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Abstract

Data sharing restrictions are common in NLP,001
especially in the clinical domain, but there is002
limited research on adapting models to new do-003
mains without access to the original training004
data, a setting known as source-free domain005
adaptation. We take algorithms that tradition-006
ally assume access to the source-domain train-007
ing data—active learning, self-training, and008
data augmentation—and adapt them for source009
free domain adaptation. Then we systemati-010
cally compare these different strategies across011
multiple tasks and domains. We find that ac-012
tive learning yields consistent gains across all013
SemEval 2021 Task 10 tasks and domains, but014
though the shared task saw successful self-015
trained and data augmented models, our sys-016
tematic comparison finds these strategies to be017
unreliable for source-free domain adaptation.018

1 Introduction019

Deep neural networks achieve high performance in020

many tasks, but typically require annotated training021

data for each new domain. Domain adaptation al-022

gorithms aim to take models trained on one domain023

(the “source domain”) and transfer the model’s024

knowledge to another domain (the “target domain”).025

They typically try to do this without a huge amount026

of annotated data in the target domain. Domain027

adaptation can be easy if the source and target do-028

main have similar distributions, but domains often029

differ substantially (Wilson and Cook, 2020).030

While there has been much progress in domain031

adaptation methods (Kouw, 2018) and even in un-032

supervised domain adaptation where there are no033

target-domain labels (Ramponi and Plank, 2020),034

most methods assume access to the labeled source035

data. Yet this assumption is often not satisfied,036

especially in the clinical domain due to privacy037

concerns (Laparra et al., 2020).038

SemEval 2021 Task 10 (Laparra et al., 2021), on039

source-free domain adaptation, called attention to040

this challenging but more realistic scenario where 041

labeled source data are not accessible, only the 042

model trained on the source domain data can be 043

shared1, and little or no labeled target data are avail- 044

able. Participants explored methods including self- 045

training, active learning, and data augmentation 046

(Laparra et al., 2021) but it is hard to make fair 047

comparisons between algorithms since different 048

teams varied in their base implementations. 049

We therefore conducted experiments to provide 050

a systematic comparison of algorithms for source- 051

free domain adaptation. Our contributions are: 052

1. The first systematic comparison of self-training, 053

active learning, and data augmentation for 054

source-free domain adaptation, carried out 055

across multiple tasks and domains. 056

2. We identify a formulation of source-free active 057

learning that consistently improves performance 058

of the source-domain model, and sometimes 059

even outperforms fine-tuning on a large set of 060

labeled target domain data. 061

3. We perform an error analysis across tasks and 062

domains and show that the selected formulation 063

of active learning corrects several types of errors 064

that self-training does not. 065

We will publicly release our code upon publication. 066

2 Related Work 067

2.1 Source-free Domain Adaptation 068

Recently, there is rising interest in computer vision 069

to develop methods for unsupervised source-free 070

domain adaptation. Several works utilize a genera- 071

tive framework with a classifier trained on source 072

data to generate labeled training examples (Kurmi 073

et al., 2021; Li et al., 2020) or transfer the target ex- 074

amples to match the source style (Hou and Zheng, 075

2020; Sahoo et al., 2020). Other works use self- 076

1In general, it is easier to distribute models than raw data.
For example, Lehman et al. (2021) found that none of the
algorithms they tried could effectively recover protected health
information from a pre-trained language model.
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supervised pseudo-labeling. Liang et al. (2020)077

proposes source hypothesis transfer that freezes078

the classifier of the source model domain but fine-079

tunes the encoding of the source model with a goal080

to reduce the entropy of individual output predic-081

tion while maintaining global diversity. They also082

augment the strategy by self-supervised pseudo la-083

bels via the nearest centroid classifier. Kim et al.084

(2020) select low self-entropy instances as class085

prototypes and pseudo-label the remaining target086

instances based on the distance to the class proto-087

types and progressively update the models on target088

data in the manner of self-training.089

Despite of a growing number of computer vision090

studies on source-free domain adaptation, there is091

limited NLP research into this challenging but real-092

istic scenario. Though there is partially related re-093

search on continual learning (de Masson d’Autume094

et al., 2019; Sun et al., 2020) and generalization095

of pre-trained models (Hendrycks et al., 2020),096

the only work to explicitly test source-free do-097

main adaptation is SemEval 2021 Task 10 (Laparra098

et al., 2021), which asked participants to perform099

source-free domain adaptation on negation detec-100

tion and time expression recognition. A variety of101

techniques were applied to this task, including ac-102

tive learning, self-training, and data augmentation.103

However, different techniques were applied by dif-104

ferent participants with different baseline models,105

so the shared task results do not allow us to make106

fair comparisons between different techniques. In107

the current article, we implement and then system-108

atically compare these different techniques.109

2.2 Self-training110

Self-training (Yarowsky, 1995; McClosky et al.,111

2006) trains a model on a labeled datasetL and then112

iteratively makes predictions (“pseudo-labels”) on113

an unlabeled dataset U and re-trains. On each it-114

eration, the examples in U that the model labels115

with high confidence (“silver labels”) are added to116

L, and the model is retrained on the new, larger L.117

This process is repeated until no more predictions118

are highly confident. Self-training has been applied119

to a variety of domain adaptation scenarios (Ruder120

and Plank, 2018; Yu et al., 2015; Cui and Bollegala,121

2019), but always with the assumption that the orig-122

inal labeled data L is available at each iteration. In123

source-free domain adaptation, L is not available,124

so source-free self-training could train on only the125

pseudo-labels, and it is unclear whether that would126

yield a superior or inferior model. 127

2.3 Active Learning 128

Active learning selects a small number of examples 129

to be manually annotated, using strategies designed 130

to select the examples that should most benefit the 131

model. Various active learning selection strategies 132

have been developed (see the survey of Settles, 133

2009), and recent work has shown the benefits of 134

active learning even with pre-trained transformer 135

models (Ein-Dor et al., 2020). Active learning is 136

also frequently used in domain adaptation. For ex- 137

ample, Chan and Ng (2007) applied uncertainty 138

sampling for domain adaptation of word sense dis- 139

ambiguation models, and Rai et al. (2010) com- 140

bined model confidence and a domain discrimina- 141

tor to select target-domain examples for sentiment 142

analysis. As with self-training, active learning al- 143

gorithms typically assume that the source-domain 144

training data is available and can be combined 145

with target-domain examples. Thus, the efficacy of 146

source-free active learning is currently unclear. 147

2.4 Data Augmentation 148

Data Augmentation enhances limited data by using 149

existing resources (WordNet, similar datasets, etc.) 150

and/or rule-based transformations of the training 151

data to create new training examples. A variety 152

of data augmentation techniques have been pro- 153

posed (see the survey of Liu et al., 2020) includ- 154

ing back-translation (Sennrich et al., 2016; Wang 155

et al., 2021), lexical-substitution (Zhou et al., 2019; 156

Arefyev et al., 2020; Wei and Zou, 2019; Miao 157

et al., 2020), noise injection (Wei and Zou, 2019), 158

conditional generation (Juuti et al., 2020; Malan- 159

drakis et al., 2019; Kobayashi, 2018), and data 160

transformation with task-specific rules or templates 161

(Şahin and Steedman, 2018; Wang et al., 2021; Xu 162

et al., 2020). Data augmentation assumes access 163

to the source-domain training data, so cannot be 164

used by itself in source-free domain adaptation. It 165

could be coupled with source-free self-training or 166

source-free active learning, but researchers have 167

not yet systematically explored such combinations. 168

3 Data 169

We base our experiments off of the data and source- 170

domain models from the tasks of SemEval 2021 171

Task 10: negation detection and time expression 172

recognition. We select these tasks because: 173
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Domain Data Source #

Negation Detection Data

Source SHARP Seed 10,259 Sentences
Target: development i2b2 2010 1109 Sentences
Target: test i2b2 2010 4436 Sentences
Target: development MIMIC III 1916 Sentences
Target: test MIMIC III 7664 Sentences

Time Expression Detection Data

Source SemEval 2018 Task 6 clinical notes 278 Documents
Target: development SemEval 2018 Task 6 news articles 20 Documents
Target: test SemEval 2018 Task 6 news articles 79 Documents
Target: development Food security Reports 4 Documents
Target: test Food security Reports 13 Documents

Table 1: Data summary for negation detection and time expression recognition tasks

1. They represent real-world data-sharing prob-174

lems: the negation source-domain data “cannot175

currently be distributed” and the time expression176

source-domain data is “difficult to gain access177

to due to the complex data use agreements” (La-178

parra et al., 2021). Only the task organizers had179

access to the data and permission to distribute180

models trained on the (de-identified) data.181

2. The annotation schemes are complex enough182

that the problem cannot be easily solved by183

manually annotating the target domain. Su184

et al. (2021) found that annotations from anno-185

tators given only the time annotation guidelines186

yielded no gains to models, while annotations187

from heavily trained annotators did yield gains.188

3. These two tasks suffer a large performance loss189

under domain shift: the source-trained model is190

15+ points of F1 lower on the target test set than191

on the source test set (Laparra et al., 2021).192

The popular Amazon reviews sentiment analysis193

dataset (Blitzer et al., 2007) violates the points194

above: labeled source and target data are easily195

available, the annotation scheme is easy (it is artifi-196

cially balanced and removes reviews with neutral197

labels, as others have noted (He et al., 2018; Miller,198

2019)), and the source domain model performs199

well on the target domain (within 0-4 points of F1).200

We nonetheless include some experiments on this201

dataset in appendix A.3. We find that with simple202

data preprocessing and source-domain hyperparam-203

eter tuning, the source-domain model alone outper-204

forms all domain adaptation models from Ye et al.205

(2020) and Ben-David et al. (2020).206

SemEval 2021 Task 10 negation detection is a207

“span-in-context” classification task. The goal is to208

predict whether an event (denoted by two special209

tokens <e> and </e>) in the sentence is negated210

by its context. For example, given the sentence: 211

Has no <e> diarrhea </e> and no new lumps 212

or masses 213

the goal is to predict that diarrhea is negated by 214

its context. The source-domain negation detection 215

model was trained on Mayo clinic clinical notes. 216

The target domains are Partners HealthCare clinical 217

notes from the i2b2 2010 Challenge and Beth Israel 218

ICU progress notes from the MIMIC III corpus. 219

SemEval 2021 Task 10 time expression recog- 220

nition is a sequence-tagging task. The goal is to 221

identify the time entities in the document and la- 222

bel them with SCATE types (Bethard and Parker, 223

2016). For example, given the sentence: 224

the patient underwent appendicitis surgery on 225

August 29, 2018, 226

the goal is to label August as Month-Of-Year, 29 227

as Day-Of-Month, and 2018 as Year. The source- 228

domain time expression recognition model was 229

trained on the Mayo Clinic clinical notes of Sem- 230

Eval 2018 Task 6 (Laparra et al., 2018). The target 231

domains are news articles (also from SemEval 2018 232

Task 6) and reports from food security warning sys- 233

tems including the UN World Food Programme 234

and the Famine Early Warning Systems Network. 235

Each task has a model trained from a source 236

domain and a test set for each of two target domains. 237

For each target domain, we split the data into 20% 238

as a development set and 80% as a test set. Detailed 239

data information is shown in table 1. 240

Source data We do not use source domain data. 241

We use only the RoBERTa-base models (Liu 242

et al., 2019) that the task organizers fine-tuned on 243

the source domain data sets via the Huggingface 244

Transformers library (Wolf et al., 2020). 245

Target development data We use the develop- 246
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ment data for fine-tuning the model. For active247

learning, to simulate manual annotation, we fine-248

tune on a small number of automatically selected249

labeled examples. For self-training, no labels are250

used; we fine-tune on predictions (pseudo-labels)251

generated by the model on the development data.252

For oracle experiments, we fine-tune the model253

on all labeled examples in the development set.254

Target test data We evaluate on the test data. No255

fine-tuning is performed. Models always treat256

this data as unlabeled2. Its labels are used only257

during evaluation. We use the same evaluation258

metrics as in SemEval 2021 Task 10: precision,259

recall, and F1 score.260

4 Research Questions261

We aim for a systematic analysis of three strategies262

with many different implementations in SemEval263

2021 Task 10: self-training, active learning, and264

data augmentation. Our research questions are:265

1. How much can we gain from having human266

intervention (active learning) and not just the267

model alone (self-training)?268

2. For active learning, given a fixed annotation269

budget, is it better to do several iterations of270

selecting examples for annotation and retraining271

the model, or to select and retrain just once?272

3. For self training, given a fixed confidence thresh-273

old, is it better to do several iterations of gener-274

ating pseudo-labels and retraining the model, or275

to generate and train only once?276

4. In each iteration of active learning or self-277

training, should we use the training data from278

the previous iteration or start anew?279

5. In each iteration of active learning or self-280

training, should we continue training the model281

from the previous iteration or the model from282

the source-domain?283

6. Do active learning and self-training improve284

with data augmentation or work better alone?285

5 Method286

We design source-free variants of self-training, ac-287

tive learning, and data augmentation that incor-288

porate the following parameters, allowing us to289

investigate the questions above.290

T the maximum number of iterations for self-291

training or active learning292

2The data augmentation strategies assume that the target
test data represents all available unlabeled data, and therefore
deterministically restrict their lexicons to words in this data.

Algorithm 1: Source-Free Self-training Al-
gorithm

Input:
M : the source-domain model
D: the unlabeled target domain data
τ : the self-training threshold
T : the maximum number of iterations
SD: the data construction strategy
SM : the model training strategy
SA: the data augmentation strategy

1 M0 ← Copy(M)
2 D0 ← Copy(D)
3 L← ∅
4 for i← 0 to T do
5 if D = ∅ then
6 Stop training
7 if SD = ResetData then
8 L = ∅
9 D = D0

10 LCi ←
{(d,M(d)) for d ∈ D if M(d) confidence > τ}

11 if LCi = ∅ or LCi = LCi−1 then
12 Stop training
13 L = L ∪ LCi

14 if SD = KeepData then
15 D ← D − {d for (d, l) ∈ LCi}
16 if SA = Augment then
17 L← L ∪Augment(LCi);
18 if SM = ResetData then
19 M ←M0;
20 Fine-tune M on L;

SD the data construction strategy: KeepData to 293

keep the training data from the previous iteration, 294

or ResetData to start anew on each iteration. 295

SM the model training strategy: KeepModel to 296

continue training the model from the previous 297

iteration, or ResetModel to continue training 298

from the source-domain model. 299

SA whether or not to use data augmentation. 300

5.1 Source-Free Self-training 301

Algorithm 1 presents our self-training algorithm. It 302

follows standard self-training (Yarowsky, 1995) in 303

using the model to add pseudo-labels to the unla- 304

beled data (line 10). However, there is no source- 305

domain labeled data, so the model can fine-tune 306

only on the pseudo-labels. The remainder of the 307

code ensures that models and/or data are kept, reset, 308

or augmented as per the selected strategies. 309

Self-training requires a measure of model con- 310

fidence on each prediction. In both tasks, we add 311

pseudo-labeled training data a sentence at a time, 312

so we measure confidence at the sentence level. In 313

negation detection, we use the predicted probability 314

at RoBERTa’s special sentence-initial token <s>. 315

In time expression recognition, we use the average 316
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Algorithm 2: Source-Free Active Learning
Algorithm

Input:
M : the source-domain model
D: the development set of the target domain
T : the maximum number of iterations
K: the number of annotations per iteration
SD: the data construction strategy
SM : the model training strategy
SA: the data augmentation strategy

1 M0 ← Copy(M)
2 D0 ← Copy(D)
3 L← ∅
4 for i← 0 to T do
5 if SD = ResetData then
6 L = ∅
7 D = D0

8 DU ←
[d for d ∈ D sorted by uncertainty of M(d)]

9 LU ←
{(d,Annotate(d)) for d ∈ top K of DU}

10 L← L ∪ LU

11 if SD = KeepData then
12 D ← D − {d for (d, l) ∈ LU}
13 if SA = Augment then
14 L← L ∪Augment(LU );
15 if SM = ResetModel then
16 M ←M0

17 Fine-tune M on L;

of the predicted probabilities of the most probable317

class of each token.318

5.2 Source-Free Active Learning319

Algorithm 2 presents our active learning algorithm.320

It follows an approach similar to Su et al. (2021).321

Like most active learning algorithms, the core is to322

select examples the model is uncertain of (line 8)323

and then manually annotate them (line 9). Since our324

development sets are already annotated, we simu-325

late annotation by simply revealing the (previously326

hidden) labels for the selected examples.327

Active learning requires a measure of model un-328

certainty on each prediction. In both tasks, we add329

annotations a sentence at a time, so we measure330

uncertainty at the sentence level. In negation detec-331

tion, we use the predicted entropy at RoBERTa’s332

special sentence-initial token, <s>. In time expres-333

sion recognition, we use the average of the pre-334

dicted entropies of the tokens in the sentence.335

5.3 Data Augmentation336

Inspired by Miao et al. (2020), we use a pool-337

based data augmentation method to automatically338

increase the size of the training set.339

In negation detection, we construct a pool of340

all event words in the unlabeled target domain test341

data. For each development data example to be aug- 342

mented, we substitute its event with n randomly- 343

sampled words from the pool. For example, if data 344

augmentation is performed on the sentence: Has no 345

<e> diarrhea </e>, we replace the diarrhea with 346

random words from the pool, resulting in sentences 347

like Has no <e> asthma </e>. 348

In time expression recognition, we construct a 349

pool of words for each time entity type using the 350

guidelines of the SCATE annotation schema, ex- 351

cluding words that do not appear in the unlabeled 352

target domain test data. For each entity in a develop- 353

ment data example to be augmented, we substitute 354

it with n randomly-sampled words from the pool 355

for its entity type. For example, in the sentence, 356

the patient underwent appendicitis surgery on Au- 357

gust 29, 2018, there are three time entities (Au- 358

gust: Month-Of-Year, 29: Day-Of-Month, 2018: 359

Year). Data augmentation can therefore generate 360

up to n× 3 sentences with different years, months, 361

and days, e.g., the patient underwent appendicitis 362

surgery on September 1st, 2017. 363

6 Experiments 364

The input to the source-domain models for both 365

tasks is a sentence. The output for the negation 366

detection model is a sentence label (negated or not 367

negated). The output for the time expression model 368

is one label per token (its time entity type). For 369

both tasks, we use the conventional RoBERTa input 370

format, surrounding the sentence with the special 371

tokens <s> and </s>. The negation detection data 372

is already split into sentences. For the time recog- 373

nition data, we split it into sentences using Spacy’s 374

sentencizer (Honnibal et al., 2020). 375

When we fine-tune the source-domain model on 376

the target domain, we keep the same training hy- 377

perparameters as were used when the shared task 378

organizers trained the models on the source do- 379

mains. In source-free domain adaptation, there is 380

no (or very little) labeled development data avail- 381

able, so it is not possible to tune hyperparameters. 382

All hyperparameters are given in appendix A.1. 383

In self-training, we set the threshold τ to 0.95, 384

and experiment with running just a single iteration 385

and with running 30 iterations with the different 386

SD and SM strategies. Training may run for fewer 387

iterations when the stopping conditions are met. In 388

active learning, we set our annotation budget to 96 389

sentences, and experiment with spending these 96 390

sentences at once and in 8 iterations with the dif- 391
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Negation: MIMIC-III Negation: i2b2
# Strategy F P R F P R

1 Source-Domain Model (baseline) 0.656 0.921 0.510 0.837 0.855 0.820
2 Fine-Tuned Source-Domain Model (oracle) 0.868 0.875 0.862 0.925 0.928 0.922
3 Self-Distilled Model 0.623 0.825 0.501 0.846 0.849 0.842
4 Passive Learning Model 0.722 0.792 0.663 0.882 0.914 0.853

Active Learning

5 AL (96× 1) 0.759 0.901 0.656 0.886 0.943 0.836
6 AL (12× 8) + ResetModel + KeepData 0.800 0.828 0.774 0.891 0.951 0.838
7 AL (12× 8) + ResetModel + ResetData 0.618 0.842 0.489 0.778 0.972 0.649
8 AL (12× 8) + KeepModel + KeepData 0.817 0.867 0.773 0.859 0.852 0.865
9 AL (12× 8) + KeepModel + ResetData 0.777 0.890 0.689 0.877 0.928 0.831

Active Learning + Data Augmentation

10 AL (96× 1) + DA (5) 0.708 0.652 0.773 0.883 0.937 0.834
11 AL (12× 8) + ResetModel + KeepData + DA (5) 0.805 0.803 0.806 0.891 0.960 0.831
12 AL (12× 8) + ResetModel + ResetData + DA (5) 0.586 0.489 0.730 0.817 0.960 0.710
13 AL (12× 8) + KeepModel + KeepData + DA (5) 0.805 0.878 0.744 0.881 0.925 0.841
14 AL (12× 8) + KeepModel + ResetData + DA (5) 0.745 0.882 0.645 0.889 0.929 0.852

Self-training

15 ST (1) 0.677 0.916 0.537 0.854 0.871 0.838
16 ST (30) + ResetModel + KeepData 0.679 0.937 0.533 0.857 0.876 0.839
17 ST (30) + ResetModel + ResetData 0.695 0.912 0.562 0.861 0.880 0.843
18 ST (30) + KeepModel + KeepData 0.664 0.906 0.525 0.864 0.890 0.840
19 ST (30) + KeepModel + ResetData 0.654 0.879 0.521 0.858 0.883 0.834

Self-training + Data Augmentation

20 ST (1) + DA (5) 0.654 0.943 0.501 0.863 0.894 0.833
21 ST (30) + ResetModel + KeepData + DA (5) 0.000 0.000 0.000 0.861 0.887 0.838
22 ST (30) + ResetModel + ResetData + DA (5) 0.000 0.000 0.000 0.864 0.897 0.834
23 ST (30) + KeepModel + KeepData + DA (5) 0.000 0.000 0.000 0.854 0.869 0.839
24 ST (30) + KeepModel + ResetData + DA (5) 0.000 0.000 0.000 0.855 0.885 0.827

Table 2: Performance of domain adaptation strategies on the negation detection target domains. AL (k × i) is
active learning with k samples and i iterations. ST (i) is self-training up to i iterations. DA (n) is augmenting each
example with up to n new examples. The best scores are in bold and the worst scores are underlined.

ferent SD and SM strategies. For all experiments,392

we run one version with data augmentation (with393

n = 5) and one without.394

For each source and target domain pair, we com-395

pare our adapted model with the following models.396

1. Source-Domain Model: The baseline. It is un-397

adapted, trained only on the source domain.398

2. Fine-Tuned Source-Domain Model: The ora-399

cle. It is fine-tuned on the target domain using400

the entire labeled development set.401

3. Self-Distilled Model: A RoBERTa-base model402

fine-tuned on the development set using pseudo403

labels generated by the source-domain model.404

4. Passive Learning Model: The source-domain405

model fine-tuned on 96 randomly sampled ex-406

amples from the labeled development set.407

7 Discussion408

Tables 2 and 3 show the results of our experiments.409

We are interested less in the best model for a par-410

ticular configuration, but rather in which config- 411

urations are successful across multiple tasks and 412

domains. This is because in source-free domain 413

adaptation, there is typically no (or very little) la- 414

beled target domain data available for hyperparam- 415

eter tuning. Therefore, what we need is a universal 416

strategy that does not require careful tuning. 417

For source-free active learning, we find that even 418

small amounts of annotated data are useful, and 419

that smart data selection (e.g., using uncertainty 420

scores) is usually helpful. The active learning Keep- 421

Data models (rows 6, 8, 11, and 13 in tables 2 422

and 3) have higher F1s than the baseline source 423

domain models across all tasks and domains (0.054 424

F1 higher on average). Active learning KeepData 425

models also outperform passive learning models 426

(that randomly select data) in 14 out of 16 cases, 427

and are at least as good as, and typically much bet- 428

ter than, the self-training models (rows 15-24 in 429

tables 2 and 3). The ResetModel+ResetData mod- 430
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Time: News Time: Food
# Strategy F P R F P R

1 Source-Domain Model (baseline) 0.771 0.772 0.770 0.781 0.834 0.734
2 Fine-Tuned Source-Domain Model (oracle) 0.844 0.826 0.864 0.851 0.841 0.861
3 Self-Distilled Model 0.572 0.590 0.555 0.766 0.831 0.711
4 Passive Learning Model 0.796 0.783 0.809 0.770 0.755 0.785

Active Learning

5 AL (96× 1) 0.812 0.800 0.825 0.819 0.821 0.818
6 AL (12× 8) + ResetModel + KeepData 0.812 0.794 0.830 0.842 0.844 0.840
7 AL (12× 8) + ResetModel + ResetData 0.771 0.771 0.770 0.781 0.832 0.737
8 AL (12× 8) + KeepModel + KeepData 0.861 0.844 0.879 0.872 0.866 0.879
9 AL (12× 8) + KeepModel + ResetData 0.772 0.758 0.787 0.781 0.797 0.765

Active Learning + Data Augmentation

10 AL (96× 1) + DA (5) 0.856 0.829 0.884 0.840 0.824 0.855
11 AL (12× 8) + ResetModel + KeepData + DA (5) 0.860 0.830 0.893 0.856 0.840 0.873
12 AL (12× 8) + ResetModel + ResetData + DA (5) 0.790 0.748 0.836 0.793 0.782 0.805
13 AL (12× 8) + KeepModel + KeepData + DA (5) 0.849 0.820 0.881 0.841 0.821 0.863
14 AL (12× 8) + KeepModel + ResetData + DA (5) 0.853 0.828 0.879 0.856 0.831 0.881

Self-training

15 ST (1) 0.753 0.733 0.774 0.777 0.807 0.750
16 ST (30) + ResetModel + KeepData 0.786 0.791 0.782 0.780 0.815 0.747
17 ST (30) + ResetModel + ResetData 0.727 0.688 0.770 0.787 0.815 0.761
18 ST (30) + KeepModel + KeepData 0.784 0.777 0.792 0.786 0.832 0.745
19 ST (30) + KeepModel + ResetData 0.633 0.551 0.743 0.789 0.829 0.752

Self-training + Data Augmentation

20 ST (1) + DA (5) 0.800 0.794 0.805 0.756 0.787 0.726
21 ST (30) + ResetModel + KeepData + DA (5) 0.789 0.790 0.788 0.754 0.780 0.730
22 ST (30) + ResetModel + ResetData + DA (5) 0.795 0.792 0.798 0.765 0.788 0.744
23 ST (30) + KeepModel + KeepData + DA (5) 0.794 0.801 0.788 0.759 0.786 0.734
24 ST (30) + KeepModel + ResetData + DA (5) 0.797 0.791 0.802 0.747 0.771 0.724

Table 3: Performance of domain adaptation strategies on the time expression recognition target domains. AL (k×i)
is active learning with k samples and i iterations. ST (i) is self-training up to i iterations. DA (n) is augmenting
each time entity with up to n new examples. The best scores are in bold and the worst scores are underlined.

els always have the worst F1s of the active learning431

models (rows 7 and 12 in tables 2 and 3).432

Several active learning models achieve higher433

F1s than the “oracle” model that fine-tuned on the434

full labeled development set (row 8, 10, 11, 13,435

14 in table 3 Time: News and row 8, 11, 14 in436

table 3 Time: Food). This emphasizes a challenge437

of source-free domain adaptation: more data is not438

always better data. Since we do not have access to439

the source domain training data, if we fine-tune on440

too much target domain data the model may start441

to forget what it learned on the source domain, i.e.,442

“catastrophic forgetting” (McCloskey and Cohen,443

1989). In these cases, the active learning models,444

by selecting a small set of just the most uncertain445

examples, reap the benefits of knowing something446

about the target domain without losing what they447

learned from the source domain.448

For source-free self-training, we find that iter-449

atively updating both model and data is slightly450

above baseline, and that it is better to start from the 451

source-domain model than from RoBERTa without 452

fine-tuning. The KeepModel+KeepData (without 453

data augmentation) is slightly above the source- 454

domain model across all tasks and domains (0.013 455

F1 higher on average). Every other configuration, 456

even if they outperform KeepModel+KeepData in 457

one task or domain, is below the source-domain 458

baseline in another. All self-trained models without 459

data augmentation (which start from the source- 460

domain model) do at least outperform self-distilled 461

models (which start from the RoBERTa model with- 462

out fine-tuning; row 3 in tables 2 and 3). The 463

small gains from the only self-training configu- 464

ration that consistently outperformed the source- 465

domain model suggest that self-training may not 466

be worthwhile for source-free domain adaptation. 467

Data augmentation helped in some cases (e.g., 468

self-training time expression recognition on news), 469

and hurt in others (e.g., self-training time expres- 470
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sion recognition on food security). Data augmen-471

tation sometimes led to ill-behaving models: on472

the negation MIMIC-III dataset, data augmentation473

made the self-trained model predict all examples as474

not negated resulting in 0.000 F1 (rows 21 -24 in475

table 2: Negation-MIMIC-III). This suggests that476

data augmentation (or at least the variants of it that477

we explored) is probably not viable for source-free478

domain adaptation where no labeled data for tuning479

strategies is available.480

We thus make the following suggestions for481

source-free domain adaptation:482

1. If there is sufficient expertise to label the data,483

use active learning and iteratively adapt the484

model with the KeepModel+KeepData strategy485

instead of spending the annotation budget all at486

once. This is the best model without data aug-487

mentation in three of the four domains (Nega-488

tion: MIMIC III, Time: News, Time: Food).489

Note that expertise is important: Su et al. (2021)490

found that active learning with non-experts in491

the face of a complex annotation scheme did not492

yield performance improvements.493

2. Self-training and data augmentation, at least494

as implemented here, are not good choices for495

source free domain adaptation: sometimes they496

led to gains, and sometimes they led to losses.497

While a good strategy could be found by label-498

ing some target domain data and performing499

hyperparameter search, such annotation effort500

would have a higher payoff if used for active501

learning instead.502

3. Active learning is better than passive learning:503

smart example selection is better than random504

example selection.505

4. Self-training is better than self-distillation: the506

models benefit from the task knowledge learned507

from the source-domain.508

Our systematic analysis allowed us to make the509

above more specific suggestions than the shared510

task’s main suggestion that “the best perform-511

ing [systems] incorporated. . . active-learning, hand-512

crafted heuristics or semiautomatically building a513

training set” (Laparra et al., 2021).514

8 Error Analysis515

We performed an error analysis to try to determine516

if different adaptation strategies resulted in differ-517

ent types of errors being corrected (as compared to518

the source domain model). For negation detection519

we sampled and categorized around 200 errors of520

the source-domain model for each target domain. 521

When the model failed to predict a negation, we 522

manually categorized the error by the negation cue 523

(no, free, absent, etc.). When the model predicted 524

a negation it should not have, we manually cate- 525

gorized the error into “wrong cue” (there was a 526

negation cue in the sentence but it did not apply to 527

the target event) or “short sentence” (especially on 528

the i2b2 domain, the model liked to predict all short 529

sentences as negated). For time expression recogni- 530

tion, we categorized all errors of the source-domain 531

model by entity type (inside–outside–beginning for- 532

mat) for each target domain. 533

For both tasks, we then calculated how many of 534

these source-domain model errors the best adapted 535

models continued to make. Heatmaps of these 536

analyses are plotted in appendix A.2. Across all 537

tasks and domains, we see that the best self-trained 538

models correct errors roughly evenly across source- 539

domain error categories, while the best active learn- 540

ing models correct different errors, more like the 541

oracle (target-fine-tuned) model. For example, the 542

oracle model and active learning adapted models 543

correct many more “wrong cue” errors in the nega- 544

tion i2b2 domain, more denies and none errors in 545

the negation MIMIC III domain, more B-Period 546

and B-Month-Of-Year entities in the time news 547

domain, and more B-Season-Of-Year, I-Season-Of- 548

Year, and B-This entities in the time food domain. 549

Some error types appear to be only learnable 550

with substantially more data. Only the oracle model 551

is able to correct errors with the non and afebrile 552

negation cues in the i2b2 domain and with the hold 553

negation cue in MIMIC-III domain. This suggests 554

that the source-domain model may be very con- 555

fident in some types of wrong examples causing 556

them not to be selected in active learning and gen- 557

erating poor pseudo-labels in self-training. 558

9 Conclusion 559

In this paper, we present a detailed comparison of 560

the use of active learning, self-training and data 561

augmentation to adapt a source-domain model on 562

a target domain when the source-domain training 563

data is unavailable. We identify a specific formula- 564

tion of source-free active learning that consistently 565

improves performance of the source-domain model. 566

We believe our work highlights the interesting chal- 567

lenges of source-free domain adaptation, and its 568

systematic comparison provides a solid base for 569

future research in this area. 570
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A Appendix 860

A.1 Hyperparameters 861

For both tasks, when we continue training the 862

source-domain model on the target domain, we 863

keep the same training hyperparameters as were 864

used when the shared task organizers trained the 865

models on the source domains. Those hyperparam- 866

eters are shown in tables A1 and A2. 867

Hyperparameter Value

maximum sequence length 128
batch size 8
epochs 10
gradient accumulation steps 4
learning rate warm up steps 0
weight decay 0.0
learning rate 5e-5
adam epsilon 1e-08
maximum gradient norm 1.0

Table A1: Hyperparameters for negation detection sys-
tems.

Hyperparameter Value

maximum sequence length 271
batch size 2
epochs 3
gradient accumulation steps 1
learning rate warm up steps 500
weight decay 0.01
learning rate 5e-5
adam epsilon 1e-08
maximum gradient norm 1.0

Table A2: Hyperparameters for time expression recog-
nition systems.

A.2 Heat Maps for Error Analysis 868

For both tasks, we calculated how many source- 869

domain model errors the best adapted models con- 870

tinued to make, and plotted them as heatmaps, 871

where the rows are types of errors, and the columns 872

are different models. Figures A1 to A4 show these 873

analyses. 874
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Figure A1: Negation i2b2 target domain error heat
map. Source is source-domain model. Oracle is oracle
model. AL is the best performing active learning model.
ALDA is the best performing active learning with data
augmentation model. ST is the best self-training model.
STDA is the best self-training with data augmentation
model. The numbers in parentheses are the F1 scores
of the models.
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training model. STDA is the best self-training with data
augmentation model. The numbers in parentheses are
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Figure A3: Time news target domain error heat map.
Source is source-domain model. Oracle is oracle
model. AL is the best performing active learning model.
ALDA is the best performing active learning with data
augmentation model. ST is the best self-training model.
STDA is the best self-training with data augmentation
model. The numbers in parentheses are the F1 scores
of the models.
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Figure A4: Time food security target domain error heat
map. Source is source-domain model. Oracle is oracle
model. AL is the best performing active learning model.
ALDA is the best performing active learning with data
augmentation model. ST is the best self-training model.
STDA is the best self-training with data augmentation
model. The numbers in parentheses are the F1 scores
of the models.

13



Strategy B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

Source-Domain Model (baseline) 88.5 92.0 93.8 90.2 91.7 90.7 89.0 89.2 93.5 92.0 90.5 94.8
Fine-Tuned Source-Domain Model (oracle) 89.7 93.0 94.5 91.5 93.5 94.3 93.2 91.0 94.0 92.2 90.5 94.3

Self-Distilled Model 88.0 91.7 95.5 92.5 90.5 93.0 89.2 90.5 94.0 90.5 90.0 92.5
Passive Learning Model 86.5 92.5 92.5 91.5 89.2 91.2 90.0 90.2 93.2 91.5 89.7 91.2

Best model from Ye et al. (2020) 87.9 91.3 92.5 91.5 91.6 92.5 88.7 88.2 93.6 89.8 87.9 92.6

Active Learning

AL (96 x 1) 87.7 90.2 92.7 90.7 91.0 93.0 90.2 90.7 93.2 91.7 90.0 93.8
AL (12 X 8) + KeepModel + KeepData 88.2 90.0 91.0 90.2 90.5 94.8 91.0 88.2 94.0 89.7 91.0 92.7
AL (12 X 8) + KeepModel + ResetData 87.5 93.0 79.0 83.5 90.5 91.0 86.8 78.5 89.0 85.3 83.8 89.5
AL (12 X 8) + ResetModel + KeepData 87.5 92.2 93.5 92.5 91.2 94.0 91.2 89.0 94.5 91.0 89.2 94.8
AL (12 X 8) + ResetModel + ResetData 75.0 84.0 67.2 91.7 62.5 90.0 89.2 87.5 91.0 93.0 69.0 94.5

Self-training

ST (1) 87.5 91.7 94.3 91.5 90.5 92.5 90.2 91.7 92.5 91.5 91.5 94.3
ST (30) + KeepModel + KeepData 87.5 92.5 94.0 90.5 91.0 92.0 89.5 89.5 94.5 90.2 89.7 93.2
ST (30) + KeepModel + ResetData 90.0 91.2 94.3 91.2 90.2 92.7 90.7 90.5 94.5 91.2 90.5 93.5
ST (30) + ResetModel + KeepData 88.2 91.0 94.3 91.7 91.0 91.7 90.7 92.2 95.3 91.0 92.0 92.7
ST (30) + ResetModel + ResetData 89.0 92.5 94.0 90.7 90.5 92.2 90.0 90.7 94.8 91.5 91.2 94.3

Table A3: Accuracy on the Amazon benchmark dataset from Ye et al. (2020). B is Books. D is DVDs. E is
Electronics. K is Kitchen. The bolded score is the highest score for the entire column. The underlined score is the
worst score for the entire column.

A.3 Results on Amazon Benchmark875

The Amazon Sentiment Analysis dataset has been876

used as a domain adaptation benchmark dataset by877

a large number of previous works (Blitzer et al.,878

2007; Ziser and Reichart, 2017; He et al., 2018;879

Ye et al., 2020; Ben-David et al., 2020). The data880

consists of reviews of four different product types881

(domains): Books, DVDs, Electronics, and Kitchen882

appliances. For the labeled portion, there are 1000883

positive reviews and 1000 negative reviews for each884

domain. From these 4 domains, we construct 12885

source-free domain adaptation tasks. For better886

comparison we directly use the data and split from887

the software release of Ye et al. (2020). The data888

of each source domain is split into 80% as source-889

domain training set and 20% as source-domain de-890

velopment set. The source-domain model is trained891

on the source-domain training set and its hyper-892

parameters are tuned using the source-domain de-893

velopment set. The data of each target domain is894

split into 80% as target-domain development set895

and 20% as target-domain test set. The use of896

target-domain development set and target-domain897

test set is the same as in section 3.898

When training the source-domain model, we899

used RoBERTa-base as a starting point and used900

grid search to tune the hyperparameters within the901

space of:902

Learning Rate (Adam): 1e-5, 2e-5, 3e-5903

Batch Size: 8904

Gradient Accumulation Steps: 2, 4 905

Epochs: 10 906

Table A3 shows the results of these 12 source- 907

free domain adaptations. In 9 of 12 cases, our un- 908

adapted source-domain models score higher than 909

the best adaptation model from Ye et al. (2020). 910

The gap between these unadapted source-domain 911

models and the fully target-domain adapted (oracle) 912

models is also very small: the average difference is 913

only 1.3 points, much smaller than the 11.1 point 914

average difference in tables 2 and 3. In essence, 915

no domain adaptation is needed for this data, so 916

it is a poor dataset for evaluating source-free do- 917

main adaptation. Unsurprisingly, we thus see no 918

source-free domain adaptation models that consis- 919

tently improve performance, though we do see that 920

the active learning ResetData models are typically 921

poor, as they were in tables 2 and 3. 922

To make sure that it is not a specific split or a 923

smaller test set that leads to good source-domain 924

models, we also use the data from Ben-David et al. 925

(2020) to train and test the source-domain models 926

again. The source-domain data split and usage here 927

is the same as before. The only difference is that 928

there is no target-domain development set and the 929

entire target domain is used as a test set. We show 930

the results in table A4. All source-domain mod- 931

els outperform the best adapted models from Ben- 932

David et al. (2020). It is worth noting that when we 933

trained the source-domain model, we found that a 934

large number of punctuation and special symbols 935
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Strategy B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

SD 91.8 93.5 95.0 93.0 93.0 94.6 92.8 90.8 94.7 92.1 90.2 94.4
Best model from Ben-David et al. (2020) 87.8 87.2 90.2 85.6 89.3 90.4 84.3 85.0 91.2 83.0 85.6 91.2

Table A4: Accuracy on the Amazon benchmark dataset from Ben-David et al. (2020). B is Books. D is DVDs. E
is Electronics. K is Kitchen. The bolded score is the highest score for the entire column. The underlined score is
the worst score for the entire column.

included in the data from Ben-David et al. (2020)936

caused severe overfitting of the model (accuracy937

is 1 on the source-domain development set). After938

removing these symbols, the problem was resolved.939

A.4 Other Experimented Methods940

We also tried to adapt the source-domain model941

by continuing to pre-train it with masked language942

modeling on the target domain. We removed the943

classification layer of the source-domain model,944

replaced it with a randomly initialized masked lan-945

guage modeling layer, then trained the language946

model on the unlabeled target-domain data, and947

then replaced the masked language modeling layer948

with the original classification layer. The hope was949

that this would bring the internal representations950

of the source-domain model closer to the target951

domain. However, despite a number of attempts952

at pre-training both all layers and selected layers,953

performance of this model was always much worse954

than the source-domain model.955
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