

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DO LLM AGENTS KNOW HOW TO GROUND, RE- COVER, AND ASSESS? A BENCHMARK FOR EPISTEMIC COMPETENCE IN INFORMATION-SEEKING AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent work has explored training Large Language Model (LLM) search agents with reinforcement learning (RL) for open-domain question answering. However, most evaluations focus solely on final answer accuracy, overlooking how these agents reason with and act on external evidence. We introduce **SeekBench**, the first process-level evaluation framework for LLM search agents that operationalize *epistemic competence* through metrics derived from an annotation schema. We develop and validate our annotation schema using an expert-annotated dataset of 190 traces (over 1,800 steps). To evaluate at scale, we introduce an LLM-as-judge pipeline. Our framework provides granular analysis of whether agents demonstrate: (1) **groundedness**, by generating reasoning steps supported by observed evidence; (2) **recovery**, by adaptively reformulating searches to recover from low-quality results; and (3) **calibration**, by correctly assessing whether current evidence is sufficient to provide an answer. By applying our evaluation framework to state-of-the-art search agents tuned on Qwen2.5-7B, we uncover critical behavioral gaps that answer-only metrics miss, as well as specialized skills such as Search-R1’s synthesis abilities. These analyses highlight distinct epistemic competencies, offering actionable insights for the development of more capable and trustworthy agents.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have spurred a shift from models that require explicit prompting, such as chain-of-thought (Wei et al., 2022; Yao et al., 2023), toward autonomous LLM agents (Zhang et al., 2025a). These agents learn to solve complex tasks by optimizing a reasoning policy with reinforcement learning (RL), enabling them to implicitly learn decision-making strategies without requiring step-by-step external guidance (Jaech et al., 2024; Guo et al., 2025). Among these, *search agents* are developed to tackle information-seeking problems by enabling LLMs to interact with external knowledge sources and handle queries beyond training data (Zheng et al., 2025; Gao et al., 2025). Modern agents increasingly use richer toolboxes (e.g., page-level browsing, selective scraping, Python execution) yet they still manifest the same epistemic loop: identify an information gap → obtain external evidence → reason over it → decide the next action or final answer. Our framework targets this process, independent of the surface tool API, to maintain precise empirical scope. They process multi-turn reasoning, using external search tools, and integrating evidence (Xi et al., 2025a). The agent’s responses produce multi-turn traces, which can be represented as:

$$\mathcal{T} = \langle \tau_1, \tau_2, \dots, \tau_T \rangle, \quad (1)$$

where each turn τ_t consists of a tuple that can contain four possible steps: reasoning r_t , search s_t , evidence e_t , and answer a_t . Non-final turns ($t < T$) are of the form $\tau_t = \langle r_t, s_t, e_t \rangle$, while the final turn ($t = T$) concludes with an answer, i.e., $\tau_T = \langle r_T, a_T \rangle$.

Information-seeking tasks pose a distinct epistemic challenge: unlike code generation or mathematical reasoning, where correctness can be externally verified by execution or proof (Nguyen et al., 2025; Lightman et al., 2023), search agents must reason about real-world textual information that lacks objective verifiers. However, current evaluation protocols for search agents largely ignore the

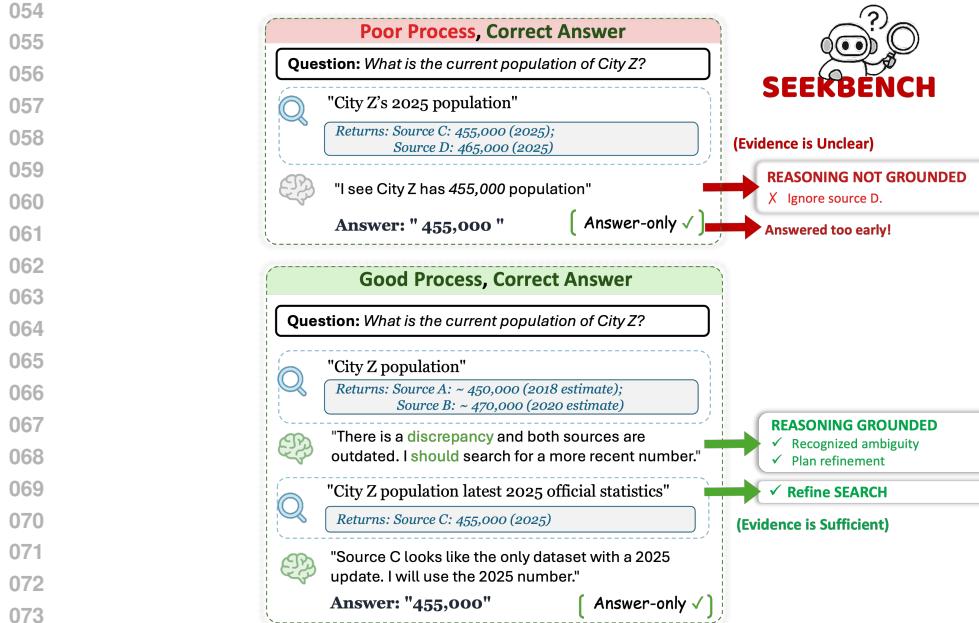


Figure 1: Contrasting accuracy with epistemic competence. Both scenarios yield the correct answer “455,000” but are evaluated differently by SeekBench. **Top (Poor Process):** Agent ignores conflicting sources, fails to recognize ambiguity, and answers prematurely without **grounding** reasoning or **recovering** from unclear evidence. **Bottom (Good Process):** Agent recognizes ambiguity, **refines** search to obtain recent official data, and **answers only after sufficient evidence**.

process-level information captured by the structure of \mathcal{T} . They rely predominantly on answer-only (a_T) metrics such as exact match or F1 score (Jin et al., 2025; Zheng et al., 2025; Li et al., 2025b). This lack of process-level evaluation is problematic. As illustrated in Figure 1, *agents may achieve high benchmark scores while exhibiting poor epistemic behaviors*, such as hallucinating unsupported claims or failing to recognize knowledge gaps. This epistemic challenge necessitates process-level and evidence-driven evaluation to assess: **groundedness** (reasoning supported by evidence), **recovery** (adaptive search strategy to improve evidence), and **calibration** (determining when evidence is sufficient to answer).

To address the above challenges, we introduce **SeekBench**, a benchmarking framework for assessing agents’ *epistemic competence*—the ability to reliably acquire, evaluate, and act upon knowledge in a justified manner (Greene et al., 2016; Zhang et al., 2023). Our framework proceeds in three stages. First, we developed a robust, extensible annotation schema for search agent traces that captures both the functional role (reasoning, search, answer) and epistemic quality (e.g., evidence groundness and sufficiency) of each step. Following established *Content Analysis* methodology (Krippendorff, 2018), we analyzed and annotated seven open-source search agents across 190 traces (over 1,800 steps, Figure 2; see Appendix C.1 for details). This expert-annotated dataset allowed us to validate and refine the schema, and the final schema achieves high inter-annotator agreement (Cohen’s Kappa $\kappa > 0.8$). Second, we formalize three epistemic competencies: (1) **Groundedness** (evidence-grounded reasoning), (2) **Recovery** (adaptive evidence recovery), and (3) **Calibration** (evidence-aligned calibration). Third, we design precise, interpretable metrics to quantify these competencies across diverse traces, as detailed in Table 1. To evaluate at scale, we introduce an LLM-as-judge pipeline that enables scalable evaluation. This pipeline uses our validated annotation schema to automatically annotate agent traces and evaluate the competencies on a large scale.

Contributions. Our contributions are summarized as follows:

1. **SeekBench: A Process-Level Evaluation Framework.** We present **SeekBench** as a practical evaluation framework for empirical analysis of LLM information-seeking agents. **SeekBench** comprises a process-level annotation schema, operational epistemic metrics, and an automated LLM-based judge pipeline. Our schema achieves high expert agreement (Cohen’s Kappa $\kappa > 0.8$), and our LLM judge demonstrates strong alignment with expert annotations ($\kappa > 0.7$).

108
 109 Table 1: Epistemic competencies and associated metrics. Each **competency** is quantified by a specific **metric**
 110 calculated from **annotated features** within the agent’s trace (shown in the rightmost column), enabling sys-
 111 tematic evaluation of reasoning quality, recovery behavior, and evidence-aligned decision-making.

111 Competency (Type)	112 Definition & Metric	113 Annotated feature(s)
114 Groundedness (Reasoning)	115 Generate reasoning steps directly supported by retrieved information. Metric: <i>Reasoning Quality Index</i> (RQI, Section 3.3.1)	116 InformationSynthesis / PlanFormation / StateAssessment / grounding
117 Recovery (Search)	118 Adaptively reformulate queries when initial search results are insufficient. Metric: <i>Evidence Recovery Function</i> (ERF, Section 3.3.2)	119 Initial / Repeat / FollowUp / Refined
120 Calibration (Answer)	121 Accurately assess whether the currently retrieved information is sufficient to answer the question. Metric: <i>Calibration Error</i> (CE, Section 3.3.3)	122 correct (final answer’s correctness)

123
 124 Figure 2: Overview of the **SeekBench** dataset and annotation schema. Each trace comprises multi-turn steps
 125 annotated for process-level evaluation. We categorize agent behaviors into three main types: (1) **Search steps**
 126 that retrieve information, (2) **Reasoning steps** that process evidence and guide the investigation, and (3) **Evi-
 127 dence steps** that capture the quality and clarity of retrieved information. This structured annotation approach
 128 enables systematic measurement of how well agents handle information throughout their reasoning process.

129
 130 2. **Operational framework and metrics.** We formalize an *evidence state* and three core *epis-
 131 temic competencies*—*evidence-grounded reasoning*, *evidence recovery*, and *calibrated answer-
 132 ing*—as measurable properties over agent traces.

133 3. **Experimental case study.** We apply our framework to RL agents tuned on Qwen2.5-7B across
 134 seven QA benchmarks (28,493 traces), finding that they excel at evidence gathering but struggle
 135 with reasoning. Standard accuracy metrics fail to reveal specific strengths between agents
 136 (e.g., Search-R1’s synthesis vs. Base model’s reasoning), which can be combined to enhance
 137 performance.

2 RELATED WORK

138 **Process-Level Reasoning Quality and Epistemic Competence.** A fundamental limitation of
 139 answer-only evaluation is the disconnect between final-answer accuracy and reasoning process quality.
 140 Recent work on *faithfulness*, defined as logical consistency of reasoning with respect to questions
 141 and retrieved evidence (Lee & Hockenmaier, 2025), reveals that models can achieve high accuracy
 142 despite unfaithful reasoning processes (Shen et al., 2025). Other approaches evaluate reasoning
 143 quality through causal analysis of question-reasoning-answer triples (Paul et al., 2024), alignment
 144 with golden reasoning chains (Li et al., 2024), and graph-based dependency modeling (Xiong et al.,
 145 2025; Nguyen et al., 2024; Mukherjee et al., 2025). For search agents that interact with external
 146 information sources, epistemic competence becomes essential for avoiding overconfidence, halluci-
 147 nation, and poor decision-making under uncertainty. However, none of the existing frameworks can
 148 capture these capabilities. Our framework addresses this gap by formalizing three core epistemic
 149 competencies (groundedness, recovery, and calibration) with precise mathematical definitions and
 150 large-scale evaluation protocols.

151 **Search Agent Evaluation.** Existing evaluations primarily prioritize final-answer metrics (exact
 152 match, F1, LLM-as-Judge) (Zhang et al., 2025b; Song et al., 2025; Zheng et al., 2025; Jin et al.,
 153 2025), neglecting the underlying epistemic processes. While some approaches examine intermediate
 154 steps—such as ground-truth tracking (Shi et al., 2025) or retrieval separation (Xi et al., 2025b)—they
 155 fail to assess critical epistemic competencies. **Final-answer metrics also fail to attribute performance**

162 sources, as (Shao et al., 2025) finds that RL-training tends to elicit existing reasoning behaviors
 163 rather than introducing new ones. This methodological limitation creates significant blind spots
 164 regarding agent reliability.

166 3 METHODOLOGY

168 To understand the information-seeking process of search agents, our framework connects observable
 169 behaviors with underlying competencies, which are then evaluated using quantitative metrics.
 170 First, we construct and validate an **annotation schema** that reliably labels observable behaviors
 171 in agent response traces, producing the expert-annotated dataset that we also use to calibrate LLM
 172 judges (Section 3.1). Second, we analyze these annotations to identify three **fundamental epistemic**
 173 **competencies** (Section 3.2). Finally, we translate the competency definitions into concrete **quantitative**
 174 **metrics** and apply them to annotated features, enabling systematic measurement of these
 175 underlying epistemic competencies at scale (Section 3.3). Our approach draws on established qualitative
 176 research principles from *Content Analysis* (Krippendorff, 2018), a systematic methodology for
 177 categorizing and interpreting patterns in data through rigorous coding procedures.

178 3.1 PHASE 1: OBSERVABLE FEATURES AND SCHEMA CONSTRUCTION

180 The foundation of our methodology is a robust annotation schema for systematically labeling *observable*
 181 *features* in agent response traces. Our development of **SeekBench**’s schema follows an
 182 iterative, data-driven approach, grounded in established qualitative research principles from *Content*
 183 *Analysis* (Krippendorff, 2018).

184 During the initial exploratory phase, we closely examined a variety of agent traces and documented
 185 the key behaviors we observed. We noted that even within the same type of steps, search agents can
 186 serve distinct **functions**, that is, specific cognitive or operational role that a step plays within the
 187 agent’s information-seeking process. For example, among the reasoning steps, some identified in-
 188 formation gaps, while others summarized retrieved findings or formulated plans for future searches.
 189 Similarly, search steps might function as initial exploration, targeted verification, or follow-up in-
 190 vestigation. Alongside these functions, we identified critical **failure patterns** in agents’ traces, such
 191 as reasoning without supporting evidence or executing repetitive search queries that failed to adapt.

192 From these observations, we developed an annotation schema (detailed in Appendix A’s Figure 9)
 193 for agent response steps with two key aspects:

- 194 • **Functional type** categorizing the step’s cognitive purpose, e.g., for reasoning steps, this in-
 195 cludes **InformationSynthesis** (evidence integration), **PlanFormation** (search strat-
 196 egy development), and **StateAssessment** (knowledge gap identification).
- 197 • **Quality attribute** evaluating epistemic soundness, such as whether reasoning is grounded in
 198 evidence. This structure captures both what the agent was doing and how well it was doing it.

199 We apply this schema to construct an expert-annotated validation dataset of 190 traces (Figure 2),
 200 which enables us to formalize three epistemic competencies and design quantitative metrics that
 201 systematically measure how annotated features map to underlying competencies (Table 1).

203 Following established *Content Analysis* methodology (Krippendorff, 2018), we rigorously enhanced
 204 schema robustness through *iterative refinement*. Using a setup comparable to previous works scaling
 205 from **human to LLM-based annotation** (Cemri et al., 2025), three expert annotators independently
 206 coded 190 agent traces across three rounds of annotation, with inter-annotator reliability measured
 207 using Cohen’s Kappa (κ) (Cohen, 1960). For features exhibiting low agreement ($\kappa < 0.5$), we either
 208 pruned features (when infrequent or ambiguous) or merged them (when conceptually overlapping).
 209 After this process, we reduced our initial 12 candidate annotation fields to 8 well-defined features
 210 with high interpretability and consistency across annotators. We confirm this schema generalizes to
 211 complex agents in Appendix M.

212 We further validated schema robustness using GPT-5 (OpenAI, 2025) to generate adversarial edge
 213 cases that expose boundary conditions (e.g., reasoning steps containing both factual claims and
 214 planning elements). This ensures the mutual exclusivity of our annotation definitions.

215 Finally, we evaluated the schema on reasoning traces using both human experts and state-of-the-art
 LLM judges with standardized prompts that provide clear annotation guidelines and consistent

216 Table 2: Examples of evidence states. $E = C + Q$, where $C \in \{0,1\}$ indicates clarity and $Q \in \{0,1\}$ 217 indicates sufficiency.218 **Question:** Who is the singer for the band Black Sabbath?

E	C	Q	Search Result	Explanation
0 (Poor)	0	0	Doc 1: The band's vocal slot has seen many . Doc 2: Black Sabbath's personnel list for vocals is long.	$C = 0$: text is vague and evasive. $Q = 0$: no names are given.
1 (Partial)	1	0	Doc 1: Black Sabbath is a famous heavy metal band from England. Doc 2: Tony Iommi is the guitar player for Black Sabbath.	$C = 1$: on-topic and easy to understand. $Q = 0$: does not name the singer.
1 (Partial)	0	1	Doc 1: The first singer for Black Sabbath was Ozzy Osbourne . Doc 2: Ronnie James Dio became the new singer for Black Sabbath.	$C = 0$: two singer names creates ambiguity. $Q = 1$: the names are present.
2 (Good)	1	1	Doc 1: Ozzy Osbourne is the original lead singer of Black Sabbath. Doc 2: The most famous singer for Black Sabbath is Ozzy Osbourne .	$C = 1$: the name is consistent. $Q = 1$: the singer is identified.

228 evaluation criteria (see Appendix D). The results demonstrate substantial agreement with human
 229 annotations (overall $\kappa = 0.811$), confirming the schema's interpretability and consistency. LLM
 230 judges achieved strong alignment with human experts: GPT-4.1-mini ($\kappa = 0.731$) and GPT-5
 231 ($\kappa = 0.754$). We further conducted a cost-effectiveness analysis, evaluating per-trace costs (token
 232 and time) across six LLM models. GPT-4.1-mini emerges as the most cost-effective solution,
 233 achieving strong human alignment ($\kappa = 0.731$) at minimal per-trace cost (\$0.0087 and 2.48s),
 234 making it optimal for large-scale deployment (see Appendix A for cost analysis details). This
 235 substantial agreement across multiple LLM models and human annotators confirms the schema's
 236 clarity and establishes a reliable foundation for large-scale evaluation through LLM judges.

237
 238

3.2 PHASE 2: LATENT CONSTRUCTS AND COMPETENCY DEFINITION

239 Our annotation analysis in Phase 1 revealed three distinct behavioral patterns in search agents: (1)
 240 variation in reasoning quality, with successful agents producing evidence-supported grounded
 241 reasoning while unsuccessful agents generated unsupported claims; (2) divergent strategies when
 242 facing poor search results, where effective agents adapted their search approach while ineffect-
 243 ive agents persisted with repetitive queries; and (3) differences in decision timing, where some
 244 agents responded prematurely with insufficient evidence while others appropriately withheld an-
 245 swers until sufficient evidence was gathered. To interpret these systematic behavioral differences,
 246 we apply *latent construct inference* (Cronbach & Meehl, 1955) and arrive at three theory-backed
 247 competencies that explain the observed patterns (Table 1): (1) **Groundedness** captures whether
 248 each reasoning step is faithful to retrieved evidence, extending faithfulness checks from final an-
 249 swers to intermediate traces (Lee & Hockenmaier, 2025); (2) **Recovery** measures how effectively
 250 an agent reformulates and adapts its search to move from insufficient to sufficient evidence, mir-
 251 roring information-foraging dynamics between exploration and query refinement (Piroli & Card,
 252 2005); (3) **Calibration** evaluates whether answer timing aligns with evidence sufficiency, draw-
 253 ing on metamemory research about calibrated confidence and appropriate abstention (Nelson, 1990;
 254 Ming et al., 2024). These three core competencies constitute **epistemic competence**—the essen-
 255 tial capability that enables search agents to reliably interact with external information sources. By
 256 systematically evaluating how agents seek, reason with, and make decisions based on retrieved evi-
 257 dence, our framework provides a *comprehensive* assessment of search agents' epistemic capabilities
 258 beyond traditional accuracy-based metrics.

259
 260

3.3 PHASE 3: COMPETENCY METRICS AND OPERATIONALIZATION

261 Following the concept of *construct validity* (Cronbach & Meehl, 1955) originally proposed in psy-
 262 chology, unobservable attributes (competencies) must be assessed through observable indicators
 263 (metrics) with demonstrated reliability and validity. In this section, we translated the three epistemic
 264 competencies in Phase 2 (defined in Table 1) into quantitative metrics. The validity of our metrics is
 265 twofold: (1) high inter-annotator agreement on the coded features (Phase 1), and (2) the correlation
 266 between evidence state (defined below) and answer accuracy (Section 4.4).

267 We begin by formally defining **evidence state** in Definition 3.1, which encodes the sufficiency and
 268 clarity of evidence retrieved at a turn (examples in Table 2). This provides the foundation for eval-
 269 uating all three epistemic competencies: (i) **groundedness** is assessed by determining whether rea-
 270 soning is supported by evidence (Section 3.3.1); (ii) **recovery** is measured by tracking improvements

270 in evidence quality through search (Section 3.3.2); and (iii) **calibration** is evaluated on whether the
 271 agent answers if and only if the evidence state is good (Section 3.3.3).
 272

273 **Definition 3.1 (Evidence State)** Let $C_{i,t}, Q_{i,t} \in \{0, 1\}$ denote the annotated clarity and
 274 quality (Appendix D.3) of the retrieved evidence at turn t of trace i , where: $C_{i,t} = 1$ if the
 275 evidence is clear (unambiguous and interpretable), and $Q_{i,t} = 1$ if the evidence is sufficient (con-
 276 tains enough information to address the query). Note that **quality** here specifically refers to
 277 **sufficiency** (whether the evidence contains enough information to answer the query), not a general
 278 **quality assessment**. The evidence state $E_{i,t} \in \{0, 1, 2\}$ is defined as:

$$279 \quad E_{i,t} := C_{i,t} + Q_{i,t}, \quad (2)$$

280 $E_{i,t} = 0$ denotes **poor** evidence (unclear and insufficient), $E_{i,t} = 1$ denotes **partial** evidence (either
 281 clear or sufficient), and $E_{i,t} = 2$ denotes **good** evidence (both clear and sufficient).
 282

283 3.3.1 GROUNDEDNESS

284 To evaluate whether an agent’s reasoning is verifiably supported by retrieved evidence, we assess
 285 the **groundedness** of each reasoning step via the grounding label. For each reasoning step at
 286 turn t in trace i , the binary grounding label $G_{i,t} \in \{0, 1\}$ indicates whether its factual content is
 287 supported by retrieved evidence.
 288

289 To investigate the impact of the functional types of the reasoning steps, each reasoning step
 290 is also assigned a type $C_{i,t} \in \{\text{IS, PF, SA}\}$, corresponding to `InformationSynthesis`,
 291 `PlanFormation`, or `StateAssessment` (Appendix D.1).

292 We formalize two metrics: the **model-level reasoning quality index (RQI)** (Definition 3.2) and the
 293 **type-level RQI** (Definition 3.3), both of which quantify groundedness by aggregating $G_{i,t}$ values
 294 and can be decomposed by the evidence state $E_{i,t}$.

295 **Definition 3.2 (Model-level Reasoning Quality Index (RQI))** Consider a fixed model evaluated
 296 on N traces with index set $\mathcal{I} := \{1, \dots, N\}$. For each trace i , let $S_i = \{1, \dots, T_i\}$ be the index set
 297 of reasoning steps. Then, the model-level RQI is the average of trace-level groundedness scores:

$$298 \quad \text{RQI}_{\text{model}} := \mathbb{E}_{i \in \mathcal{I}}[\text{RQI}_i]. \quad (3)$$

299 where $\text{RQI}_i = \mathbb{E}_{t \in S_i}[G_{i,t}]$,
 300

301 To better understand how reasoning quality depends on the strength of retrieved evidence, we de-
 302 compose the RQI with evidence state $E_{i,t}$:

$$303 \quad \text{RQI}_i = \sum_{k=0}^2 \underbrace{\mathbb{P}_{t \in S_i}(E_{i,t} = k)}_{\text{proportion of turns with evidence state } k} \times \underbrace{\mathbb{E}_{t \in S_i}[G_{i,t} \mid E_{i,t} = k]}_{\text{expected groundedness given } E_{i,t} = k} \quad (4)$$

307 Similarly, we can define the type-level RQI with reasoning type $c \in \{\text{IS, PF, SA}\}$:

308 **Definition 3.3 (Type-Level Reasoning Quality Index)** For each trace i and reasoning type
 309 $c \in \{\text{IS, PF, SA}\}$, let $S_i^{(c)} := \{t \in S_i : C_{i,t} = c\}$ denote the index set of steps of type c . The type-level
 310 RQI is the average of groundedness on type c :

$$312 \quad \text{RQI}_{\text{type}}^{(c)} := \mathbb{E}_{t \in S_i^{(c)}} [\text{RQI}_i^{(c)}], \quad (5)$$

313 where $\text{RQI}_i^{(c)} := \mathbb{E}_{t \in S_i^{(c)}}[G_{i,t}]$. This quantity admits an evidence-state decomposition analogous to
 314 the trace-level decomposition:

$$316 \quad \text{RQI}_i^{(c)} = \sum_{k=0}^2 \underbrace{\mathbb{P}_{t \in S_i^{(c)}}(E_{i,t} = k)}_{\text{prop. of reasoning type } c \text{ with evidence level } k} \times \underbrace{\mathbb{E}_{t \in S_i^{(c)}}[G_{i,t} \mid E_{i,t} = k]}_{\text{expected type } c \text{ groundedness given } E_{i,t} = k}. \quad (6)$$

320 3.3.2 RECOVERY

322 A fundamental challenge for LLM-based agents is recovering from information gaps or knowledge
 323 limitations, where initial queries yield insufficient information. Thus, an agent achieves high **recov-**
324 ery when it utilizes adaptive search strategies to quickly escape such states of poor evidence.

To capture this behavior, we use the evidence state $E_{i,t} \in \{0, 1, 2\}$ to track the sufficiency and clarity of retrieved information at each turn t in trace i . We define a *recovery event* (Equation (7)) as the first turn where the agent either (i) enters a high-evidence state ($E_{i,t} = 2$), or (ii) produces a correct answer. Formally:

$$T_{\text{recover},i} := \min \{t \in [1, T_i] : E_{i,t} = 2 \text{ or } \text{correct}_i = 1\}, \quad (7)$$

where correct_i indicates whether the agent’s final answer in trace i is correct.

To measure recovery behavior, we introduce the Evidence Recovery Function (ERF), which quantifies the cumulative proportion of traces that have successfully recovered by each turn:

Definition 3.4 (Evidence Recovery Function (ERF)) *Let N denote the total number of traces. The Evidence Recovery Function at turn t is defined as*

$$\text{ERF}(t) := \frac{1}{N} \sum_{i=1}^N \mathbb{I}(T_{\text{recover},i} \leq t), \quad (8)$$

where $\mathbb{I}(\cdot)$ is the indicator function. $\text{ERF}(t)$ measures the proportion of traces that have recovered by turn t .

3.3.3 CALIBRATION

We evaluate **calibration** as the agent’s ability to decide *when to answer* based on the quality of retrieved evidence. A well-calibrated agent should answer only when it has acquired evidence that is both clear (unambiguous and directly relevant) and sufficient (contains enough information to support a reliable answer).

Let $\text{answer}_{i,t} \in \{0, 1\}$ indicate whether the agent provides an answer at turn t of trace i . We assess calibration behavior by examining the answer rate conditioned on the evidence state:

$$\mathbb{P}(\text{answer}_{i,t} = 1 \mid E_{i,t} = k). \quad (9)$$

High values at $k = 0$ indicate *epistemic overconfidence*, where the agent answers prematurely with poor or partial evidence. Conversely, low values at $k = 2$ suggest *epistemic overcautiousness*, where the agent refrains from answering when the evidence is good.

To quantify calibration performance, we introduce **Calibration Error (CE)** that measures how much an agent’s answering behavior deviates from the ideal policy. The ideal policy is one that answers if and only if the evidence is good ($E_{i,t} = 2$), which maximizes expected accuracy while minimizing wasted effort. This metric captures both epistemic failures: overconfidence (answering with insufficient evidence) and overcautiousness (not answering despite having good evidence).

Definition 3.5 (Calibration Error (CE)) *Let $\mathcal{I} := \{1, \dots, N\}$ be the index set of traces. Let $\pi^*(k) := \mathbb{I}[k = 2]$ represent the ideal policy that answers if and only if evidence is sufficient. The CE for a model is defined as:*

$$\text{CE} := \mathbb{E}_{i \in \mathcal{I}}[\text{CE}_i] \quad (10)$$

where for each trace i , $\text{CE}_i := \sum_{k=0}^2 \mathbb{P}(E_{i,t}=k) |\mathbb{P}(\text{answer}_{i,t} = 1 \mid E_{i,t} = k) - \pi^*(k)|$.

For a perfectly calibrated agent following the ideal policy $\pi^*(k)$, it achieves $\text{CE} = 0$.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models & Datasets . We evaluate Qwen-2.5-7B-Instruct (“Base” for training, Qwen et al. (2024)), its few-shot prompted version (“Few-shot”), and state-of-the-art “RL-trained” agents **based on Qwen-2.5-7B-Instruct**, including: SEARCH-R1 (Jin et al., 2025), RESEARCH (Chen et al., 2025), ASEARCHER (Gao et al., 2025) and DEEPRESEARCHER (Zheng et al., 2025). **We also evaluate Chain-of-Thought (CoT) and ReAct prompting strategies, which show similar performance to Base (see Appendix F-I for details).**

We evaluate the agents on a diverse set of seven QA benchmarks: NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022) [single-hop]; HotpotQA (Yang et al.,

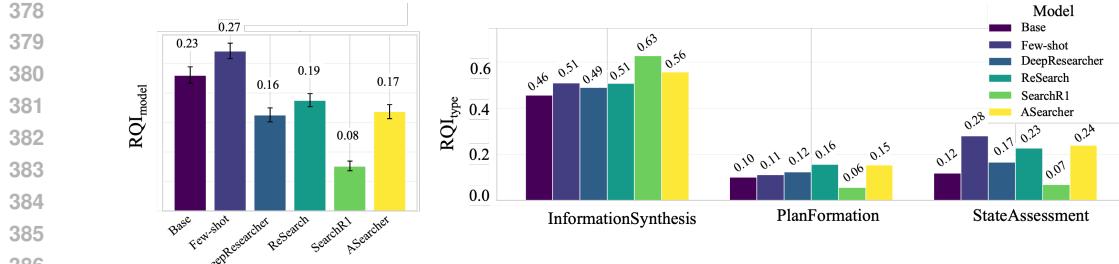


Figure 3: **RQI Analysis Summary.** *Left:* RQI by model level, showing the overall reasoning quality across different agent types. *Right:* RQI by reasoning type, revealing that models struggle most with plan formation and state assessment compared to information synthesis.

2018), 2Wiki (Ho et al., 2020), MusiQue (Trivedi et al., 2022), and Bamboogle (Press et al., 2022) [multi-hop]. Additionally, we evaluate search agents (32B ASearcher and WebSailor) on GAIA to assess epistemic competencies with web browsing capabilities (see Appendix K for details).

Each model runs and evaluates on the **sanitized** test datasets, where we remove ambiguous questions and data contamination cases to ensure evaluation quality; we also removed questions that can be answered by the internal knowledge of the evaluated models alone since **evidence state** (Section 3.3) should depend only on retrieved evidence (details for data sanitization in Appendix B). Our evaluation comprises 28,493 traces and 283,950 steps across all models and datasets. A comprehensive statistical analysis of the dataset composition and annotation distributions is provided in Appendix C. For this large-scale annotation, we employ GPT-4.1-mini, which demonstrates substantial alignment with human judgments under our validated schema.

Answer-level performance. Aggregate F1 ranking is ASEARCHER > Search-R1 > RESEARCH > Few-shot \approx DEEPRESEARCHER > Base (Appendix E). Our primary analysis moves beyond outcomes to assess *process-level epistemic competencies*: evidence grounding (Section 4.2), recovery dynamics (Section 4.3), and calibration (Section 4.4). We identify agent-specific competencies that drive performance gains and expose the overestimation of RL training (Section 4.5).

4.2 EVALUATING JUSTIFIED REASONING VIA EVIDENCE GROUNDING

A fundamental criterion of agent competence is not merely producing the correct answer, but doing so through a reasoning process *explicitly grounded in retrieved evidence*. To measure this, we utilize the Reasoning Quality Index (RQI, defined in Section 3.3.1), which quantifies the proportion of an agent’s reasoning steps that are supported by retrieved evidence.

RL Training Fails to Develop Evidence-Grounded Reasoning. Figure 3 (*Left*) presents the average RQI scores across models. Few-shot prompting achieves the highest reasoning quality (RQI = 0.27), outperforming all RL-trained agents. This reveals a *disconnect between answer-level success and reasoning groundedness*: RL training may optimize for correct final answers, but it fails to develop the epistemic reasoning skills to justify those answers with evidence-grounded reasoning.

Plan Formation and State Assessment Are Core Reasoning Failures. To understand where reasoning breaks down, we analyze performance by reasoning type (Figure 3, *Right*). Specifically,

- **Information Synthesis** emerges as a relative strength across models (e.g., ASEARCHER: 0.56), demonstrating agents’ proficiency in summarizing and restating retrieved information.
- **Plan Formation** constitutes the most significant weakness for all agents (consistently scoring below 0.2), highlighting fundamental difficulties in breaking down complex queries and formulating coherent search strategies.
- **State Assessment** shows notable improvement in few-shot models (0.28), suggesting enhanced metacognitive capabilities compared to their RL-trained counterparts.

For detailed analysis of evidence-conditioned reasoning quality across different evidence states and reasoning types, see Appendix F.

4.3 RECOVERY ANALYSIS

This section evaluates whether models can effectively recover from low-quality evidence through adaptive search strategies.

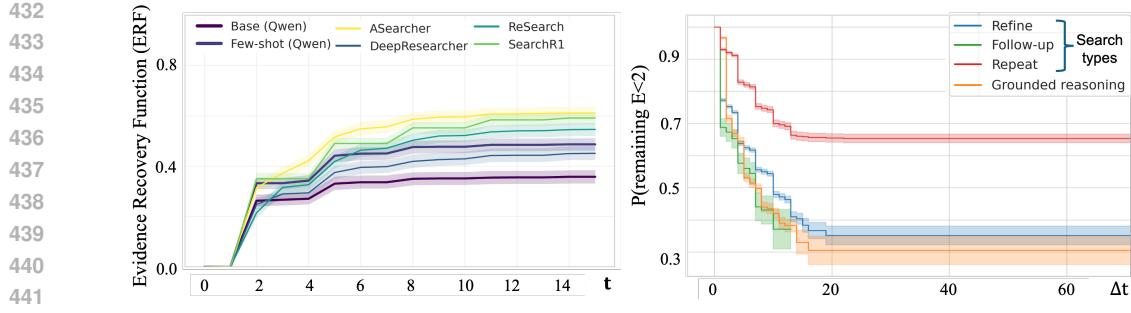


Figure 4: **Recovery Analysis.** *Left:* ERFs by model showing recovery from low to sufficient evidence ($E = 2$) as turn t increases. *Right:* Recovery efficiency by action type. Steeper curves indicate faster escape from low evidence states. REFINE and FOLLOW-UP enable fastest recovery, while REPEAT shows minimal improvement.

Recovery Competence with ERF. We first assess overall recovery competence using the Evidence Recovery Function (ERF, Equation (8)), which measures the cumulative probability of reaching sufficient evidence ($E = 2$) over time. As shown in Figure 4 (*Left*), ASEARCHER, which has the highest F1 score on answer correctness, shows superior recovery performance compared to other agents. In contrast, DEEPRESEARCHER, which has the lowest F1 among all RL-trained agents, shows the poorest recovery performance. This demonstrates that *effective algorithm design should prioritize developing adaptive evidence-seeking strategies so that agents can recover from insufficient evidence and improve final performance*.

Refine and Follow-up Search Strategies Drive Effective Recovery. To identify the *most effective search strategies* for recovery, we analyze how different action types affect recovery rates over time. We categorize all search and reasoning steps by their types. For each step t of a specific type in trace, we measure the proportion of turns remaining low evidence states ($E < 2$) at subsequent turns ($t + \Delta t$). Given the variable-length traces and resulting right-censored data (traces ending before recovery occurs—when observation periods end before the outcome), we employ Kaplan-Meier survival analysis (Kaplan & Meier, 1958), which provides robust estimation of recovery probabilities despite incomplete observations. As shown in Figure 4 (*Right*), survival curves reveal that REFINE and FOLLOW-UP strategies enable the fastest recovery from low-quality evidence, while REPEAT provides minimal benefit. Additionally, GROUNDED REASONING also effectively improves evidence utilization in responses.

4.4 EVIDENCE-ALIGNED CALIBRATION

This section evaluates whether models calibrate their answering behavior to the ideal policy, where they answer when and only when it has good evidence, avoiding both overconfidence (answering with poor evidence) and overcautiousness (failing to answer despite good evidence).

Evidence Quality Drives Answer Accuracy. We first validate that evidence quality correlates with answer accuracy. As shown in Figure 5, RL-trained models achieve 31.6% accuracy when answering with good evidence ($P(\text{correct}|\text{answer}, E = 2)$), compared to only 8.4% accuracy when answering without supporting evidence. This significant difference demonstrates that *evidence quality is positively associated with answer correctness*.

Interestingly, RL-trained models exhibit lower answering rates ($P(\text{answer}|E)$, formally defined in Equation 9) across all evidence states compared to base models. This suggests that RL training encourages models to be *more selective about when to provide final answers*, potentially reducing instances of overconfident responses.

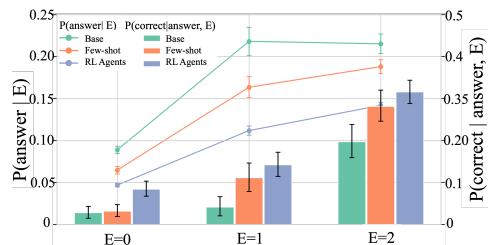


Figure 5: **Evidence State Drives Answer Probability and Accuracy.** Lines: Answer probability increases with evidence state. Bars: Answer accuracy improves with evidence state. RL-trained models show lower answering rate but higher accuracy with good evidence.

486 Table 3: **Calibration Error Analysis.** traces categorized as: calibration error, overconfident, or overcautious.
 487 Lower values indicate better calibration. RL-trained agents show the lowest overconfident answer rate and
 488 lowest CE. **Bold** indicates best performance.

489	Model	(1) Overconfident ↓	(2) Overcautious ↓	(3) Calibration Error ↓
490	Base	0.631	0.030	0.329
491	Few-shot	0.511	0.024	0.317
492	RL-trained	0.353	0.085	0.309

493
 494 To further understand the calibration behavior, we measure calibration quality using **calibration**
 495 **error** (CE, Equation (10)) and analyze two specific failure modes to identify where models fail:

496 (1) **Overconfident answering:** providing a final answer when the trace never reached good evi-
 497 dence state ($E_{i,t} < 2$ for all t), indicating overconfidence;
 498 (2) **Overcautious abstention:** failing to provide a final answer despite having reached good evi-
 499 dence state ($E_{i,t} = 2$), indicating underconfidence.

500 **RL Training Improves Calibration.** As summarized in Table 3, RL-trained models show substan-
 501 tial improvements in calibration behavior. They reduce overconfident answering from 63.1% to
 502 35.3% and achieve the lowest overall calibration error (0.309). This demonstrates that RL train-
 503 ing successfully teaches models to align their answering decisions with evidence quality, moving
 504 toward the ideal policy of answering only when evidence is sufficient. This finding contrasts with
 505 the earlier result that RL training degrades reasoning groundedness (Section 4.2), highlighting the
 506 *competency-specific nature* of RL training effects. For detailed analysis of individual RL-trained
 507 agents and evidence-conditioned answer timing patterns, see Appendix H.

508 4.5 EXPLOITING EPISTEMIC COMPETENCIES FOR PERFORMANCE GAINS

510 Our evaluation reveals distinct agent specializations: ASEARCHER excels in *evidence acquisition*
 511 and *recovery mechanisms* (highest overall F1 score), while SEARCH-R1 demonstrates superior
 512 **information synthesis** (RQI=0.63 for information synthesis) with **minimal overconfident answer-
 513 ing** (see Section 4.4 and Appendix H). **These differences are primarily driven by training objectives:**
 514 **SEARCH-R1 optimizes only for final answer correctness, achieving high accuracy** (Jin et al., 2025)
 515 **but sacrificing reasoning groundedness** (Section 4.2), while ASEARCHER emphasizes data synthesis
 516 with failure and recovery strategies to teach adaptive re-planning (Gao et al., 2025), leading to
 517 **superior evidence acquisition and recovery capabilities** (Section 4.3). This motivates us to explore
 518 *agent synthesis*—using one agent’s evidence collection as input for another’s answer generation.

519 We provided agents with reasoning traces and evidence from others, then measured F1 score im-
 520 provements. SEARCH-R1 emerges as the **most effective synthesizer** (+2.61 F1 on average), sig-
 521 nificantly outperforming other agents (see details in Appendix I). Surprisingly, Base achieved the
 522 highest F1 gains (+2.42 on average) when paired with other models for answer generation. This re-
 523 veals that accuracy-only evaluation may **underestimate** Base’s reasoning abilities while overstating
 524 the gains from RL training.

525 Our method reveals distinct agent profiles by systematically benchmarking their epistemic com-
 526 petencies, for example, SEARCH-R1’s synthesis strength and conservative answering. These insights
 527 provide a reliable foundation for designing effective systems that capitalize on complementary agent
 528 strengths. **Furthermore, we demonstrate that our epistemic competency framework can provide**
 529 **actionable inference-time feedback signals, achieving 8.4% F1 improvement on ASEARCHER-7B**
 530 **without training (see Appendix J).** Overall, beyond outcome-based metrics, our approach delivers
 531 procedural evaluation that enables more interpretable assessments of agent competence.

532 5 CONCLUSION

533 **SeekBench** evaluates epistemic competence in LLM search agents through expert-annotated traces,
 534 revealing gaps in current evaluation approaches. Our evidence state framework and metrics (RQI,
 535 ERF, CE) uncovers agent-specific strengths masked by accuracy-only evaluation: Search-R1 excels
 536 at evidence synthesis, while Base models demonstrate stronger reasoning capabilities than accuracy
 537 metrics suggest. This work establishes epistemic competence as essential for developing reliable
 538 information-seeking agents. Future work should explore modular architectures combining comple-
 539 **mentary strengths and training approaches that improve reasoning alongside answer calibration.**

540
Ethics Statement. This research evaluates LLM search agents using publicly available datasets and
 541 involves only expert annotation of agent traces. Our framework aims to improve AI system reliability
 542 and transparency for developing more trustworthy information-seeking agents. The **SeekBench**
 543 dataset will be released with appropriate documentation while respecting licensing terms.

544
Reproducibility Statement. To ensure reproducibility of our findings, we provide comprehensive
 545 documentation of our methodology and evaluation framework. Our annotation schema and inter-
 546 annotator agreement analysis (Appendix A) establish the reliability of our epistemic competency
 547 measurements, with Cohen’s $\kappa = 0.811$ for human annotators and strong LLM-judge alignment
 548 ($\kappa \geq 0.693$). The complete annotation guidelines and evaluation prompts are detailed in Ap-
 549 pendix D, enabling replication of our step-level reasoning quality assessments. Our three core met-
 550 rrics—Reasoning Quality Index (RQI), Evidence Recovery Function (ERF), and Calibration Error
 551 (CE)—are formally defined with mathematical specifications in Section 3.3. The evaluation spans
 552 seven established QA benchmarks (NQ, TriviaQA, PopQA, HotpotQA, 2Wiki, MusiQue, Bam-
 553 boogle) with 28,493 traces and 283,950 annotated steps across six agent variants (Qwen-2.5-7B-
 554 Instruct and few-shot, Search-R1, ReSearch, ASearcher, DeepResearcher). Data sanitization pro-
 555 cedures to remove ambiguous questions and contamination cases are documented in Appendix B. All
 556 experimental results, including detailed agent-specific breakdowns and evidence-conditioned anal-
 557 yses, are provided in the main text and appendix. The **SeekBench** dataset of 190 expert-annotated
 558 traces with over 1,800 response steps will be made available as supplementary material, along with
 559 our annotation schema and evaluation code to enable community replication and extension of our
 560 epistemic competence framework.

561 **REFERENCES**

562
 563 Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
 564 Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
 565 systems fail? *arXiv preprint arXiv:2503.13657*, 2025.

566
 567 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
 568 Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
 569 ment learning. *arXiv preprint arXiv:2503.19470*, 2025.

570
 571 Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and psychological mea-*
 572 *surement*, 20(1):37–46, 1960.

573
 574 Lee J Cronbach and Paul E Meehl. Construct validity in psychological tests. *Psychological bulletin*,
 575 52(4):281, 1955.

576
 577 Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
 578 Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. *arXiv*
preprint arXiv:2508.07976, 2025.

579
 580 Jeffrey A Greene, William A Sandoval, and Ivar Bråten. An introduction to epistemic cognition. In
Handbook of epistemic cognition, pp. 1–16. Routledge, 2016.

581
 582 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 583 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 584 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

585
 586 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 587 qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*,
 2020.

588
 589 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 590 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
preprint arXiv:2412.16720, 2024.

591
 592 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 593 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 learning. *arXiv preprint arXiv:2503.09516*, 2025.

594 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 595 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.
 596

597 Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. *Journal
 598 of the American statistical association*, 53(282):457–481, 1958.

599 Klaus Krippendorff. *Content analysis: An introduction to its methodology*. Sage publications, 2018.
 600

601 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 602 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 603 benchmark for question answering research. *Transactions of the Association for Computational
 604 Linguistics*, 7:453–466, 2019.

605 Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey. *arXiv preprint
 606 arXiv:2502.12289*, 2025.

607

608 Kuan Li, Zhongwang Zhang, Huirong Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 609 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 610 agent. *arXiv preprint arXiv:2507.02592*, 2025a.

611

612 Kuan Li, Zhongwang Zhang, Huirong Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 613 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 614 agent. *arXiv preprint arXiv:2507.02592*, 2025b.

615 Ruosen Li, Zimu Wang, Son Tran, Lei Xia, and Xinya Du. Meqa: A benchmark for multi-hop
 616 event-centric question answering with explanations. *Advances in Neural Information Processing
 617 Systems*, 37:126835–126862, 2024.

618

619 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 620 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
 621 International Conference on Learning Representations*, 2023.

622

623 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 624 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 625 memories. *arXiv preprint arXiv:2212.10511*, 2022.

626

627 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 628 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 629 Representations*, 2023.

630

631 Yifei Ming, Senthil Purushwalkam, Shrey Pandit, Zixuan Ke, Xuan-Phi Nguyen, Caiming Xiong,
 632 and Shafiq Joty. Faitheval: Can your language model stay faithful to context, even if “the moon
 633 is made of marshmallows”. *arXiv preprint arXiv:2410.03727*, 2024.

634

635 Sagnik Mukherjee, Abhinav Chinta, Takyung Kim, Tarun Anoop Sharma, and Dilek Hakkani
 636 Tur. Premise-augmented reasoning chains improve error identification in math reasoning with
 637 LLMs. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=4tYckHNvXV>.

638

639 Thomas O Nelson. Metamemory: A theoretical framework and new findings. In *Psychology of
 640 learning and motivation*, volume 26, pp. 125–173. Elsevier, 1990.

641

642 Minh-Vuong Nguyen, Linhao Luo, Fatemeh Shiri, Dinh Phung, Yuan-Fang Li, Thuy-Trang Vu, and
 643 Gholamreza Haffari. Direct evaluation of chain-of-thought in multi-hop reasoning with knowl-
 644 edge graphs. *arXiv preprint arXiv:2402.11199*, 2024.

645

646 Xuan-Phi Nguyen, Shrey Pandit, Revanth Gangi Reddy, Austin Xu, Silvio Savarese, Caiming Xiong,
 647 and Shafiq Joty. Sfr-deepresearch: Towards effective reinforcement learning for autonomously
 648 reasoning single agents. *arXiv preprint arXiv:2509.06283*, 2025.

649

650 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>,
 651 2025.

648 Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measur-
 649 ing and improving faithfulness of chain-of-thought reasoning. *arXiv preprint arXiv:2402.13950*,
 650 2024.

651

652 P Pirolli and SK Card. The sensemaking process and leverage points for analyst technology as iden-
 653 tified through cognitive task analysis, proceedings of the international conference on intelligence
 654 analysis. 2005.

655

656 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 657 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 658 2022.

659

660 A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
 661 H Wei, et al. Qwen2. 5 technical report. *arXiv preprint*, 2024.

662

663 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
 664 Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
 665 signals in rlvr. *arXiv preprint arXiv:2506.10947*, 2025.

666

667 Xu Shen, Song Wang, Zhen Tan, Laura Yao, Xinyu Zhao, Kaidi Xu, Xin Wang, and Tianlong Chen.
 668 Faithcot-bench: Benchmarking instance-level faithfulness of chain-of-thought reasoning. *arXiv
 669 preprint arXiv:2510.04040*, 2025.

670

671 Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, and Xiang
 672 Wang. Search and refine during think: Autonomous retrieval-augmented reasoning of llms. *arXiv
 673 preprint arXiv:2505.11277*, 2025.

674

675 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 676 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 677 learning. *arXiv preprint arXiv:2503.05592*, 2025.

678

679 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 680 questions via single-hop question composition. *Transactions of the Association for Computational
 681 Linguistics*, 10:539–554, 2022.

682

683 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 684 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 685 neural information processing systems*, 35:24824–24837, 2022.

686

687 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 688 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 689 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

690

691 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
 692 Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal.
 693 *arXiv preprint arXiv:2501.07572*, 2025.

694

695 Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen Liu,
 696 Yong Yu, and Weinan Zhang. A survey of llm-based deep search agents: Paradigm, optimization,
 697 evaluation, and challenges. *arXiv preprint arXiv:2508.05668*, 2025a.

698

699 Yunjia Xi, Jianghao Lin, Menghui Zhu, Yongzhao Xiao, Zhuoying Ou, Jiaqi Liu, Tong Wan,
 700 Bo Chen, Weiwen Liu, Yasheng Wang, et al. Infodeepseek: Benchmarking agentic information
 701 seeking for retrieval-augmented generation. *arXiv preprint arXiv:2505.15872*, 2025b.

702

703 Zhen Xiong, Yujun Cai, Zhecheng Li, and Yiwei Wang. Mapping the minds of llms: A graph-based
 704 analysis of reasoning llm. *arXiv preprint arXiv:2505.13890*, 2025.

705

706 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 707 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 708 answering. *arXiv preprint arXiv:1809.09600*, 2018.

702 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
703 React: Synergizing reasoning and acting in language models. In *International Conference on*
704 *Learning Representations (ICLR)*, 2023.

705 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
706 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
707 for llms: A survey. *arXiv preprint arXiv:2509.02547*, 2025a.

708 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
709 Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
710 language models. *arXiv preprint arXiv:2309.01219*, 2023.

711 Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Xinyan Wen, and Jitao Sang. Agent models: Internaliz-
712 ing chain-of-action generation into reasoning models. *arXiv preprint arXiv:2503.06580*, 2025b.

713 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
714 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
715 ments. *arXiv preprint arXiv:2504.03160*, 2025.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Related Work	3
762		
763	3 Methodology	4
764		
765	3.1 Phase 1: Observable Features and Schema Construction	4
766	3.2 Phase 2: Latent Constructs and Competency Definition	5
767	3.3 Phase 3: Competency Metrics and Operationalization	5
768	3.3.1 Groundedness	6
769	3.3.2 Recovery	6
770	3.3.3 Calibration	7
771		
772		
773		
774	4 Experiments	7
775		
776	4.1 Experimental Setup	7
777	4.2 Evaluating Justified Reasoning via Evidence Grounding	8
778	4.3 Recovery Analysis	8
779	4.4 Evidence-Aligned Calibration	9
780	4.5 Exploiting Epistemic Competencies for Performance Gains	10
781		
782		
783	5 Conclusion	10
784		
785	A Inter-Annotator Agreement Analysis	17
786		
787	B Data Sanitization	18
788		
789	C Dataset Statistics	19
790		
791	C.1 Dataset Construction	19
792	C.2 Large-Scale Evaluation Dataset	19
793		
794	D LLM-as-Judge for SeekBench	21
795		
796	D.1 Reasoning Type Annotation and Grounding Evaluation	21
797	D.2 Search Behavior Annotation	23
798	D.3 Search Result Quality Assessment	23
799		
800	E Accuracy-level performance	24
801		
802	F Evidence-Grounded Reasoning Analysis	24
803		
804	F.1 Evidence-Aligned Reasoning: Do Agents Ground Their Inference in What They Know?	24
805	F.2 Type-Specific Evidence Alignment: Which Reasoning Skills Are Evidence-Grounded?	25
806		
807	G Recovery Analysis	26
808		
809	H Evidence Calibration Analysis	27

810	I Agent Synthesis: Leveraging Epistemic Competencies for Answer Generation	28
811		
812	J Inference-Time Feedback Using Epistemic Competencies	30
813		
814	K Evaluation on GAIA	30
815		
816	L Discussion: Understanding Metric Trade-offs	31
817		
818	M Extended Validation: Generalizability Across Diverse Tools and Models	31
819		
820	N Use of Large Language Models	33
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

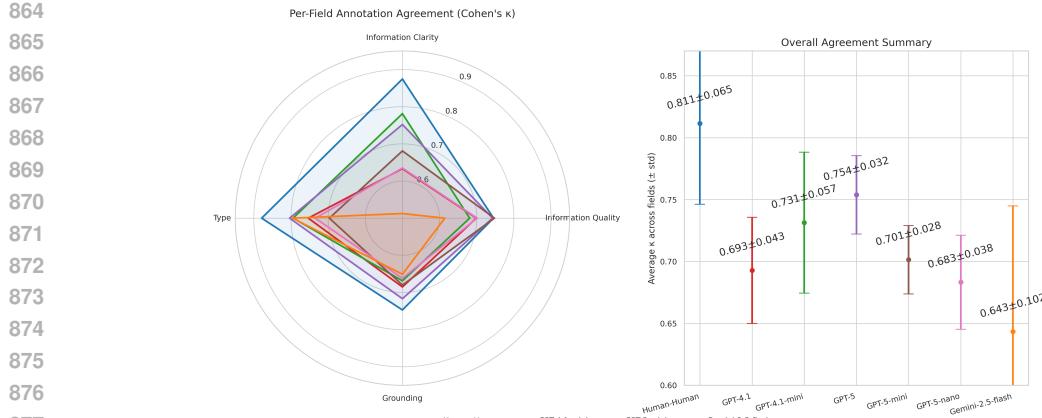


Figure 6: Inter-annotator agreement for **SeekBench**. (Left) Per-field annotation agreement across different competency dimensions. (Right) Average Cohen’s κ comparing human annotators with GPT-4.1, GPT-4.1-mini, and GPT-5, demonstrating strong alignment between expert human judgments and advanced LLM assessments.

A INTER-ANNOTATOR AGREEMENT ANALYSIS

Annotation Schema Overview. Our annotation schema (Figure 9) provides a structured framework for labeling agent traces, capturing both the functional role and epistemic quality of each step. The schema consists of two key dimensions: (1) **Functional Type**, which categorizes the cognitive purpose of reasoning and search steps (e.g., `StateAssessment`, `PlanFormation`, `InformationSynthesis` for reasoning; `InitialQuery`, `RefinedQuery`, `FollowUpQuery`, `RepeatQuery` for search), and (2) **Quality Attribute**, which evaluates epistemic soundness (e.g., `Groundedness` for reasoning, `Quality` and `Clarity` for search results, `Correctness` for final answers). This dual-dimensional structure enables comprehensive process-level evaluation by capturing both *what* agents are doing and *how well* they are doing it. The schema’s reliability, as measured through inter-annotator agreement, establishes the foundation for our epistemic competence evaluation framework.

Per-Field Agreement Analysis. The left panel of Figure 6 demonstrates robust inter-annotator agreement across all four annotation fields. The **Functional Type** field achieves the highest agreement ($\kappa > 0.8$), indicating that annotators can reliably distinguish between different reasoning purposes (e.g., `Information Synthesis` vs. `Plan Formation`). The **Quality Attribute** field shows similarly strong agreement ($\kappa > 0.75$), confirming that evaluative judgments of epistemic soundness are consistently interpretable across annotators. These results establish that our schema captures meaningful, distinguishable patterns in agent reasoning behavior rather than subjective interpretations.

Human-LLM Alignment Assessment. The right panel reveals substantial alignment between human expert judgments and LLM assessments across all three evaluated models. Human annotators achieve the highest overall agreement ($\kappa = 0.811$), establishing the reference standard for annotation quality. Among LLM judges, GPT-5 demonstrates the strongest alignment with human experts ($\kappa = 0.754$), followed by GPT-4.1-mini ($\kappa = 0.731$) and GPT-4.1 ($\kappa = 0.693$). This progressive improvement across model versions suggests that more advanced language models can better approximate human reasoning patterns in epistemic evaluation tasks.

Cost-Effectiveness Analysis for LLM Judges. To evaluate the practical deployment of LLM-as-judge systems, we analyze the trade-off between annotation quality (measured by inter-annotator agreement, IAA) and per-trace cost (combining token cost and time cost) across six language models. Table 4 provides detailed per-trace cost and IAA metrics for all evaluated models. Figure 7 presents a Pareto frontier analysis, identifying models that achieve optimal balance between cost

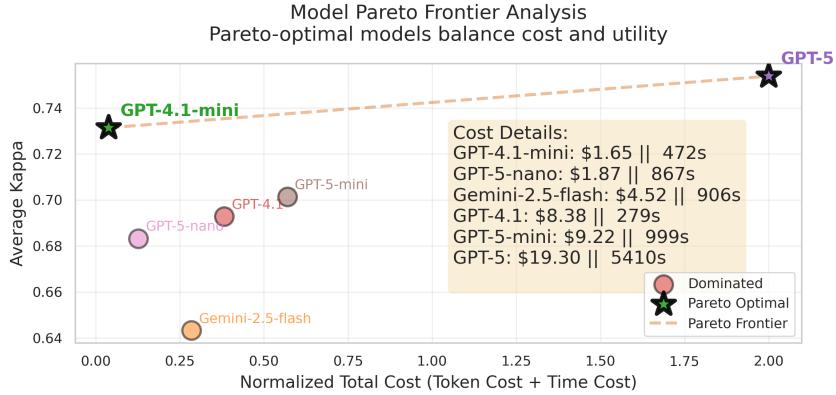


Figure 7: Model Pareto Frontier Analysis. Trade-off between normalized per-trace cost (x-axis) and average Cohen’s κ (y-axis) across language models. The x-axis is computed by min-max normalizing token and time costs per trace separately to $[0, 1]$, then summing with equal weight. GPT-4.1-mini and GPT-5 lie on the Pareto frontier, with GPT-4.1-mini offering optimal cost-effectiveness for large-scale deployment.

and utility. Our evaluation reveals that **GPT-4.1-mini** emerges as the **most cost-effective solution**, achieving strong human alignment ($IAA = 0.731 \pm 0.057$) at minimal per-trace cost (\$0.0087 and 2.48s), positioning it on the Pareto frontier alongside GPT-5. While GPT-5 achieves the highest agreement ($\kappa = 0.754 \pm 0.032$), its substantially **higher per-trace cost** (\$0.1016 and 28.47s) makes it less suitable for large-scale deployment. These results establish GPT-4.1-mini as the optimal choice for scalable evaluation frameworks that require both high-quality annotations and economic feasibility.

Table 4: Per-trace cost and Inter-Annotator Agreement (IAA) for LLM Judges on 190 sampled traces. Token cost (in USD\$ per trace), time cost (in seconds per trace), and IAA measured as Cohen’s κ with standard deviation. Models marked with \dagger are Pareto-optimal.

Model	Token Cost (\$/trace)	Time Cost (s/trace)	IAA ($\kappa \pm \text{std}$)
GPT-4.1-mini \dagger	0.0087	2.48	0.731 ± 0.057
GPT-5-nano	0.0098	4.56	0.683 ± 0.038
Gemini-2.5-flash	0.0238	4.77	0.643 ± 0.102
GPT-4.1	0.0441	1.47	0.693 ± 0.043
GPT-5-mini	0.0485	5.26	0.791 ± 0.028
GPT-5 \dagger	0.1016	28.47	0.754 ± 0.032

Implications for Large-Scale Evaluation. These agreement results establish the feasibility of deploying our annotation framework for comprehensive agent evaluation. The strong human-LLM alignment enables cost-effective scaling of our evaluation methodology, while the robust per-field agreement ensures that competency assessments reflect genuine behavioral differences rather than annotation artifacts. This validation is particularly crucial for our three core competencies (Groundedness, Recovery, and Calibration), as it confirms that these constructs can be reliably measured across diverse reasoning traces and evaluators.

B DATA SANITIZATION

To ensure the quality of our evaluation, we sanitize the test sets of our seven benchmark datasets using the following two criteria:

(1) **Ambiguous or Unanswerable Questions.** We discard questions where benchmark agents receive full credit for speculative answers, while a stronger reference model (GPT-4.1-mini) abstains with a justified explanation. For example, in response to the question “Who developed the CPU?”, a benchmark agent might confidently output “John von Neumann”, achieving EM=1. In contrast, GPT-4.1-mini responds: “Answer: I don’t know; Reason: The information mentions figures like

972 John von Neumann and J. Presper Eckert, but does not identify a single developer.” These ques-
 973 tions are excluded to avoid rewarding superficial matching over careful reasoning.
 974

975 (2) **Data Contamination.** We discard questions where agents succeed (Pass@3) without issuing any
 976 search queries, as this indicates the question is likely part of the model’s pre-training data. These
 977 are removed to focus evaluation on retrieval-dependent reasoning.
 978

979 C DATASET STATISTICS

980 C.1 DATASET CONSTRUCTION

981 To validate our annotation schema and establish LLM-as-judge feasibility, we constructed an expert-
 982 annotated validation dataset of 190 traces. We sampled traces from the seven agents and seven QA
 983 benchmarks described in our experimental setup (Section 4.1). For each agent-dataset combination,
 984 we selected 2 correct and 2 incorrect answer traces, targeting an ideal sample size of $7 \times 7 \times$
 985 4 = 196 traces. The final dataset contains 190 traces (6 fewer than ideal) because some traces,
 986 particularly from single-hop QA datasets, lack multiple search queries. We prioritize multi-query
 987 traces because our framework focuses on **process-level analysis** to evaluate how agents reason,
 988 adapt search strategies, and make decisions across multiple steps. This sampling strategy ensures
 989 our validation dataset captures the epistemic behaviors our framework is designed to assess.
 990

991 C.2 LARGE-SCALE EVALUATION DATASET

992 This section provides a comprehensive statistical analysis of the evaluation dataset, which comprises
 993 28,493 traces across seven question-answering benchmarks. Figure 8 presents six complementary
 994 views of the dataset composition and annotation distributions, revealing key characteristics that in-
 995 form our epistemic competency evaluation.
 996

1000 **Dataset Composition.** The evaluation dataset spans seven established question-answering bench-
 1001 marks, providing diverse coverage of both single-hop and multi-hop reasoning tasks. As shown in
 1002 Figure 8 (*top-left*), the dataset distribution is relatively balanced across sources: **PopQA** (28.9%)
 1003 and **MusiQue** (26.3%) constitute the largest portions, followed by **HotpotQA** (12.5%) and **2Wiki-
 1004 MultihopQA** (12.5%). **TriviaQA** (7.6%) and **NQ-Search** (7.6%) contribute smaller but substantial
 1005 portions, while **Bamboogle** (4.6%) provides the smallest contribution. This distribution ensures that
 1006 our evaluation framework is tested across diverse question types, from factual single-hop queries to
 1007 complex multi-hop reasoning tasks requiring information synthesis across multiple sources.
 1008

1009 **Information Quality and Clarity.** The quality and clarity of retrieved evidence are fundamental
 1010 to evaluating epistemic competence, as they directly determine the evidence state $E_{i,t}$ used in our
 1011 metrics. Figure 8 (*top-middle* and *top-right*) reveals critical challenges in the information landscape
 1012 that agents must navigate:
 1013

- 1014 • **Information Clarity:** A substantial majority of search results (62.5%, 48,134 instances) are
 1015 categorized as **unclear**, meaning they contain ambiguous, vague, or confusing information that
 1016 could match multiple entities or interpretations. Only 37.5% (28,905 instances) are classified
 1017 as **clear**, indicating straightforward, unambiguous information. This distribution highlights
 1018 the prevalence of ambiguous search results in information-seeking scenarios, emphasizing the
 1019 importance of agents’ ability to *handle uncertainty* and *adapt their search strategies*.
 1020
- 1021 • **Information Quality:** The distribution of information sufficiency is nearly balanced, with
 1022 52.7% (40,559 instances) classified as **insufficient** and 47.3% (36,402 instances) as **sufficient**.
 1023 This near-even split reflects the inherent difficulty of information-seeking tasks, where initial
 1024 queries often fail to retrieve complete answers, requiring agents to demonstrate *recovery capa-*
 1025 *bilities* through adaptive search refinement.

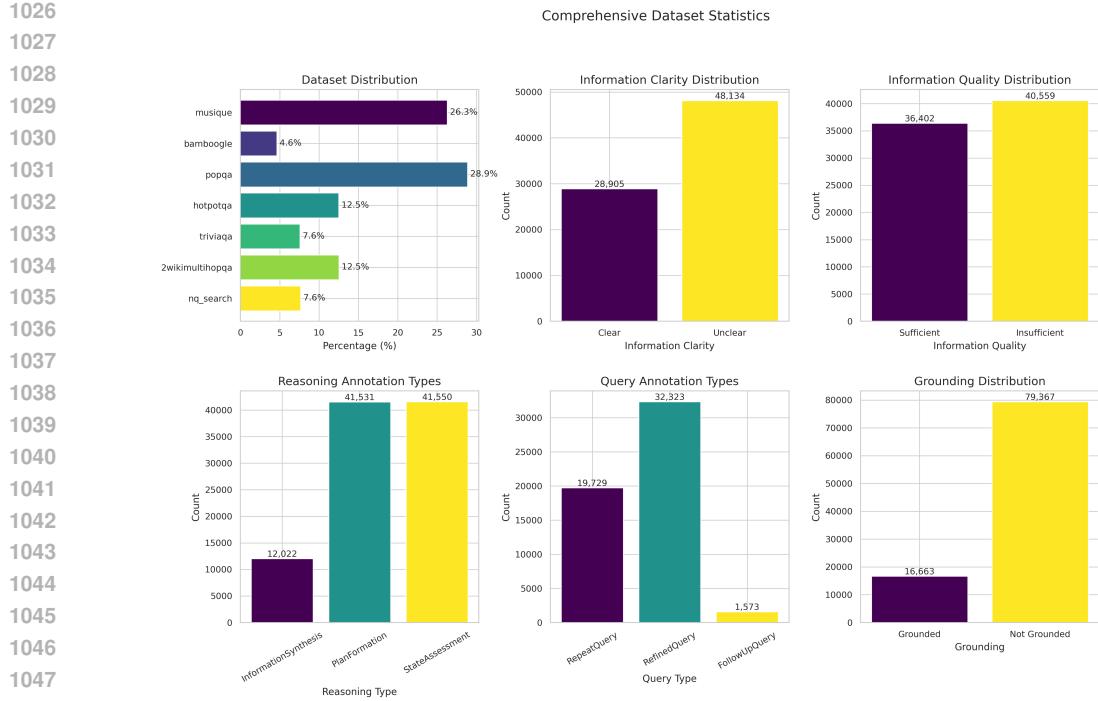


Figure 8: Comprehensive Dataset Statistics. (Top-left:) Distribution of traces across seven QA benchmarks, showing the relative contribution of each dataset. (Top-middle:) Information clarity distribution, categorizing search results as clear or unclear. (Top-right:) Information quality distribution, indicating whether retrieved evidence is sufficient or insufficient. (Bottom-left:) Distribution of reasoning annotation types across all reasoning steps. (Bottom-middle:) Distribution of query annotation types across all search steps. (Bottom-right:) Grounding distribution, showing the proportion of reasoning steps that are grounded versus not grounded in retrieved evidence.

Reasoning Type Distribution. Our annotation schema categorizes reasoning steps into three functional types that capture distinct cognitive processes in information-seeking. Figure 8 (bottom-left) shows that **Plan Formation** (41,531 instances, 43.7%) and **State Assessment** (41,550 instances, 43.7%) dominate the reasoning landscape, with nearly identical frequencies. These two types together account for 87.4% of all reasoning steps, indicating that agents spend substantial effort on metacognitive processes: identifying knowledge gaps (State Assessment) and formulating search strategies (Plan Formation). In contrast, **Information Synthesis** (12,022 instances, 12.6%) represents a smaller but critical component, where agents integrate retrieved evidence to form conclusions. This distribution reveals that effective information-seeking requires sophisticated planning and self-monitoring capabilities, not merely the ability to synthesize information once it is retrieved.

Query Type Distribution. Search behavior analysis reveals how agents adapt their information-seeking strategies. Figure 8 (bottom-middle) shows that **RefinedQuery** (32,323 instances, 60.3%) is the most common query type, demonstrating that agents frequently modify their search approach based on previous results. This adaptive behavior is essential for recovery from poor initial evidence. **RepeatQuery** (19,729 instances, 36.8%) represents a substantial portion of search behavior, indicating that agents sometimes persist with similar queries, which may reflect either strategic refinement or ineffective adaptation. **FollowUpQuery** (1,573 instances, 2.9%) is relatively rare, suggesting that agents infrequently employ exploratory follow-up questions that diverge from their primary search trajectory. This distribution underscores the importance of query refinement as a core mechanism for evidence recovery, while also highlighting the potential for improving agents' exploratory search capabilities.

1080
 1081 **Grounding Distribution.** The grounding analysis evaluates whether reasoning steps are supported
 1082 by retrieved evidence, which is central to the **Groundedness** competency. Figure 8 (*bottom-*
 1083 *right*) reveals a critical finding: only 17.3% (16,663 instances) of reasoning steps are classified as
 1084 **grounded**, while 82.7% (79,367 instances) are **not grounded**. This substantial imbalance indicates
 1085 that the majority of agent reasoning steps lack direct support from retrieved evidence, representing
 1086 a fundamental epistemic challenge. This finding aligns with our RQI analysis (Section 4.2). The
 1087 prevalence of ungrounded reasoning highlights the critical need for evaluation frameworks that as-
 1088 sess **epistemic competence** beyond answer-level accuracy, as agents may produce correct answers
 1089 through epistemically unsound reasoning processes.

1090
 1091 **Implications for Epistemic Competence Evaluation.** These statistical patterns reveal several key
 1092 insights that inform our evaluation framework. First, the high proportion of unclear and insufficient
 1093 evidence (62.5% unclear, 52.7% insufficient) establishes a challenging information landscape where
 1094 agents must demonstrate *robust recovery capabilities*. Second, the dominance of **PlanFormation**
 1095 and **StateAssessment** reasoning types (87.4% combined) suggests that metacognitive capabilities
 1096 are central to effective information-seeking, yet our RQI analysis reveals these are precisely the
 1097 reasoning types where agents struggle most. Third, the overwhelming prevalence of ungrounded rea-
 1098 soning (82.7%) confirms that evidence-grounded reasoning is a critical competency gap that current
 1099 agents fail to address, validating the necessity of process-level evaluation frameworks like **Seek-
 1100 Bench**.

1101 D LLM-AS-JUDGE FOR **SEEKBENCH**

1102
 1103 This section presents the comprehensive LLM-as-judge used in **SeekBench** to evaluate agent rea-
 1104 soning, search behavior, and answer quality. The schema is organized into: reasoning types with
 1105 grounding evaluation, search behavior, search result quality.

1106 1107 D.1 REASONING TYPE ANNOTATION AND GROUNDING EVALUATION

1108
 1109 The reasoning annotation schema categorizes agent reasoning steps into four functional types and
 1110 evaluates their grounding. This comprehensive evaluation helps identify both the cognitive function
 1111 of reasoning steps and whether they are properly supported by evidence.

1112 Reasoning Type Classification and Grouding Evaluation

1113
 1114 You are an expert cognitive scientist and evidence-based critical thinking expert. Your task
 1115 is to classify the reasoning type of an agent's step and evaluate its grounding based *only*
 1116 on the evidence it had at the time.

1117 Context: The Agent's Goal (Original Question):

1118 {question}

1119 Evidence: The Search Results the Agent Had Access To:

1120 {search_evidence_json}

1121 Agent's Reasoning Text to Analyze:

1122 "{reasoning_text}"

1123 Task:

1124 1. Classify the reasoning type:

- 1125 • **StateAssessment:** Assess the current knowledge state, usually identifying a
 1126 knowledge gap.
- 1127 • **PlanFormation:** The agent is forming a plan of action.
- 1128 • **InformationSynthesis:** Synthesize new information (from search results) to form
 1129 a conclusion.

1130 2. Evaluate grounding:

- 1131 • Extract the atomic factual premises from the step (skip meta/plan-only wording
 1132 that contains no factual claim).

Functional Type	
Reasoning	
→ StateAssessment	<i>Def:</i> Identify the knowledge gap <i>Ex:</i> “I don’t know who won the 2020 election yet”
→ PlanFormation	<i>Def:</i> Form a plan of action <i>Ex:</i> “I should search for 2020 US election results”
→ InformationSynthesis	<i>Def:</i> Synthesize info from search to form conclusion <i>Ex:</i> “Based on CNN and BBC reports, Biden won with 306 electoral votes”
Search	
→ InitialQuery	<i>Def:</i> First query in reasoning chain <i>Ex:</i> “2020 US presidential election winner” → got: “Biden won”
→ RefinedQuery	<i>Def:</i> Refine previous query based on new info <i>Ex:</i> “2020 US election electoral college vote count” (added “electoral college” for precision)
→ FollowUpQuery	<i>Def:</i> Follow-up question, not direct refinement <i>Ex:</i> “What was the voter turnout percentage in 2020?” (related but different topic: turnout vs. winner)
→ RepeatQuery	<i>Def:</i> Same as previous query <i>Ex:</i> “2020 US presidential election winner” (repeated same query)
Quality Attribute	
Reasoning	
→ Groundedness	<i>Def:</i> Claim supported by evidence <i>G:</i> “Based on CNN reporting 306 electoral votes, Biden won the election” <i>NG:</i> “I conclude Biden won because he received more votes” (factual claim without evidence citation)
Search Result	
→ Quality	<i>Def:</i> Contains sufficient info to answer query <i>Suff:</i> “Biden won with 306 electoral votes on Nov 7, 2020” <i>Insuff:</i> “The 2020 election occurred”
→ Clarity	<i>Def:</i> Clear, not vague or confusing <i>Clear:</i> “Joe Biden won the 2020 US presidential election” <i>Unclear:</i> “Biden or Trump won” (ambiguous)
Final Answer	
→ Correctness	<i>Def:</i> Final answer is correct or not

Figure 9: Annotation schema overview with definitions and examples. Abbreviations: Def=Definition, Ex=Example, G=Grounded, NG=Not Grounded, Suff=Sufficient, Insuff=Insufficient.

- For each premise, find a direct supporting span in the provided evidence. If no exact or near-verbatim support exists, mark that premise as unmatched.
- Decide the label with STRICT rules:
 - **Grounded:** ALL atomic premises are supported by explicit evidence spans.
 - **Not Grounded:** ANY atomic premise lacks a supporting span; OR the step contains only meta/plan text without factual premises.

Additional rules for grounding:

- QUESTION anchor alone is NOT sufficient for Grounded; do not label as grounded solely for restating the task/intent.
- Superlatives/temporal/quantitative claims (e.g., last/first/only, years, counts) require explicit evidence spans.

Your Final Output:

```
{
  "reasoning_type": "StateAssessment",
  "grounding": "Grounded",
  "anchor_type": "EVIDENCE",
```

```

1188
1189     "justification": "brief explanation"
1190 }
1191
1192
1193 D.2 SEARCH BEHAVIOR ANNOTATION
1194
1195 The search annotation schema categorizes agent search queries into four behavioral types:
1196
1197 Search Behavior Classification
1198
1199 You are an expert information retrieval specialist. Your task is to classify the type of search
1200 query issued by the agent.
1201 Current Search Query:
1202 {current_query}
1203 Previous Search Query (if any):
1204 {previous_query}
1205
1206 Task: Classify the search query type:
1207 • InitialQuery: The agent is issuing its first query in a reasoning chain.
1208 • RefinedQuery: The agent is refining a previous query based on new information.
1209 • FollowUpQuery: The agent is asking a follow-up question that is not a direct refinement.
1210 • RepeatQuery: A query that is the same as the previous query.
1211
1212 Your Final Output:
1213 {
1214     "search_type": "InitialQuery",
1215     "justification": "brief explanation"
1216 }
1217
1218
1219 D.3 SEARCH RESULT QUALITY ASSESSMENT
1220
1221 This prompt evaluates the quality and clarity of search results retrieved by the agent. It helps identify
1222 when agents work with insufficient or ambiguous information.
1223
1224 Search Result Analysis Prompt
1225
1226 You are an expert data analyst. Your task is to evaluate the quality of a search result based
1227 on the query that produced it.
1228 Search Query:
1229 {query}
1230 Search Result Documents:
1231 {documents_json}
1232
1233 Your Task: Analyze the search result's sufficiency and clarity.
1234 1. Information Quality: Does the result contain enough information to likely answer the
1235 user's implicit question in the query? Choose one:
1236 • Sufficient: The answer seems to be present.
1237 • Insufficient: The answer is likely not here.
1238 2. Information Clarity: Is the information clear or does it create confusion? Choose one:
1239 • Clear: The information is straightforward and addresses one subject.
1240 • Unclear: The results mention multiple distinct entities that could match the query (e.g.,
1241 two movies with the same title) or the information is vague.

```

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

Your Final Output: Your response must be a single, valid JSON object with the following attributes:

- `information_quality`: Either "Sufficient" or "Insufficient"
- `information_clarity`: Either "Clear" or "Unclear"
- `clarity_justification`: Brief explanation for your clarity rating

E ACCURACY-LEVEL PERFORMANCE

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Agent	Overall F1 (%)
ASearcher	39.77
Search-R1	39.29
ReSearch	38.30
Few-shot	36.04
DeepResearcher	36.00
Base	33.50
CoT	32.72
ReAct	31.25

Table 5: Overall F1 performance across agent variants. Trained agents consistently outperform the base model, with ASearcher achieving the highest score.

Table 5 reports the aggregate F1 scores across all evaluated agents. We observe that all trained agents outperform the base Qwen model, with ASearcher achieving the best performance (39.8%). Search-R1 and ReSearch follow closely, while Few-shot prompting and DeepResearcher attain comparable scores.

F EVIDENCE-GROUNDED REASONING ANALYSIS

This section provides detailed analysis of evidence-grounded reasoning capabilities for Section 4.2, examining how agents ground their reasoning in retrieved evidence and identifying critical gaps in epistemic alignment. We present two complementary analyses: (1) evidence-conditioned reasoning quality across different evidence states, and (2) type-specific reasoning capabilities that reveal heterogeneous grounding patterns across reasoning skills.

F.1 EVIDENCE-ALIGNED REASONING: DO AGENTS GROUND THEIR INFERENCE IN WHAT THEY KNOW?

To evaluate whether agents ground their reasoning in retrieved evidence, we analyze the expected groundedness of reasoning steps conditioned on the agent's **evidence state** $E \in \{0, 1, 2\}$. The quantity $\mathbb{E}[G_{i,t} \mid E_{i,t} = k]$ measures how reliably an agent produces well-supported reasoning at each evidence level k . An **epistemically sound** agent should avoid unsupported reasoning when $E = 0$, provide partial grounding at $E = 1$, and fully leverage complete evidence when $E = 2$. This conditional analysis enables assessment of **epistemic alignment**: whether agents reason more confidently only when they possess sufficient evidence.

Base models show better epistemic alignment than specialized agents. Empirical results in Figure 10 reveal substantial variation across models. Most agents demonstrate appropriate behavior at $E = 0$, with $\mathbb{E}[G \mid E = 0] \approx 0.07\text{--}0.09$, indicating minimal hallucinated reasoning. However, SEARCH-R1 exhibits significant **epistemic misalignment**, with elevated groundedness even under insufficient evidence (≈ 0.10 at $E = 1$ and 0.14 at $E = 2$), suggesting grounded reasoning. In contrast, BASE and FEW-SHOT variants demonstrate the clearest **evidence-conditioned reasoning**, with groundedness rising from 0.49 ($E = 1$) to 0.64 ($E = 2$), indicating effective epistemic modulation. ASEARCHER also shows notable improvement ($0.50 \rightarrow 0.55$), while RESEARCH and DEEPRESEARCHER stagnate around 0.47–0.51, failing to capitalize on stronger evidence. These

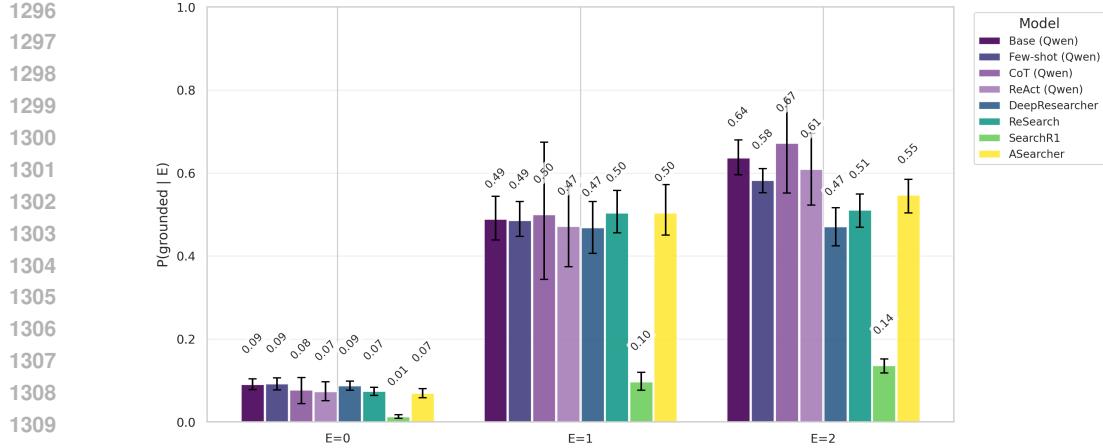


Figure 10: Evidence-conditioned reasoning quality for evidence state $k \in 0, 1, 2$ across search agents. Bars denote 95% confidence intervals. The quantity reflects the expected groundedness of reasoning steps given the epistemic evidence state E . Higher values at $E = 2$ indicate effective evidence utilization.

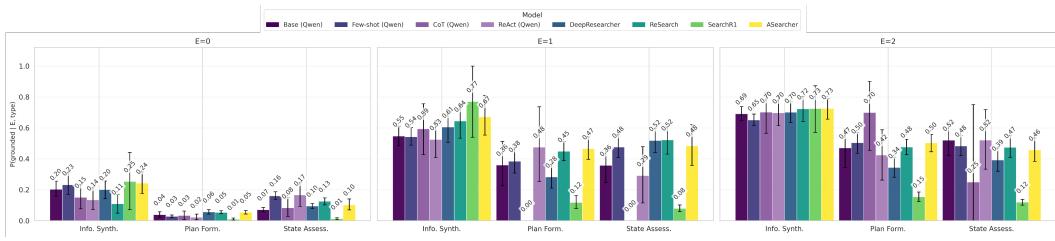


Figure 11: **Type-Level Evidence-Conditioned Groundedness.** Expected groundedness for each reasoning type τ (Information Synthesis, Plan Formation, State Assessment) under evidence levels $E = 0, 1, 2$. Bars show 95% confidence intervals. Models exhibit heterogeneous capabilities in grounding specific reasoning skills in available evidence.

results demonstrate the necessity for evaluation metrics like **RQI** that isolate whether reasoning reflects the agent’s actual knowledge state.

Case Study: Correct Answer with Ungrounded Reasoning. We examine a case where a ReSearch agent correctly answers “Who won the first celebrity big brother on channel 5?” despite completely ungrounded reasoning. After retrieved the first evidence, the agent retrieves conclusive evidence stating “Celebrity Big Brother 1... concluded on 16 March 2001 when comedian Jack Dee was crowned the winner.” Despite having the answer, the agent *ignores this evidence and conducts unnecessary searches*, stating: “I need to clarify which Big Brother series I am referring to... Now, I have to find out the winner of that show.” The agent eventually answers “Jack Dee” correctly, but through an epistemically unsound process. This demonstrates why accuracy metrics alone fail to capture critical reasoning deficiencies.

F.2 TYPE-SPECIFIC EVIDENCE ALIGNMENT: WHICH REASONING SKILLS ARE EVIDENCE-GROUNDED?

We further decompose agent reasoning groundedness by reasoning type $\tau \in \{\text{IS}, \text{PF}, \text{SA}\}$, leveraging the *Type-Level Reasoning Quality Index* from Definition 3.3 and the evidence-state decomposition in Equation (6).

Figure 11 illustrates the groundedness of each reasoning type across three evidence states. Our analysis reveals several significant patterns:

First, **Information Synthesis (IS)** demonstrates the strongest evidence-responsiveness across all models. With complete evidence ($E=2$), IS steps achieve superior groundedness, indicating robust

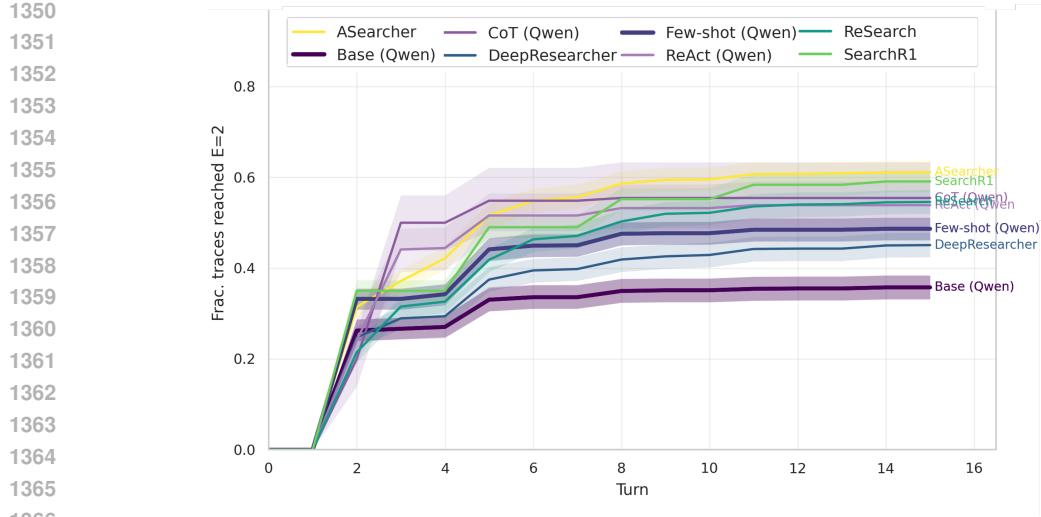


Figure 12: **Comprehensive Recovery Analysis.** Evidence Recovery Function (ERF) showing the cumulative fraction of traces reaching sufficient evidence state ($E = 2$) across all evaluated agents, including RL-trained agents (ASearcher, Search-R1, ReSearch, DeepResearcher), base models (Base), and prompting strategies (Few-shot, CoT, ReAct). Steeper curves indicate faster recovery from low-quality evidence.

capabilities in aggregating retrieved information. Even with partial evidence ($E=1$), agents maintain moderate IS groundedness, suggesting effective utilization of incomplete knowledge.

In contrast, **Plan Formation (PF)** and **State Assessment (SA)** exhibit substantially lower *groundedness* even with complete evidence. For PF, only ASEARCHER and RESEARCH exceed 0.5 at $E=2$, while others (e.g., SEARCH-R1, DEEPRESEARCHER) remain below 0.4, revealing *fragile decision-making processes* despite available knowledge. Similarly, SA demonstrates critical limitations: although scores improve under $E=2$, most models *underperform* relative to IS, with several agents (e.g., SEARCH-R1, DEEPRESEARCHER) showing *minimal evidence-responsiveness* between $E=1$ and $E=2$. Notably, SEARCH-R1 performs comparatively well for IS across all evidence levels but demonstrates *exceptionally poor grounding* for PF and SA (0.15 and 0.12 at $E=2$, respectively), suggesting *specialized evidence synthesis* but *narrowly constrained reasoning capabilities*.

These findings demonstrate that only specific reasoning capabilities (particularly synthesis) are consistently *grounded* in retrieved information. This underscores the necessity for developing *evidence-grounded reasoning policies*, especially for higher-order cognitive functions like plan formation and state assessment that currently show significant *epistemic disconnection* from retrieved knowledge.

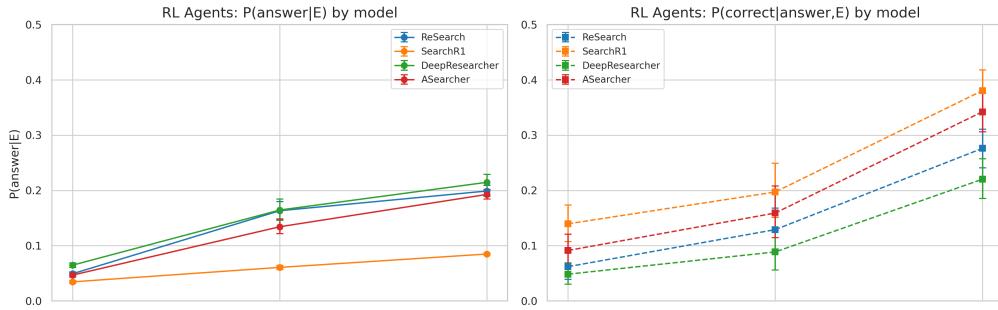
G RECOVERY ANALYSIS

This section provides detailed analysis of evidence recovery capabilities, extending the main text analysis (Section 4.3) with additional agent comparisons including Chain-of-Thought (CoT) and ReAct prompting strategies.

Extended Agent Comparison. Figure 12 presents the Evidence Recovery Function (ERF) for all evaluated agents, including the additional CoT and ReAct prompting strategies. The results reveal a clear performance hierarchy: SEARCH-R1 demonstrates the best recovery performance, followed by **CoT**, RESEARCH, **ReAct**, FEW-SHOT, DEEPRESEARCHER, and BASE (in descending order). Notably, **CoT** outperforms several RL-trained agents (RESEARCH, DEEPRESEARCHER) and base models, achieving the second-highest recovery rate. **ReAct** also shows competitive recovery performance, outperforming FEW-SHOT, DEEPRESEARCHER, and BASE. This finding reveals that while RL-trained agents like ASEARCHER and SEARCH-R1 achieve superior recovery through explicit search adaptation mechanisms, prompting strategies like **CoT** can also demonstrate effective evidence recovery capabilities, potentially through their structured reasoning approach that enables better query refinement.

1404 H EVIDENCE CALIBRATION ANALYSIS

1405
 1406 To further understand the epistemic calibration capacity of RL-trained agents, we analyze four RL-
 1407 based agents: ASEARCHER, SEARCH-R1, RESEARCH, and DEEPRESEARCHER. Each model ex-
 1408 hibits distinct behavior patterns in evidence-grounded answering.
 1409



1421 Figure 13: **Evidence-Calibrated Answering by RL Agents.** *Left:* Answering propensity for each RL agent
 1422 under different evidence levels ($E=0/1/2$). *Right:* Answering accuracy for each RL agent under different evi-
 1423 dence levels ($E=0/1/2$).

1424 As shown in Figure 13 (*Left*), all agents show increased answering with stronger evidence, sug-
 1425 gesting basic epistemic alignment, but they vary in *evidence gradient*—the increase from $E=0$ to
 1426 $E=2$. ASEARCHER and DEEPRESEARCHER exhibit higher gradients, indicating *stronger sensitivity*
 1427 to epistemic evidence. However, all agents maintain relatively low absolute response rates even
 1428 with sufficient evidence. ASEARCHER and DEEPRESEARCHER reach 19–21%, while SEARCH-R1
 1429 remains at 8.5%, suggesting more conservative behavior.
 1430

1431 **Calibration vs Accuracy** As noted in Section E, ASEARCHER achieves the highest overall F1 score,
 1432 followed by SEARCH-R1, RESEARCH, and DEEPRESEARCHER.

1433 To evaluate whether agents can defer or respond based on the epistemic adequacy of observed
 1434 evidence. As shown in Figure 13, across trained agents, we observe distinct calibration profiles:

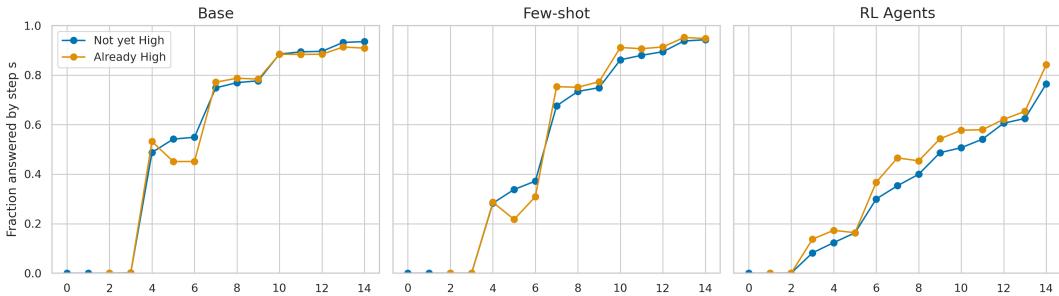
- 1435 • ASEARCHER demonstrates superior evidence sensitivity coupled with high accuracy. It re-
 1436 sponds predominantly when sufficient evidence is available ($E=2$) at a substantial rate (19.3%)
 1437 while minimizing overconfident responses. As shown in Figure 13 (*Right*), it achieves the sec-
 1438 ond highest conditional accuracy $P(\text{correct}|\text{answer}, E = 2)$. This strategic alignment between
 1439 evidence-based answer timing and correctness yields optimal performance.
- 1440 • SEARCH-R1 achieves the highest accuracy when answering with complete evidence (Fig-
 1441 ure 13, *Right*), but exhibits extreme conservatism, answering in merely 8.5% of high-evidence
 1442 states (Figure 13, *Left*). While this demonstrates exceptional calibration awareness, the exces-
 1443 sive caution significantly constrains overall performance, representing a clear trade-off between
 1444 coverage and precision.

1445 We conclude that well-calibrated agent behavior requires satisfying two critical conditions: (1) de-
 1446 ferring responses until evidence strength reaches sufficient levels (e.g., $E=2$), and (2) producing
 1447 correct answers when responding, demonstrating effective utilization of the available evidence. This
 1448 dual requirement highlights the challenge of balancing epistemic caution with informational utility.
 1449

1450 **RL Training Reduces Calibration Errors.** Table 6 provides a detailed breakdown of calibration
 1451 performance across individual RL-trained agents. While all RL agents show substantial improve-
 1452 ments over base models in reducing overconfident answering, ASEARCHER achieves the lowest
 1453 overall calibration error (0.302), closely followed by DEEPRESEARCHER and RESEARCH (both
 1454 0.305). Notably, SEARCH-R1 exhibits the most conservative behavior with the *lowest* overconfident
 1455 answering rate (0.226) but *highest* overcautious rate (0.187), suggesting a trade-off between differ-
 1456 ent types of calibration failures. These results demonstrate that RL training consistently improves
 1457 evidence-based decision making, though specific training approaches yield different calibration pro-
 1458 files.

1458 **Table 6: Calibration Error Breakdown by Agent Type.** Trajectories categorized as: overconfident answering
 1459 (answering before sufficient evidence), overcautious abstention (failing to answer despite strong evidence),
 1460 and overall calibration error. Lower values indicate better calibration. ASearcher show the lowest calibration
 1461 errors. **Bold** indicates best performance in each category.

Model	(1) Overconfident ↓	(2) Overcautious ↓	(3) Calibration Error ↓
Base	0.631	0.030	0.329
Few-shot	0.511	0.024	0.317
CoT	0.731	0.006	0.351
ReAct	0.660	0.012	0.336
ASearcher	0.343	0.044	0.302
DeepResearcher	0.461	0.048	0.309
ReSearch	0.406	0.047	0.305
Search-R1	0.226	0.187	0.319



1482 **Figure 14: Evidence-Conditioned Answer Timing Analysis.** For each model group, we plot the fraction
 1483 of answered trajectories over time (x-axis: turn number), split by whether high evidence ($E=2$) has been
 1484 observed. If agents defer until sufficient evidence, the orange curve (already high) should rise earlier than the
 1485 blue curve (not yet high). However, all models show little separation between the two, confirming widespread
 1486 *overconfident answering behavior*.

1489 **Do agents defer answering until strong evidence arrives?** To evaluate whether agents appropriately
 1490 delay answering until they have observed sufficient evidence, we analyze the timing of answers
 1491 across different evidence states. Figure 14 presents a temporal analysis comparing the cumulative
 1492 fraction of answers over time for two distinct trajectory groups: those where agents have already
 1493 encountered strong evidence ($E=2$) versus those where they have not.

1494 In an *ideally calibrated system*, we would expect agents to predominantly answer after observing
 1495 strong evidence, resulting in a clear separation between trajectories—specifically, a higher orange
 1496 curve (evidence already observed) and a lower blue curve (evidence not yet observed). However, our
 1497 analysis reveals that BASE and FEW-SHOT models demonstrate *minimal separation* between these
 1498 curves—indicating that answers are generated with similar timing regardless of evidence availability.
 1499 RL-trained agents, while showing marginal improvement, still exhibits overconfident answering in
 1500 76.5% of trajectories before reaching sufficient evidence ($E=2$).

1501 This finding highlights a *fundamental calibration deficiency*: current models consistently make over-
 1502 confident decisions without aligning their answer timing with *epistemic sufficiency*.

1504 I AGENT SYNTHESIS: LEVERAGING EPISTEMIC COMPETENCIES FOR 1505 ANSWER GENERATION

1508 Our comprehensive evaluation reveals several critical insights into agent capabilities: ASEARCHER
 1509 demonstrates superior performance in **evidence acquisition** and **recovery mechanisms** (achieving
 1510 the highest overall F1 score), while SEARCH-R1 exhibits exceptional proficiency in **information**
 1511 **synthesis** (with a RQI score of 0.63) coupled with **minimal overconfident answering behavior**
 (as discussed in Section 4.4). This observed specialization of epistemic competencies motivated

Policy (P)										
Synth. (S)	Search-R1	ASearcher	DeepRes.	ReSearch	Base	Fewshot	CoT	ReAct	Overall Avg. $\Delta F1$	
Search-R1	–	–0.08	+0.19	+1.66	+3.50	+1.10	+6.0	+5.9	+2.61	
ASearcher	+0.38	–	–0.73	–0.39	+0.93	+1.46	+5.9	+5.4	+1.85	
DeepRes.	–0.63	+0.20	–	+0.00	+2.24	+1.45	+6.3	+5.9	+2.21	
ReSearch	–0.42	+0.13	+0.36	–	+2.99	+1.89	+5.5	+4.9	+2.19	

Table 7: **Agent Synthesis Performance.** Each cell shows F1 score improvement ($\Delta F1$) when using row agent (S) as synthesizer to generate answers based on evidence collected by column agent (P). Positive values indicate the synthesizer improved upon the original policy’s performance. Search-R1 demonstrates the highest overall improvement (+2.61 F1) across all evidence sources.

us to explore the potential of *agent synthesis* where we leverage one agent’s evidence collection capabilities as input for another agent’s answer generation process.

Synthesizer Evaluation Methodology. To test this hypothesis, we evaluate each agent as a *synthesizer* by providing it with the complete reasoning traces, search results, and evidence from other agents’ trajectories. The synthesizer’s task is to generate a final answer based solely on this information, without performing additional searches. This setup isolates the agent’s ability to synthesize information from existing evidence, separate from its search and retrieval capabilities.

Search-R1 Emerges as the Superior Synthesizer. As shown in Table 7, **Search-R1** delivers the largest average F1 gain (+2.61), significantly outperforming other agents such as **ASearcher** (+1.85), **DeepResearcher** (+2.21), and **ReSearch** (+2.19). This result aligns with our earlier findings that Search-R1 exhibits strong information synthesis capabilities (RQI = 0.63 for Information Synthesis steps) and conservative answering behavior (lowest overconfident answering rate), and it persists even when synthesizing CoT or ReAct evidence traces.

The superior synthesis performance of Search-R1 can be attributed to its **specialized reasoning** capabilities. Despite its low overall RQI (0.08), Search-R1 demonstrates particular strength in **information synthesis** when provided with clear evidence. Its **conservative answering behavior**, while limiting coverage in standalone scenarios, becomes an advantage in synthesis tasks where it can carefully evaluate and integrate information from multiple sources before providing a final answer.

Hidden Behaviors: How Accuracy-Level Evaluation Obscures Profound Reasoning Capabilities. Surprisingly, several agents demonstrate stronger capabilities as evidence sources than their standalone F1 scores suggest. **BASE** evidence collection achieved substantial F1 gains when paired with other models for answer generation (up to +3.50 F1 improvement with Search-R1), despite having the lowest standalone F1 score (33.5%). Similarly, **CoT** and **ReAct**, which show lower standalone performance (32.72% and 31.25% F1, respectively), enable even larger synthesis improvements (up to +6.3 F1 with CoT and +5.9 F1 with ReAct). This reveals that final accuracy metrics can be misleading when used in isolation, as they obscure critical process-level competencies. These agents may be collecting high-quality evidence or producing well-structured reasoning traces but **struggling with final answer synthesis**, a nuance completely missed by traditional evaluation methods that focus solely on final answer accuracy rather than decomposing the reasoning process into its constituent competencies. The agent synthesis framework enables us to identify these hidden strengths and leverage complementary capabilities across different agent architectures.

Implications for Agent Design. These findings demonstrate that our benchmark and evaluation framework enables *modularization of agent-specific epistemic competencies* to create more effective information-seeking systems. This represents a significant advance for process-level evaluation of agents compared with traditional answer-level evaluation, enabling the identification and combination of complementary strengths across different agent architectures.

1566 J INFERENCE-TIME FEEDBACK USING EPISTEMIC COMPETENCIES
15671568 In this section, we leverage the LLM-as-judge framework to provide inference-time feedback signals
1569 to improve agent behavior.
15701571
1572
1573 **Inference-Time Feedback Signals.** We augment ASEARCHER-7B with *inference-time feedback*
1574 *signals* derived from our epistemic competency framework. Specifically, we incorporate three
1575 process-level supervision signals computed at each turn: (1) **groundedness** feedback indicating
1576 whether reasoning steps are supported by retrieved evidence, (2) **evidence state** signals ($E_{i,t} \in$
1577 $\{0, 1, 2\}$) encoding the sufficiency and clarity of retrieved evidence, and (3) **calibration** feedback
1578 on whether the agent’s answering behavior aligns with evidence quality. These signals are computed
1579 using our validated LLM-as-judge framework and provided as real-time guidance during inference,
1580 enabling the agent to adjust its behavior based on process-level epistemic feedback without training.
15811582 **Results and Implications.** Our experiments reveal that incorporating epistemic feedback signals
1583 at inference time significantly improves agent performance. The augmented ASEARCHER-7B
1584 achieves a **8.4% increase in final F1 score** compared to the baseline without feedback signals.
1585 More importantly, we observe substantial improvements across all three epistemic competencies:
1586 (1) **groundedness** (RQI) increases by 13.3%, indicating better evidence-supported reasoning, (2)
1587 **recovery** (ERF) improves by 6.5%, demonstrating more effective adaptation to insufficient evi-
1588 dence, and (3) **calibration** (CE) decreases by 5.8%, showing better alignment between answering
1589 behavior and evidence quality.
15901591 K EVALUATION ON GAIA
15921593 In this section, we evaluate the epistemic competencies of ASearcher and WebSailor on GAIA, and
1594 GPT-5-mini on GAIA with Web search tools.
15951596 We have evaluated WebSailor (Li et al., 2025a) and ASearcher (with web browsing + visit capabili-
1597 ties) on GAIA¹ with Pass@2 scores across different model sizes². Our framework’s tool selection
1598 follows epistemic scope rather than tool diversity. We include **web browsing and visit capabilities**
1599 (as in WebSailor) because these require epistemic evaluation—the quality of retrieved information
1600 depends on reasoning processes and evidence interpretation, not objective correctness.
16011602 **Answer-level Performance.** At 7B scale, ASEARCHER achieves 16.5% while WEBAILOR
1603 achieves 18.2%. At 32B scale, ASEARCHER achieves 29.2% while WEBAILOR achieves 32.4%.
1604 In addition, we evaluate GPT-5-mini on GAIA, achieving 15.7% Pass@2.
16051606 **Epistemic Metrics Analysis** We apply our epistemic competency framework to analyze
1607 ASEARCHER and WEBAILOR behavior across the three metrics. Table 8 presents the epistemic
1608 metrics. For 32B scale, ASEARCHER demonstrates superior **groundedness** (RQI = 0.28) and **re-
1609covery** (ERF = 58% by Turn 8) compared to WEBAILOR. However, WEBAILOR shows better
1610 **calibration** (CE = 0.31) than ASEARCHER (CE = 0.35), indicating more conservative answering
1611 behavior. These metrics reveal distinct epistemic competency profiles that explain the performance
1612 differences: ASEARCHER’s strength in evidence acquisition and recovery compensates.
16131614 We then apply our epistemic competency framework to analyze GPT-5-mini’s behavior across the
1615 three metrics: **groundedness** (RQI), **recovery** (ERF), and **calibration** (CE). Based on this analysis,
1616 we provide inference-time feedback signals (as described in Appendix J), which improves the final
1617 score to 22.5%, a 43% relative improvement.
16181¹<https://huggingface.co/datasets/gaia-benchmark/GAIA>

2Note that WebSailor does not have an open-sourced 14B variant, so we evaluate the available model sizes

1620 Table 8: Epistemic Metrics for ASearcher and WebSailor on GAIA (7B and 32B) and GPT-5-mini on GAIA
 1621 with Web search tools. RQI (groundedness), ERF recovery rate by Turn 8, and CE (calibration error, lower is
 1622 better).

Model	7B			32B			GPT-5-mini		
	RQI	ERF	CE	RQI	ERF	CE	RQI	ERF	CE
ASSEACHER	0.22	42%	0.38	0.28	58%	0.35	–	–	–
WEBAILOR	0.15	35%	0.33	0.19	45%	0.31	–	–	–
GPT-5-mini	–	–	–	–	–	–	0.45	42%	0.34

L DISCUSSION: UNDERSTANDING METRIC TRADE-OFFS

Our evaluation framework reveals distinct trade-offs between epistemic competencies that traditional accuracy-only evaluation fails to capture. These insights are critical for both interpreting agent performance and designing effective systems.

The Accuracy-Reasoning Trade-off. We observe a particularly concerning inverse relationship between answer accuracy (F1) and reasoning quality (RQI) among RL-trained agents. While RL training improves final answer correctness and calibration, it simultaneously degrades evidence-grounded reasoning quality. This reveals a fundamental tension: *agents can be optimized to produce correct answers without developing sound reasoning capabilities*—a critical consideration for AI safety and interpretability.

Calibration vs. Reasoning Quality. RL-trained models demonstrate better calibration (lower CE) despite worse reasoning groundedness (lower RQI), indicating that *well-calibrated agents may still produce poorly justified reasoning*. This highlights the necessity of evaluating both when to answer (calibration) and how to reason (groundedness) as separate competencies.

Implications for Agent Selection and Design. These trade-offs directly impact deployment decisions: applications requiring high accuracy may favor ASSEACHER despite reasoning limitations; those requiring interpretable reasoning may prefer Few-shot models despite lower accuracy; and applications demanding both may benefit from agent synthesis approaches (Section 4.5). Future agent development should explicitly address these trade-offs through multi-objective optimization and potentially modular architectures that separate evidence acquisition, reasoning, and decision-making components rather than optimizing solely for accuracy. Furthermore, our epistemic competency metrics (RQI, ERF, CE) can drive automatic orchestrators that monitor agent behavior in real-time and dynamically switch to the best-suited agent for each stage of the information-seeking process. For example, an orchestrator could deploy agents with strong recovery capabilities (high ERF) during initial evidence gathering, then switch to calibrated synthesizers (low CE) once evidence quality stabilizes, leveraging the complementary strengths identified through our framework. This metric-driven orchestration represents a practical application of our evaluation framework for building more effective multi-agent systems.

M EXTENDED VALIDATION: GENERALIZABILITY ACROSS DIVERSE TOOLS AND MODELS

To assess the generalizability of our framework, we conducted the following validation using traces from state-of-the-art multi-tool agents on challenging tasks.

1. Data and Trace Sampling. We obtained traces from a diverse set of state-of-the-art agents: Deepresearch-30B³, ASSEACHER-32B⁴, GPT-4o, GPT-5, and Claude Sonnet 4.5. Each agent, equipped with web browsing, Python interpreter, and website visitation tools, was evaluated on four benchmarks: *WebWalker* (Wu et al., 2025), *GAIA* (Mialon et al., 2023), *BrowseC*

³<https://huggingface.co/Alibaba-NLP/Tongyi-DeepResearch-30B-A3B>

⁴<https://huggingface.co/inclusionAI/ASSEACHER-Web-QwQ>

1674
1675
1676 Table 9: Human-LLM Agreement Across Diverse Tool Types. Scores for Type and Groundedness pertain to
1677
1678 *tool input* actions (such as search queries), while Clarity and Sufficiency scores assess the *tool output* (i.e., the
1679
1680 produced evidence).

Tool	κ (Type)	κ (Groundedness)	κ (Clarity)	κ (Sufficiency)
Web Browse / Visit	0.80	0.71	0.68	0.70
Code Execution	0.77	0.76	0.73	0.74

1681
1682
1683 *omp* (Wei et al., 2025), and *XBench-DeepSearch*⁵. For every combination of agent and benchmark,
1684 we randomly sampled 10 trajectories for analysis.

1685
1686 **2. Judge Annotation Protocol and Adaptation.** We applied our LLM-as-judge to the 200 traces
1687 with gpt-4.1-mini. The core annotation schema and prompts for reasoning types and quality at-
1688 tributes remained unchanged. The only adaptation was in the evidence-parsing logic: the judge was
1689 instructed to treat the direct output of any tool as the ‘retrieved evidence’ for the subsequent step. For
1690 example, the output of a `PythonInterpreter` call becomes the evidentiary basis for evaluating
1691 the groundedness of the agent’s next reasoning step.

1692
1693 **3. Human Annotation and Results.** From the
1694 LLM-as-judge annotations, we drew a stratified ran-
1695 dom sample of 65 traces, stratified by agent (model)
1696 \times tools combination to ensure proportional rep-
1697 resentation across different tool usage patterns and
1698 models. The sample size ensures a 95% confi-
1699 dence level with a $\pm 10\%$ margin of error, remain-
1700 ing cost-effective to annotate and evaluate our pro-
1701 posed schema. The sampled traces exhibited a di-
1702 verse tool distribution, with search and visit opera-
1703 tions accounting for approximately 99% of tool us-
1704 age (69% and 35.2% respectively, fig. 15). Expert
1705 human annotators *independently* annotated the sam-
1706 pled traces, with human-LLM agreement Cohen’s
1707 $\kappa > 0.65$ (Table 9).

1708 4. Stress-Testing the Judge on Ambiguous Re- 1709

1710 **soning.** We also assessed the judge’s ability on ambiguous reasoning, we select an additional 20
1711 steps where the final answer is correct but reasoning is ungrounded. For example, the agent in-
1712 jected “Indian” into the query despite *no geographical constraint* in the question. This represents
1713 an ungrounded inference from internal parametric knowledge, which is a critical epistemic flaw that
1714 cannot be verified.

1715 Example: Ungrounded Inference from Internal Knowledge

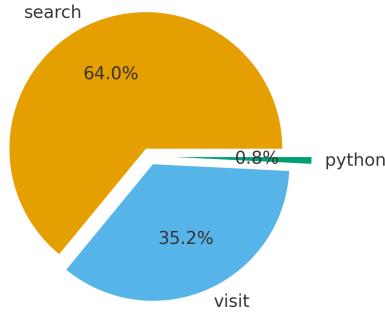
1716 **Question:** “An animated TV series for children first premiered in America between 2001 and 2010.
1717 The creator of this show is a physicist who obtained their PhD from a university established between
1718 1940 and 1960... Name the reviewer.”

1719 **Agent’s Search Query:** “Indian physicist created animated series America 2000s”

1720 **Key Issue:** The agent injected “Indian” into the query despite *no geographical constraint* in the ques-
1721 tion. This represents an ungrounded inference from internal parametric knowledge, which is a critical
1722 epistemic flaw that cannot be verified.

1723 **Label:** LLM judge and human annotator both label this as “Not Grounded”.

1724 Re-evaluation showed that human-LLM agreement remained acceptable ($\kappa \approx 0.70$ for ground-
1725 ness, $\kappa \approx 0.66$ for clarity, $\kappa \approx 0.65$ for sufficiency), confirming our framework’s robustness in
1726 exposing even nuanced reasoning failures.



1727 Figure 15: **Tool Distribution.** Tool usage dis-
1728 tribution across different agents and benchmarks.
1729 Search and visit operations accounting for approx-
1730 imately 99% of tool usage.

⁵<https://huggingface.co/datasets/xbench/DeepSearch>

1728 N USE OF LARGE LANGUAGE MODELS

1729

1730 Large Language Models (LLMs) played a significant role in this research, warranting disclosure
1731 of their contributions. LLMs were extensively used as annotation helpers to develop our epistemic
1732 competency schema, as analytical assistants for reasoning trace analysis, and as automated judges
1733 (detailed in Section D). They contributed significantly to the writing process by generating initial
1734 drafts of technical sections and assisting with revision, and influenced research ideation by suggest-
1735 ing evaluation metrics and identifying methodology gaps. All LLM-generated content underwent
1736 rigorous human review and validation, with human authors verifying analyses, validating schemas
1737 through expert review, and thoroughly editing all contributions. While LLMs served as powerful
1738 assistive tools, all final decisions regarding research direction, experimental design, result interpre-
1739 tation, and manuscript content were made by human authors.

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781