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ABSTRACT

Recent work has explored training Large Language Model (LLM) search agents
with reinforcement learning (RL) for open-domain question answering (QA).
However, most evaluations focus solely on final answer accuracy, overlooking
how these agents reason with and act on external evidence. We introduce Seek-
Bench, the first benchmark for evaluating the epistemic competence of LLM
search agents through step-level analysis of their response traces. SeekBench
comprises 190 expert-annotated traces with over 1,800 response steps generated
by LLM search agents, each enriched with evidence annotations for granular anal-
ysis of whether agents (1) generate reasoning steps grounded in observed evi-
dence, (2) adaptively reformulate searches to recover from low-quality results,
and (3) have proper calibration to correctly assess whether the current evidence
is sufficient for providing an answer. Our analysis of state-of-the-art LLM search
agents reveals critical behavioral gaps overlooked by traditional metrics, includ-
ing specialized skills like Search-R1’s synthesis capabilities. These findings ex-
pose distinct epistemic competencies that accuracy-only evaluations fail to cap-
ture, providing guidance for developing more capable and reliable agents.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have spurred a shift from models that
require explicit prompting, such as chain-of-thought (Wei et al., 2022; Yao et al., 2023), toward
autonomous LLM agents (Zhang et al., 2025a). These agents learn to solve complex tasks by
optimizing a reasoning policy with reinforcement learning (RL), enabling them to implicitly learn
decision-making strategies without requiring step-by-step external guidance (Jaech et al., 2024; Guo
et al., 2025). Among these, search agents are developed to tackle information-seeking problems
by alternating between reasoning, using external search tools, and integrating evidence (Xi et al.,
2025a). The agent’s responses produce multi-turn traces, which can be represented as:

T = ⟨τ1, τ2, . . . , τT ⟩, (1)
where each turn τt consists of a tuple that can contain four possible steps: reasoning rt, search st,
evidence et, and answer at. Non-final turns (t < T ) are of the form τt = ⟨rt, st, et⟩, while the final
turn (t = T ) concludes with an answer, i.e., τT = ⟨rT , aT ⟩.
While the formal trace structure T captures the multi-turn execution of an agent’s reasoning, search,
and evidence integration, it does not address epistemic competence—-the ability to reliably acquire,
evaluate, and act upon knowledge in a justified manner (Greene et al., 2016; Coeckelbergh, 2023).
Additionally, the current evaluation protocols for search agents rely predominantly on final-answer
metrics such as exact match and F1 score (Jin et al., 2025; Zheng et al., 2025; Li et al., 2025).
However, in practice, agents may achieve high benchmark scores while exhibiting poor epistemic
behaviors, such as hallucinating unsupported claims, failing to recognize knowledge gaps, or lacking
systematic approaches to information gathering and evaluation.

Furthermore, as agent systems increasingly take on autonomous information-seeking and decision-
making roles, focusing solely on final answers can be misleading because it fails to capture how
agents navigate the information landscape and make decisions throughout the process. Without
process-level evaluation, the impact of algorithmic innovations cannot be reliably assessed. These
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Table 1: Epistemic competencies and associated metrics. Each competency is quantified by a specific metric
calculated from annotated features within the agent’s trace (shown in the rightmost column), enabling system-
atic evaluation of reasoning quality, recovery behavior, and evidence-aligned decision-making.

Competency (Type) Definition & Metric Annotated feature(s)

Groundedness
(Reasoning)

Generate reasoning steps directly supported by retrieved information.
Metric: Reasoning Quality Index (RQI, Section 3.3.1)

InformationSynthesis /
PlanFormation / StateAssessment /
grounding

Recovery
(Search)

Adaptively reformulate queries when initial search results are insuf-
ficient.
Metric: Evidence Recovery Function (ERF, Section 3.3.2)

Initial / Repeat /
FollowUp / Refined

Calibration
(Answer)

Accurately assess whether the currently retrieved information is
sufficient to answer the question.
Metric: Calibration Error (CE, Section 3.3.3)

correct

Figure 1: Overview of the SeekBench dataset and annotation schema. Each trace comprises multi-turn steps
annotated for process-level evaluation. We categorize agent behaviors into three main types: (1) Search steps
that retrieve information, (2) Reasoning steps that process evidence and guide the investigation, and (3) Evi-
dence steps that capture the quality and clarity of retrieved information. This structured annotation approach
enables systematic measurement of how well agents handle information throughout their reasoning process.

innovations may produce spurious performance gains, e.g., improvements in accuracy that come
from rigid search steps or better answer synthesis, rather than from genuine advances in reasoning
capabilities or information-seeking strategies.

To address answer-only evaluation limitations, we introduce SeekBench, a benchmark assessing
search agents’ epistemic behaviors that reflect sound evidence practices, including: (1) reason-
ing grounded in evidence, (2) adaptive search when information is insufficient, and (3) calibrated
decision-making under uncertainty. Our framework centers on the concept of evidence state, which
captures information quality throughout the reasoning process. SeekBench includes 190 expert-
annotated traces with over 1,800 steps, as shown in Figure 1.

Our framework proceeds in three stages. First, we develop a robust, extensible annotation schema
that captures both the functional role (reasoning, search, answer) and epistemic quality (e.g., evi-
dence groundness and sufficiency) of each step. Second, we formalize three epistemic competen-
cies that characterize: (1) evidence-grounded reasoning, (2) adaptive evidence recovery, and (3)
evidence-aligned calibration. Third, we design precise, interpretable metrics to quantify these com-
petencies across diverse traces, as detailed in Table 1.

Contributions. Our contributions are summarized as follows:
1. SeekBench: A Process-Level Benchmark. We introduce SeekBench, a benchmark for evalu-

ating LLM search agents at the process level, providing a structured trace schema that decom-
poses agent traces into reasoning, search, evidence, and answer steps. Our annotated dataset
achieves high human agreement (Cohen’s Kappa κ > 0.8) and enables scalable evaluation
through LLM judges with strong alignment to expert annotations (κ > 0.7).

2. Operational framework and metrics. We formalize an evidence state and three core epis-
temic competencies—evidence-grounded reasoning, evidence recovery, and calibrated answer-
ing—as measurable properties over agent traces.

3. Large-scale evaluation and findings. Our evaluation across seven QA benchmarks (28,493
traces) reveals that RL agents excel at evidence gathering but struggle with reasoning. Standard
accuracy metrics fail to reveal specific strengths between agents (e.g., Search-R1’s synthesis vs.
Base model’s reasoning), which can be combined to enhance performance.
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2 RELATED WORK

Reasoning Quality Assessment and Epistemic Competence . Recent work evaluates reasoning
quality through various approaches: causal analysis of question-reasoning-answer triples (Paul et al.,
2024), matching against golden reasoning chains (Li et al., 2024), and graph-based methods that
link step dependencies to answer correctness (Xiong et al., 2025; Nguyen et al., 2024; Mukherjee
et al., 2025). However, these methods focus on structural alignment rather than evaluating epistemic
competence—the ability to reason about knowledge, uncertainty, and evidence. For AI systems
that interact with external information sources, epistemic competence becomes critical for avoid-
ing overconfidence, hallucination, and poor decision-making under uncertainty (Zhang et al., 2023).
However, existing frameworks fail to assess whether agents can ground reasoning in retrieved evi-
dence or adapt search strategies when information is insufficient.

Search Agent Evaluation . Existing search agent evaluations primarily focus on final-answer met-
rics (exact match, F1, LLM-as-Judge) (Zhang et al., 2025b; Song et al., 2025; Zheng et al., 2025; Jin
et al., 2025), neglecting the epistemic processes underlying those answers. While some approaches
examine intermediate steps—such as WebSailor’s (Li et al., 2025) pass@k comparisons, AutoRe-
fine’s (Shi et al., 2025) ground-truth tracking, and InfoDeepSeek’s (Xi et al., 2025b) separation of
retrieval from synthesis, they fail to assess critical epistemic competencies. As search agents increas-
ingly mediate access to information and shape knowledge acquisition, this fundamental limitation
in evaluation methodology creates significant blind spots in our understanding of agent capabilities.
Current methods cannot evaluate whether agents: (1) ground reasoning in retrieved evidence, (2)
adapt to poor search results, or (3) calibrate confidence based on evidence sufficiency—all essential
for reliable information-seeking systems that can be trusted in real-world applications.

Process-Level Analysis Frameworks . Existing frameworks analyze reasoning processes through
trace aggregation (Ott et al., 2023), step-level annotations (Rong Wu et al., 2025), and reasoning
taxonomies (Shi et al., 2025; Maohao Shen et al., 2025). However, they lack formal definitions
of epistemic competencies and quantitative metrics for measuring how agents handle uncertainty,
adapt to insufficient information, and make evidence-aligned decisions. Our work addresses this
gap by formalizing three core epistemic competencies (groundedness, recovery, and calibration)
with precise mathematical definitions and large-scale evaluation protocols.

3 METHODOLOGY

To understand the information-seeking process of search agents, our framework connects observ-
able behaviors with underlying competencies, which are then evaluated using quantitative metrics.
First, we construct and validate an annotation schema that reliably labels observable behaviors in
agent response traces (Section 3.1). Second, we analyze patterns in these annotations to identify
three fundamental epistemic competencies (Table 1) that are not directly observable but underlie
the agent’s epistemic performance–the degree to which the agent can effectively retrieve informa-
tion and use it for justified decisions (Section 3.2). Finally, we translate these competencies into
concrete quantitative metrics derived from the annotated features, enabling systematic measure-
ment of these underlying epistemic competencies at scale (Section 3.3). Our approach draws on
established qualitative research principles from Content Analysis (Krippendorff, 2018), a systematic
methodology for categorizing and interpreting patterns in data through rigorous coding procedures.

3.1 PHASE 1: OBSERVABLE FEATURES AND SCHEMA CONSTRUCTION

The foundation of our methodology is a robust annotation schema for systematically labeling ob-
servable features in agent response traces. Our development of SeekBench’s schema follows an
iterative, data-driven approach, grounded in established qualitative research principles from Content
Analysis (Krippendorff, 2018).

During the initial exploratory phase, we closely examined a variety of agent traces and documented
the key behaviors we observed. We noted that even within the same type of steps, search agents can
serve distinct functions, that is, specific cognitive or operational role that a step plays within the
agent’s information-seeking process. For example, among the reasoning steps, some identified in-
formation gaps, while others summarized retrieved findings or formulated plans for future searches.
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Similarly, search steps might function as initial exploration, targeted verification, or follow-up in-
vestigation. Alongside these functions, we identified critical failure patterns in agents’ traces, such
as reasoning without supporting evidence or executing repetitive search queries that failed to adapt.

From these observations, we developed an annotation schema for agent response steps with two key
aspects: (1) Functional type categorizing the step’s cognitive purpose, e.g., for reasoning steps,
this includes InformationSynthesis (evidence integration), PlanFormation (search
strategy development), and StateAssessment (knowledge gap identification). (2) Quality
attribute evaluating epistemic soundness, such as whether reasoning is grounded in evidence.
This structure captures both what the agent was doing and how well it was doing it.

Following established Content Analysis methodology (Krippendorff, 2018), we rigorously enhanced
schema robustness through iterative refinement. Three expert annotators independently coded 190
agent traces across three rounds of annotation, with inter-annotator reliability measured using
Cohen’s Kappa (κ) (Cohen, 1960). For features exhibiting low agreement (κ < 0.5), we either
pruned features (when infrequent or ambiguous) or merged them (when conceptually overlapping).
After this process, we reduced our initial 12 candidate annotation fields to 8 well-defined features
with high interpretability and consistency across annotators.

We further validated schema robustness using GPT-5 (OpenAI, 2025) to generate adversarial edge
cases that expose boundary conditions (e.g., reasoning steps containing both factual claims and
planning elements). This ensures the mutual exclusivity of our annotation definitions. Our final
schema is detailed in Figure 1.

Finally, we evaluated the schema on reasoning traces using both human experts and state-of-the-art
LLM judges (GPT-4.1, GPT-4.1-mini (Ananya Kumar et al., 2025), and GPT-5 (OpenAI, 2025))
with standardized prompts that provide clear annotation guidelines and consistent evaluation criteria
(see Appendix C). The results demonstrate substantial agreement with human annotations (overall
κ = 0.811), confirming the schema’s interpretability and consistency. LLM judges achieved strong
alignment with human experts: GPT-4.1 (κ = 0.693), GPT-4.1-mini (κ = 0.731), and GPT-5
(κ = 0.754). This substantial agreement across multiple LLM models and human annotators
confirms the schema’s clarity and establishes a reliable foundation for large-scale evaluation
through LLM judges (see Appendix B for details).

3.2 PHASE 2: LATENT CONSTRUCTS AND COMPETENCY DEFINITION

Our annotation analysis in Phase 1 revealed three distinct behavioral patterns in search agents: (1)
variation in reasoning quality, with successful agents producing evidence-supported grounded
reasoning while unsuccessful agents generated unsupported claims; (2) divergent strategies when
facing poor search results, where effective agents adapted their search approach while ineffective
agents persisted with repetitive queries; and (3) differences in decision timing, where some agents
responded prematurely with insufficient evidence while others appropriately withheld answers until
sufficient evidence was gathered. To interpret these systematic behavioral differences, we applied
the framework of latent construct inference (Cronbach & Meehl, 1955) to identify the underlying
cognitive competencies for these observed patterns.

From these behavioral patterns, we derived three core epistemic competencies (Table 1): ground-
edness measures alignment between reasoning steps and retrieved evidence; recovery evaluates
an agent’s ability to adapt search strategies after initial failures; and calibration assesses whether
answering behavior appropriately corresponds to evidence quality. These three core competencies
constitute epistemic competence—the essential capability that enables search agents to reliably
interact with external information sources. By systematically evaluating how agents seek, reason
with, and make decisions based on retrieved evidence, our framework provides a comprehensive
assessment of search agents’ epistemic capabilities beyond traditional accuracy-based metrics.

3.3 PHASE 3: COMPETENCY METRICS AND OPERATIONALIZATION

Following the concept of construct validity (Cronbach & Meehl, 1955) originally proposed in psy-
chology, unobservable attributes (competencies) must be assessed through observable indicators
(metrics) with demonstrated reliability and validity. In this section, we translated the three epistemic
competencies in Phase 2 (defined in Table 1) into quantitative metrics. The validity of our metrics is
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twofold: (1) high inter-annotator agreement on the coded features (Phase 1), and (2) the correlation
between evidence state (defined below) and answer accuracy (Section 4.4).

We begin by formally defining evidence state in Definition 3.1, which encodes the sufficiency and
clarity of evidence retrieved at a turn. This provides the foundation for evaluating all three epistemic
competencies: (i) groundedness is assessed by determining whether reasoning is supported by
evidence (Section 3.3.1); (ii) recovery is measured by tracking improvements in evidence quality
through search (Section 3.3.2); and (iii) calibration is evaluated on whether the agent answers if
and only if the evidence state is good (Section 3.3.3).

Definition 3.1 (Evidence State) Let Ci,t, Qi,t ∈ {0, 1} denote the annotated clarity and
quality of the retrieved evidence at turn t of trace i, where: Ci,t = 1 if the evidence is clear
(unambiguous and interpretable), and Qi,t = 1 if the evidence is sufficient (contains enough infor-
mation to address the query). The evidence state Ei,t ∈ {0, 1, 2} is defined as:

Ei,t := Ci,t +Qi,t, (2)

Ei,t = 0 denotes poor evidence (unclear and insufficient), Ei,t = 1 denotes partial evidence (either
clear or sufficient), and Ei,t = 2 denotes good evidence (both clear and sufficient).

3.3.1 GROUNDEDNESS

To evaluate whether an agent’s reasoning is verifiably supported by retrieved evidence, we assess
the groundedness of each reasoning step via the grounding label. For each reasoning step at
turn t in trace i, the binary grounding label Gi,t ∈ {0, 1} indicates whether its factual content is
supported by retrieved evidence.

To investigate the impact of the functional types of the reasoning steps, each reasoning step
is also assigned a type Ci,t ∈ {IS,PF,SA}, corresponding to InformationSynthesis,
PlanFormation, or StateAssessment.

We formalize two metrics: the model-level reasoning quality index (RQI) (Definition 3.2) and the
type-level RQI (Definition 3.3), both of which quantify groundedness by aggregating Gi,t values
and can be decomposed by the evidence state Ei,t.

Definition 3.2 (Model-level Reasoning Quality Index (RQI)) Consider a fixed model evaluated
on N traces with index set I := {1, . . . , N}. For each trace i, let Si = {1, . . . , Ti} be the index set
of reasoning steps. Then, the model-level RQI is the average of trace-level groundedness scores:

RQImodel := Ei∈I [RQIi]. (3)
where RQIi = Et∈Si

[Gi,t] ,

To better understand how reasoning quality depends on the strength of retrieved evidence, we de-
compose the RQI with evidence state Ei,t:

RQIi =

2∑
k=0

Pt∈Si(Ei,t = k)︸ ︷︷ ︸
proportion of turns with evidence state k

× Et∈Si [Gi,t | Ei,t = k]︸ ︷︷ ︸
expected groundedness given Ei,t=k

(4)

Similarly, we can define the type-level RQI with reasoning type c ∈ {IS,PF,SA}:

Definition 3.3 (Type-Level Reasoning Quality Index) For each trace i and reasoning type
c ∈ IS,PF,SA, let S(c)

i := {t ∈ Si : Ci,t = c} denote the index set of steps of type c. The type-level
RQI is the average of groundedness on type c:

RQI
(c)
type := E

t∈S
(c)
i

[
RQI

(c)
i

]
, (5)

where RQI
(c)
i := E

t∈S
(c)
i

[Gi,t]. This quantity admits an evidence-state decomposition analogous to
the trace-level decomposition:

RQI
(c)
i =

∑2
k=0 P

t∈S
(c)
i

(Ei,t = k)︸ ︷︷ ︸
prop. of reasoning type c with evidence level k

× E
t∈S

(c)
i

[Gi,t | Ei,t = k]︸ ︷︷ ︸
expected type c groundedness given Ei,t=k

. (6)
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3.3.2 RECOVERY

A fundamental challenge for LLM-based agents is recovering from information gaps or knowledge
limitations, where initial queries yield insufficient information. Thus, an agent achieves high recov-
ery when it utilizes adaptive search strategies to escape such states of poor evidence.

To capture this behavior, we use the evidence state Ei,t ∈ {0, 1, 2} to track the sufficiency and
clarity of retrieved information at each turn t in trace i. We define a recovery event (Equation (7))
as the first turn where the agent either (i) enters a high-evidence state (Ei,t = 2), or (ii) produces a
correct answer. Formally:

Trecover,i := min {t ∈ [1, Ti] : Ei,t = 2 or correcti = 1} , (7)

where correcti indicates whether the agent’s final answer in trace i is correct.

To measure recovery behavior, we introduce the Evidence Recovery Function (ERF), which quanti-
fies the cumulative proportion of traces that have successfully recovered by each turn:

Definition 3.4 (Evidence Recovery Function (ERF)) Let N denote the total number of traces.
The Evidence Recovery Function at turn t is defined as

ERF(t) :=
1

N

N∑
i=1

I (Trecover,i ≤ t) , (8)

where I(·) is the indicator function. ERF(t) measures the proportion of traces that have recovered
by turn t.

3.3.3 CALIBRATION

We evaluate calibration as the agent’s ability to decide when to answer based on the quality of
retrieved evidence. A well-calibrated agent should answer only when it has acquired evidence that
is both clear (unambiguous and directly relevant) and sufficient (contains enough information to
support a reliable answer).

Let answeri,t ∈ {0, 1} indicate whether the agent provides an answer at turn t of trace i. We assess
calibration behavior by examining the answer rate conditioned on the evidence state:

P(answeri,t = 1 | Ei,t = k). (9)

High values at k = 0 indicate epistemic overconfidence, where the agent answers prematurely with
poor or partial evidence. Conversely, low values at k = 2 suggest epistemic overcautiousness, where
the agent refrains from answering when the evidence is good.

To quantify calibration performance, we introduce Calibration Error (CE) that measures how
much an agent’s answering behavior deviates from the ideal policy. The ideal policy is one that
answers if and only if the evidence is good (Ei,t = 2), which maximizes expected accuracy while
minimizing wasted effort. This metric captures both epistemic failures: overconfidence (answering
with insufficient evidence) and overcautiousness (not answering despite having good evidence).

Definition 3.5 (Calibration Error (CE)) Let I := {1, . . . , N} be the index set of traces. Let
π∗(k) := I[k = 2] represent the ideal policy that answers if and only if evidence is sufficient.
The CE for a model is defined as:

CE := Ei∈I [CEi] (10)

where for each trace i, CEi :=
∑2

k=0P(Ei,t=k) |P(answeri,t = 1 | Ei,t = k)−π∗(k)|.

For a perfectly calibrated agent following the ideal policy π∗(k), it achieves CE = 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models & Datasets . We evaluate Qwen-2.5-7B-Instruct (“Base” for training, Qwen et al. (2024)),
its few-shot prompted version (“Few-shot”), and state-of-the-art “RL-trained” agents, including:
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Figure 2: RQI Analysis Summary. Left: RQI by model level, showing the overall reasoning quality across
different agent types. Right: RQI by reasoning type, revealing that models struggle most with plan formation
and state assessment compared to information synthesis.

SEARCH-R1 (Jin et al., 2025), RESEARCH (Chen et al., 2025), ASEARCHER (Gao et al., 2025)
and DEEPRESEARCHER (Zheng et al., 2025). We evaluate the agents on a diverse set of seven
question-answering benchmarks: NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), and
PopQA (Mallen et al., 2022) [single-hop]; HotpotQA (Yang et al., 2018), 2Wiki (Ho et al., 2020),
MusiQue (Trivedi et al., 2022), and Bamboogle (Press et al., 2022) [multi-hop].

Each model runs and evaluates on the sanitized test datasets, where we remove ambiguous ques-
tions and data contamination cases to ensure evaluation quality (see Appendix A for details). Our
evaluation comprises 28,493 traces and 283,950 steps across all models and datasets. For this large-
scale annotation, we employ GPT-4.1-mini, which demonstrates substantial alignment with human
judgments under our validated schema.

Answer-level performance. Aggregate F1 ranking is ASEARCHER > Search-R1 > RESEARCH >
Few-shot ≈ DEEPRESEARCHER > Base (Appendix D). Our primary analysis moves beyond out-
comes to assess process-level epistemic competencies: evidence grounding (Section 4.2), recovery
dynamics (Section 4.3), and calibration (Section 4.4). We identify agent-specific competencies that
drive performance gains and expose the overestimation of RL training (Section 4.5).

4.2 EVALUATING JUSTIFIED REASONING VIA EVIDENCE GROUNDING

A fundamental criterion of agent competence is not merely producing the correct answer, but doing
so through a reasoning process explicitly grounded in retrieved evidence. To measure this, we utilize
the Reasoning Quality Index (RQI, defined in Section 3.3.1), which quantifies the proportion of an
agent’s reasoning steps that are supported by retrieved evidence.

RL Training Fails to Develop Evidence-Grounded Reasoning. Figure 2 (Left) presents the av-
erage RQI scores across models. Few-shot prompting achieves the highest reasoning quality (RQI
= 0.27), outperforming all RL-trained agents. This reveals a disconnect between answer-level suc-
cess and reasoning groundedness: RL training may optimize for correct final answers, but it fails to
develop the epistemic reasoning skills needed to justify those answers through evidence-grounded
reasoning.

Plan Formation and State Assessment Are Core Reasoning Failures. To understand where rea-
soning breaks down, we analyze performance by reasoning type (Figure 2, Right). Specifically,

• Information Synthesis emerges as a relative strength across models (e.g., ASEARCHER: 0.56),
demonstrating agents’ proficiency in summarizing and restating retrieved information.

• Plan Formation constitutes the most significant weakness for all agents (consistently scor-
ing below 0.2), highlighting fundamental difficulties in breaking down complex queries and
formulating coherent search strategies.

• State Assessment shows notable improvement in few-shot models (0.28), suggesting enhanced
metacognitive capabilities compared to their RL-trained counterparts.

For detailed analysis of evidence-conditioned reasoning quality across different evidence states and
reasoning types, see Appendix E.
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Figure 3: Recovery Analysis. Left: ERFs by model showing recovery from low to sufficient evidence (E=2)
as turn t increases. Right: Recovery efficiency by action type. Steeper curves indicate faster escape from low
evidence states. REFINE and FOLLOW-UP enable fastest recovery, while REPEAT shows minimal improvement.

4.3 RECOVERY ANALYSIS

This section evaluates whether models can effectively recover from low-quality evidence through
adaptive search strategies.
Recovery Competence with ERF. We first assess overall recovery competence using the Evidence
Recovery Function (ERF, Equation (8)), which measures the cumulative probability of reaching suf-
ficient evidence (E = 2) over time. As shown in Figure 3 (Left), ASEARCHER, which has the
highest F1 score on answer correctness, shows superior recovery performance compared to other
agents. In contrast, DEEPRESEARCHER, which has the lowest F1 among all RL-trained agents,
shows the poorest recovery performance. This demonstrates that effective algorithm design should
prioritize developing adaptive evidence-seeking strategies so that agents can recover from insuffi-
cient evidence and improve final performance.
Refine and Follow-up Search Strategies Drive Effective Recovery. To identify the most effective
search strategies for recovery, we analyze how different action types affect recovery rates over time.
We categorize all search and reasoning steps by their types. For each step t of a specific type in
trace, we measure the proportion of turns remaining low evidence states (E < 2) at subsequent turns
(t + ∆t). Given the variable-length traces and resulting right-censored data (traces ending before
recovery occurs—when observation periods end before the outcome), we employ Kaplan-Meier
survival analysis (Kaplan & Meier, 1958), which provides robust estimation of recovery probabilities
despite incomplete observations.

As shown in Figure 3 (Right), survival curves reveal that REFINE and FOLLOW-UP strategies enable
the fastest recovery from low-quality evidence, while REPEAT provides minimal benefit. Addition-
ally, GROUNDED REASONING also effectively improves evidence utilization in responses.

4.4 EVIDENCE-ALIGNED CALIBRATION

Figure 4: Evidence State Drives Answer Probability
and Accuracy. Lines: Answer probability increases
with evidence state. Bars: Answer accuracy improves
with evidence state. RL-trained models show lower
answering rate but higher accuracy with good evidence.

This section evaluates whether models cal-
ibrate their answering behavior to the ideal
policy, where they answer when and only
when it has good evidence, avoiding both
overconfidence (answering with poor evidence)
and overcautiousness (failing to answer despite
good evidence).

Evidence Quality Drives Answer Accuracy.
We first validate that evidence quality corre-
lates with answer accuracy. As shown in Fig-
ure 4, RL-trained models achieve 31.6% ac-
curacy when answering with good evidence
(P (correct|answer, E = 2)), compared to only
8.4% accuracy when answering without sup-
porting evidence. This significant difference
demonstrates that evidence quality is positively
associated with answer correctness.
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Table 2: Calibration Error Analysis. traces categorized as: calibration error, overconfident, or overcautious.
Lower values indicate better calibration. RL-trained agents show the lowest overconfident answer rate and
lowest CE. Bold indicates best performance.

Model (1) Overconfident ↓ (2) Overcautious ↓ (3) Calibration Error ↓
Base 0.631 0.030 0.329
Few-shot 0.511 0.024 0.317
RL-trained 0.353 0.085 0.309

Interestingly, RL-trained models exhibit lower answering rates (P (answer|E), formally defined in
Equation 9) across all evidence states compared to base models. This suggests that RL training
encourages models to be more selective about when to provide final answers, potentially reducing
instances of overconfident responses.

To further understand the calibration behavior, we measure calibration quality using calibration
error (CE, Equation (10)) and analyze two specific failure modes to identify where models fail:

(1) Overconfident answering: providing a final answer when the trace never reached good evi-
dence state (Ei,t < 2 for all t), indicating overconfidence;

(2) Overcautious abstention: failing to provide a final answer despite having reached good evi-
dence state (Ei,t = 2), indicating underconfidence.

RL Training Improves Calibration. As summarized in Table 2, RL-trained models show substan-
tial improvements in calibration behavior. They reduce overconfident answering from 63.1% to
35.3% and achieve the lowest overall calibration error (0.309). This demonstrates that RL train-
ing successfully teaches models to align their answering decisions with evidence quality, moving
toward the ideal policy of answering only when evidence is sufficient. This finding contrasts with
the earlier result that RL training degrades reasoning groundedness (Section 4.2), highlighting the
competency-specific nature of RL training effects. For detailed analysis of individual RL-trained
agents and evidence-conditioned answer timing patterns, see Appendix F.

4.5 EXPLOITING EPISTEMIC COMPETENCIES FOR PERFORMANCE GAINS

Our evaluation reveals distinct agent specializations: ASEARCHER excels in evidence acquisition
and recovery mechanisms (highest overall F1 score), while SEARCH-R1 demonstrates superior in-
formation synthesis (RQI=0.63 for information synthesis) with minimal overconfident answering
(see Section 4.4 and Appendix F). These findings motivated us to explore agent synthesis—using
one agent’s evidence collection as input for another’s answer generation.

We provided agents with reasoning traces and evidence from others, then measured F1 score im-
provements. SEARCH-R1 emerges as the most effective synthesizer (+1.27 F1 on average), sig-
nificantly outperforming other agents (see details in Appendix G). Surprisingly, Base achieved the
highest F1 gains (+2.42 on average) when paired with other models for answer generation. This re-
veals that accuracy-only evaluation may underestimate Base’s reasoning abilities while overstating
the gains from RL training.

Our method reveals distinct agent profiles by systematically benchmarking their epistemic compe-
tencies, for example, SEARCH-R1’s synthesis strength and conservative answering. These insights
provide a reliable foundation for designing effective systems that capitalize on complementary agent
strengths. Overall, beyond outcome-based metrics, our approach delivers procedural evaluation that
enables more interpretable assessments of agent competence.

5 CONCLUSION

SeekBench evaluates epistemic competence in LLM search agents through expert-annotated traces,
revealing gaps in current evaluation approaches. Our evidence state framework and metrics (RQI,
ERF, CE) show that RL training improves answer accuracy but not evidence-grounded reasoning.
Our framework uncovers agent-specific strengths masked by accuracy-only evaluation: Search-R1
excels at evidence synthesis, while Base models demonstrate stronger reasoning capabilities than
accuracy metrics suggest. This work establishes epistemic competence as essential for reliable AI
systems and provides a framework for developing reliable information-seeking agents. Future work
should explore modular architectures combining complementary strengths and training approaches
that improve higher-order reasoning alongside answer calibration.
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Ethics Statement. This research evaluates LLM search agents using publicly available datasets and
involves only expert annotation of agent traces. Our framework aims to improve AI system reliability
and transparency for developing more trustworthy information-seeking agents. The SeekBench
dataset will be released with appropriate documentation while respecting licensing terms.

Reproducibility Statement. To ensure reproducibility of our findings, we provide comprehensive
documentation of our methodology and evaluation framework. Our annotation schema and inter-
annotator agreement analysis (Appendix B) establish the reliability of our epistemic competency
measurements, with Cohen’s κ = 0.811 for human annotators and strong LLM-judge alignment
(κ ≥ 0.693). The complete annotation guidelines and evaluation prompts are detailed in Ap-
pendix C, enabling replication of our step-level reasoning quality assessments. Our three core met-
rics—Reasoning Quality Index (RQI), Evidence Recovery Function (ERF), and Calibration Error
(CE)—are formally defined with mathematical specifications in Section 3.3. The evaluation spans
seven established QA benchmarks (NQ, TriviaQA, PopQA, HotpotQA, 2Wiki, MusiQue, Bam-
boogle) with 28,493 traces and 283,950 annotated steps across six agent variants (Qwen-2.5-7B-
Instruct and few-shot, Search-R1, ReSearch, ASearcher, DeepResearcher). Data sanitization proce-
dures to remove ambiguous questions and contamination cases are documented in Appendix A. All
experimental results, including detailed agent-specific breakdowns and evidence-conditioned anal-
yses, are provided in the main text and appendix. The SeekBench dataset of 190 expert-annotated
traces with over 1,800 response steps will be made available as supplementary material, along with
our annotation schema and evaluation code to enable community replication and extension of our
epistemic competence framework.
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Figure 5: Inter-annotator agreement for SeekBench. (Left) Per-field annotation agreement across different com-
petency dimensions. (Right) Average Cohen’s κ comparing human annotators with GPT-4.1, GPT-4.1-mini, and
GPT-5, demonstrating strong alignment between expert human judgments and advanced LLM assessments.

A DATA SANITIZATION

To ensure the quality of our evaluation, we sanitize the test sets of our seven benchmark datasets
using the following two criteria:

(1) Ambiguous or Unanswerable Questions. We discard questions where benchmark agents re-
ceive full credit for speculative answers, while a stronger reference model (GPT-4.1-mini) abstains
with a justified explanation. For example, in response to the question “Who developed the CPU?”,
a benchmark agent might confidently output “John von Neumann”, achieving EM=1. In contrast,
GPT-4.1-mini responds: “Answer: I don’t know; Reason: The information mentions figures like

John von Neumann and J. Presper Eckert, but does not identify a single developer.” These ques-
tions are excluded to avoid rewarding superficial matching over careful reasoning.

(2) Data Contamination. We discard questions where agents succeed (Pass@3) without issuing any
search queries, as this indicates the question is likely part of the model’s pre-training data. These
are removed to focus evaluation on retrieval-dependent reasoning.

B INTER-ANNOTATOR AGREEMENT ANALYSIS

Per-Field Agreement Analysis. The left panel of Figure 5 demonstrates robust inter-annotator
agreement across all four annotation fields. The Functional Type field achieves the highest agree-
ment (κ > 0.8), indicating that annotators can reliably distinguish between different reasoning
purposes (e.g., Information Synthesis vs. Plan Formation). The Quality Attribute field shows simi-
larly strong agreement (κ > 0.75), confirming that evaluative judgments of epistemic soundness are
consistently interpretable across annotators. These results establish that our schema captures mean-
ingful, distinguishable patterns in agent reasoning behavior rather than subjective interpretations.

Human-LLM Alignment Assessment. The right panel reveals substantial alignment between hu-
man expert judgments and LLM assessments across all three evaluated models. Human annotators
achieve the highest overall agreement (κ = 0.811), establishing the gold standard for annotation
quality. Among LLM judges, GPT-5 demonstrates the strongest alignment with human experts
(κ = 0.754), followed by GPT-4.1-mini (κ = 0.731) and GPT-4.1 (κ = 0.693). This progres-
sive improvement across model versions suggests that more advanced language models can better
approximate human reasoning patterns in epistemic evaluation tasks.

Implications for Large-Scale Evaluation. These agreement results establish the feasibility of de-
ploying our annotation framework for comprehensive agent evaluation. The strong human-LLM
alignment enables cost-effective scaling of our evaluation methodology, while the robust per-field
agreement ensures that competency assessments reflect genuine behavioral differences rather than
annotation artifacts. This validation is particularly crucial for our three core competencies (Ground-
edness, Recovery, and Calibration), as it confirms that these constructs can be reliably measured
across diverse reasoning traces and evaluators.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C LLM-AS-JUDGE FOR SEEKBENCH

This section presents the comprehensive LLM-as-judge used in CompetenceBench to evaluate agent
reasoning, search behavior, and answer quality. The schema is organized into: reasoning types with
grounding evaluation, search behavior, search result quality.

C.1 REASONING TYPE ANNOTATION AND GROUNDING EVALUATION

The reasoning annotation schema categorizes agent reasoning steps into four functional types and
evaluates their grounding. This comprehensive evaluation helps identify both the cognitive function
of reasoning steps and whether they are properly supported by evidence.

Reasoning Type Classification and Grouding Evaluation

You are an expert cognitive scientist and evidence-based critical thinking expert. Your task
is to classify the reasoning type of an agent’s step and evaluate its grounding based *only*
on the evidence it had at the time.
Context: The Agent’s Goal (Original Question):
{question}

Evidence: The Search Results the Agent Had Access To:
{search_evidence_json}

Agent’s Reasoning Text to Analyze:
"{reasoning_text}"

Task:
1. Classify the reasoning type:

• StateAssessment: Assess the current knowledge state, usually identifying a
knowledge gap.

• PlanFormation: The agent is forming a plan of action.
• InformationSynthesis: Synthesize new information (from search results) to form

a conclusion.
• CritiqueAndCorrection: Critique existing information or conclusions and pro-

pose a correction.
2. Evaluate grounding:

• Extract the atomic factual premises from the step (skip meta/plan-only wording
that contains no factual claim).

• For each premise, find a direct supporting span in the provided evidence. If no
exact or near-verbatim support exists, mark that premise as unmatched.

• Decide the label with STRICT rules:
– Grounded: ALL atomic premises are supported by explicit evidence spans.
– Not Grounded: ANY atomic premise lacks a supporting span; OR the step

contains only meta/plan text without factual premises.
Additional rules for grounding:

• QUESTION anchor alone is NOT sufficient for Grounded; do not label as grounded
solely for restating the task/intent.

• Superlatives/temporal/quantitative claims (e.g., last/first/only, years, counts) require ex-
plicit evidence spans.

Your Final Output:
{

"reasoning_type": "StateAssessment",
"grounding": "Grounded",
"anchor_type": "EVIDENCE",
"justification": "brief explanation"

}
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C.2 SEARCH BEHAVIOR ANNOTATION

The search annotation schema categorizes agent search queries into four behavioral types:

Search Behavior Classification

You are an expert information retrieval specialist. Your task is to classify the type of search
query issued by the agent.
Current Search Query:
{current_query}

Previous Search Query (if any):
{previous_query}

Task: Classify the search query type:
• InitialQuery: The agent is issuing its first query in a reasoning chain.
• RefinedQuery: The agent is refining a previous query based on new information.
• FollowUpQuery: The agent is asking a follow-up question that is not a direct refine-

ment.
• RepeatQuery: A query that is the same as the previous query.

Your Final Output:
{

"search_type": "InitialQuery",
"justification": "brief explanation"

}

C.3 SEARCH RESULT QUALITY ASSESSMENT

This prompt evaluates the quality and clarity of search results retrieved by the agent. It helps identify
when agents work with insufficient or ambiguous information.

Search Result Analysis Prompt

You are an expert data analyst. Your task is to evaluate the quality of a search result based
on the query that produced it.
Search Query:
{query}

Search Result Documents:
{documents_json}

Your Task: Analyze the search result’s sufficiency and clarity.
1. Information Quality: Does the result contain enough information to likely answer the
user’s implicit question in the query? Choose one:

• Sufficient: The answer seems to be present.
• Insufficient: The answer is likely not here.

2. Information Clarity: Is the information clear or does it create confusion? Choose one:
• Clear: The information is straightforward and addresses one subject.
• Unclear: The results mention multiple distinct entities that could match the query (e.g.,

two movies with the same title) or the information is vague.

Your Final Output: Your response must be a single, valid JSON object with the following
attributes:

• information quality: Either ”Sufficient” or ”Insufficient”
• information clarity: Either ”Clear” or ”Unclear”
• clarity justification: Brief explanation for your clarity rating
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Figure 6: Evidence-conditioned reasoning quality for evidence state k ∈ 0, 1, 2 across search agents. Bars
denote 95% confidence intervals. The quantity reflects the expected groundedness of reasoning steps given the
epistemic evidence state E. Higher values at E = 2 indicate effective evidence utilization.

D ACCURACY-LEVEL PERFORMANCE

Agent Overall F1 (%)
ASearcher 39.77
Search-R1 39.29
ReSearch 38.30
Few-shot 36.04
DeepResearcher 36.00
Base 33.5

Table 3: Overall F1 performance across agent variants. Trained agents consistently outperform the base model,
with ASearcher achieving the highest score.

Table 3 reports the aggregate F1 scores across all evaluated agents. We observe that all trained agents
outperform the base Qwen model, with ASearcher achieving the best performance (39.8%). Search-
R1 and ReSearch follow closely, while Few-shot prompting and DeepResearcher attain comparable
scores.

E EVIDENCE-GROUNDED REASONING ANALYSIS

This section provides detailed analysis of evidence-grounded reasoning capabilities for Section 4.2,
examining how agents ground their reasoning in retrieved evidence and identifying critical gaps in
epistemic alignment. We present two complementary analyses: (1) evidence-conditioned reason-
ing quality across different evidence states, and (2) type-specific reasoning capabilities that reveal
heterogeneous grounding patterns across reasoning skills.

E.1 EVIDENCE-ALIGNED REASONING: DO AGENTS GROUND THEIR INFERENCE IN WHAT
THEY KNOW?

To evaluate whether agents ground their reasoning in retrieved evidence, we analyze the expected
groundedness of reasoning steps conditioned on the agent’s evidence state E ∈ {0, 1, 2}. The
quantity E[Gi,t | Ei,t = k] measures how reliably an agent produces well-supported reasoning at
each evidence level k. An epistemically sound agent should avoid unsupported reasoning when
E = 0, provide partial grounding at E = 1, and fully leverage complete evidence when E = 2.
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Figure 7: Type-Level Evidence-Conditioned Groundedness. Expected groundedness for each reasoning type
τ (Information Synthesis, Plan Formation, State Assessment) under evidence levels E = 0, 1, 2. Bars show
95% confidence intervals. Models exhibit heterogeneous capabilities in grounding specific reasoning skills in
available evidence.

This conditional analysis enables assessment of epistemic alignment: whether agents reason more
confidently only when they possess sufficient evidence.

Base models show better epistemic alignment than specialized agents. Empirical results in Fig-
ure 6 reveal substantial variation across models. Most agents demonstrate appropriate behavior at
E = 0, with E[G | E = 0] ≈ 0.07–0.09, indicating minimal hallucinated reasoning. However,
SEARCH-R1 exhibits significant epistemic misalignment, with elevated groundedness even un-
der insufficient evidence (≈ 0.10 at E = 1 and 0.14 at E = 2), suggesting grounded reasoning.
In contrast, BASE and FEW-SHOT variants demonstrate the clearest evidence-conditioned reason-
ing, with groundedness rising from 0.49 (E = 1) to 0.64 (E = 2), indicating effective epistemic
modulation. ASEARCHER also shows notable improvement (0.50 → 0.55), while RESEARCH and
DEEPRESEARCHER stagnate around 0.47–0.51, failing to capitalize on stronger evidence. These
results demonstrate the necessity for evaluation metrics like RQI that isolate whether reasoning
reflects the agent’s actual knowledge state.

Case Study: Correct Answer with Ungrounded Reasoning. We examine a case where a ReSearch
agent correctly answers “Who won the first celebrity big brother on channel 5?” despite completely
ungrounded reasoning. After retrieved the first evidence, the agent retrieves conclusive evidence
stating “Celebrity Big Brother 1... concluded on 16 March 2001 when comedian Jack Dee was
crowned the winner.” Despite having the answer, the agent ignores this evidence and conducts
unnecessary searches, stating: “I need to clarify which Big Brother series I am referring to... Now,
I have to find out the winner of that show.” The agent eventually answers “Jack Dee” correctly, but
through an epistemically unsound process. This demonstrates why accuracy metrics alone fail to
capture critical reasoning deficiencies.

E.2 TYPE-SPECIFIC EVIDENCE ALIGNMENT: WHICH REASONING SKILLS ARE
EVIDENCE-GROUNDED?

We further decompose agent reasoning groundedness by reasoning type τ ∈ {IS,PF,SA}, leverag-
ing the Type-Level Reasoning Quality Index from Definition 3.3 and the evidence-state decomposi-
tion in Equation (6).

Figure 7 illustrates the groundedness of each reasoning type across three evidence states. Our anal-
ysis reveals several significant patterns:

First, Information Synthesis (IS) demonstrates the strongest evidence-responsiveness across all
models. With complete evidence (E=2), IS steps achieve superior groundedness, indicating robust
capabilities in aggregating retrieved information. Even with partial evidence (E=1), agents maintain
moderate IS groundedness, suggesting effective utilization of incomplete knowledge.

In contrast, Plan Formation (PF) and State Assessment (SA) exhibit substantially lower ground-
edness even with complete evidence. For PF, only ASEARCHER and RESEARCH exceed 0.5 at
E=2, while others (e.g., SEARCH-R1, DEEPRESEARCHER) remain below 0.4, revealing fragile
decision-making processes despite available knowledge. Similarly, SA demonstrates critical limita-
tions: although scores improve under E=2, most models underperform relative to IS, with several
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agents (e.g., SEARCH-R1, DEEPRESEARCHER) showing minimal evidence-responsiveness between
E=1 and E=2. Notably, SEARCH-R1 performs comparatively well for IS across all evidence levels
but demonstrates exceptionally poor grounding for PF and SA (0.15 and 0.12 at E=2, respectively),
suggesting specialized evidence synthesis but narrowly constrained reasoning capabilities.

These findings demonstrate that only specific reasoning capabilities (particularly synthesis) are con-
sistently grounded in retrieved information. This underscores the necessity for developing evidence-
grounded reasoning policies, especially for higher-order cognitive functions like plan formation and
state assessment that currently show significant epistemic disconnection from retrieved knowledge.

F EVIDENCE CALIBRATION ANALYSIS

To further understand the epistemic calibration capacity of RL-trained agents, we analyze four RL-
based agents: ASEARCHER, SEARCH-R1, RESEARCH, and DEEPRESEARCHER. Each model ex-
hibits distinct behavior patterns in evidence-grounded answering.

Figure 8: Evidence-Calibrated Answering by RL Agents. Left: Answering propensity for each RL agent un-
der different evidence levels (E=0/1/2). Right: Answering accuracy for each RL agent under different evidence
levels (E=0/1/2).

As shown in Figure 8 (Left), all agents show increased answering with stronger evidence, suggest-
ing basic epistemic alignment, but they vary in evidence gradient—the increase from E=0 to E=2.
ASEARCHER and DEEPRESEARCHER exhibit higher gradients, indicating stronger sensitivity to
epistemic evidence. However, all agents maintain relatively low absolute response rates even with
sufficient evidence. ASEARCHER and DEEPRESEARCHER reach 19–21%, while SEARCH-R1 re-
mains at 8.5%, suggesting more conservative behavior.

Calibration vs Accuracy As noted in Section D, ASEARCHER achieves the highest overall F1
score, followed by SEARCH-R1, RESEARCH, and DEEPRESEARCHER.

To evaluates whether agents can defer or respond based on the epistemic adequacy of observed
evidence. As shown in Figure 8, across trained agents, we observe distinct calibration profiles:

• ASEARCHER demonstrates superior evidence sensitivity coupled with high accuracy. It re-
sponds predominantly when sufficient evidence is available (E=2) at a substantial rate (19.3%)
while minimizing overconfident responses. As shown in Figure 8 (Right), it achieves the sec-
ond highest conditional accuracy P (correct|answer, E = 2). This strategic alignment between
evidence-based answer timing and correctness yields optimal performance.

• SEARCH-R1 achieves the highest accuracy when answering with complete evidence (Figure 8,
Right), but exhibits extreme conservatism, answering in merely 8.5% of high-evidence states
(Figure 8, Left). While this demonstrates exceptional calibration awareness, the excessive cau-
tion significantly constrains overall performance, representing a clear trade-off between cover-
age and precision.

We conclude that well-calibrated agent behavior requires satisfying two critical conditions: (1) de-
ferring responses until evidence strength reaches sufficient levels (e.g., E=2), and (2) producing
correct answers when responding, demonstrating effective utilization of the available evidence. This
dual requirement highlights the challenge of balancing epistemic caution with informational utility.
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Table 4: Calibration Error Breakdown by Agent Type. Trajectories categorized as: overconfident answering
(answering before sufficient evidence), overcautious abstention (failing to answer despite strong evidence),
and overall calibration error. Lower values indicate better calibration. ASearcher show the lowest calibration
errors. Bold indicates best performance in each category.

Model (1) Overconfident ↓ (2) Overcautious ↓ (3) Calibration Error ↓
Base 0.631 0.030 0.329
Few-shot 0.511 0.024 0.317

ASearcher 0.343 0.044 0.302
DeepResearcher 0.461 0.048 0.309
ReSearch 0.406 0.047 0.305
Search-R1 0.226 0.187 0.319

Figure 9: Evidence-Conditioned Answer Timing Analysis. For each model group, we plot the fraction
of answered trajectories over time (x-axis: turn number), split by whether high evidence (E=2) has been
observed. If agents defer until sufficient evidence, the orange curve (already high) should rise earlier than the
blue curve (not yet high). However, all models show little separation between the two, confirming widespread
overconfident answering behavior.

RL Training Reduces Calibration Errors. Table 4 provides a detailed breakdown of calibration
performance across individual RL-trained agents. While all RL agents show substantial improve-
ments over base models in reducing overconfident answering, ASEARCHER achieves the lowest
overall calibration error (0.302), closely followed by DEEPRESEARCHER and RESEARCH (both
0.305). Notably, SEARCH-R1 exhibits the most conservative behavior with the lowest overconfident
answeringrate (0.226) but highest overcautious rate (0.187), suggesting a trade-off between differ-
ent types of calibration failures. These results demonstrate that RL training consistently improves
evidence-based decision making, though specific training approaches yield different calibration pro-
files.

Do agents defer answering until strong evidence arrives? To evaluate whether agents appropri-
ately delay answering until they have observed sufficient evidence, we analyze the timing of answers
across different evidence states. Figure 9 presents a temporal analysis comparing the cumulative
fraction of answers over time for two distinct trajectory groups: those where agents have already
encountered strong evidence (E=2) versus those where they have not.

In an ideally calibrated system, we would expect agents to predominantly answer after observing
strong evidence, resulting in a clear separation between trajectories—specifically, a higher orange
curve (evidence already observed) and a lower blue curve (evidence not yet observed). However, our
analysis reveals that BASE and FEW-SHOT models demonstrate minimal separation between these
curves—indicating that answers are generated with similar timing regardless of evidence availability.
RL-trained agents, while showing marginal improvement, still exihibits overconfident answering in
76.5% of trajectories before reaching sufficient evidence (E=2).

This finding highlights a fundamental calibration deficiency: current models consistently make over-
confident decisions without aligning their answer timing with epistemic sufficiency.
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G AGENT SYNTHESIS: LEVERAGING EPISTEMIC COMPETENCIES FOR
ANSWER GENERATION

Synthesizer (S)/ Policy (P) Search-R1 ASearcher DeepRes. ReSearch Base Fewshot Overall Avg. ∆F1

Search-R1 - -0.08 +0.19 +1.66 +3.50 +1.10 +1.27
ASearcher +0.38 - -0.73 -0.39 +0.93 +1.46 +0.33
DeepRes. -0.63 +0.20 - +0.00 +2.24 +1.45 +0.65
ReSearch -0.42 +0.13 +0.36 - +2.99 +1.89 +0.99

Table 5: Agent Synthesis Performance. Each cell shows F1 score improvement (∆F1) when using row agent
(S) as synthesizer to generate answers based on evidence collected by column agent (P). Positive values indicate
the synthesizer improved upon the original policy’s performance. Search-R1 demonstrates the highest overall
improvement (+1.06 F1) across all evidence sources, particularly excelling with base (+3.50) and ReSearch
(+1.66) evidence collections.

Our comprehensive evaluation reveals several critical insights into agent capabilities: ASEARCHER
demonstrates superior performance in evidence acquisition and recovery mechanisms (achieving
the highest overall F1 score), while SEARCH-R1 exhibits exceptional proficiency in information
synthesis (with a RQI score of 0.63) coupled with minimal overconfident answering behavior
(as discussed in Section 4.4). This observed specialization of epistemic competencies motivated
us to explore the potential of agent synthesis where we leverage one agent’s evidence collection
capabilities as input for another agent’s answer generation process.

Synthesizer Evaluation Methodology. To test this hypothesis, we evaluate each agent as a synthe-
sizer by providing it with the complete reasoning traces, search results, and evidence from other
agents’ trajectories. The synthesizer’s task is to generate a final answer based solely on this infor-
mation, without performing additional searches. This setup isolates the agent’s ability to synthesize
information from existing evidence, separate from its search and retrieval capabilities.

Search-R1 Emerges as the Superior Synthesizer. As shown in Table 5, Search-R1 delivers the
largest average F1 gain (+1.27), significantly outperforming other agents: ASearcher (+0.33), Deep-
Researcher (+0.65), and ReSearch (+0.99). This result aligns with our earlier findings that Search-
R1 exhibits strong information synthesis capabilities (RQI = 0.63 for Information Synthesis steps)
and conservative answering behavior (lowest overconfident answering rate).

The superior synthesis performance of Search-R1 can be attributed to its specialized reasoning
capabilities. Despite its low overall RQI (0.08), Search-R1 demonstrates particular strength in in-
formation synthesis when provided with clear evidence. Its conservative answering behavior,
while limiting coverage in standalone scenarios, becomes an advantage in synthesis tasks where
it can carefully evaluate and integrate information from multiple sources before providing a final
answer.

Hidden Behaviors: How Accuracy-Level Evaluation Obscures Profound Reasoning Capabili-
ties. Surprisingly, BASE evidence collection achieved the highest F1 gains when paired with other
models for answer generation. This reveals that final accuracy metrics can be misleading when used
in isolation, as they obscure critical process-level competencies. While Base appears to have the
lowest F1 score when evaluated independently (33.5% as shown in Table 3), when other models
use BASE’s evidence as input for answer generation, they can produce substantially better answers
(up to +3.50 F1 improvement with Search-R1). This hidden behavior highlights how accuracy-level
evaluation alone can mischaracterize agent capabilities and overlook valuable epistemic strengths.
The BASE may be collecting high-quality evidence but struggling with synthesis, a nuance com-
pletely missed by traditional evaluation methods that focus solely on final answer accuracy rather
than decomposing the reasoning process into its constituent competencies.

Implications for Agent Design. These findings demonstrate that our benchmark and evaluation
framework enables modularization of agent-specific epistemic competencies to create more effec-
tive information-seeking systems. This represents a significant advance for process-level evaluation
of agents compared with traditional answer-level evaluation, enabling the identification and combi-
nation of complementary strengths across different agent architectures.
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H DISCUSSION: UNDERSTANDING METRIC TRADE-OFFS

Our evaluation framework reveals distinct trade-offs between epistemic competencies that traditional
accuracy-only evaluation fails to capture. These insights are critical for both interpreting agent
performance and designing effective systems.

The Accuracy-Reasoning Trade-off. We observe a particularly concerning inverse relationship be-
tween answer accuracy (F1) and reasoning quality (RQI) among RL-trained agents. While RL
training improves final answer correctness and calibration, it simultaneously degrades evidence-
grounded reasoning quality. This reveals a fundamental tension: agents can be optimized to produce
correct answers without developing sound reasoning capabilities—a critical consideration for AI
safety and interpretability.

Calibration vs. Reasoning Quality. RL-trained models demonstrate better calibration (lower CE)
despite worse reasoning groundedness (lower RQI), indicating that well-calibrated agents may still
produce poorly justified reasoning. This highlights the necessity of evaluating both when to answer
(calibration) and how to reason (groundedness) as separate competencies.

Implications for Agent Selection and Design. These trade-offs directly impact deployment deci-
sions: applications requiring high accuracy may favor ASEARCHER despite reasoning limitations;
those requiring interpretable reasoning may prefer Few-shot models despite lower accuracy; and ap-
plications demanding both may benefit from agent synthesis approaches (Section 4.5). Future agent
development should explicitly address these trade-offs through multi-objective optimization and po-
tentially modular architectures that separate evidence acquisition, reasoning, and decision-making
components rather than optimizing solely for accuracy.

I USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) played a significant role in this research, warranting disclosure
of their contributions. LLMs were extensively used as annotation helpers to develop our epistemic
competency schema, as analytical assistants for reasoning trace analysis, and as automated judges
(detailed in Section C). They contributed significantly to the writing process by generating initial
drafts of technical sections and assisting with revision, and influenced research ideation by suggest-
ing evaluation metrics and identifying methodology gaps. All LLM-generated content underwent
rigorous human review and validation, with human authors verifying analyses, validating schemas
through expert review, and thoroughly editing all contributions. While LLMs served as powerful
assistive tools, all final decisions regarding research direction, experimental design, result interpre-
tation, and manuscript content were made by human authors.
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