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ABSTRACT

Molecular conformer generation is a fundamental challenge in computational
chemistry, particularly for large and complex molecules. In this work, we pro-
pose a novel approach called Fragment-Augmented Diffusion (FADiff), which
integrates molecular fragmentations into diffusion models as a data augmenta-
tion strategy to enhance molecular conformation generation. By decomposing
molecules into smaller, manageable fragments for the purpose of data augmenta-
tion, FADiff enhances the diffusion generation process, effectively capturing local
structural variations while preserving the integrity of the entire molecule. Ex-
tensive experiments across multiple datasets demonstrate that FADiff consistently
outperforms state-of-the-art methods, particularly in data-scarce scenarios, where
the fragment-based augmentation approach significantly enhances model perfor-
mance. We also provide a comprehensive analysis of different fragmentation
rules and their impact on model performance, and theoretically validate FADiff’s
effectiveness in improving generalization. Overall, FADiff advances molecular
conformation generation by enhancing the exploration of conformational space,
offering a powerful tool for computational chemistry. The code is available at
https://anonymous.4open.science/r/fragaug-5960/.

1 INTRODUCTION
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Figure 1: Fragmentation example on Amoxi-
cillin.

The generation of 3D molecular conformations is
a cornerstone in computational chemistry, crucial
for understanding molecular properties and inter-
actions. Conformation spatial arrangements of a
molecule’s atoms are vital for determining chem-
ical behavior and reactivity (Axelrod & Gomez-
Bombarelli, 2022). Traditional methods, such as
RDKit (Riniker & Landrum, 2015), utilize exper-
imental torsion knowledge and distance geometry
to manipulate torsion angles and explore confor-
mational space (Kang et al., 1996; Havel, 1998).
These approaches have significantly contributed to
the field by enhancing our ability to predict and an-
alyze molecular structures (Hawkins, 2017). How-
ever, they often face prohibitive computational costs
and limited generalizability with large and complex molecules, as exploring all possible confor-
mations is expensive and these methods may not generalize well across diverse molecular sys-
tems (Rappé et al., 1992; Halgren, 1996; Zhou et al., 2023).

On the other hand, data-driven generation methods have recently gained prominence due to their
remarkable ability to capture the overall structural distribution of molecules (Gómez-Bombarelli
et al., 2018; Fu et al., 2020; 2021; Hoffman et al., 2022), wherein diffusion-based generative mod-
els stand out with exemplary performance (Guo et al., 2024; Xu et al., 2022; Wang et al., 2023).
The high-level idea of diffusion-based molecular generation methods undergoes a transition from
stable equilibrium conformations to a state of increased disorder through a series of controlled dif-
fusion steps, and then learns a model to reverse the diffusion process (Song & Ermon, 2019; Ho
et al., 2020; Xu et al., 2022). These methods leverage vast datasets to learn and predict molecu-
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lar structures (Ryan et al., 2018; Ross et al., 2022; Siebenmorgen et al., 2024). Diffusion models
that operate 3D Euclidean space can struggle with computational efficiency and scalability when
dealing with large, complex molecules (Xu et al., 2022). To overcome this problem, torsional diffu-
sion (Jing et al., 2022) focuses specifically on the torsion angles of molecules, efficiently exploring
conformational space by leveraging the periodic nature of these angles. This approach reduces the
dimensionality of the problem and allows for more targeted exploration of low-energy conform-
ers, making it well-suited for molecular conformation generation task. Despite the advancements
brought about by torsional diffusion, challenges remain, particularly in terms of data efficiency and
generalization (Wang et al., 2022; Tiwary et al., 2024). One of the primary limitations of current
diffusion-based methods is their heavy reliance on large, high-quality datasets to learn molecu-
lar structures (Heid et al., 2023; Rotskoff, 2024; Tiwary et al., 2024). In practice, obtaining such
datasets can be costly and time-consuming, especially for complex molecules or novel chemical
spaces (Huang & Von Lilienfeld, 2021). The limited data efficiency of these methods further con-
strains the models’ generalization ability and expressive power (Kirchmeyer et al., 2022; Tiwary
et al., 2024). This reliance on extensive training data can lead to suboptimal performance when
applied to molecules that deviate significantly from those in the training set (Rotskoff, 2024).

To address these limitations, we propose a fragment-based data augmentation strategy which lever-
ages the modularity of molecules for molecular conformer generation within diffusion models. By
decomposing complex molecules into smaller fragments, we can generate diverse conformations
for each substructure (Gordon et al., 2012). For instance, Amoxicillin in Fig. 1, a complex antibi-
otic, can be fragmented into key components such as the β-lactam ring and thiazolidine ring, an
amino group, and a hydroxyl group along with a benzene ring. These fragments augment the dataset
with a wide range of fragment-level configurations, increasing data diversity while capturing local
structural variations under chemical priors. Such properties are common in chemical spaces, where
functional groups or substructures exhibit consistent behavior across different molecules (Liu et al.,
2017; Jinsong et al., 2024). By incorporating fragment-level semantics, we exploit molecular reg-
ularity to improve the model’s generalization while ensuring that generated conformations remain
chemically valid by preserving essential structural and torsional properties (Horton et al., 2022).

In summary, our contributions are as follows: We propose a fragment-augmented diffusion
framework FADiff for molecular conformation generation, leveraging the inherent modularity of
molecules with fragment-based data augmentation. This approach increases data diversity and cap-
tures local structural variations under chemical priors, thereby enhancing the data efficiency and
generalization capabilities of diffusion-based generative models, particularly for large and complex
molecular systems. We provide an in-depth theoretical analysis showing how our fragment-based
strategy improves model performance, shedding light on the underlying mechanisms that contribute
to its effectiveness. Additionally, we conduct extensive experiments that demonstrate the superior
performance of our method over existing approaches. Our strategy maintains chemical validity and
integrity by preserving essential structural and torsional properties, which improves the exploration
of conformational space and benefits molecular conformation generation tasks.

2 RELATED WORK

Diffusion-based Molecular Generation Diffusion models have gained significant attraction as
powerful tools for drug discovery applications (Xu et al., 2022; Guo et al., 2024; Hua et al., 2024).
These methods typically start by transitioning from stable equilibrium conformations to a state of
heightened disorder via a sequence of regulated diffusion steps (Yang et al., 2023; Guo et al., 2024;
Cao et al., 2024), with a model trained to reverse this process (Xu et al., 2022). Recent methods
for molecular conformation generation model directly in 3D Euclidean space, employing equivari-
ant graph neural networks within diffusion models to process atomic coordinates and features (Xu
et al., 2022; Hoogeboom et al., 2022). These approaches inject Gaussian noise into all spatial co-
ordinates, requiring numerous denoising steps (Shi et al., 2021; Luo et al., 2021; Xu et al., 2022).
Recognizing that molecular flexibility arises primarily from torsional degrees of freedom (Axelrod &
Gomez-Bombarelli, 2022; Jing et al., 2022) proposes Torsional Diffusion, wherein the diffusion pro-
cess acts only on torsion angles while keeping other degrees of freedom fixed. Focusing on torsion
angles reduces the dimensionality of the sample space, leading to more efficient and effective con-
former generation. It leverages torsion angles to model the potential energy surface, a fundamental
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component in computational chemistry (Kang et al., 1996), by combining diffusion processes with
detailed torsional angle modeling to enhance both accuracy and efficiency in conformer generation.

Molecular Fragment Decomposition Molecular fragment decomposition is a critical concept in
computational chemistry, enabling the simplification of complex molecular structures into smaller
and more manageable units (Hann et al., 2001; Sliwoski et al., 2014; Sadybekov & Katritch, 2023).
This approach facilitates the study of molecular properties and interactions by focusing on individual
fragments that retain key chemical characteristics of the parent molecule (Bemis & Murcko, 1996;
Jinsong et al., 2024). From a force field perspective, by preserving the local chemical environment
around targeted torsions, fragmentation allows for accurate modeling of torsional potentials, ensur-
ing that torsional characteristics can be effectively transferred back to the parent molecule (Horton
et al., 2022; D’Amore et al., 2022). Fragmentation rules, such as BRICS (Breaking of Retrosyn-
thetically Interesting Chemical Substructures), allow for the systematic breakdown of molecules
based on chemically meaningful bonds, preserving functional groups that are essential for chemical
activity (Lewell et al., 1998; Degen et al., 2008). This decomposition not only aids in understand-
ing the intrinsic properties of molecular subunits but also enhances computational efficiency by
reducing the complexity of conformational space (Liu et al., 2017). By analyzing these fragments,
researchers can predict reactivity, optimize drug design, and explore novel chemical spaces with
higher precision (Gordon et al., 2012). The integration of molecular fragment decomposition with
advanced modeling techniques, such as torsional diffusion, offers a powerful framework for gener-
ating accurate and diverse molecular conformers, ultimately advancing the fields of drug discovery
and materials science (Jinsong et al., 2024).

3 METHODOLOGY

3.1 PRELIMINARIES

Notations and Problem Formulations Each molecule with n atoms is represented as an undi-
rected graph G = (V, E), where V = {vi}ni=1 represents the atoms and E = {ei,j | (i, j) ⊆ V × V}
represents the bonds between atoms. Each node vi describes atomic attributes, such as element type,
and each edge ei,j describes the bond between vi and vj , labeled with its chemical type. The goal of
molecular conformation generation is to generate stable conformations for a given molecular graph
G. While conformations C can be described by atomic positions, it is often more efficient to use
internal coordinates like bond lengths, bond angles, and torsion angles. Torsion angles are partic-
ularly important as they capture the rotations around rotatable bonds, which define the molecule’s
flexibility. Each rotatable bond introduces a degree of freedom, corresponding to a torsion an-
gle. By focusing on torsion angles, we reduce the problem’s dimensionality while preserving the
molecule’s conformational flexibility. Thus, conformations C are represented as a set of torsion
angles τττ = {τ i}mi=1, where m is the number of rotatable bonds. These torsion angles define the 3D
structure in torsional space Tm. For each molecular graph G, its conformations C are treated as i.i.d.
samples from an underlying Boltzmann distribution.

Torsion Computation Basics Directly learning a score model over intrinsic torsion coordinates
presents several challenges. First, the dimensionality of the torsional space depends on the molecu-
lar graph G, and the mapping from torsional space to conformers is influenced by both G and local
structures L. Additionally, there is no canonical way to define torsion angles, as they depend on
arbitrary choices of reference neighbors. To address these issues, (Jing et al., 2022) represent con-
formers as 3D point clouds in extrinsic coordinates, which are invariant to global roto-translation.
This allows us to construct a score model sθ(C, t) that operates over 3D conformers while predicting
updates in the torsional space. By applying torsion updates directly to the 3D coordinates, we avoid
the need to define reference neighbors, ensuring invariance to such choices (Quack, 2002). Further-
more, the model must respect parity equivariance, meaning the learned score function must change
sign under parity inversion, ensuring that the model outputs pseudoscalars that are invariant under
SE(3) transformations but change sign when the input point cloud is inverted (Jing et al., 2022).
More details on torsion angle invariance and parity equivariance can be found in the Appendix A.1.

Torsional Diffusion Basics Diffusion-based models have emerged as powerful tools for molecular
conformation generation, particularly in drug discovery (Xu et al., 2022; Guo et al., 2024). These
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models use stochastic differential equations (SDEs) to transition molecular structures from stable
conformations to disorder, with the reverse process generating samples from the data distribution.
Specifically, torsional diffusion focuses on modeling the torsion angles of a molecule, which define
a hypertorus Tm with each angle in [0, 2π) (De Bortoli, 2022; Jing et al., 2022). This approach
efficiently explores conformational space by leveraging the intrinsic properties of torsion angles and
adapting diffusion models to compact Riemannian manifolds. The forward and reverse process can
be described as follows:

Forward Process In the torsional diffusion model, the forward process gradually adds noise to the
torsion angles τ of a molecular conformer over time t ∈ [0, T ]. The perturbation of torsion angles
is modeled as a wrapped normal distribution, ensuring that the periodic nature of torsion angles is
respected. Specifically, the distribution of the perturbed torsion angles τ ′ given the previous angles
τ is:

pt|0(τ
′ | τ) ∝

∑
d∈Zm

exp

(
−∥τ

′ − τ + 2πd∥2

2σ2(t)

)
,

where σ(t) controls the scale of the noise at each time step. As time progresses, the noise injected
into the system increases, and by the final time step T , the distribution pT (τ) approaches a Gaussian,
representing a highly disordered state. The noise scale σ(t) is defined as: σ(t) = σmine

t log σmax
σmin ,

where σmin = 0.01π and σmax = π. This time-dependent variance function ensures that the amount
of noise increases smoothly over time, allowing the model to explore the torsional space of the
molecule by gradually perturbing the torsion angles (De Bortoli, 2022; Jing et al., 2022).

Reverse Process The reverse process generates molecular conformations by reversing the forward
diffusion process, starting from a noisy state τT ∼ pT (τ) and iteratively refining it to recover a stable
conformation τ0. At each step, the reverse process denoises the torsion angles, progressively moving
them from a disordered state back to a stable configuration. The reverse transitions are guided by
the score function ∇τ log pt(τ), which directs the system towards the data distribution. The score
function∇τ log pt(τ) is approximated by a neural network s(τ, t), which is trained to match the true
score function. The network sθ(C, t) represents the gradient of the log-probability of the perturbed
torsion angles at time t, and it is learned during training using denoising score matching (DSM) (Ho
et al., 2020). The loss function for DSM is defined as:

JDSM(θ) = Et

[
λ(t)Eτ0∼p0,τ∼pt|0(·|τ0)

[
∥sθ(C, t)−∇τ log pt|0(τ | τ0,G)∥2

]]
,

where sθ(C, t) is the neural network that approximates the score function, and λ(t) are precomputed
weight factors that balance the contribution of different time steps. This reverse process iteratively
refines the torsion angles, leveraging the learned score function sθ(C, t) to recover stable molecular
conformations from noisy initial states.

3.2 TORSIONAL SCORE DIFFUSION BACKBONE NETWORK

The proposed backbone network is built on the tensor product convolutional layer (Jing et al., 2022),
which integrates node features, edge features, and geometric information (e.g., spherical harmonics)
through tensor product operations (Thomas et al., 2018; Geiger & Smidt, 2022). This design en-
sures equivariance w.r.t. both rotations and translations, crucial for molecular generation tasks. The
network predicts a pseudoscalar ∆τ for each rotatable bond, used in the torsional score diffusion
process. To handle rotational symmetries, we represent the directionality of edges using spherical
harmonics Yij (Jing et al., 2022). These harmonics are derived from rij , the relative position vector
between atoms i and j that defines the edge direction (Kondor et al., 2018). By encoding the edge
direction with Yij , it ensures that our model appropriately accounts for rotational symmetries. The
network updates node and edge features through tensor product operations that combine node fea-
tures hl

i and edge features elij at layer l, along with spherical harmonics Yij . Here, l denotes the
layer index in the network. The update process can be represented as:

hl+1
i =

∑
j∈N (i)

Wl

(
hl
j ⊗Yij ⊗Wee

l
ij

)
,

where N (i) denotes the set of neighbors of node i, Wl is the learnable weight matrix for layer
l, and We is the weight matrix that maps edge features. ⊗ denotes the tensor product operation.
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Figure 2: An overview of the Fragment-Augmentated Diffusion (FADiff) pipeline. Molecules from
the training set will be fragmented based on randomly selected fragmentation edges. The resulting
fragments will be further used as augmented data in the training phase.

This ensures that updated edge features remain equivariant to rotations. After the final convolu-
tional layer, edge features are processed to generate the final edge representation, used to predict the
pseudoscalar for each rotatable bond:

∆τ̂ i,j = WOe
L
ij , eLij = WL

(
hL
i + hL

j

)
,

where WL is the learnable weight matrix corresponding to the last layer L, and WO is the output
projection weight matrix. This process ensures effective torsional score prediction for each rotatable
bond, while maintaining equivariance to both rotations and translations. Further details on torsional
score diffusion backbone network are provided in the Appendix A.1.

3.3 FRAGMENT-AUGMENTED DIFFUSION

In this work, we propose a fragment-based augmentation approach for diffusion generation model,
where molecules are decomposed into smaller meaningful fragments using specific rules. This de-
composition is guided by identifying key rotatable bonds or functional groups, ensuring that each
fragment retains essential chemical and structural information (Jinsong et al., 2024). By focusing
on these fragments, we aim to enhance the torsion diffusion process for molecular conformation
generation. This method allows the model to handle smaller, more manageable substructures, which
can be optimized independently, while maintaining global molecular consistency through interac-
tions between fragments. Once a molecule is decomposed into multiple fragments, each fragment is
treated as an independent subgraph consisting of its own nodes (atoms) and edges (bonds), and the
conformation generation task for each fragment is performed independently. Molecules from the
training set are fragmented based on randomly selected fragmentation edges. The resulting smaller
fragments are used as augmented data in the training phase. The loss for each fragment is computed
separately, and these losses are summed to form the total loss function. Specifically, if a molecule is
decomposed into B + 1 fragments (via B decomposition edges), the total loss can be expressed as:

Ltotal =
1

B + 1

B+1∑
b=1

E(u,v)∈Eb

[
∥sθ(C, t)u,v −∇τ log pt|0(τ | τ0,Gb)

∣∣∣∣
τ=τττu,v

b

∥2
]
,

Eb represents the set of edges in the b-th fragment, and τu,v denotes the torsion angle associated with
the bond between nodes u and v. sθ(C, t) is the predicted score for the torsion angles at time t, and
∇τ log pt|0(τ | τ0,Gb) is the actual gradient of the torsion angles, conditioned on the initial state τ0
and the local graph structure Gb of the fragment. Figure 2 illustrates an overview of the fragment
augmentation diffusion pipeline.

3.4 CONNECTING FRAGMENT-BASED MOLECULAR MODELING TO DATA AUGMENTATION

In fragment-based molecular modeling, our goal is to enhance the diversity of molecular representa-
tions while retaining key torsional properties. By employing fragmentation methods to decompose
the complete molecular torsion space τττ into smaller torsional subspaces {τττ b}B+1

b=1 , we generate mul-
tiple views of a molecule’s torsional characteristics. Each torsional subspace τττ b = {τu,vb }(u,v)∈Eb

retains important torsional and geometric information from the complete torsion space τττ . In practi-
cal applications, due to data limitations, the true fragment torsional angles τττ b are often unavailable.

5
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To address this issue, our proposed data augmentation strategy uses the torsional angles τ̂ττ b from
the complete molecular structure τττ = {τ̂ττ b}B+1

b=1 as approximations. This approximation is based on
the assumption that, due to the preserved local chemical environment, the torsional properties of the
fragments are very similar to those of the complete molecule, that is, τττ b ≈ τ̂ττ b. However, the assump-
tion does not always hold because fragmenting the molecule may alter the electronic environment
and interactions, leading to differences in torsional properties between the fragments and the com-
plete molecule (Stern et al., 2022). Such differences may introduce errors in the modeling process.
Additionally, using the complete molecule’s torsional angles as approximations for the fragments ig-
nores potential conformational changes that may occur in the fragments due to the absence of steric
hindrance or electronic interactions present in the complete molecule (Horton et al., 2022). Thus,
the core idea is that fragmenting molecules while preserving the local chemical environment allows
the torsional properties of the fragments to remain consistent with those of the complete molecule,
thus ensuring torsional consistency between τ̂ττ b and τττ b (Stern et al., 2022; Horton et al., 2022).

We can further consider this problem from the perspective of mutual information. By employing
appropriate fragmentation methods, we aim to maximize the mutual information (MI) between τ̂ττ
and τττ , ensuring that the fragment torsional subspaces retain sufficient global torsional information
to accurately reflect molecular properties such as conformational flexibility and stability. The mutual
information is expressed as:

I(τ̂ττ b;τττ b) = H(τττ b)−H(τττ b | τ̂ττ b),
where H(τττ b) is the entropy of the fragment torsional subspace, and H(τττ b | τ̂ττ b) is the conditional
entropy of the fragment torsional subspace given the complete torsion space. By minimizing the
conditional entropy H(τττ b | τ̂ττ b), we effectively maximize the mutual information, ensuring that
the torsional angles of the complete molecule can accurately predict those of the fragments, thus
enhancing model performance. To formalize the relationship between fragmentation strategy and
mutual information, we introduce the following lemma:

Lemma 1 Let ζ∗ = argmaxζ∈F Iζ(τ̂ττ ;τττ), whereF is the space of all possible fragmentation strate-
gies, and Iζ(τ̂ττ ;τττ) denotes the mutual information between τ̂ττ and τττ under fragmentation strategy ζ.
Then, the fragmentation strategy ζ∗ that maximizes Iζ(τ̂ττ ;τττ) is the optimal strategy that enhances
the torsional information retention:

Iζ∗(τ̂ττ ;τττ) = max
ζ

Iζ(τ̂ττ ;τττ).

This lemma demonstrates that selecting the optimal fragmentation strategy—by maximizing the mu-
tual information Iζ(τ̂ττ ;τττ) ensures that fragments retain relevant torsional and geometric information
from τ̂ττ . Thus, by focusing on chemically meaningful torsion subspaces, fragment-based torsion
modeling ensures that local fragment optimizations contribute to a globally consistent molecular
conformation. More discussion of this lemma is provided in the Appendix A.5.

Therefore, we need to carefully choose fragmentation methods to ensure the preservation of key
chemical properties and be aware of the biases this approximation may introduce. By recognizing
these limitations and thoughtfully considering fragmentation strategies, we can mitigate potential
errors and effectively leverage the advantages of data augmentation in fragment-based molecular
modeling, thereby improving the robustness and accuracy of the model.

Error Analysis During molecular fragmentation, chemical or graph-based rules decompose the
molecule into smaller fragments. The choice of decomposition edges introduces errors between the
torsion angles τ̂u,vb from the full molecular graph and the true torsion angles τu,vb of the fragments
due to potential loss of structural or torsional information. Assuming that the error ϵ is a random
variable with probability density function p(ϵ), we can express the conditional entropy H(τu,vb |
τ̂u,vb ) in terms of the differential entropy of the error ϵ:

H(τu,vb | τ̂u,vb ) = h(ϵ),

where h(ϵ) denotes the differential entropy of ϵ. This is because, given τu,vb = τ̂u,vb + ϵ, the
uncertainty in τu,vb when τ̂u,vb is known is entirely due to the uncertainty in ϵ. If we model the error
ϵ as a zero-mean Gaussian random variable with variance σ2 (i.e., ϵ ∼ N (0, σ2)), its differential
entropy is: h(ϵ) = 1

2 ln(2πeσ
2), and we have

I(τ̂u,vb ; τu,vb ) = H(τu,vb )− h(ϵ) = H(τu,vb )− 1

2
ln(2πeσ2).

6
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This equation reveals that as the error variance σ2 increases, the mutual information I(τ̂u,vb ; τu,vb )
decreases, indicating that the association between τ̂u,vb and τu,vb becomes weaker. Different frag-
mentation methods influence the error variance σ2, and consequently, the mutual information be-
tween τ̂u,vb and τu,vb . For example, fragmentation methods that preserve key chemical factors such as
conjugation, resonance, steric hindrance, and hydrogen-bonding interactions can reduce σ2, thereby
increasing the mutual information and enhancing model accuracy. Building upon the previous error
analysis and the lemma presented, we can further explore how the choice of fragmentation strategy
affects the error bound and model performance by providing a lower bound on the error variance
σ2 achievable by any fragmentation strategy as: σ2 ≥ σ2

ζ∗ . We provide a detailed analysis of how
different fragmentation methods affect σ2 by considering these factors in Appendix B.4.

3.5 TRAINING OBJECTIVE

Variational Lower Bound (ELBO) Optimization Using the probability flow ODE, we compute
the likelihood of any sample τ as log p0(τ0) = log pT (τ

T ) − 1
2

∫ T

0
d
dtσ

2(t)∇τ · sθ(C, t) dt. (Song
& Ermon, 2020; De Bortoli, 2022). Since directly optimizing the exact log-likelihood is intractable,
we instead maximize the usual variational lower bound (ELBO), which provides a tractable approx-
imation to the log-likelihood as:

E[log pθ(τ0|G)] = E
[
log

pθ(τ
0:T |G)

q(τ1:T |τ0)

]
≥ −Eq

[
T∑

t=1

DKL(q(τ
t−1|τ t, τ0)∥pθ(τ t−1|τ t,G))

]
,

where q(τ t−1|τ t, τ0) is analytically tractable as N
(√

αt−βt

1−αt
τ0 +

√
αt(1−αt)

1−αt
τ t, 1−αt

1−αt
βt

)
. αt =

1 − βt and ᾱt =
∏t

s=1 αs are derived from the special property of the forward process, where
q(τ t|τ0) of arbitrary timestep t can be calculated in closed form q(τ t|τ0) = N (τ t;

√
ᾱtτ

0, (1 −
ᾱt)I). This indicates with sufficiently large T , the whole forward process will convert τ0 to a
whitened isotropic Gaussian, and thus it is natural to set p(τT ) as a standard Gaussian distribution.
The complete derivation of the ELBO is provided at Appendix A.4.

Energy-based Training By maximizing likelihoods with ELBO, we can train models to match the
Boltzmann distribution over torsion angles. The energy-based training consists of resampling and
score matching stages. In resampling, the model acts as an importance sampler using the torsional
Boltzmann density p̃(τ | G). In score matching, importance weights approximate the denoising
score-matching loss. We sample torsion angles τ1, . . . , τK ∼ q(τ | G) from the torsional diffusion
model. and we compute the importance weight w̃k = p̃θ(τ

k | G)/q(τk | G) for each sample τk.
These weights are used to approximate the denoising score matching loss JDSM for p0 ∝ p̃. The
objective is to minimize the weighted loss:

JDSM (θ) = Et

[
λ(t)Eτ0∼p0,τt∼pt|0(·|τ0)

[
w̃(τ t)∥sθ(C, t)−∇τ log pt|0(τ

t | τ0,G)∥2
]]

, (1)

where the importance weights w̃k adjust the contribution of each sample to the loss, ensuring that
the model learns to generate samples that are consistent with the Boltzmann distribution.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We follow the datasets used in (Jing et al., 2022), which include 3 subsets from the GEOM
dataset (Axelrod & Gomez-Bombarelli, 2022). The GEOM dataset provides high-quality conforma-
tion ensembles generated using metadynamics in CREST (Pracht et al., 2020). Specifically, we
utilize GEOM-QM9, GEOM-DRUGS, and GEOM-XL. GEOM-QM9 is a dataset featuring signifi-
cantly smaller molecules with an average of 11 atoms. GEOM-DRUGS represents the most pharma-
ceutically relevant subset, comprising molecules with an average of 44 atoms. GEOM-XL is created
by selecting all species with more than 100 atoms from GEOM-MoleculeNet (Wu et al., 2018), al-
lowing us to evaluate models’ generation quality on large molecules. For a detailed statistics for all
three datasets are in Appendix D.2.
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Evaluation We evaluate the quality of the generated conformation ensembles using the
train/val/test splits setup from Jing et al. (2022) and apply RMSD-based metrics to assess both diver-
sity and quality. The key metrics include Average Minimum RMSD (AMR) and Coverage (COV),
which are reported for both Recall (AMR-R, COV-R) and Precision (AMR-P, COV-P). COV-R and
AMR-R, measure how well the generated ensemble covers the ground-truth ensemble, while COV-
P and AMR-P, assess the accuracy of the generated conformers. The calculation of COV-R and
AMR-R can be defined as:

COV-R :=
1

L
|{l ∈ [1..L] : ∃k ∈ [1..K],RMSD(Ck, C

∗
l ) < δ}|

AMR-R :=
1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C
∗
l )

For precision, COV-P and AMR-P are calculated by swapping the roles of generated and reference
sets. These metrics emphasize the quality of generated conformations, with δ set to 0.5Å for GEOM-
QM9 and 0.75Å for GEOM-DRUGS datasets evaluation. Higher COV or lower AMR scores suggest
more realistic conformations, balancing both diversity and quality.

Baselines We compare FADiff with methods from both traditional computational methods and es-
tablished state-of-the-art deep learning baselines. Among traditional computational methods, we
employ RDKit ETKDG (Havel, 1998; Riniker & Landrum, 2015), the most established open-source
package, and OMEGA (Hawkins, 2017), a commercial software in continuous development. Among
deep learning methods, we evaluate CGCF (Xu et al., 2021b), ConfVAE (Xu et al., 2021a), Con-
fGF (Shi et al., 2021), GeoMol (Ganea et al., 2021), Geodiff (Xu et al., 2022), and Torsional Diffu-
sion (For simplicity, we name it as TorDiff in the subsequent section) (Jing et al., 2022).

Fragmentation Augmentation For a given molecule, we identify all fragmentation-edges and
randomly select B = min(b, κ) edges, where b is the total number of fragmentation-edges and
κ limits the maximum number of selected edges to avoid excessive small fragments. From the
resulting B + 1 fragments, those with rotatable bonds are used to augment the training set. Our
experiments use κ = 5. During fragmentation, only fragments larger than z atoms are selected for
augmentation. This ensures that the resulting fragments retain sufficient structural complexity and
chemical information to contribute meaningfully to the training process. To explore the impact of
reaction-related bonds on model performance, we also test models generated after removing these
bonds, focusing on BRICS and RECAP rules (Lewell et al., 1998; Degen et al., 2008). Detailed
introductions of these two chenmical rules are provided in the Appendix B.1, and Additional results
and discussions on how the choice of the minimum fragment size parameter z affects fragmentation
statistics are provided in Appendix D.1.

Computational-Aided Data Augmentation The conformer matching method mitigates the dis-
tributional shift between training and test time by aligning ground truth conformers with synthetic
ones generated by RDKit, ensuring consistency between the two distributions. In Jing et al. (2022),
training on these synthetic conformers has shown significant better performance than using ground
truth alone. Therefore, we use conformer matching as a additional data augmentation technique,
generating synthetic proxy conformers alongside the original ones. Details and ablation studies are
provided in Appendix C.

4.2 CONFORMATION GENERATION

As shown in Table 1, FADiff outperforms other models in both coverage and RMSD metrics. Specif-
ically, FADiff achieves the highest mean COV-R (70.07%) and COV-P (52.87%), indicating its
ability to generate a wide range of conformers that cover the conformational space effectively. Ad-
ditionally, FADiff exhibits the lowest mean AMR-R (0.609 Å) and AMR-P (0.588 Å), reflecting
its precision in generating conformers that closely match the reference structures. Compared to
other methods like TorDiff and GeoDiff, FADiff consistently delivers superior performance across
all metrics, particularly excelling in both coverage and accuracy. This highlights the effectiveness
of the fragment-augmentation strategy in exploring the conformational space.
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Table 1: Quality of generated conformation ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å) with δ = 0.75 Å.

Models COV-R (%) ↑ AMR-R (Å) ↓ COV-P (%) ↑ AMR-P (Å) ↓
Mean Median Mean Median Mean Median Mean Median

Metrization 5.71 0.00 1.388 1.329 4.932 0.000 1.541 1.339
CGCF 19.13 12.53 1.248 1.224 1.682 0.000 1.857 1.806
ConfVAE 14.01 14.83 1.238 1.141 2.963 0.000 1.828 1.815
ConfGF 15.15 11.93 1.162 1.159 2.425 0.000 1.721 1.686
GeoMol 34.19 26.45 1.087 1.058 20.66 15.07 1.184 1.110
OMEGA 53.40 54.60 0.841 0.762 40.50 33.30 0.946 0.854
ETKDG 38.40 28.60 1.058 1.002 40.90 30.80 0.995 0.895
GeoDiff 45.61 49.32 0.862 0.852 21.47 14.55 1.171 1.123
TorDiff 67.49 75.81 0.634 0.618 49.53 47.16 0.827 0.778
FADiff 70.07 78.35 0.609 0.588 52.87 54.17 0.800 0.749

Table 3: Quality of generated conformation ensembles for the GEOM-DRUGS test set with δ =
0.75 Å on varying available training samples n.

Models FADiff TorDiff
Metric COV-R AMR-R COV-P AMR-P COV-R AMR-R COV-P AMR-P

n

1000 49.39 0.7928 33.84 1.0455 34.60 0.8933 20.84 1.1897
5000 51.17 0.7519 34.51 1.0389 44.61 0.8209 25.77 1.1104

10000 62.82 0.6736 43.10 0.9081 52.76 0.7507 33.88 1.0458

Table 2: Performance on the GEOM-XL dataset.

Model AMR-R ↓ AMR-P ↓
Mean Med Mean Med

RDKit 2.92 2.62 3.35 3.15
GeoMol 2.47 2.39 3.30 3.15
TorDiff 2.05 1.86 2.94 2.78
FADiff 1.80 1.61 2.60 2.44

Performance on Large Molecule Generation
We further evaluate our method on the GEOM-
XL dataset, which contains molecules with an
average number of atoms approximately three
times larger than those in the GEOM-Drugs
dataset used for training. The results are pre-
sented in Table 2. Our model, FADiff, signif-
icantly outperforms TorDiff and other baseline
models in generating conformations for large molecules. Specifically, FADiff achieves the low-
est mean AMR-R of 1.80 Å and median AMR-R of 1.61 Å, indicating superior recall performance.
Similarly, it attains the lowest mean AMR-P of 2.60 Å and median AMR-P of 2.44 Å, demonstrating
better precision in generating conformations close to the reference structures. These improvements
highlight the effectiveness of our fragment-based data augmentation strategy in enhancing the gen-
eralization capabilities of diffusion models to larger and more complex molecular systems.

Model Performance Across Different Training Sample Sizes Table 3 illustrates that FADiff
consistently outperforms TorDiff across all metrics and training sample sizes. For 1000 samples,
FADiff achieves a COV-R of 49.39%, which is 42% higher than TorDiff, and reduces AMR-R to
0.7928 Å compared to TorDiff’s 0.8933 Å. When the training size increases to 5000 samples, FADiff
maintains its advantage with a COV-R of 51.17%, outperforming TorDiff’s 44.61%, and lowering
AMR-R to 0.7519 Å from 0.8209 Å. At the largest sample size of 10000 samples, FADiff achieves a
COV-R of 62.82%, which is 19% higher than TorDiff, and further decreases AMR-R to 0.6736 Å v.s.
TorDiff’s 0.7507 Å. Additionally, FADiff also consistently delivers superior performance in COV-
P and AMR-P metrics across all sample sizes, demonstrating its enhanced capability to generate
conformation ensembles that are not only diverse but also accurate with limited data. In all, these
results highlight FADiff’s robustness and scalability, particularly in data-scarce environments, while
also demonstrating its capacity to improve with larger datasets.
Impact of Chemical Fragmentation Table 4 shows the effect of removing BRICS and RECAP
reaction edges on conformer generation. The full FADiff model, which includes both, achieves the
best performance with a mean COV-R of 51.17% and COV-P of 50.10%. Removing BRICS (w/o
BRICS) has a larger impact on precision, reducing COV-P to 33.93% and increasing AMR-P to
1.0461 Å, indicating BRICS edges are crucial for precision. In contrast, removing RECAP (w/o
RECAP) affects recall more, with COV-R dropping to 49.38% and AMR-R rising to 0.7609, show-
ing RECAP edges are key for coverage. The largest performance drop occurs when both BRICS and
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Table 4: Quality of generated conformation ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å) with δ = 0.75 Å with 5000 training samples.

Models COV-R (%) ↑ AMR-R (Å) ↓ COV-P (%) ↑ AMR-P (Å) ↓
Mean Median Mean Median Mean Median Mean Median

FADiff 51.17 50.10 0.7519 0.7503 34.51 21.61 1.0389 1.0224
w/o BRICS 50.85 49.61 0.7568 0.7575 33.93 20.57 1.0461 1.0313
w/o RECAP 49.38 48.42 0.7609 0.7639 34.18 21.21 1.0420 1.0247
w/o B & R 48.60 46.89 0.7684 0.7708 33.74 19.86 1.0492 1.0377

RECAP edges are removed (w/o B & R), with COV-R at 48.60% and COV-P at 33.74%, highlight
the complementary roles of BRICS and RECAP related bonds. These results underscore the poten-
tial of incorporating chemical semantic knowledge, such as BRICS and RECAP reaction edges, in
enhancing chemical generative models, as both play crucial roles in generating diverse and accurate
conformations.

4.3 REVERSE DIFFUSION STEPS
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Figure 3: Reverse steps v.s. generation quality.

In Fig. 3, we vary the number of
steps used in the reverse diffusion
process and evaluate the performance
on GEOM-DRUGS. It shows that tor-
sional diffusion-based methods are
all parsimonious in terms of number
of steps required: the majority of gain
in performance over prior diffusion-
based methods is attained with only
10 steps. The FADiff models have
demonstrated even higher efficiency,
achieving superior performance with
fewer steps compared to other methods. This highlights the enhanced sampling efficiency of FADiff,
as it is able to generate high-quality conformers with significantly reduced computational cost. The
ability to maintain strong performance with fewer diffusion steps underscores the effectiveness of
the fragmentation-based approach in accelerating the reverse diffusion process.

4.4 FURTHER EXPERIMENTAL RESULTS

We provide further results and discussions on GEOM-QM9, GEOM-XL, minimum fragment size z,
conformer matching, property prediction, and fragmentation methods in Appendix D.

5 CONCLUSION

In this work, we propose Fragment-Augmented Diffusion (FADiff), a novel framework for molecu-
lar conformation generation that incorporates molecular fragmentation as a data augmentation strat-
egy within diffusion models. By using molecular fragmentation as a data augmentation strategy,
FADiff effectively captures local structural variations while preserving the integrity of the entire
molecule. Our extensive experiments demonstrate that FADiff consistently outperforms state-of-
the-art methods in generating diverse and accurate conformations particularly in data-scarce scenar-
ios where augmented data significantly enhances model performance. Additionally, we provided a
comprehensive analysis of different fragmentation strategies and their impact on the model’s effec-
tiveness, offering valuable insights into how the inclusion of chemical rules influences generation
quality. This work molecular conformation generation by enhancing the exploration of conforma-
tional space, with promising applications in areas such as drug discovery and materials science.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
Stan Z Li. A survey on generative diffusion models. IEEE Transactions on Knowledge and Data
Engineering, 2024.

David F Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
Transactions on Machine Learning Research, 2022.

Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of com-
piling and using’drug-like’chemical fragment spaces. ChemMedChem, 3(10):1503, 2008.

Lorenzo D’Amore, David F Hahn, David L Dotson, Joshua T Horton, Jamshed Anwar, Ian Craig,
Thomas Fox, Alberto Gobbi, Sirish Kaushik Lakkaraju, Xavier Lucas, et al. Collaborative as-
sessment of molecular geometries and energies from the open force field. Journal of chemical
information and modeling, 62(23):6094–6104, 2022.

Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Con-
nor W Coley, and Vijay Gadepally. Neural scaling of deep chemical models. Nature Machine
Intelligence, 5(11):1297–1305, 2023.

Tianfan Fu, Cao Xiao, and Jimeng Sun. Core: Automatic molecule optimization using copy & refine
strategy. AAAI, 34(01):638–645, 2020.

Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun. Mimosa: Multi-constraint
molecule sampling for molecule optimization. AAAI, 35(1):125–133, 2021.

Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer en-
sembles. NeurIPS, 2021.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453,
2022.
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A SUPPLEMENTARY THEROMS AND PROOFS

A.1 DETAILED EXPLANATION OF TORSIONAL DIFFUSION

In the main text, we provided a high-level overview of the torsion diffusion basics. Here, we offer a
more detailed explanation of the underlying technical aspects and mathematical formulations. The
goal of conformer generation is to learn the probability distribution pθ(τ,G).

Diffusion Modeling on the Hypertorus Space. Since each torsion angle lies in the range [0, 2π),
the m torsion angles of a conformer define a hypertorus Tm (Jing et al., 2022). To model the gen-
erative process over this space, we apply the continuous score-based framework of (Song & Ermon,
2020), which extends to data distributions on compact Riemannian manifolds, such as Tm (De Bor-
toli, 2022). Specifically, for a Riemannian manifold M , let x ∈ M , let w be the Brownian motion
on the manifold, and let the drift f(x, t), score ∇x log pt(x), and score model output s(x, t) be
elements of the tangent space TxM . The reverse stochastic differential equation (SDE) on the man-
ifold can be discretized and solved as a geodesic random walk, starting with samples from pT (x) to
approximately recover the original data distribution p0(x) (De Bortoli, 2022).

Noise Scale and Forward Diffusion. For the forward diffusion process, we use rescaled Brownian

motion, where the drift f(x, t) = 0 and the noise scale is given by g(t) =
√

d
dtσ

2(t). We adopt an

exponential diffusion schedule σ(t) = σmine
t log σmax

σmin , as in Song & Ermon (2019); Ho et al. (2020);
Song & Ermon (2020), with parameters σmin = 0.01π and σmax = π, for t ∈ (0, 1). Due to the
compactness of the manifold, the prior distribution pT (x) is not Gaussian, but a uniform distribution
over the manifold M .

Handling Periodicity with Wrapped Normal Distributions. To respect the periodic nature of
torsion angles, we treat the torus Tm ∼= [0, 2π)m as the quotient space Rm/2πZm, where equiv-
alence relations (τ1, . . . , τm) ∼ (τ1 + 2π, . . . , τm + 2π) hold (Jing et al., 2022). The pertur-
bation kernel for rescaled Brownian motion on Tm is the wrapped normal distribution on Rm.
Specifically, for any τ, τ ′ ∈ [0, 2π)m, the perturbation kernel is given by: pt|0(τ

′ | τ) ∝∑
d∈Zm exp

(
−∥τ ′−τ+2πd∥2

2σ2(t)

)
, where σ(t) is the noise scale. We sample from this kernel by first

sampling from the corresponding unwrapped isotropic normal distribution and then applying ele-
mentwise mod 2π to ensure periodicity. Finally, we can train the score model involves minimizing
the denoising score matching (DSM) loss. The DSM loss function is defined as:

JDSM(θ) = Et

[
λ(t)Eτ0∼p0,τ∼pt|0(·|τ0,G)

[
∥sθ(C, t)−∇τ log pt|0(τ | τ0,G)∥2

]]
,

where λ(t) are precomputed weight factors that balance the contribution of different time steps. The
tangent space TτTm is equivalent to Rm, so all operations in the loss computation are straightfor-
ward.

Dihedral Angle Calculation In molecular torsional geometry, the dihedral angle describes the
relative orientation of four atoms connected by three consecutive bonds (De Bortoli, 2022; Jing
et al., 2022). For four atoms a, b, c, and d, the torsion angle τabcd is the angle between the plane
formed by atoms a, b, and c and the plane formed by atoms b, c, and d.

The torsion angle is calculated using the normal vectors of these planes. Let:

uab = xb − xa, ubc = xc − xb, ucd = xd − xc

The normal vectors to the planes abc and bcd are:

nabc = uab × ubc, nbcd = ubc × ucd

The cosine and sine of the torsion angle τabcd are given by:
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cos τabcd =
nabc · nbcd

|nabc||nbcd|

sin τabcd =
ubc · (nabc × nbcd)

|ubc||nabc||nbcd|

This gives the torsion angle τabcd ∈ [0, 2π), which describes the relative rotation of the two planes.

Torsional Score Framework and Update. Learning a score model sθ(C, t) over intrinsic coor-
dinates is challenging due to the dependence of torsional space dimensionality m on the molecular
graph G, and the influence of both G and local structures L on the mapping to conformers. Addition-
ally, torsion angles vary with arbitrary reference neighbors, adding ambiguity. A simpler approach
represents a conformer C ∈ CG using extrinsic (Cartesian) coordinates as a 3D point cloud modulo
global roto-translation: CG ∼= R3n/SE(3). The score model sθ(C, t) is then defined over CG, pre-
dicting SE(3)-invariant scalar quantities for each bond, simplifying the learning process (De Bor-
toli, 2022).

Instead of explicitly defining each torsion angle τi, Torsional Diffusion (Jing et al., 2022) leverages
the fact that changing τi by ∆τi can be applied directly to the 3D atomic coordinates. Geometrically,
this corresponds to a relative rotation of atoms around the bond, applied directly in 3D space. This
intuition is formalized as follows: Let (bi, ci) be a rotatable bond, and let xv(bi) be the positions of
atoms on the bi-side of the molecule. Let R(θ, xci) ∈ SE(3) be the rotation by Euler vector θ about
xci . Then for C,C ′ ∈ CG, if τi is any definition of the torsion angle around bond (bi, ci), we have:

τi(C
′) = τi(C) + θ if ∃x ∈ C, x′ ∈ C ′, x′

v(bi)
= xv(bi),

τj(C
′) = τj(C) ∀j ̸= i, x′

v(ci)
= R(θb̂ci , xci)xv(ci)

where b̂ci =
xci

−xbi

∥xci
−xbi

∥ .

The core idea of the proof is to show that rotating the bond (bi, ci) by θ changes only the torsion
angle τi, while leaving the torsion angles τj for all other bonds j ̸= i unchanged. This is achieved by
applying a rotation centered at xci , which affects only the atoms on the ci-side of the molecule. The
Rodrigues rotation formula demonstrates that the relative positions of atoms on the bi-side remain
fixed, while the atoms on the ci-side undergo a rotation by θ, resulting in the desired change in τi.
A full proof can be found in (Jing et al., 2022). To apply a torsion update ∆τ = (∆τ1, . . . ,∆τm),
the updates ∆τi are applied sequentially in any order. Since training and inference only use torsion
updates ∆τ , this approach operates solely on 3D point clouds and the updates applied to them.
Local structures L can be generated from RDKit by producing full 3D conformers C ∈ CG and
randomizing all torsion angles to sample uniformly over Tm. Torsion updates are predicted directly
from, and applied to, the 3D point cloud, eliminating the need for selecting reference neighbors for
any τi, thus ensuring invariance to such choices.

Equivariance. The torsional score model must be SE(3)-invariant, but also respects an additional
symmetry: physical energy is invariant (or nearly so) under parity inversion, which is essential
in machine learning for atomic systems, ensuring that vectors of atomic dipoles or forces rotate
according to the conformation coordinates (Quack, 2002; Xu et al., 2022). Thus, integrating such
inductive bias into model parameterization for 3D geometry is crucial for generalization (Quack,
2002; Xu et al., 2022).

This requires the learned density to satisfy p(C) = p(−C), where −C = {−x | x ∈ C}. For the
conditional distribution over torsion angles, this implies p(τ(C) | L(C)) = p(τ(−C) | L(−C)).
Consequently, for all diffusion times t,

∇τ log pt(τ(C) | L(C)) = −∇τ log pt(τ(−C) | L(−C))

Since the score model learns s(C, t) = ∇τ log pt(τ(C) | L(C)), it follows that s(C, t) =
−sG(−C, t). Therefore, the score model must be SE(3)-invariant but equivariant (change sign)
under parity inversion, outputting pseudoscalars in Rm.
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A.2 SCORE NETWORK ARCHITECTURE

To predict torsion scores under SE(3)-invariant and parity-equivariant constraints, we follow the
framework used in Torsional Diffusion, which contains three main components: an embedding layer,
K interaction layers, and a pseudotorque layer. The pseudotorque layer outputs pseudoscalar torsion
scores ∆τ := ∂ log p/∂τ for each rotatable bond.

1. In the embedding layer, we construct a radius graph on top of the molecular graph, gener-
ating initial scalar embeddings for nodes and edges. Node embeddings V

(0,0,1)
a combine

chemical features and sinusoidal time embeddings, while edge embeddings eab incorporate
bond distances using radial basis functions and chemical features. This setup ensures that
both local atomic environments and temporal information are captured.

2. The interaction layers are built using E(3)NN convolutional layers, which propagate mes-
sages between nodes by combining irreducible representations of node features with spher-
ical harmonics of the normalized edge vectors (Geiger & Smidt, 2022). These messages
are aggregated using Clebsch-Gordan coefficients, ensuring that the node representations
remain SE(3)-equivariant. At each layer, the interaction is governed by tensor products of
node and edge features, and the rotational order of the representations is restricted to be at
most 2 (Thomas et al., 2018).

3. The pseudotorque layer predicts torsion scores by constructing tensor-valued filters cen-
tered on each rotatable bond. These filters are formed from the tensor product of spherical
harmonics with a l = 2 representation of the bond axis. The convolution with neighbor-
ing node features produces pseudoscalar outputs, which are passed through odd-function
dense layers (e.g., with tanh nonlinearity) to generate the final torsion score predictions.
This layer is inspired by the concept of torque, ensuring the correct symmetry properties
for torsion score prediction.

The complete architecture design and tensor computation pipeline can be found in (Jing et al., 2022).

A.3 EUCLIDEAN LIKELIHOOD CONVERSION

Torsional Diffusion framework computes the likelihood of torsional angles in the torsional space
pθ(τ | L), τ ∈ Tm. However, for compatibility with physical models which operate in Euclidean
space, it is necessary to convert this torsional likelihood into a Euclidean likelihood p(x | L), x ∈
R3n. This conversion ensures that our model can be integrated with standard molecular simulation
frameworks that rely on Euclidean coordinates. To achieve this, we introduce a conversion factor
that accounts for the difference in volume elements between the torsional and Euclidean spaces.
This factor is derived through the following relationship:

pθ(x | L) =
pθ(τ | L)
8π2
√
det g

where gαβ =

n∑
k=1

J (k)
α · J (k)

β .

Here, the matrix gαβ represents the metric tensor that captures the relationship between the torsional
angles and the Euclidean coordinates. The indices α, β range from 1 to m+ 3, with m representing
the number of torsional degrees of freedom and the additional 3 accounting for global rotations.

The proof of this relationship involves constructing a manifold M that represents the set of all
centered conformers with fixed local structures but arbitrary torsion angles and orientations. The
coordinates of this manifold include both the torsional angles and the global rotational degrees of
freedom. By analyzing the covariant basis vectors of this manifold and computing the correspond-
ing metric tensor, we derive the conversion factor between the volume elements in torsional and
Euclidean spaces. The full proof, including the detailed derivation of the metric tensor and the
integration over global rotations, can be found in Jing et al. (2022).

This conversion is crucial because it allows us to bridge the gap between torsional space, where the
likelihood is naturally defined, and Euclidean space, where physical simulations and energy-based
models operate. By ensuring that our likelihoods are compatible with the Boltzmann measure, we
can accurately model molecular systems and integrate our framework with existing simulation tools.
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A.4 DERIVATION OF THE ELBO

To derive the ELBO for Torsional Diffusion, we start by considering the parameterization of the
reverse process. The reverse process is defined as:

µθ(τ
t, t) =

1
√
αt

(
τ t − βt√

1− ᾱt
ϵθ(G, τ t)

)
where ϵθ is a neural network that predicts the noise necessary to correct the torsional angles τ t. The
ELBO objective is given by:

LELBO =

T∑
t=1

γtE{τ0,G}∼q(τ0,G),ϵ∼N (0,I)

[∥∥ϵ− ϵθ(G, τ t)
∥∥2
2

]
where τ t =

√
ᾱtτ

0 +
√
1− ᾱtϵ, and γt = βt

2αt(1−ᾱt−1)
. We derive the ELBO by considering the

expected log-likelihood:

E log pθ(τ
0|G) = E logEq(τ1:T |τ0)

[
pθ(τ

0:T−1|G, τT )× p(τT )

q(τ1:T |τ0)

]
Applying Jensen’s inequality, we have:

≥ Eq log

[
pθ(τ

0:T−1|G, τT )× p(τT )

q(τ1:T |τ0)

]
This can be expanded as:

= Eq

[
log p(τT )−

T∑
t=1

log
pθ(τ

t−1|G, τ t)
q(τ t|τ t−1)

]

Further simplification gives:

= Eq

[
log

p(τT )

q(τT |τ0)
− log pθ(τ

0|G, τ1)−
T∑

t=2

log
pθ(τ

t−1|G, τ t)
q(τ t|τ0)

]

The ELBO is then expressed as:

LELBO = −Eq

[
KL
(
q(τT |τ0)∥p(τT )

)
+

T−1∑
t=1

KL
(
q(τ t−1|τ t, τ0)∥pθ(τ t−1|G, τ t)

) ]
.

The KL divergence is calculated based on the Gaussian distributions q and pθ, sharing the same
covariance matrix β̄tI .

A.5 LEMMA 1.

The lemma is a direct consequence of the results in (Poole et al., 2019). It shows that minimizing
the objective function for fragmentation-based torsion modeling is equivalent to maximizing the
mutual information between the torsion angles of the full molecular structure {τ̂ττ b}B+1

b=1 and those
true torsion angles of the fragment {τττ b}B+1

b=1 . By focusing on valid torsion subspaces, this approach
ensures that fragments retain relevant torsional and geometric information from τ̂ττ b. Maximizing the
mutual information between τ̂ττ b and τττ b guarantees that local fragment optimizations contribute to a
globally consistent molecular conformation, particularly in terms of torsional flexibility and stability.
As a result, the optimal fragmentation h∗ preserves the maximum possible information, ensuring that
the fragmented representation retains the essential characteristics of the original structure, leading
to improved model performance by aligning the fragmented and original structures as closely as
possible.
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B FRAGMENTATION-BASED DECOMPOSITION AND ERROR ANALYSIS

B.1 FRAGMENTATION RULES

To validate the effectiveness and differences of various decomposition methods in learning confor-
mation structures in the fragmentation torsion space, we analyzed several fragmentation rules in
FADiff implementations. These methods provide domain knowledge and deeper insights into the
task. The analyzed rules used include the BRICS method and RECAPS method, and a graph-based
fragmentation method can be employed by analyzing the connectivity of molecular graphs, which is
also the method that Torsional Diffusion used for selecting the rotatable bond (Gordon et al., 2012;
Stern et al., 2020; Jing et al., 2022), this method identifies cut edges by examining whether the
removal of an edge disconnects the graph into separate components.

RECAP (Retrosynthetic Combinatorial Analysis Procedure) (Lewell et al., 1998)

RECAP is a classical technique aimed at decomposing complex molecules into smaller, manageable
fragments through retrosynthetic analysis. The core principle involves identifying and cleaving
chemical bonds that are common in organic synthesis, such as ester, amide, and ether bonds. These
bonds are selected based on their prevalence and the ease of cleavage, prioritizing those that connect
functional groups to generate fragments with clear chemical functionalities. Typically, RECAP
employs a single-cut strategy, focusing on one bond at a time, resulting in basic fragments. This
simplicity allows for rapid generation of fragments suitable for combinatorial chemistry and initial
drug screening.

BRICS (Breaking of Retrosynthetically Interesting Chemical Substructures) (Degen et al.,
2008)

BRICS improves upon RECAP by offering a more detailed approach to fragment generation. It ap-
plies a comprehensive set of rules to identify and cleave key substructures in chemical compounds,
considering not just bond types but also the surrounding chemical environment, such as aromaticity
and heterocycles. This allows BRICS to generate more complex and diverse fragments, supporting
multi-functional group cleavage to produce synthetically feasible and biologically relevant frag-
ments. BRICS focuses on creating diverse, drug-like fragments, making it valuable for drug design.
Researchers can use BRICS to build flexible and accurate fragment libraries for virtual screening
and molecular optimization. While RECAP is suitable for basic fragment analysis, BRICS provides
a more advanced tool for high-precision drug development and compound optimization.

Graph-based Fragmentation (Gordon et al., 2012; Stern et al., 2020; Jing et al., 2022) We
consider a bond freely rotatable if severing the bond creates two connected components of the total
graph, each of which has at least two atoms. It guarantees that torsion angles in cycles (or rings),
which cannot be rotated independently, are considered part of the local structure. It can be described
as following steps:

• Convert the molecular graph into an undirected graph G.

• For each edge, temporarily remove it and check if the resulting graph remains connected.

• If the graph becomes disconnected, identify the connected components and classify them
as fragments.

• Store the edges whose removal results in disconnected components, as these represent po-
tential cut points for fragmentation.

Thus, it allows for the identification of edges that, when removed, split the molecular graph into
meaningful substructures. The algorithm ensures that fragments retain their connectivity, making it
particularly useful for identifying torsion-related substructures.

B.2 FRAGMENTATION AUGMENTATION ERROR ANALYSIS

During molecular fragmentation, chemical or graph-based cut rules decompose the molecule into
smaller fragments. The choice of cut edges introduces errors between the torsion angles τ̂u,vb from

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

the full molecular graph and the true torsion angles τu,vb of the fragments due to potential loss
of structural or torsional information. To quantify this, we define an error term ϵ capturing the
deviation:

τ̂u,vb = τu,vb + ϵ.

This error ϵ depends on factors like cut edge selection and preservation of the local chemical envi-
ronment. To understand its impact on the mutual information and model performance, we derive a
general error bound and analyze how different fragmentation methods affect this bound.

The mutual information between τ̂u,vb and τu,vb is given by:

I(τ̂u,vb ; τu,vb ) = H(τu,vb )−H(τu,vb | τ̂u,vb ),

where H(τu,vb ) is the entropy of the fragment torsional angles, and H(τu,vb | τ̂u,vb ) is the condi-
tional entropy of τu,vb given τ̂u,vb . Our goal is to understand how the error ϵ influences this mutual
information and, consequently, the accuracy of our molecular modeling.

Assuming that the error ϵ is a random variable with a probability density function p(ϵ), we can
express the conditional entropy H(τu,vb | τ̂u,vb ) in terms of the entropy of the error ϵ:

H(τu,vb | τ̂u,vb ) = h(ϵ),

where h(ϵ) denotes the differential entropy of ϵ. This is because, given τ̂ττ = τττ + ϵ, the uncer-
tainty in τττ given τ̂ττ is entirely due to the uncertainty in ϵ. If we model the error ϵ as a zero-
mean Gaussian random variable with variance σ2 (i.e., ϵ ∼ N (0, σ2)), its differential entropy is:
h(ϵ) = −

∫∞
−∞ fϵ(ϵ) ln fϵ(ϵ) dϵ, where fϵ(ϵ) =

1√
2πσ2

exp
(
− ϵ2

2σ2

)
.

h(ϵ) = −
∫ ∞

−∞
fϵ(ϵ) (ln fϵ(ϵ)) dϵ = −

∫ ∞

−∞
fϵ(ϵ)

(
−1

2
ln(2πσ2)− ϵ2

2σ2

)
dϵ

=

∫ ∞

−∞
fϵ(ϵ)

(
1

2
ln(2πσ2) +

ϵ2

2σ2

)
dϵ =

1

2
ln(2πσ2)

∫ ∞

−∞
fϵ(ϵ) dϵ+

1

2σ2

∫ ∞

−∞
ϵ2fϵ(ϵ) dϵ

=
1

2
ln(2πσ2) · 1 + 1

2σ2
· E[ϵ2] = 1

2
ln(2πσ2) +

1

2σ2
· σ2

=
1

2
ln(2πσ2) +

1

2
=

1

2

(
ln(2πσ2) + 1

)
=

1

2
ln(2πeσ2),

and we have:
I(τ̂u,vb ; τu,vb ) = H(τu,vb )− h(ϵ) = H(τu,vb )− 1

2
ln(2πeσ2).

This equation reveals that the mutual information decreases as the error variance σ2 increases.

B.3 IMPACT OF FRAGMENTATION RULES ON THE ERROR BOUND

Different fragmentation rules influence the error variance σ2 (or mean squared error, MSE) between
the torsion angles of the fragments τu,vb and those of the full molecule τ̂u,vb , thus affecting the mutual
information I( ˆτu,vb ; τu,vb ) between them. A lower error variance implies a stronger relationship
between ˆτu,vb and τu,vb , leading to enhanced model accuracy. Below, we analyze how different
fragmentation rules impact the error variance σ2 and discuss strategies to minimize it.

B.4 FACTORS AFFECTING ERROR VARIANCE σ2

To minimize the error variance σ2 and maximize the mutual information I(τ̂ττ ;τττ) between the tor-
sional angles of the fragments τττ and those of the full molecule τ̂ττ , fragmentation methods should
carefully consider several key factors. Each factor influences the torsional properties by affecting
the torsional potential energy surfaces and the distributions of torsion angles (Stern et al., 2020;
Horton et al., 2022; Stern et al., 2022). Below, we provide a detailed examination of each factor
from an energy perspective, including examples and mathematical definitions where applicable.
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𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏

𝑬𝒂𝒏𝒈𝒍𝒆

Fragmentation

𝑬𝒕𝒐𝒕𝒂𝒍 = 𝑬𝒂𝒏𝒈𝒍𝒆+𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏+𝑬𝒃𝒐𝒏𝒅
𝑬𝐞𝐥𝐞𝐜+𝑬𝐯𝐝𝐖

Figure 4: Visualization of energy-based analysis.

B.4.1 ENERGY PERSPECTIVE

The force field (FF) in molecular simulations describes the potential conformational energy Econf of
a system of atoms or molecules. It comprises mathematical expressions and associated parameters
to model both bonded and non-bonded interactions. The total conformational energy of the system
is given by (Kang et al., 1996; Kania et al., 2021):

Econf = Ebonded + Enonbonded (2)

Bonded Interactions Bonded interactions account for atoms connected by chemical bonds and
include bond stretching, angle bending, and dihedral (torsional) rotations:

Ebonded =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2 +

∑
dihedrals

∑
n

Vn

2
[1 + cos(nϕ− γn)] (3)

• Bond Stretching: Harmonic potential where kb is the bond force constant, b is the bond
length, and b0 is the equilibrium bond length.

• Angle Bending: Harmonic potential where kθ is the angle force constant, θ is the bond
angle, and θ0 is the equilibrium bond angle.

• Dihedral (Torsional) Rotation: Fourier series expansion where Vn is the torsional barrier
amplitude, n is the periodicity, ϕ is the dihedral angle, and γn is the phase offset.

Alternatively, the bonded energy term can be rewritten as torsional energy:

Etorsion =
∑
i

∑
n

K(i)
n [1 + cos(nϕi − γ(i)

n )] (4)

where K
(i)
n and γ

(i)
n are the torsional parameters specific to dihedral i, and the summation over

n typically includes terms up to n = 4 by most of the packages applied in molecular dynamics
simulations (Kania et al., 2021).

Non-bonded Interactions Non-bonded interactions consider pairs of atoms not directly bonded
and include Van der Waals forces and electrostatic interactions:
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Enonbonded =
∑
i<j

[
4εij

((
σij

rij

)12

−
(
σij

rij

)6
)

+
qiqj

4πε0εrrij

]
(5)

• Van der Waals (Lennard-Jones) Potential: Described by parameters εij (depth of the
potential well) and σij (finite distance at which the interparticle potential is zero), with rij
being the distance between atoms i and j.

• Electrostatic Potential: Coulombic interaction where qi and qj are the partial charges of
atoms i and j, ε0 is the vacuum permittivity, and εr is the relative permittivity (dielectric
constant).

To analyze how different fragmentation methods influence the error variance σ2 and, consequently,
the estimation effectiveness in fragment-based molecular modeling, we consider the molecular con-
formational energy from an energy perspective. The conformational energy Econf of a molecule is
given by:

Econf =
∑
i

∑
n

K(i)
n

[
1 + cos

(
nϕi − γ(i)

n

)]
+
∑
i<j

[
4εij

((
σij

rij

)12

−
(
σij

rij

)6
)

+
qiqj

4πε0εrrij

]
.

(6)

The first term represents the torsional (dihedral) interactions, where K
(i)
n and γ

(i)
n are the torsional

parameters for dihedral i, ϕi is the dihedral angle, and the sum over n includes the relevant peri-
odicities. The second term accounts for non-bonded interactions, including Van der Waals forces
modeled by the Lennard-Jones potential and electrostatic interactions modeled by Coulomb’s law,
with εij , σij , qi, and qj being the Van der Waals parameters and partial charges, respectively (Kania
et al., 2021).

Fragmentation methods impact Econf by altering both bonded and non-bonded interactions. These
alterations affect the torsional potential energy surfaces and, consequently, the torsion angle distri-
butions τττ , leading to variations in the error variance σ2. We examine how different fragmentation
strategies affect the terms in Equation equation 6 and discuss their implications for the estimation
effectiveness.

B.4.2 EFFECT OF FRAGMENTATION ON TORSIONAL ENERGY

Fragmentation can significantly impact the torsional energy terms in the conformational energy
expression. When fragments are created by cutting bonds, the parameters K(i)

n and γ
(i)
n associated

with the torsional angles ϕi may change due to the alteration of the local chemical environment.
This is especially pertinent in the following scenarios:

Disruption of Conjugation and Resonance. Fragmenting through bonds that are part of conjugated
systems or aromatic rings disrupts electron delocalization. This alteration affects the torsional barrier
heights K(i)

n and phase offsets γ(i)
n , modifying the torsional potential energy surface and leading to

discrepancies between the torsional angles in the fragment τττ and those in the full molecule τ̂ττ . The
disruption can be quantified by changes in electron density distributions ρfrag(r) versus ρfull(r),
impacting the energy landscape.

Loss of Steric Interactions. Removing bulky substituents adjacent to torsional bonds reduces steric
hindrance, altering the energy landscape. The decrease in steric interactions can lower torsional bar-
riers and shift equilibrium angles, causing differences between τττ and τ̂ττ . This effect can be modeled
using steric energy terms in force fields, such as Van der Waals interactions, which are sensitive to
atomic radii and distances.

B.4.3 EFFECT OF FRAGMENTATION ON NON-BONDED INTERACTIONS

Fragmentation alters non-bonded interactions, which play a critical role in determining conforma-
tional preferences. The fragmentation process affects Van der Waals and electrostatic interactions as
follows:
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Modification of Van der Waals Interactions. By removing atoms and groups during fragmenta-
tion, the number of atom pairs contributing to the Van der Waals interactions decreases. Interactions
spanning the fragmentation site are lost, and the balance of attractive and repulsive forces changes,
affecting the conformational energy surface. The Van der Waals energy, dependent on parameters
εij and σij , is sensitive to changes in atomic pairs i < j.

Changes in Electrostatic Interactions. Fragmentation can delete or modify charged or polar
groups, altering the distribution of partial charges qi and qj . Disruption of hydrogen bonds and
other electrostatic interactions modifies the energy landscape, potentially leading to different con-
formations in the fragments compared to the full molecule. The Coulombic potential is directly
affected by the presence or absence of charged species and their spatial arrangement.

B.4.4 IMPLICATIONS FOR FRAGMENTATION EFFECTIVENESS

The changes in torsional and non-bonded energy terms resulting from fragmentation have significant
implications for the effectiveness of fragmentation methods in fragment-based molecular modeling.
A higher error variance σ2 indicates a weaker correspondence between the fragment torsional angles
τu,vb and those of the full molecule τ̂u,vb , as quantified by the mutual information:

I(τ̂u,vb ; τu,vb ) = H(τu,vb )− 1

2
ln
(
2πe σ2

)
. (7)

To minimize σ2, effective fragmentation methods should aim to preserve the key energy terms in
Equation equation 6. This involves:

Preserving Electronic Effects. Avoiding fragmentation through conjugated systems or aromatic
rings maintains the torsional parameters K

(i)
n and γ

(i)
n . By preserving electron delocalization, the

torsional energy surfaces of the fragments remain similar to those of the full molecule, reducing
deviations ϵ.

Retaining Steric Interactions. Including bulky substituents and sterically significant groups in the
fragments maintains steric hindrance, preserving torsional barriers and equilibrium angles. Quan-
titatively, this ensures that the steric energy contributions, such as those from the Lennard-Jones
potential, remain consistent between the fragment and the full molecule.

Maintaining Non-bonded Interactions. Preserving key non-bonded interactions—especially hy-
drogen bonds and electrostatic attractions—helps maintain conformational preferences influenced
by these forces. Retaining charged or polar groups ensures that the electrostatic interactions in the
fragment mirror those in the full molecule.

Thus, by using fragmentation methods that preserve key electronic effects, steric interactions, and
non-bonded interactions, we can reduce deviations ϵ, minimize the error variance σ2, and enhance
the mutual information I(τ̂u,vb ; τu,vb ) between fragments and the full molecule. This leads to more
accurate and reliable fragment-based molecular models, improving tasks such as molecular con-
formation prediction and property estimation. By selecting fragmentation strategies that minimize
alterations to the energy terms in Equation equation 6, we align with the optimal fragmentation
strategy ζ∗ that maximizes mutual information and minimizes the error bound.

B.4.5 ANALYSIS OF FRAGMENTATION METHODS

In this section, we analyze three fragmentation methods—RECAP, BRICS, and the graph-based
fragmentation method—from the energy perspective discussed earlier. We examine how each
method ensures effectiveness by preserving key electronic effects, steric interactions, and non-
bonded interactions, thereby impacting the error variance σ2 and the mutual information I(τ̂ττ ;τττ).
The following paragraphs provide detailed analyses of these methods.

RECAP Fragmentation Method Analysis The RECAP (Retrosynthetic Combinatorial Analy-
sis Procedure) method provides a straightforward and efficient way to decompose molecules by
cleaving them at common synthetic bonds such as esters, amides, and ethers Lewell et al. (1998).
This simple approach effectively targets functional groups and preserves core structures, making it
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valuable for generating synthetically accessible fragments. By focusing on bonds commonly ma-
nipulated in organic synthesis, RECAP facilitates the exploration of potential synthetic pathways
and the identification of key structural components. For example, fragmenting acetaminophen at the
amide bond between the phenol ring and the acetamide group yields p-aminophenol and an acetyl
group, which are both significant intermediates in chemical synthesis.

BRICS Fragmentation Method Analysis BRICS (Breaking of Retrosynthetically Interesting
Chemical Substructures) generates synthetically feasible and biologically relevant fragments by ap-
plying detailed rules that consider both bond types and their chemical environments Degen et al.
(2008). By avoiding cuts within conjugated systems and aromatic rings, it preserves critical struc-
tural features, maintaining consistent torsional parameters K

(i)
n and γ

(i)
n and thus reducing error

variance. BRICS also retains bulky substituents and sterically significant groups, which is essen-
tial for accurate torsional barriers and equilibrium angles. By considering the chemical context
at fragmentation sites, it preserves key non-bonded interactions like hydrogen bonds and electro-
static attractions, enhancing the electrostatic components of Econf and increasing mutual information
I(τ̂ττ ;τττ). For example, fragmenting ibuprofen at the carboxylic acid linkage keeps the aromatic ring
and isobutyl group intact, preserving important steric and electronic properties.

Graph-Based Fragmentation Method Analysis Graph-based fragmentation focuses on the
molecule’s connectivity, identifying fragmentation points that yield meaningful substructures with-
out disrupting critical bonds Gordon et al. (2012); Stern et al. (2020). By avoiding breaks in bonds
essential for conjugation and resonance, it maintains consistent torsional parameters K(i)

n and γ
(i)
n ,

thereby reducing error variance. This approach retains steric interactions by keeping bulky groups
connected, which is crucial for accurate modeling of torsional barriers and equilibrium angles. Ad-
ditionally, it preserves non-bonded interactions such as hydrogen bonds and electrostatic attractions
by maintaining the connectivity of functional groups, enhancing mutual information I(τ̂ττ ;τττ). For
instance, when fragmenting benzene, preserving the aromatic ring maintains its unique electronic
properties and associated torsional parameters, whereas breaking bonds within the ring would elim-
inate these characteristics.

Bridging the Analysis with Experimental Results The experimental results in Table 4 support
our theoretical analysis of fragmentation methods’ impact on error variance (σ2) and mutual infor-
mation (I(τ̂ττ ;τττ)). The full FADiff model, incorporating the graph-based fragmentation method with
both BRICS and RECAP edges, achieves the best performance across all metrics, with the highest
mean COV-R (51.17%) and COV-P (50.10%) and the lowest AMR-R and AMR-P values. Remov-
ing BRICS edges (w/o BRICS) decreases precision metrics—COV-P drops to 34.51% and AMR-P
increases to 1.0461 Å—indicating that BRICS fragmentation is crucial for achieving high precision
in conformer generation. Similarly, removing RECAP edges (w/o RECAP) adversely affects re-
call metrics, with COV-R decreasing to 49.38% and AMR-R increasing to 0.7609 Å, highlighting
RECAP fragmentation’s importance for comprehensive coverage of the conformational space. The
most significant performance decline occurs when both BRICS and RECAP edges are removed (w/o
B & R), resulting in the lowest COV-R (48.60%) and COV-P (46.89%) and the highest AMR-R and
AMR-P values. This underscores the complementary roles of BRICS and RECAP in preserving
critical aspects of molecular structure essential for accurate conformer generation. These findings
confirm our theoretical framework that optimal fragmentation strategies (ζ∗) maximizing mutual
information and minimizing error variance enhance model performance. Selecting fragmentation
strategies that align with theoretical principles is crucial for optimizing model performance in prac-
tical applications.

C REPRODUCBILITY

Experimental Details For conformer ensemble generation on GEOM-DRUGS, we mainly fol-
lowed the setup used in (Jing et al., 2022). We trained the Torsional Diffusion models on NVIDIA
RTX A100 GPUs for 250 epochs using the Adam optimizer for GEOM-DRUGS and GEOM-QM9.
The primary hyperparameters were optimized using the validation set, resulting in the following
configurations: an initial learning rate of 0.001, a learning rate scheduler with a patience of 20
epochs, 4 network layers, a second-order maximum representation, a cutoff radius rmax of 5 Å, and
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the inclusion of batch normalization. Specifically, followed the setup used in (Jing et al., 2022),
we use the model trained from GEOM-DRUGS for GEOM-XL evaluation. The results reported for
FADiff utilize 20 reverse diffusion steps, consistent with the approach in Jing et al. (2022). The min-
imum fragment size z was set to 10 for both GEOM-DRUGS and GEOM-XL, while no such limit
was applied in the GEOM-QM9 experiments. The maximum fragmentation edge number κ is set to
5 for all datasets. For boltzmann generation experiments, we trained the Torsional Diffusion model
on NVIDIA RTX A100 GPUs for 250 epochs using the Adam optimizer. The hyperparameters were
set as follows: initial learning rate of 0.001, learning rate scheduler patience of 20, 4 layers, 2nd
order maximum representation, and batch normalization enabled.

Consistent with the approach in (Jing et al., 2022), for each molecule that has K ground truth con-
formations, we generate 2000 conformations. The datasets were randomly divided into training,
validation, and test sets with sizes as follows: for GEOM-DRUGS, there are 243,473 training sam-
ples, 30,433 validation samples, and 1,000 test samples; for GEOM-QM9, there are 106,586 train-
ing samples, 13,323 validation samples, and 1,000 test samples. Since GEOM-XL is used solely for
testing, its test set includes all 102 molecules from the MoleculeNet dataset that contain at least 100
atoms.

Local Structure Initialization As it stated in (Jing et al., 2022), the set of possible stable local
structures L for a given molecule is highly constrained and can be accurately predicted using fast
cheminformatics methods, such as RDKit ETKDG (Riniker & Landrum, 2015). Therefore, we
use RDKit to provide approximate samples from pθ(L), and focus on developing a diffusion-based
generative model to learn the distribution pθ(τ | L) over torsion angles, conditioned on the given
graph and local structure.

Conformer Matching In (Jing et al., 2022), training on synthetic conformers produced by con-
fermer matching has shown significant better performance than using ground truth alone. The con-
former matching procedure operates as follows. For a molecule with K conformers, it first generates
K random local structure estimates L̂ using RDKit (Riniker & Landrum, 2015). To align these es-
timates with the ground truth conformers C, we compute a K × K cost matrix, where each entry
represents the lowest RMSD achievable by adjusting the torsion angles of L̂ to match C. We then
solve the linear sum assignment problem on this approximate cost matrix to find the optimal match-
ing between the true conformers C and the estimates Ĉ (Crouse, 2016; Stärk et al., 2022). For each
matched pair, it refines the alignment by performing a differential evolution optimization over the
torsion angles to obtain the optimal conformer Ĉ (Méndez-Lucio et al., 2021). This complete assign-
ment ensures consistency between the local structures seen during training and inference, preventing
any distributional shift.

D FURTHER RESULTS

In this section, we present additional experimental results to further validate the robustness and
generalizability of our proposed fragment-based molecular modeling approach. We explore the per-
formance of our method across different datasets, fragment size choices, and fragmentation strate-
gies. Specifically, we provide detailed analysis on the following aspects: the results on both the
GEOM-QM9 dataset, which consists of small molecules (with an average of 11 atoms per molecule),
and the GEOM-XL dataset, which contains significantly larger molecules, averaging 132 atoms per
molecule. For comparison, the GEOM-DRUGS dataset contains molecules with an average of 44
atoms. the impact of varying the fragment size control parameter, where only fragments larger
than a specified threshold z are selected during data augmentation; and the performance of chemi-
cal rule-based fragmentation under different data availability conditions, highlighting the method’s
adaptability to varying dataset sizes.

D.1 FURTHER FRAGMENTATION STATISTICS

Figure 5 illustrates how the minimum fragment size z affects the average number of fragments per
molecule for the Graph-based, BRICS, and RECAP fragmentation methods across the GEOM-QM9,
GEOM-DRUGS, and GEOM-XL datasets. GEOM-QM9, comprising small molecules averaging
11 atoms, shows that the Graph-based method generates significantly more fragments when z is

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 1 Training and Inference Procedure with Augmentation Phase
Input: Molecules {G0, . . . ,GN}with ground truth conformations {CG,1, . . . , CGN ,K}; learning rate
α; number of conformations K; number of diffusion steps S; maximum number of selected edges
κ; minimum fragment size z.
Output: Trained score model sθ; predicted conformations {C1, . . . , CK}.

1: Augmentation Phase:
2: for each molecule G in {G0, . . . ,GN} do
3: Identify all cut-edges in G.
4: Let b be the total number of cut-edges.
5: Randomly select K = min(b, κ) edges.
6: Decompose G into fragments by removing the selected edges.
7: Discard fragments smaller than z atoms.
8: Add the remaining fragments to the augmented training set F .
9: end for

10: Training Phase:
11: for each fragment G in augmented training set F do
12: for each ground truth conformation CG,k of G do
13: Extract torsion angles τττG,k from CG,k.
14: end for
15: end for
16: for epoch← 1 to epochmax do
17: for each fragment G in F do
18: Sample t ∼ Uniform[0, 1].
19: Randomly select a ground truth torsion angle set τττ from {τττG,1, . . . , τττG,K}.
20: Sample noise ϵ ∼ pt(ϵ | 0), where pt is a wrapped normal distribution with variance

σ2(t) = σ1−t
minσ

t
max.

21: Obtain noisy torsion angles: τ̃ττ = τττ + ϵ.
22: Construct noisy conformation C̃G by applying τ̃ττ to G.
23: Predict torsion updates ∆τττ = sθ(C̃G , t).
24: Compute loss: L =

∥∥∆τττ −∇τ̃ττ log pt|0(τ̃ττ | τττ)
∥∥2.

25: Update model parameters: θ ← θ − α∇θL.
26: end for
27: end for
28: Inference Phase:
29: for each molecular graph G do
30: Initialize torsion angles τττT ∼ pT (τττ) (e.g., uniform over [0, 2π]m).
31: Construct initial conformation CT by applying τττT to G.
32: for n← S down to 1 do
33: Compute t = n/S.
34: Predict torsion updates ∆τττ = sθ(C

n, t).
35: Sample noise zzz ∼WrappedNormal(0, I).
36: Compute step size g(t) = σ1−t

minσ
t
max

√
2 ln(σmax/σmin).

37: Update torsion angles:

τττn−1 = τττn +

(
g2(t)

N
∆τττ + g(t)zzz

)
.

38: Construct updated conformation Cn−1 by applying τττn−1.
39: end for
40: Store the final conformation C0.
41: end for

small, but the fragment count drops rapidly as z increases due to the limited molecular size. BRICS
and RECAP produce fewer fragments with less sensitivity to z changes. In the GEOM-DRUGS
dataset, with molecules averaging 44 atoms, all methods produce more fragments, but the Graph-
based method still leads, and the decline in fragment numbers with increasing z is more gradual.
For the GEOM-XL dataset, containing large molecules averaging 132 atoms, all methods generate
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Figure 5: Average Fragment Number v.s. Minimum Fragment Size z on different fragmentation
methods.

Table 5: Quality of generated conformer ensembles for the GEOM-QM9 test set in terms of Cover-
age (%) and Average Minimum RMSD (Å) with δ = 0.5 Å.

Models COV-R (%) ↑ AMR-R (Å) ↓ COV-P (%) ↑ AMR-P (Å) ↓
Mean Median Mean Median Mean Median Mean Median

CGCF 78.0 82.4 0.421 0.390 36.5 33.6 0.662 0.643
CONFVAE 77.8 88.2 0.415 0.373 38.0 34.7 0.622 0.609
CONFGF 88.4 94.3 0.267 0.268 46.4 43.4 0.522 0.512
GEODIFF 90.1 93.4 0.209 0.198 52.8 50.3 0.445 0.427
RDKit 85.1 100.0 0.235 0.199 86.8 100.0 0.232 0.205
OMEGA 85.5 100.0 0.177 0.126 82.9 100.0 0.224 0.186
GeoMol 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
TorDiff 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195
FADiff 93.2 100.0 0.175 0.139 93.1 100.0 0.218 0.189

a higher number of fragments, and the differences between methods become less pronounced as
z increases. The Graph-based method remains the most sensitive to changes in z, while BRICS
and RECAP display steady decreases. Overall, these trends highlight that larger molecules permit
more fragmentation, and the Graph-based method consistently yields more fragments, especially at
smaller z values, whereas BRICS and RECAP are less influenced by the minimum fragment size
due to their inherent fragmentation rules.

D.2 FURTHER RESULTS ON GEOM-QM9 AND GEOM-XL

Further Results on GEOM-QM9 Table 5 presents the performance of various models on the
GEOM-QM9 test set, which primarily consists of small molecules, making it a suitable benchmark
for evaluating the ability of models to generate accurate conformer ensembles for relatively simple
molecular structures. The results are evaluated with a threshold of δ = 0.5 Å. Our proposed model,
FADiff, achieves the highest overall performance, with a mean COV-R of 93.2% and a median of
100.0%, surpassing all other models. In terms of AMR-R, FADiff also outperforms the rest, with
the lowest mean RMSD of 0.175Åand a competitive median of 0.139Å. For predicted conformers,
FADiff maintains its superior performance, achieving a mean COV-P of 93.1% and a median of
100.0%, while also recording the lowest mean AMR-P of 0.218Åand a median of 0.189Å. These
results demonstrate that FADiff not only generates highly accurate conformer ensembles but also
ensures excellent coverage, outperforming other state-of-the-art methods such as TorDiff, GeoMol,
and GeoDiff, which also show strong performance but fall short in both coverage and RMSD metrics.
The performance of FADiff on GEOM-QM9 dataset highlights its effectiveness in capturing the
torsional flexibility and geometric accuracy of simpler molecular structures.

Further Visualizations on Conformation Generation for Large Molecules (GEOM-XL) Ta-
ble 6 provides additional visualizations of conformer generation results on the GEOM-XL dataset,
focusing on large molecules. These examples complement our earlier discussion on the superior
generalization performance of FADiff on large molecules. The table compares the generated con-
formers from FADiff and TorDiff with the reference structures. It shows that FADiff produces
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Table 6: Visualizations on conformation generation examples on GEOM-XL.

Graph Reference FADiff TorDiff

conformers that closely resemble the reference structures on given examples, further elucidates the
performance improvements presented in Table 2, highlighting FADiff’s exceptional ability to handle
large and complex molecules by generating conformers that closely match the reference structures.

D.3 FURTHER RESULTS ON BOLTZMANN GENERATION

We follow the experimental setup from Jing et al. (2022) to evaluate FADiff, samples from the Boltz-
mann distribution over torsion angles. The evaluation is conducted on GEOM-DRUGS molecules
We compare FADiff against TorDiff Jing et al. (2022) and annealed importance sampling (AIS) Neal
(2001). The comparison focuses on the effective sample size (ESS) of 32 samples per molecule,
which quantifies how closely the generated samples match the true Boltzmann distribution. ESS is
computed using importance sampling weights, and performance is assessed across different temper-
atures to evaluate the sampling efficiency (Jing et al., 2022).

D.4 FURTHER RESULTS ON CONFORMER MATCHING ABLATION

Table 7 presents an ablation study analyzing the impact of Conformer Matching during training on
the GEOM-DRUGS test set. It reveals several key observations regarding the impact of Conformer
Matching during training on the GEOM-DRUGS test set. Generally, models trained with CM out-
perform those without it, achieving higher Coverage percentages (COV-R and COV-P) and lower
Average Minimum RMSD values (AMR-R and AMR-P).

However, an intriguing phenomenon occurs with TorDiff at n = 1000: training without CM yields
better performance than training with CM (mean COV-R of 45.39% vs. 34.60%, and mean AMR-
R of 0.8190Å v.s. 0.8933Å). This suggests that, with limited data, directly using actual conformer
structures for training may enhance TorDiff’s generalization ability more than CM. As the dataset
size increases, this advantage diminishes, and models trained without CM exhibit declining perfor-
mance. This inverse relationship indicates that training on actual conformer data without CM may
lead to overfitting to specific conformations, hampering generalization to unseen data as the model
becomes more specialized on the training set. Conversely, CM helps prevent distributional shifts by
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Table 7: Training with and without conformer matching (CM) on the GEOM-DRUGS test set in
terms of Coverage (%) and Average Minimum RMSD (Å) with δ = 0.75 Å.

Samples Models COV-R (%) ↑ AMR-R (Ä) ↓ COV-P (%) ↑ AMR-P (Ä) ↓
Mean Median Mean Median Mean Median Mean Median

n
=

10
00 FADiff 49.39 46.66 0.7928 0.7844 33.84 21.23 1.0455 0.9823

w/o CM 47.68 45.45 0.8101 0.7861 33.39 20.93 1.0526 1.0056
TorDiff 34.60 17.23 0.8933 0.8909 20.84 5.56 1.1897 1.1795
w/o CM 45.39 39.44 0.8190 0.8040 28.74 15.00 1.1033 1.0667

n
=

10
00

0 FADiff 62.82 69.70 0.6736 0.6505 43.10 37.72 0.9081 0.8840
w/o CM 43.95 36.43 0.8353 0.8224 29.18 14.22 1.1038 1.0426
TorDiff 52.76 54.10 0.7507 0.7379 33.88 20.64 1.0458 1.0371
w/o CM 43.15 36.36 0.8478 0.8291 28.11 13.06 1.1051 1.0676

Fu
ll

FADiff 70.07 78.35 0.6092 0.5876 52.87 54.17 0.8003 0.7486
w/o CM 37.52 25.00 0.8866 0.8863 23.73 8.22 1.1598 1.1307
TorDiff 67.49 75.81 0.6339 0.6178 49.53 47.16 0.8269 0.7782
w/o CM 34.99 20.88 0.9326 0.9174 23.08 8.13 1.1803 1.1340

Table 8: Results of Property Prediction task.

Method E Emin ∆ϵ ∆ϵmax

RDKit 0.92 0.65 0.37 0.80
GeoMol 0.38 0.19 0.29 0.81
GeoDiff 0.26 0.13 0.31 0.70
TorDiff 0.20 0.14 0.23 0.43
FADiff 0.19 0.13 0.20 0.43

aligning training and inference conformer distributions, which becomes increasingly beneficial with
larger datasets. FADiff consistently outperforms TorDiff when CM is applied, suggesting it more
effectively leverages CM for improved conformer generation. Overall, incorporating CM during
training enhances model performance and generalization, especially with larger datasets, whereas
training without CM may offer short-term benefits with very limited data but ultimately hinders
performance as data volume grows.

D.5 FURTHER EXPERIMENTAL RESULTS ON PROPERTY PREDICTION TASK

We adopt the property prediction task setup from (Xu et al., 2022; Shi et al., 2021), where 30
molecules from the GEOM-DRUGS dataset are used, with 50 samples generated for each molecule.
The PSI4 toolkit is employed to compute the energy (E) and HOMO-LUMO gap (ϵ) for each
conformer, and comparisons are made with the ground truth for average energy (E), minimum
energy (Emin), average gap (∆ϵ), and maximum gap (∆ϵmax). As shown in Table 8, our method
generates the most chemically accurate ensembles.

E LIMITATIONS AND FUTURE WORK

While our fragment-based augmentation approach has demonstrated significant improvements in
generating accurate and diverse molecular conformations, there are several limitations that present
opportunities for future research. First, when applying fragmentation methods as a general data
augmentation technique for data-driven computational models, we may encounter unmanageable
data volumes, especially when training with large molecular datasets and setting low fragment size
thresholds, as discussed in our appendix on fragmentation statistics. This highlights the need for
more data-efficient frameworks. Leveraging prior domain knowledge, such as scaffold networks or
molecular graphs (Quinn et al., 2017; Nothias et al., 2020; Kruger et al., 2020), could enhance data
efficiency during the fragmentation process, reducing the computational burden while preserving
essential chemical information.

From a methodological standpoint, while fragment-based augmentation has delivered impressive
results within the torsional diffusion framework, there is room for further improvement to fully
capitalize on the benefits of data augmentation. The current framework relies on cutting edges
in graph structure algorithms, which introduces limitations—such as difficulty in modeling fully
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connected supramolecular structures where rotating edges alone cannot capture reasonable confor-
mations. Potential solutions include introducing additional variations in Euclidean space, like in-
corporating ring-connecting edges from junction trees and allowing non-rigid rotational edges that
permit changes in relative atomic distances (Jin et al., 2018). Additionally, integrating bond stretch-
ing and angle bending components into conformational energy modeling could address challenges
in representing fully connected structures, effectively combining elements of methods like GeoDiff
with Torsional Diffusion (Jing et al., 2022; Xu et al., 2022). By exploring the chemical underpin-
nings of fragment effectiveness, we can gain deeper insights that enable the development of more
effective chemical modeling processes, reduce errors, and enhance data learning efficiency through
interdisciplinary collaboration. Moreover, our method has the potential to significantly advance
computation-driven approaches by greatly increasing the amount of available data, which is crucial
for the success of machine learning models. Scaling laws indicate that enhancing model capacity
and expanding training datasets with a robust foundational framework can markedly improve perfor-
mance (Frey et al., 2023). By utilizing our fragmentation approach to augment data and scaling up
model parameters, we open new avenues for designing and training larger computational models in
physical chemistry, potentially unlocking novel applications in chemical and materials science (von
Lilienfeld et al., 2020; Sadybekov & Katritch, 2023).
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