrics (RQI, ERF, CE) can drive automatic orchestrators that monitor agent behavior in real-time
and dynamically switch to the best-suited agent for each stage of the information-seeking process.
For example, an orchestrator could deploy agents with strong recovery capabilities (high ERF) dur-
ing initial evidence gathering, then switch to calibrated synthesizers (low CE) once evidence quality
stabilizes, leveraging the complementary strengths identified through our framework. This metric-
driven orchestration represents a practical application of our evaluation framework for building more
effective multi-agent systems.

M EXTENDED VALIDATION: GENERALIZABILITY ACROSS DIVERSE TOOLS
AND MODELS

To assess the generalizability of our framework, we conducted the following validation using traces
from state-of-the-art multi-tool agents on challenging tasks.

1. Data and Trace Sampling. We obtained traces from a diverse set of state-of-the-art agents:
Deepresearch-30B3, ASearcher-32B4, GPT-4o, GPT-5, and Claude Sonnet 4.5.
Each agent, equipped with web browsing, Python interpreter, and website visitation tools, was eval-
uated on four benchmarks: WebWalker (Wu et al., 2025), GAIA (Mialon et al., 2023), BrowseC-

3https://huggingface.co/Alibaba-NLP/Tongyi-DeepResearch-30B-A3B
4https://huggingface.co/inclusionAI/ASearcher-Web-QwQ
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Table 9: Human-LLM Agreement Across Diverse Tool Types. Scores for Type and Groundedness pertain to
tool input actions (such as search queries), while Clarity and Sufficiency scores assess the tool output (i.e., the
produced evidence).

Tool κ (Type) κ (Groundedness) κ (Clarity) κ (Sufficiency)

Web Browse / Visit 0.80 0.71 0.68 0.70
Code Execution 0.77 0.76 0.73 0.74

omp (Wei et al., 2025), and XBench-DeepSearch5. For every combination of agent and benchmark,
we randomly sampled 10 trajectories for analysis.

2. Judge Annotation Protocol and Adaptation. We applied our LLM-as-judge to the 200 traces
with gpt-4.1-mini. The core annotation schema and prompts for reasoning types and quality at-
tributes remained unchanged. The only adaptation was in the evidence-parsing logic: the judge was
instructed to treat the direct output of any tool as the ‘retrieved evidence’ for the subsequent step. For
example, the output of a PythonInterpreter call becomes the evidentiary basis for evaluating
the groundedness of the agent’s next reasoning step.

Figure 15: Tool Distribution. Tool usage dis-
tribution across different agents and benchmarks.
Search and visit operations accounting for approx-
imately 99% of tool usage.

3. Human Annotation and Results. From the
LLM-as-judge annotations, we drew a stratified ran-
dom sample of 65 traces, stratified by agent (model)
× tools combination to ensure proportional repre-
sentation across different tool usage patterns and
models. The sample size ensures a 95% confi-
dence level with a ±10% margin of error, remain-
ing cost-effective to annotate and evaluate our pro-
posed schema. The sampled traces exhibited a di-
verse tool distribution, with search and visit opera-
tions accounting for approximately 99% of tool us-
age (69% and 35.2% respectively, fig. 15). Expert
human annotators independently annotated the sam-
pled traces, with human-LLM agreement Cohen’s
κ > 0.65 (Table 9).

4. Stress-Testing the Judge on Ambiguous Rea-
soning. We also assessed the judge’s ability on ambiguous reasoning, we select an additional 20
steps where the final answer is correct but reasoning is ungrounded. For example, the agent in-
jected “Indian” into the query despite no geographical constraint in the question. This represents
an ungrounded inference from internal parametric knowledge, which is a critical epistemic flaw that
cannot be verified.

Example: Ungrounded Inference from Internal Knowledge

Question: “An animated TV series for children first premiered in America between 2001 and 2010.
The creator of this show is a physicist who obtained their PhD from a university established between
1940 and 1960. . . Name the reviewer.”
Agent’s Search Query: “Indian physicist created animated series America 2000s”
Key Issue: The agent injected “Indian” into the query despite no geographical constraint in the ques-
tion. This represents an ungrounded inference from internal parametric knowledge, which is a critical
epistemic flaw that cannot be verified.
Label: LLM judge and human annotator both label this as “Not Grounded”.

Re-evaluation showed that human-LLM agreement remained acceptable (κ ≈ 0.70 for grounded-
ness, κ ≈ 0.66 for clarity, κ ≈ 0.65 for sufficiency), confirming our framework’s robustness in
exposing even nuanced reasoning failures.

5https://huggingface.co/datasets/xbench/DeepSearch
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N USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) played a significant role in this research, warranting disclosure
of their contributions. LLMs were extensively used as annotation helpers to develop our epistemic
competency schema, as analytical assistants for reasoning trace analysis, and as automated judges
(detailed in Section D). They contributed significantly to the writing process by generating initial
drafts of technical sections and assisting with revision, and influenced research ideation by suggest-
ing evaluation metrics and identifying methodology gaps. All LLM-generated content underwent
rigorous human review and validation, with human authors verifying analyses, validating schemas
through expert review, and thoroughly editing all contributions. While LLMs served as powerful
assistive tools, all final decisions regarding research direction, experimental design, result interpre-
tation, and manuscript content were made by human authors.
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