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Fig. 1: Example scenario with occlusions in a confined shelf environment. Given a current partial map of the environment (belief t),
our planner decides whether gathering another observation or manipulating the scene would be best to reduce map uncertainty. In this
example, first a viewpoint action would increase environmental knowledge, followed by a push to unveil the hidden can behind the two
boxes at time t+ 2.

Abstract— Searching for objects in cluttered environments
requires selecting efficient viewpoints and manipulation actions
to resolve occlusions and reduce uncertainty about object
locations, shapes, and categories. We address the problem
of manipulation-enhanced semantic mapping, where a robot
efficiently identifies all objects in a cluttered shelf. Although
Partially Observable Markov Decision Processes (POMDPs) are
standard for decision-making under uncertainty, representing
unstructured interactive worlds remains challenging in this
formalism. To overcome this, we introduce a novel POMDP
framework that summarizes beliefs using a metric-semantic
grid map and leverages neural networks for efficient belief
updates, simultaneously reasoning about object geometries,
locations, categories, occlusions, and manipulation physics. To
ensure efficient exploration via information gain maximization,
we propose to use Calibrated Neural-Accelerated Belief Updates
(CNABUs), providing confidence-calibrated predictions that
generalize to novel scenarios. Our experiments demonstrate im-
proved map completeness and accuracy over existing methods,
successfully transferring to real-world cluttered shelves in a
zero-shot manner.

I. INTRODUCTION

Active sensing has long been studied in robotics for tasks
such as exploring an unknown environment [1], complete 3D
object model acquisition [2], and searching for an unobserved
target object [3], [4]. To build complete maps as efficiently
as possible, Next Best View (NBV) planning [5] is often
employed to reduce the uncertainty about the map as quickly
as possible. Although NBV planning handles static scenes
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in which the robot simply moves the camera passively
through free space, there are many applications, such as
household and warehouse robotics, in which robots may
need to manipulate the environment in order to gain better
viewpoints [6], [7]. We refer to this problem as manipulation-
enhanced mapping (MEM). MEM offers two significant new
challenges beyond standard NBV problems. First, in order
to decide when and where to manipulate objects, the robot
should reason about how object movement may affect previ-
ously occluded regions. Second, it must anticipate the impact
of manipulations on observed objects and possibly partially-
observed or unobserved objects. For example, pushing boxes
in a grocery shelf backward will move them simultaneously
until the furthest, occluded box hits a wall.

In this work, we formulate the MEM problem as a Partially
Observable Markov Decision Process (POMDP) in the belief
space of semantic maps. By maintaining map-space beliefs,
our approach is applicable to unstructured cluttered envi-
ronments with an arbitrary number of objects. The POMDP
computes the next best viewpoint or manipulation action that
maximizes the agent’s expected information gain over a short
horizon (Fig. 1). Our approach leverages neural network
methods for map-space belief propagation, which have been
shown in the object goal navigation literature to drastically
improve map completion rates and offer better guidance
for object search by improving the reasoning about objects
beyond directly observed space [3], [4]. The key challenge in
belief propagation with manipulation actions is that they of-
ten reduce certainty when the object’s dynamics are unknown
or the robot interacts with unobserved objects. To address this
challenge, we introduce the Calibrated Neural-Accelerated
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Fig. 2: From a prior map belief, our pipeline predicts the potential map belief resulting from a series of potential pushes. It then weighs
the information gain from taking two consecutive independent views given the current belief (orange arrows) or taking a single observation
given any of the predicted beliefs after pushing (blue arrows), selecting the path of highest cumulative information gain and taking its
respective first action - either taking the next best view or executing the best push.

Belief Update (CNABU) technique to learn unified belief
propagation models for both viewpoint and manipulation
actions. Confidence calibration [8] is especially important for
belief propagation because overconfidence in either object
dynamics or map prediction would result in ineffective
exploration and/or early agent termination. Therefore, we
leverage evidential deep learning to obtain better calibrated
CNABU networks [9].

II. METHODS
A. Overview

In this work, we consider a confined environment with
movable objects of varying sizes and orientations, where
some objects may be unobservable from any viewpoint due
to occlusions. We aim to determine the most informative
sequence of actions for a robot, within a given action budget,
that minimizes the difference between the robot’s internal
map belief and the true environment configuration using
a similarity metric, such as IoU. A robotic arm, equipped
with a wrist-mounted RGB-D camera and a gripper, aims to
build an accurate map of the current workspace configuration
CW [10] after a sequence of actions, which can be either
taking an RGB-D image or performing a manipulation (i.e.,
a push) to move objects and reveal occluded areas.

Let Φt represent the robot’s internal environment map
at time t. When manipulating the environment, it causes
a transition on the workspace configuration space from
ct 7→ ct+1 ∈ CW according to the environment’s dynamics.
Further, whenever the robot takes an action, it updates its
internal environment representation according to its belief
update, Φt → Φt+1. However, traditional POMDP updates
are impractical due to the high dimensionality of the belief
space [11]. We propose using uncertainty-aware evidential
deep learning [12] to predict a factorized belief distribution
that aligns with plausible configurations while maintaining
compactness.
B. Solving the POMDP

We solve the POMDP using a k-step receding horizon
greedy planner (Fig. 2) and approximating the reward func-

tion with Volumetric Information Gain (VIG) [13].
To perform an observation action, the robot chooses from

vi ∈ V possible views in a fixed array of camera positions
V to which the robot can move. Furthermore, let θt ∈ Θt be
a sampled manipulation action from a set of feasible actions.
We propose to use a two-step greedy receding horizon policy
search strategy, where we only consider two possible kinds of
action sequences: taking two observation actions (vt, vt+1)
or performing a manipulation action followed by an obser-
vation (θt, vt+1). This is because (θt, θt+1) would result in
no observation and therefore no information gain and the
information gain of (vt, θt+1) is smaller than the VIG by any
(vt, vt+1), vt+1 ̸= vt, given that no observation is obtained
from a manipulation action. These action sequence branches
can, thus, be culled from the policy search tree. Unlike other
methods for solving POMDPs with high-dimensional state
spaces, like POMCP [14], our proposed solution does not
require drawing state samples from the current belief to
estimate history rewards. Instead, we leverage confidence
calibrated neural networks (CNABUs) to directly estimate
the mean per-voxel occupancy and semantics conditioned on
the action at a given time and marginalized over all states. We
can then combine the submodularity of the information gain
metric and the efficiency of visual information gain heuristics
on independent-cell voxel grids [13] to estimate the expected
reward from each action sequence. We next detail how to
train these CNABUs.

C. Approximating Belief Dynamics with Neural Networks

We propose recursively estimating the belief update after
an observation action ot using a deep posterior network,
σo(Φt−1, ot), which we call Calibrated-Neural Accelerated
Belief Update (CNABU) network to create an implicit
Monte-Carlo estimate of the POMDP belief update by
Φt = σo(Φt−1, ot). Similarly, the update after a manipula-
tion action at is learned via an action-specific CNABU,
σm(Φt−1, at).

Given that evidential posterior networks are shown to



Fig. 3: Real-world experiment results show that VPP and Random baselines struggle with occlusions, while our method explores effectively
through manipulations. In Step 16, we highlight a revealed object in yellow.

handle uncertainty more effectively [12], σo is designed
to produce evidential outputs: αS ∈ RH×W×Nclasses and
αO ∈ RH×W×D×2. These correspond to a grid of Dirichlet
distribution parameters over a 2D map of the environment
(with shape H × W and Nclasses ) and a dense 3D grid
of Beta distribution parameters, one for each voxel in the
environment (with shape 2 × H × W × D). Let Dir(·)
and Beta(·) denote the Dirichlet and Beta distributions.
Therefore, the semantic and occupancy beliefs used to solve
the POMDP are defined as ΦS = E[Dir(αS)] and ΦO =
E[Beta(αO)].

The manipulation CNABU σm is defined similarly to
the viewpoint CNABU σo, except it takes as an input the
parametrization of action at, which we call ζt and it has an
auxiliary output, which predicts a Beta distribution over a
voxel grid modeling the probability of a given voxel being
changed in ΦGT after the manipulation is executed.

D. Using CNABUS for Solving the POMDP

Using the VIG [13]for information gain estimates, the term
IGVt = IG(v∗t , v

∗
t+1|ΦO

t ) denotes the highest information
gain obtained from two viewpoints, given map representation
ΦO

t , while IGMt = IG(v∗θt |Φ̃
θ∗
t

t+1) represents the best infor-
mation gain from a pushing action followed by a viewpoint
execution, given the posterior map representation after exe-
cuting the push action Φ̃

θ∗
t

t+1. Lastly, Regt = ∆H(Φt, Φ̃
θ∗
t

t+1)
captures the entropy difference between the current semantic
map and the map after the best push action. Our policy
decides the action at through:

at =

{
v∗t if IGVt > IGMt + γRegt

θ∗t otherwise
(1)

Here, γ balances VIG and entropy increase due to manip-
ulation, with ∆H regularizing manipulation actions to limit
large unnecessary disturbances to the scene. Belief updates
depend on the action: Φt+1 = Φ̃

θ∗
t

t+1 for manipulation or
Φt+1 = σo(Φ

t, ot) for observation, with ot ∼ Z(v∗t |ctw).

III. EXPERIMENTAL RESULTS

For experimental evaluation, we set up a shelf scene
with a UR5 arm for observation and action execution in
PyBullet [15]. The robot is equipped with a Robotiq parallel-
jaw gripper and an realsense L515 RGB-D camera for

(a) High Occlusion - Semantics (b) High Occlusion - Occupancy

Fig. 4: Simulation results in MEM task.

observations. To sample realistic object configurations, a total
of 14 different object categories from the YCB dataset are
used and sampled in a shelf board of size (0.8×0.4×0.4)m.

A. Simulation Experiments

Our simulation experiments consider high occlusion sce-
narios for manipulation-enhanced mapping. We generate
25 high occlusion scenarios by hand to be challengingly
crowded and with many objects occluded. Furthermore, we
us a fixed set of 300 viewpoints in front of the shelf for V.

The robot always begins with a naive uniform prior
over the environment. We measure the individual methods’
success in both metric and semantic mIoU against the ground
truth map at time t, with a 40 step budget.

Quantitative results are shown in Fig. 4. We observe
that belief prediction is a powerful approach, leading to
excellent scene coverage even without pushing. On highly
occluded scenarios, pushing is required to make progress
after the visible surfaces are observed. Our method uses
pushing to achieve significant higher mIoUs. Note its IoU
growth is slower early on, because pushing does not provide
information until a viewpoint step is taken in the next action.

B. Hardware Experiments

We performed 10 real-world experimental runs on a UR5.
All results are collected in a zero-shot fashion, i.e., no fine-
tuning on real data was performed. We set the budget to 20
steps and sampled a fixed set of 75 reachable camera poses
in front of the shelf for V.



TABLE I: Comparing our method in 10 trials to the strongest
baselines in zero-shot transfer to real-world shelves.

Policy Correctly
Found ↑

Missclassified
But Found↑ Not Found↓ Hallucinated↓

Random + CNABU 72 47 52 11
Ours w/o Pushing 81 38 52 6
Ours 85 52 35 7

We handcrafted 10 challenging scenes, each with an
average of 18 objects from the YCB dataset [16], where
pushing is required to reveal other objects. We collect the
ground truths by removing the top of the shelf at the end
of each episode to manually score the final maps. We score
each scenario according to the status of all of the objects
present in the map. Each object in the map is classified in
four categories: 1) Correctly Found if the majority of the
object is correctly represented in the map with the right class;
2) Misclassified But Found if the majority of the object
is present in the occupancy map but is mislabeled; 3) Not
Found - if the majority of the object is absent from the
occupancy map and 4) Hallucinated if an object that is not
present in the scene is present in the map. For each model,
we report the total quantity of each detection at time step 20
summed over all 10 trials.

Results in Tab. I show that with zero-shot transfer from
sim-to-real, the proposed method still manages to retain its
edge over the compared baselines. Note that all methods
compared use calibrated belief prediction. However, little
difference is seen between viewpoint planning (Ours w/o
Pushing) and random viewpoint choices. However, Ours
w/o Pushing classified more objects correctly with fewer
hallucinated objects. We expect that this is due to a domain
gap caused by camera noise from the realsense L515 leading
to some strong artifacting in the depth images and the
inaccuracies of the open-set semantic segmentation pipeline.
However, we can see that our methods (both with pushing
and without pushing) greatly reduce the number of hallucina-
tions and improve the number of correctly identified objects.
Further, our complete pipeline reveals 39% of the objects that
were previously unseen by the non-interactive baselines, per-
formance consistent with the simulation experiments, despite
the significant sim-to-real gap, particularly in segmentation
performance, leading to many of the newfound objects being
incorrectly classified.

In Fig. 3 we show a qualitative result of our agent
after efficient viewpoint and push selection. The qualitative
results show that with zero-shot transfer from sim-to-real,
our proposed method generates a good representation of the
scene. Our method (both with pushing and without pushing)
is able to identify the majority of objects in the scene, from
a total of 16. Further, our complete pipeline reveals several
objects that were previously unseen, e.g., a tomato can as
highlighted in yellow.

IV. CONCLUSION

In this paper, we presented a POMDP-inspired policy
solver, that decides between different action types to generate
an uncertainty-aware map-apace dynamics model as belief.
Furthermore, our pipeline considers all action types to be

equally effective and decides according to the best informa-
tive outcome. Our results show the qualitative performance
of our system in terms of occupancy and semantics map
accuracy and demonstrate that our agent is able to reason
about map dynamics and impact of actions to the scene.
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