

REAL-TIME ROBOT EXECUTION WITH MASKED ACTION CHUNKING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Real-time execution is essential for cyber-physical systems such as robots. These systems operate in dynamic real-world environments where even small delays can undermine responsiveness and compromise performance. Asynchronous inference has recently emerged as a system-level paradigm for real-time robot manipulation, enabling the next action chunk to be predicted while the current one is being executed. While this approach achieves real-time responsiveness, naive integration often results in execution failure. Previous methods attributed this failure to *inter-chunk discontinuity* and developed test-time algorithms to smooth chunk boundaries. In contrast, we identify another critical yet overlooked factor: *intra-chunk inconsistency*, where the robot’s executed action chunk partially misaligns with its current perception. To address this, we propose REMAC, which learns corrective adjustments on the pretrained policy through masked action chunking, enabling the policy to remain resilient under mismatches between intended actions and actual execution during asynchronous inference. In addition, we introduce a prefix-preserved sampling procedure to reinforce inter-chunk continuity. Overall, our method delivers more reliable policies without incurring additional latency. Extensive experiments in both simulation and real-world settings demonstrate that our method enables faster task execution, maintains robustness across varying delays, and consistently achieves higher completion rates.

1 INTRODUCTION

The deployment of large-scale models has revolutionized AI capabilities across various domains (Liu et al., 2023; Esser et al., 2024; Zheng et al., 2024; OpenAI, 2025). In robotics, Vision-Language-Action (VLA) models (Wu et al., 2023; Brohan et al., 2023b;a; Kim et al., 2024; Black et al., 2024; Intelligence et al., 2025a; Yang et al., 2025; Zhong et al., 2025) have emerged as a promising direction for translating human instructions and sensory observations into physical actions. While *real-time* responsiveness is desirable across all such applications, its importance varies by context. For language or image models, slower responses primarily lead to increased waiting time but won’t result in generation failure. In contrast, for cyber-physical systems like robots operating in dynamic, real-world environments, the absence of real-time responsiveness can mean the difference between successfully filling a cup and catastrophically spilling juice onto the table.

A real-time robot control system must ensure a continuous stream of executable actions so that the robot never runs idle (Hester et al., 2011). A straightforward approach is to reduce the time cost of action acquisition—primarily arising from VLA action generation and network communication—such that it falls below the robot’s control period. Although a variety of model-level techniques have been proposed to accelerate model prediction (Leviathan et al., 2023; Bolya et al., 2023; Wu et al., 2024; Lin et al., 2024; Shang et al., 2024; Xu et al., 2024; Shukor et al., 2025), these methods typically sacrifice accuracy for speed. Moreover, as model sizes continue to scale, control frequencies increase, and deployment conditions vary in real-world settings, such approaches become increasingly limited in their ability to guarantee real-time performance.

Action chunking (Zhao et al., 2023; Chi et al., 2024), where a policy predicts and executes a sequence of actions per inference step, offers a partial solution to real-time control. Although it has achieved state-of-the-art results in dexterous manipulation, action chunking inherently reduces system reactivity to sudden state changes (Liu et al., 2025) and introduces discontinuities at chunk

054 boundaries (Black et al., 2025). These limitations have motivated the search for more general
 055 system-level inference frameworks, among which **asynchronous inference** (Shukor et al., 2025)
 056 has recently emerged as a promising solution for real-time robotic execution. Unlike synchronous
 057 inference (Chi et al., 2024), which pauses until future actions are available, asynchronous inference
 058 predicts upcoming actions while executing the current ones, ensuring a continuous supply of actions.
 059 However, incorporating asynchronous inference into VLA-based control systems is nontrivial: when
 060 coupled with action chunking, it amplifies existing limitations and results in substantial performance
 061 degradation (Liu et al., 2025; Black et al., 2025; Shukor et al., 2025).

062 Previous methods (Zhao et al., 2023; Liu et al., 2025; Black et al., 2025) addressing this challenge
 063 primarily aimed to mitigate **inter-chunk discontinuity**, seeking a balance between long-term co-
 064 herence and short-term reactivity. These approaches typically treat the already executed actions as
 065 informative priors and apply test-time refinements to the upcoming action chunks. However, such
 066 refinements are either heuristic in nature and prone to catastrophic failure (Zhao et al., 2023), or
 067 exploit the generative and inpainting capabilities of diffusion/flow-matching models (Song et al.,
 068 2023) while incurring additional latency (Liu et al., 2025; Black et al., 2025). Moreover, these
 069 works overlook a critical failure mode: **intra-chunk inconsistency**, arising from misalignment be-
 070 tween observations and the actions executed within a single chunk.

071 In this work, we aim to improve both inter-chunk continuity and intra-chunk consistency when inte-
 072 grating asynchronous inference with chunking policies. We first formulate intra-chunk inconsistency
 073 as a partial mismatch between observations and executed actions, leading to a shift in intra-chunk
 074 distribution between training and sampling. To address this, we propose **Real-time Execution with**
 075 **Masked Action Chunking (REMAC)** to learn corrective adjustments to the pretrained policy by
 076 masking arbitrary portions of action chunks. In parallel, we enhance inter-chunk continuity by re-
 077 fining the sampling pipeline to incorporate previously executed actions as informative priors.

078 Our method introduces no additional inference delay compared to the pretrained policy (Black et al.,
 079 2024; 2025), and can be seamlessly integrated into existing VLA frameworks. Extensive experi-
 080 ments across 12 simulated tasks and three real-world settings demonstrate its effectiveness, show-
 081 ing higher success rates, faster task completion, and smoother robot dynamics under varying delay
 082 conditions. Moreover, our approach can be combined with existing test-time algorithms, further
 083 underscoring its utility to produce stronger backbone policies for asynchronous execution.

084 2 RELATED WORKS

085 2.1 VLA AND ACTION CHUNKING

086 An emerging line of robotics research focuses on developing generalist policies capable of perform-
 087 ing a broad spectrum of tasks and transfer across different environments and robot embodiments.
 088 Vision-Language-Action (VLA) models (Brohan et al., 2023b;a; Wu et al., 2023; Kim et al., 2024;
 089 Black et al., 2024; Bjorck et al., 2025; Intelligence et al., 2025a; Shukor et al., 2025) have become a
 090 leading approach in this pursuit. By conditioning on high-level inputs such as video frames, natural
 091 language instructions, and proprioceptive signals, VLAs generate the corresponding low-level motor
 092 control commands. Among these models, diffusion and flow-matching approaches (Lipman et al.,
 093 2023; Chi et al., 2024) have gained prominence for their ability to generate high-quality actions
 094 efficiently, and they serve as the representative setting for our work.

095 Moreover, scaling to long-horizon manipulation requires temporal abstraction: models must predict
 096 not just the next command, but coherent segments of behavior. Inspired by principles of human motor
 097 control (Lai et al., 2022), recent systems structure behavior into temporally extended sequences,
 098 or *action chunks*, which are generated by the VLA and executed by a low-level controller. This
 099 action-chunking paradigm enables visuomotor policies to operate over meaningful sequences and
 100 provides a foundation for alternative strategies of action execution.

101 2.2 EXECUTION STRATEGIES FOR CHUNKED POLICIES

102 While action chunks are temporally consistent within a single segment, discontinuities and distri-
 103 bution shifts often arise at chunk boundaries. To mitigate this issue, Zhao et al. (2023) proposed
 104 Temporal Ensembling (TE), which aggregates the overlapping portions of consecutive chunks to

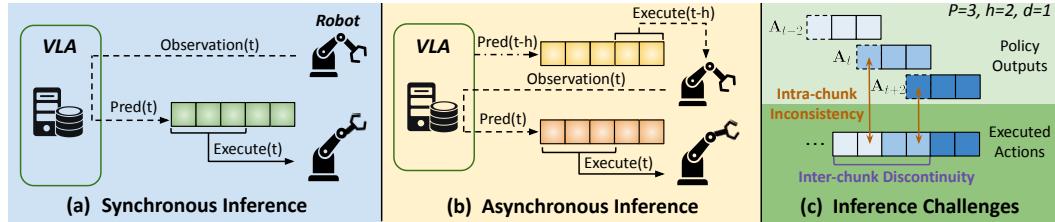


Figure 1: Illustration of execution paradigms. Arrowed lines of the same style indicate processes occurring simultaneously. (a) Synchronous inference: VLA prediction and robot execution alternate sequentially. (b) Asynchronous inference: VLA prediction runs concurrently with execution. (c) Although asynchronous inference enables real-time execution, it introduces two performance-degrading challenges: exacerbated inter-chunk discontinuity and intra-chunk inconsistency.

improve smoothness. Liu et al. (2025) highlighted the importance of balancing long-term consistency with short-term reactivity, introducing Bidirectional Decoding (BID), a method that samples multiple candidate predictions and selects the optimal one. More recently, RTC (Black et al., 2025) explored real-time execution strategies under asynchronous inference by framing the task as a *test-time* inpainting (Pokle et al., 2024) problem, proposing to leverage the prior chunk to warm-start planning for the next and applies gradient-based corrections to the predicted chunk. However, RTC introduces additional computational latency, which may degrade performance. In this paper, we likewise target real-time execution under asynchronous inference, *but instead adopt a training-time adaptation approach*. Our method introduces no additional inference overhead, consistently outperforms existing strategies, and can be seamlessly combined with test-time correction methods.

3 PRELIMINARIES

Let $\mathbf{v}_\pi(\mathbf{A}_t | \mathbf{o}_t)$ denote the action chunking policy, where $\mathbf{A}_t = [\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+P-1}]$ represents the predicted action chunk of length P , \mathbf{o}_t denotes the current observation, and t indexes the controller timestep. The parameter P is the *prediction horizon*. During rollout, only the first h actions are executed, where h is the *execution horizon* with $1 \leq h \leq P$. In real-world robotic manipulation, latency arises from stages such as VLA action prediction and network communication, which together define the *inference delay*: a continuous quantity representing the time lag between the acquisition of \mathbf{o}_t and the availability of the corresponding \mathbf{A}_t in the control queue. Following Black et al. (2025), we discretize this delay as $d := \lfloor \delta / \Delta t \rfloor$, where δ is the continuous inference latency and Δt is the controller sampling period. *For simplicity, our definition of inference delay excludes observation latency and sub-timestep-level delays.*

Flow-matching policies. We follow prior work (Liu et al., 2025; Black et al., 2025) and consider action-chunking policies trained via flow matching (Lipman et al., 2023). In standard flow matching, the model learns a velocity field that maps intermediate action states toward expert trajectories. Training proceeds by minimizing an ℓ_2 objective between the predicted flow $\hat{\mathbf{u}}$ and the ground-truth target \mathbf{u} . At inference time, a flow-matching policy generates an action chunk by first sampling an initial latent action sequence \mathbf{A}_t^0 from a Gaussian prior. The final chunk is then obtained by integrating this sample along the learned velocity field \mathbf{v}_π over a normalized time variable $\tau \in [0, 1]$. Using n integration steps, the update rule is:

$$\mathbf{A}_t^{\tau + \frac{1}{n}} = \mathbf{A}_t^\tau + \frac{1}{n} \mathbf{v}_\pi(\mathbf{A}_t^\tau, \mathbf{o}_t, \tau), \quad (1)$$

where \mathbf{o}_t is the current observation. After iterating over $\tau \in [0, 1]$, the final state \mathbf{A}_t^1 is used as the predicted action chunk.

Synchronous inference is the conventional paradigm adopted in many works (Zhao et al., 2023; Black et al., 2024; Bjorck et al., 2025), where the robot executes all actions within the current execution horizon before supplying the latest observation to the VLA to infer the next chunk (Figure 1(a)). For synchronous inference to achieve real-time execution, the condition $\delta < \Delta t$ (i.e., $d = 0$) must hold, which is practically unattainable. For example, with a 50 Hz control frequency ($\Delta t = 20$ ms) and π_0 (Black et al., 2024) as the VLA model, action generation alone requires 76 ms on an NVIDIA RTX 4090 GPU, with additional overhead from preprocessing, disk I/O, and network transmission further increasing latency. As control frequencies rise for fine-grained tasks and larger

162 VLA models are deployed, the effect of inference delay only becomes more pronounced. Conse-
 163 quently, synchronous inference is fundamentally constrained, resulting in jerky transitions between
 164 chunks and extended execution times that undermine policy effectiveness.

165 **Asynchronous inference**, in contrast, achieves real-time execution by ensuring that actions are al-
 166 ways available (Figure 1(b)). While this produces smoother trajectories, it introduces two challenges
 167 that degrades performance: **1 Inter-chunk discontinuity**. Let \mathbf{A}_t^1 and \mathbf{A}_{t+h}^2 denote two consec-
 168 utive action chunks sampled from trajectories \mathcal{T}_1 and \mathcal{T}_2 with execution horizon h . If \mathcal{T}_1 and \mathcal{T}_2
 169 coincide up to timestep t but diverge thereafter, inter-chunk discontinuity arises at the boundary,
 170 yielding incoherent transitions between chunks. **Intuitively, because an action chunk represents only**
 171 **a local segment of a trajectory, \mathbf{A}_t^1 and \mathbf{A}_{t+h}^2 may originate from different latent expert modes.** Al-
 172 though both \mathcal{T}_1 and \mathcal{T}_2 are valid continuations of the same past, switching between these modes at
 173 the chunk boundary can introduce a large jump in the action sequence, producing jerky or out-of-
 174 distribution motion during execution. **2 Intra-chunk inconsistency**. Assume the policy $v_\pi(\mathbf{A}_t|\mathbf{o}_t)$
 175 perfectly captures the underlying environment dynamics and therefore yields the optimal action se-
 176 quence. Given perception \mathbf{o}_t , the optimal executed chunk should fully correspond to \mathbf{A}_t . However,
 177 under inference delay d with execution horizon h , the first d actions executed are instead taken
 178 from \mathbf{A}_{t-h} . This results in intra-chunk inconsistency, where **these inherited prefix actions become**
 179 **suboptimal for the current state, because they were conditioned on \mathbf{o}_{t-h} rather than \mathbf{o}_t , creating**
 180 **a perception-action mismatch within the chunk.** Figure 1(c) illustrates an example with $P = 3$,
 181 $h = 2$, and $d = 1$, highlighting both challenges. Note that inter-chunk discontinuity also arises
 182 under synchronous inference, but is further exacerbated in asynchronous settings.

4 METHODOLOGY

185 We consider a **flow-matching policy** $v_\pi(\mathbf{A}_t|\mathbf{o}_t)$. Our objective is to mitigate both intra-chunk
 186 inconsistency and inter-chunk discontinuity by learning a delay-aware policy $\hat{v}_\pi(\mathbf{A}_t|\mathbf{o}_t, d)$, built
 187 upon $v_\pi(\mathbf{A}_t|\mathbf{o}_t)$. By conditioning on the inference delay d , the new policy learns to predict action
 188 chunks that are reliable despite the uncertainty introduced by delayed execution. The following
 189 sections describe the components of our approach in detail.

4.1 MASKED ACTION CHUNKING

190 Given the pretrained policy $v_\pi(\mathbf{A}_t|\mathbf{o}_t)$, asynchronous inference executes the first few actions from
 191 the previous chunk \mathbf{A}_{t-h} , while the remaining actions are drawn from \mathbf{A}_t , where h denotes the exe-
 192 cution horizon. This misalignment between perception and execution induces a train–test mismatch:
 193 supervision on the unexecuted early actions during pretraining can provide misleading signals, lead-
 194 ing to off-distribution priors. To address this issue, we introduce REMAC, which incorporates the
 195 following learning strategies. The details are described below and summarized in Alg. 1.

196 **Prefix Masking.** We begin by shifting the learning emphasis toward the *to-be-executed* action
 197 chunk segment, only focusing on the portion of the trajectory that directly influences execution while
 198 leaving the unexecuted prior intact. Formally, for the predicted flow $\hat{\mathbf{u}} \in \mathbb{R}^{P \times D}$ from $\hat{v}_\pi(\mathbf{A}_t|\mathbf{o}_t, d)$
 199 and the ground-truth target $\mathbf{u} \in \mathbb{R}^{P \times D}$, we introduce a delay-conditioned *prefix mask* \mathbf{m}_d that
 200 restricts supervision to the executable portion of each chunk:

$$\mathbf{m}_d = \{m_d^\tau\}_{\tau=0}^{P-1} = \mathbf{1}[\tau \geq d], \quad (2)$$

201 where τ indexes the timesteps within the chunk, $\mathbf{1}[\cdot]$ is the indicator function, and $d \sim \mathcal{U}\{0, \dots, P - 1\}$ is a uniformly sampled random inference delay. By incorporating the prefix mask into the con-
 202 ventional flow-matching loss, we obtain the following objective:

$$\mathcal{L}_m = \sum_d \frac{\sum_{\tau=0}^{P-1} m_d^\tau \|\hat{\mathbf{u}}_\tau - \mathbf{u}_\tau\|_2^2}{\max(1, \sum_{\tau=0}^{P-1} m_d^\tau)}. \quad (3)$$

203 This formulation directly builds on the masking strategy, restricting supervision to the unmasked
 204 segment while excluding the already-committed prefix. By randomly sampling across all valid in-
 205 ference delays, the policy is exposed to the full spectrum of conditions—from the trivial unmasked

case ($d = 0$) to extreme masking scenarios ($d = h$). This mitigates intra-chunk inconsistency by strengthening the policy’s adaptability to uncertainty in unexecuted actions, yielding rollouts that remain resilient even under imperfectly predictable environment dynamics. Moreover, the strategy enhances the policy’s predictive capacity and equips a single model to handle all valid delay settings, removing the need to train separate policies for different delays.

Self-conditioned Curriculum. The actions executed within the inference delay during rollout can serve as informative test-time priors for refining subsequent action chunks. However, during training the executed portion of the chunk is unavailable, unless the current policy is rolled out from scratch for each input sample—a strategy that is prohibitively expensive and impractical, even in simulation. To address this limitation, we introduce a self-conditioned curriculum scheduling method that leverages the pretrained policy to imitate test-time conditions, thereby improving both intra-chunk consistency and inter-chunk discontinuity.

As a concrete example, consider standard flow matching, where the training input is constructed by linearly interpolating between Gaussian noise and the ground-truth action chunk \mathbf{A}_t . Instead of directly using the ground-truth chunk, we modify the formulation to incorporate self-conditioning from the pretrained policy, defined as:

$$\hat{\mathbf{A}}_t = \gamma \mathbf{A}_t + (1 - \gamma) \tilde{\mathbf{A}}_t, \quad \gamma \sim \text{Bernoulli}(\sigma), \sigma \in [0, 1]. \quad (4)$$

Here, $\tilde{\mathbf{A}}_t$ denotes the action chunk predicted by the pretrained policy. The mixing parameter σ is scheduled based on the training progress, annealing from $\sigma = 1$ (pure ground-truth input) to $\sigma = 0$ (pure self-conditioned input). The resulting mixture $\hat{\mathbf{A}}_t$ is then used in place of \mathbf{A}_t for interpolation.

Therefore, the model input evolves during training: in the early stages, ground-truth actions serve as stable anchors, while in later stages the model is gradually conditioned on its own predictions yet still required to produce accurate outputs. This scheduled curriculum not only stabilizes training, but also mitigates exposure bias by aligning training inputs with test-time conditions. In doing so, it enables the model to learn corrective adjustments over the pretrained policy, refining its own proposals and improving robustness to distribution shifts and compounding rollout errors. Figure 7 illustrates several scheduling functions for σ , among which we adopt the piecewise linear decay as the default.

Algorithm 1 REMAC

Input: Delay set S_d , dataloader D , epochs E
Initialize: Pretrained policy $\mathbf{v}_\pi(\cdot)$, target policy $\hat{\mathbf{v}}_\pi(\cdot)$

- 1: **for** $e \leftarrow 0$ **to** $E - 1$ **do**
- 2: Sample $d \in S_d$ and compute \mathbf{m}_d via Eq. 2.
- 3: **for all** $(\mathbf{o}_t, \mathbf{u}_t) \in D$ **do**
- 4: $\tilde{\mathbf{A}}_t \leftarrow \text{Integrate}(\mathbf{v}_\pi(\mathbf{o}_t))$
- 5: $\hat{\mathbf{A}}_t \leftarrow \text{Interpolate}(\tilde{\mathbf{A}}_t, \mathbf{u}_t)$ \triangleright Eq. 4
- 6: $\hat{\mathbf{u}}_t \leftarrow \hat{\mathbf{v}}_\pi(\mathbf{o}_t, \hat{\mathbf{A}}_t)$ \triangleright LoRA enabled
- 7: $\tilde{\mathbf{u}}_t \leftarrow \mathbf{v}_\pi(\mathbf{o}_t, \hat{\mathbf{A}}_t)$ \triangleright LoRA disabled
- 8: Update $\hat{\mathbf{v}}_\pi$ by minimizing Eq. 6
- 9: **end for**
- 10: **end for**

Residual Alignment. In addition to standard supervision against the ground truth, we introduce a Δ -matching term on the unmasked action chunk. This term explicitly aligns the induced correction with the residual between the pretrained policy’s prediction and the ground-truth target. Specifically, let $\tilde{\mathbf{u}}$ denote the flow estimate from the pretrained backbone $\mathbf{v}_\pi(\mathbf{A}_t | \mathbf{o}_t)$. The correction is then encouraged to match the residual toward the target through the following objective:

$$\mathcal{L}_\Delta = \sum_d \frac{\sum_{\tau=0}^{P-1} \|\mathbf{m}_d^\tau(\mathbf{u}_\tau - \tilde{\mathbf{u}}_\tau) - \mathbf{m}_d^\tau(\hat{\mathbf{u}}_\tau - \tilde{\mathbf{u}}_\tau)\|_2^2}{\max\left(1, \sum_{\tau=0}^{P-1} \mathbf{m}_d^\tau\right)}. \quad (5)$$

While mathematically related to Eq. 3, the two objectives emphasize different aspects: Eq. 3 enforces direct alignment with the ground truth, whereas Eq. 5 explicitly models the residual adjustment relative to the pretrained policy. Empirically, we observe that incorporating \mathcal{L}_Δ into training yields substantial performance improvements.

Finally, the overall training objective is defined as:

$$\mathcal{L} = \lambda_m \mathcal{L}_m + \lambda_\Delta \mathcal{L}_\Delta, \quad (6)$$

where $\lambda_m = 0.01$ and $\lambda_\Delta = 0.01$ are the weighting coefficients.

270 4.2 PREFIX-PRESERVED SAMPLING
271

272 Having obtained the new policy $\hat{\mathbf{v}}_\pi(\mathbf{A}_t | \mathbf{o}_t, d)$, we further adjust the sampling pipeline to align with
273 the training procedure and enhance inter-chunk continuity. Firstly, the **initial action state** \mathbf{A}_t^0 is no
274 longer drawn from the Gaussian prior. Instead, it is initialized using the executed actions during the
275 delayed time steps, denoted as $\mathbf{A}_t^P \in \mathbb{R}^{P \times D}$, whose first $P - h$ entries are filled with the last $P - h$
276 actions from the previous predicted chunk, while the remaining entries are zero-initialized.

277 Secondly, during the sampling process, the overlapping **segment** between the currently executing
278 chunk and the upcoming chunk are preserved as the executed ones, and only the remaining portion
279 of the action chunk is newly synthesized. Specifically, if the sampling process integrates the learned
280 velocity field $\hat{\mathbf{v}}_\pi$ over n **integration** steps, let $\mathbf{m} \in \{0, 1\}^P$ denote the delay-conditioned prefix mask
281 and \mathbf{A}_t^τ is the **intermediate action state** at **integration time** τ , then:

$$282 \mathbf{A}_t^{\tau+\frac{1}{n}} = \mathbf{m} \odot (\mathbf{A}_t^\tau + \frac{1}{n} \hat{\mathbf{v}}_\pi(\mathbf{A}_t^\tau, \mathbf{o}_t, \tau)) + (1 - \mathbf{m}) \odot \mathbf{A}_t^P, \quad (7)$$

283 where \odot denotes **element-wise multiplication**. A special case arises for the first action chunk genera-
284 tion at rollout initialization, where no previous actions have yet been executed. In this case, we set
285 $\mathbf{A}_t^P = \mathbf{0}$ or random Gaussian noise to indicate the absence of prior actions, and **apply the standard**
286 **integration rule in Eq. 1**.

287 4.3 IMPLEMENTATION DETAILS
288

289 **Model Adaptation.** We adapt the pretrained policy using the parameter-efficient finetuning tech-
290 nique LoRA (Hu et al., 2021), introducing at most 1.5% additional parameters relative to the original
291 model. The reasons we adopt LoRA instead of full model finetuning are twofolds. First, we con-
292 ceptualize the transformation from $\mathbf{v}_\pi(\mathbf{A}_t | \mathbf{o}_t)$ to $\hat{\mathbf{v}}_\pi(\mathbf{A}_t | \mathbf{o}_t, d)$ as a distributional adjustment with
293 respect to the pretrained policy, rather than a wholesale re-learning of the policy under a differ-
294 ent objective. Second, LoRA offers a flexible mechanism that can leave the original parameters
295 untouched, thereby preserving the predictive capacity of the pretrained model and making it well
296 suited to our method. During implementation, the LoRA module can be further extended with an
297 additional projection matrix that incorporates the prefix mask to enrich the input representation.

298 **Training and Sampling.** During training, we control the prefix-mask coverage by uniformly sam-
299 pling d in Eq. 2 from a gradually shrinking interval $[q, q_{\max}]$, where q_{\max} is fixed and q is linearly
300 annealed from q_{\max} down to a final q_{\min} . Importantly, q_{\max} and q_{\min} are *not* limits on the inference
301 delays that the model can handle; rather, they are hyper-parameters that determine the strength of
302 mask-induced perturbations during training. The total loss defined in Eq. 6 is then used to update
303 the LoRA parameters. During action sampling, compared to the conventional approaches in prior
304 works (Chi et al., 2024; Black et al., 2024), the model additionally takes the pre-determined or esti-
305 mated inference delay and the previous action chunk as inputs for the next action chunk prediction.
306 The LoRA modules can be further merged into the backbone model layers, such that no additional
307 time cost is introduced.

308 **Deployment Framework.** For simulation benchmarks, we follow the setting of Black et al.
309 (2025), in which the predicted actions are deliberately segmented and concatenated according to
310 predefined delays and execution horizons. For the real-world deployment, we adopt a setup similar
311 to Shukor et al. (2025), in which actions are predicted on a remote server and transmitted to the
312 robot via gRPC. The robot maintains a queue of actions to execute while sending observations to
313 the server at the same frequency as its control loop. The remote server, hosting the VLA model,
314 likewise maintains a queue of incoming observations and performs action prediction as frequently
315 as possible using the most recent inputs and states. The inference delay is estimated on the robot
316 client side as the maximum of the most recent few measured delays.

317 5 EXPERIMENTS
318

319 In this section, we present experiments evaluating the effectiveness of our method against baseline
320 approaches under various inference delay settings. We also perform ablation studies on different

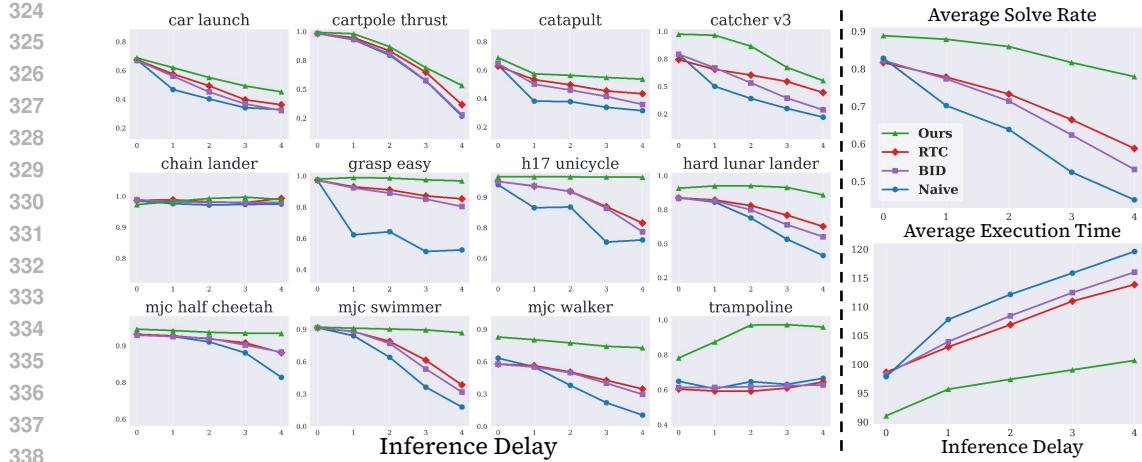


Figure 2: Performance comparison in Kinetix environments. **Left:** Solve rates for individual tasks under varying inference delays. **Right (top):** Average performance across all environments. Our method consistently outperforms baselines under all delay settings and exhibits smaller performance degradation as delay increases. **Right (bottom):** Average execution time across all environments. Our method requires fewer steps and achieves faster task completion.

components to assess their individual contributions. Our empirical analysis spans both simulation and real-world tasks, providing a comprehensive evaluation of the proposed method.

5.1 KINETIX ENVIRONMENT

We first evaluate our method on the Kinetix simulator (Matthews et al., 2025), following the protocol of Black et al. (2025). The benchmark comprises 12 highly dynamic and stochastic environments specifically designed to test asynchronous execution. Expert policies are first trained under a binary success reward using RPO (Rahman & Xue, 2022), from which training data are collected via demonstration generation. Flow-matching policies are then learned through imitation learning (Zare et al., 2023; Argall et al., 2009). For each task, the trained policies are configured with a prediction horizon of 8. The inference delay d ranges from 0 to 4, and the execution horizon for each delay is chosen within $\max\{1, d\}$ to $9 - d$, ensuring continuous action availability without gaps between consecutive chunks. LoRA is applied to all linear layers except the time-embedding and AdaLN layers (Peebles & Xie, 2023), with each LoRA layer assigned a rank of 4. For each fixed delay value, evaluation metrics are reported as averages over all corresponding execution horizon settings.

Baselines. The baselines we compare with include: (1) **Naive Async**, which directly uses the pre-trained policy and executes actions from the most recently generated action chunk. (2) **Bidirectional Decoding (BID)** (Liu et al., 2025), a test-time method that samples multiple candidate predictions and applies rejection sampling to select the optimal one, aiming to balance long-term consistency with short-term reactivity. (3) **RTC** (Black et al., 2025), also a test-time execution strategy that leverages an inpainting algorithm (Pokle et al., 2024). It applies gradient-based corrections to the predicted actions, using the executed actions during the inference delay as priors. We omit the baseline of Temporal Ensembling (TE) (Zhao et al., 2023), as both our experiments and Black et al. (2025) show that TE substantially underperforms the other baselines in this simulation benchmark, even falling behind Naive Async.

Results. Figure 2 reports the per-task and average performance across 12 tasks, measured by both task success rate and completion time. Generally, we observe a consistent decline in performance as inference delay increases across all methods. This degradation stems from the growing mismatch between actions and observations, which amplifies intra-chunk inconsistency, and from the increasing influence of the previous chunk, which exacerbates inter-chunk discontinuity. Our method consistently outperforms all baselines across all delay settings, with especially pronounced gains under larger inference delays. It also achieves shorter average execution time than competing methods, demonstrating the ability to produce more efficient policies for faster task completion.

378 **Table 1: Effectiveness of the different components in REMAC.**

Method	$d=0$	$d=1$	$d=2$	$d=3$	$d=4$
Naive	0.828	0.702	0.639	0.525	0.451
+ LoRA	0.825	0.710	0.630	0.510	0.428
+ Prefix masking	0.863	0.825	0.752	0.729	0.636
+ Self-conditioned curriculum	0.848	0.837	0.805	0.762	0.710
+ \mathcal{L}_Δ (Ours)	0.888	0.879	0.859	0.817	0.779

386 Our method also improves performance under
 387 $d = 0$. We attribute this to the masked ac-
 388 tion chunking formulation, which encourages
 389 the policy to enforce stronger coherence and
 390 temporal dependencies even without inference
 391 delay, thereby enhancing its predictive ability.
 392 Moreover, as the inference delay increases, our
 393 method exhibits both a smaller performance drop and a lower rise in execution time compared to
 394 baselines. This trend highlights the robustness of our approach under increasing delays, underscor-
 395 ing its potential as a versatile solution for asynchronous inference.

396 **Ablations and Analysis.** We conduct ablation studies to evaluate the contribution of each compo-
 397 nent and further analyze the extensibility of our approach.

- 399 • Table 1 reports the contribution of each component in our method. First, adding LoRA
 400 alone—without modifying the training paradigm—yields no performance gain, indicating that
 401 the effectiveness of our approach cannot be attributed merely to the increase in parameters. In
 402 contrast, progressively incorporating the components described in Sec. 4.1 leads to consistent im-
 403 provements, with the full method achieving the highest overall success rate. Detailed per-task
 404 results are provided in Sec. D.
- 405 • Figure 3 compares variations of the self-conditioned curriculum schedule introduced in Eq. 4. We
 406 compare with two baselines: one that initializes exclusively with ground-truth actions ($\sigma = 1$)
 407 and another that relies entirely on self-conditioned inputs ($\sigma = 0$). The results show that the
 408 curriculum schedule improves both performance and training stability relative to these extremes.
 409 Training with pure ground-truth inputs suffers from exposure bias, since during policy rollout
 410 the sampling process relies on the model’s own predictions. Conversely, training with fully self-
 411 conditioned inputs often destabilizes early learning. The curriculum schedule mitigates both is-
 412 sues by gradually transitioning from ground-truth to self-conditioned inputs.
- 413 • Our method can further be integrated with other test-time approaches such as BID and RTC, since
 414 it only modifies the backbone policy. Table 2 shows that, although the improvements are modest,
 415 integration consistently provides additional performance gains across delay settings, with larger
 416 improvements observed under higher delays. This demonstrates both the compatibility of our
 417 approach with existing test-time strategies and its potential as a plug-and-play method.
- 418 • We also ablate the choice of q_{\max} and q_{\min} (Sec. 4.3) to assess how mask coverage affects per-
 419 formance. As shown in Fig. 10(a), performance changes only marginally across configurations, indi-
 420 cating that REMAC is not highly sensitive to these hyper-parameters. Larger values—particularly
 421 a larger q_{\min} —produce slightly worse results. We use $q_{\max} = 4$ and $q_{\min} = 0$ in practice.
- 422 • We further show that REMAC is not limited to flow-matching policies. In Sec. E.5, we integrate
 423 REMAC into the Transformer-based ACT (Zhao et al., 2023) framework, where it consistently
 424 outperforms both the naive asynchronous baseline and the LoRA-only baseline. These results
 425 demonstrate that REMAC readily extends beyond flow matching and can be seamlessly incorpo-
 426 rated into diverse action–chunking architectures.

426 5.2 REAL-WORLD ENVIRONMENT

427 **Setup.** We employ a Franka Research 3 robot (7-DoF arm) (Haddadin, 2024) equipped with
 428 parallel-jaw grippers and adopt the DROID setup (Khazatsky et al., 2025) (Figure 6). The additional
 429 tactile sensors of the grippers are disabled and repurposed to narrow the gripping range, thereby
 430 acting as constraints for evaluating fine-grained control. This design ensures that the tasks demand
 431 precise action execution, making them well suited for assessing performance under asynchronous

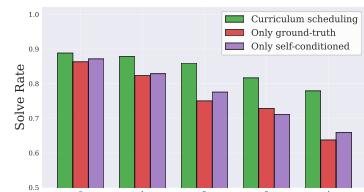


Figure 3: Schedule comparison.

386 **Table 2: Integration with test-time methods.**

Method	$d=0$	$d=1$	$d=2$	$d=3$	$d=4$
Ours	0.888	0.879	0.859	0.817	0.779
+ BID	0.888	0.880	0.862	0.821	0.781
+ RTC	0.888	0.879	0.864	0.826	0.791

427 **5.2 REAL-WORLD ENVIRONMENT**

428 **Setup.** We employ a Franka Research 3 robot (7-DoF arm) (Haddadin, 2024) equipped with
 429 parallel-jaw grippers and adopt the DROID setup (Khazatsky et al., 2025) (Figure 6). The additional
 430 tactile sensors of the grippers are disabled and repurposed to narrow the gripping range, thereby
 431 acting as constraints for evaluating fine-grained control. This design ensures that the tasks demand
 432 precise action execution, making them well suited for assessing performance under asynchronous

432
433 Table 3: Average completion progress. Progress is measured
434 by discrete scores corresponding to the sub-tasks completed.
435

Method	Grasp-Easy	Grasp-Medium	Grasp-Hard
Synchronous	0.805	0.718	0.670
Naive (Shukor et al., 2025)	0.825	0.825	0.460
TE (Zhao et al., 2023)	0.825	0.868	0.717
RTC (Black et al., 2025)	0.823	0.848	0.753
Ours	0.903	0.943	0.812

441 inference. For the backbone VLA, we use π_0 (Black et al., 2024), configured with a prediction horizon of $P = 50$, and adopt its memory-efficient variant for finetuning. A total of 200 trajectories are
442 collected for model adaptation, with LoRA layers of rank 8 inserted only into the action expert module.
443 After finetuning, the LoRA weights are merged into the backbone, ensuring that no additional
444 computational overhead is introduced at inference.
445

446 During execution, the robot operates at a control frequency of 15Hz, corresponding to $\Delta t \approx 67\text{ms}$.
447 The execution horizon is fixed at $h = 8$, and sampling is performed over 10 steps. Processing
448 through the VLA model **without** any test-time strategies takes approximately 76–80ms per observation.
449 Since the model is hosted on a separate server, communication over LAN introduces an
450 additional network delay of 34–40ms, while data processing and disk writing contribute a further
451 10–20ms. In total, the end-to-end inference delay is roughly 122–140ms, corresponding to an effective
452 inference delay of $d = 2$ or 3.
453

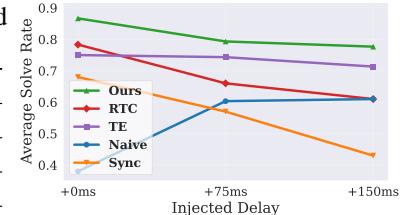
454 **Task Design and Measurement.** We evaluate our approach on three single-arm grasp-and-place
455 tasks (*Grasp-Easy*, *Medium*, *Hard*) of varying difficulty. The tasks range from manipulating simple
456 objects, such as a cucumber, to more challenging ones, such as a Rubik’s cube whose sides are only
457 1cm shorter than the gripper’s jaw gap, requiring precise control. Placement targets are either a plate
458 or a bowl, with the latter posing greater difficulty and demanding finer manipulation accuracy.
459

460 Task performance is measured using a stage-based solve rate that evaluates progress through four
461 steps: (1) reaching the object, (2) gripping and lifting it, (3) moving it toward the target location,
462 and (4) placing it correctly into the container. For each task, we conduct 30 evaluation trials per
463 method, with each trial capped at 300 steps, amounting to a total of 6 hours of robot execution time.
464 The initial position and orientation of the objects are randomized across trials.
465

466 **Baselines.** We compare our method against four baselines: (1) **Synchronous inference**, the widely
467 used baseline in prior works (Black et al., 2024; Kim et al., 2024; Hu et al., 2025; Kim et al., 2025;
468 Pertsch et al., 2025), which executes an entire predicted action chunk and then pauses until new
469 actions are received. (2) **Naive Async**, and sampling is run as frequently as possible such that the
470 most recent actions are queued. (3) **Temporal Ensembling** (Zhao et al., 2023), an extension of
471 Naive Async that aggregates overlapping actions across consecutive chunks by weighted averaging.
472 (4) **RTC**, the state-of-the-art baseline but it introduces an additional 55–64ms of inference latency.
473 We omit BID from comparison, as it is substantially more time- and computation-intensive than the
474 other methods (Black et al., 2025), and is therefore not a competitive baseline in real-world settings.
475

476 **Results.** Table 3 reports the average completion progress for each task, showing that our method
477 achieves higher completion rates across all tasks. During execution, synchronous inference produces
478 frequent pauses, often leading to unintended object drops and inaccurate localization. Asynchronous
479 baselines generate smoother trajectories without pronounced jerkiness. However, Naive Async and
480 Temporal Ensembling remain prone to premature or delayed grasping and placement. In contrast,
481 RTC suffers from the additional inference delay it introduces.
482

483 Figure 4 reports results with additional latency injections of 75ms and 150ms, simulating deployment
484 under slower hardware and network conditions. Even with total inference delays of 3–5, our
485 method consistently outperforms all baselines, demonstrating robustness to varying delay levels.
486 Interestingly, Naive Async performs comparatively better under larger delays, while RTC exhibits
487 significantly degraded performance. We attribute this to the fact that larger delays correspond to
488 longer execution horizons in real-world settings: less frequent chunk switching reduces inter-chunk
489 discontinuity, but the test-time adjustments made by RTC can have adverse effects.
490



491 Figure 4: Performance under delay
492 injections on *Grasp-Hard*.
493

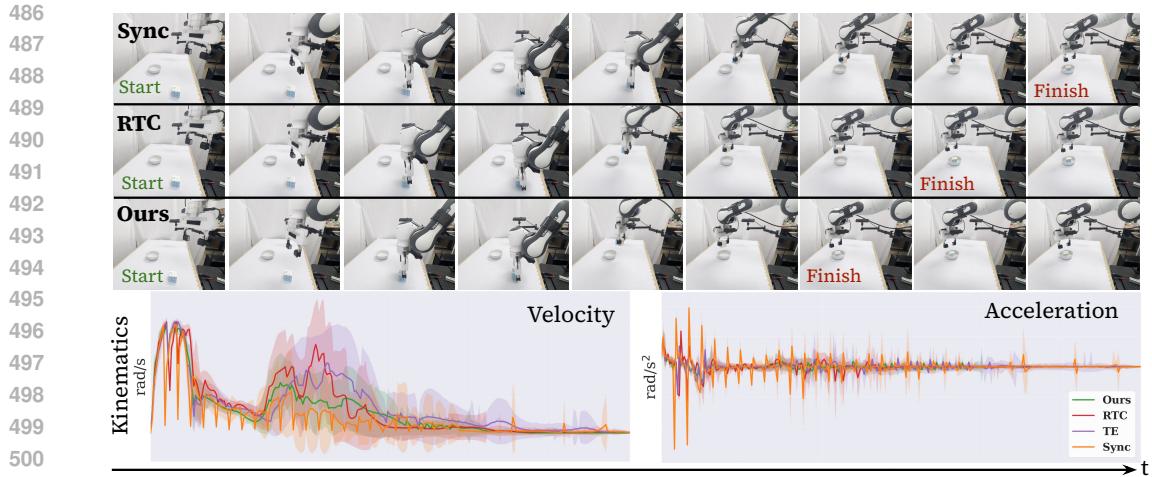


Figure 5: Visual comparison of different methods under a 150ms injected delay. **Top:** Task completion progress, where our method achieves faster completion. **Bottom:** Average robot kinematics during task execution on *Grasp-Hard*. Our method produces smoother trajectories and faster completion. Additional video demonstrations are provided in Sec. G.

Figure 5 compares task completion progress and corresponding robot kinematics. We evaluate under an injected 150ms delay and adopt cases where all policies achieve successful rollouts, ensuring fair comparison while amplifying differences across methods. Qualitatively, our method completes tasks within a shorter time. Quantitatively, analysis of average robot velocity and acceleration over 15 trials shows that synchronous inference produces abrupt, periodic kinematic changes, whereas asynchronous inference methods yield smoother trajectories. Among these, our method achieves the most stable dynamics with fewer abrupt changes, highlighting both speed and stability.

6 CONCLUSION

In this paper, we address the problem of effective real-time robot manipulation under asynchronous inference. We identify two critical challenges in this setting—exacerbated inter-chunk discontinuity and intra-chunk inconsistency—and propose REMAC to mitigate them. Unlike prior test-time approaches, REMAC learns corrective adjustments on top of a pretrained policy through a masked action chunking strategy and a prefix-preserved sampling pipeline, while introducing no additional inference delay. Extensive experiments in both simulation and real-world benchmarks demonstrate that our method is robust to varying delay conditions and achieves faster task completion.

ETHICS STATEMENT

This work focuses on algorithmic development and evaluation for asynchronous inference in robotic control. All experiments were conducted either in simulation or with a physical Franka Research 3 robotic arm in a controlled laboratory setting. Our method is intended solely for research purposes and does not present foreseeable risks of harmful deployment. We believe our work fully adheres to the ethical standards and guidelines of the community.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed algorithmic description in Alg. 1 and implementation choices in Sec. 4.3, outlining each step of the proposed method. In the experimental section, we clearly specify the datasets, training protocols, evaluation metrics, and implementation details, including inference settings. Hyperparameters, model configurations, and training schedules are reported to allow faithful replication of our results. In addition, source code and pretrained model checkpoints will be released upon request to further support verification and reuse by the community.

540 REFERENCES
541

542 Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
543 from demonstration. *Robotics and Autonomous Systems*, 57(5):469–483, 2009. ISSN 0921-8890.
544 doi: <https://doi.org/10.1016/j.robot.2008.10.024>. URL <https://www.sciencedirect.com/science/article/pii/S0921889008001772>.

545 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi "Jim"
546 Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang, Jan Kautz,
547 Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu, Edith Llontop,
548 Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed, You Liang Tan,
549 Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen Xu, Zhen-
550 jia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng, and
551 Yuke Zhu. Gr0ot n1: An open foundation model for generalist humanoid robots, 2025. URL
552 <https://arxiv.org/abs/2503.14734>.

553 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
554 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
555 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
556 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
557 language-action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.

558 Kevin Black, Manuel Y. Galliker, and Sergey Levine. Real-time execution of action chunking flow
559 policies, 2025. URL <https://arxiv.org/abs/2506.07339>.

560 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
561 Hoffman. Token merging: Your vit but faster, 2023. URL <https://arxiv.org/abs/2210.09461>.

562 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
563 manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
564 Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
565 Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
566 Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
567 ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
568 Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricu-
569 t, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
570 Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
571 2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
572 <https://arxiv.org/abs/2307.15818>.

573 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
574 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
575 Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
576 nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
577 sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
578 Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
579 Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vin-
580 cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
581 and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b. URL
582 <https://arxiv.org/abs/2212.06817>.

583 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
584 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
585 <https://arxiv.org/abs/2303.04137>.

586 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
587 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
588 glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
589 transformers for high-resolution image synthesis, 2024. URL <https://arxiv.org/abs/2403.03206>.

594 Sami Haddadin. The franka emika robot: A standard platform in robotics research. *IEEE Robotics*
 595 & *Automation Magazine*, 31(4):136–148, 2024. doi: 10.1109/MRA.2024.3451788.
 596

597 Todd Hester, Michael Quinlan, and Peter Stone. A real-time model-based reinforcement learning
 598 architecture for robot control, 2011. URL <https://arxiv.org/abs/1105.1749>.
 599

600 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 601 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
 602

603 Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
 604 Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
 605 predictive visual representations, 2025. URL <https://arxiv.org/abs/2412.14803>.
 606

607 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 608 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
 609 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
 610 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 611 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 612 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. $\pi_{0.5}$: a
 613 vision-language-action model with open-world generalization, 2025a. URL <https://arxiv.org/abs/2504.16054>.
 614

615 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 616 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
 617 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
 618 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 619 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 620 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. $\pi_{0.5}$: a
 621 vision-language-action model with open-world generalization, 2025b. URL <https://arxiv.org/abs/2504.16054>.
 622

623 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 624 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
 625 Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
 626 Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
 627 woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
 628 Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman,
 629 Pannag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake
 630 Wulfe, Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Ro-
 631 han Baijal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake,
 632 Ethan Paul Foster, Jensen Gao, Vitor Guizilini, David Antonio Herrera, Minho Heo, Kyle
 633 Hsu, Jiaheng Hu, Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li,
 634 Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony
 635 Nguyen, Abigail O'Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, An-
 636 drew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani,
 637 Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayara-
 638 man, Joseph J Lim, Jitendra Malik, Roberto Martín-Martín, Subramanian Ramamoorthy, Dorsa
 639 Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine,
 640 and Chelsea Finn. Droid: A large-scale in-the-wild robot manipulation dataset, 2025. URL
<https://arxiv.org/abs/2403.12945>.

641 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 642 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
 643 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 644 Openvla: An open-source vision-language-action model, 2024. URL <https://arxiv.org/abs/2406.09246>.
 645

646 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 647 mizing speed and success, 2025. URL <https://arxiv.org/abs/2502.19645>.

648 Lucy Lai, Ann Zixiang Huang, and Samuel J Gershman. Action chunking as policy compression.
 649 *PsyArXiv*, 2022.

650

651 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 652 decoding, 2023. URL <https://arxiv.org/abs/2211.17192>.

653 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 654 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 655 llm compression and acceleration, 2024. URL <https://arxiv.org/abs/2306.00978>.

656

657 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 658 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

659

660 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
 661 <https://arxiv.org/abs/2304.08485>.

662

663 Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho Lee, Maximilian Du, and Chelsea Finn.
 664 Bidirectional decoding: Improving action chunking via guided test-time sampling, 2025. URL
 665 <https://arxiv.org/abs/2408.17355>.

666

667 Michael Matthews, Michael Beukman, Chris Lu, and Jakob Foerster. Kinetix: Investigating the
 668 training of general agents through open-ended physics-based control tasks, 2025. URL <https://arxiv.org/abs/2410.23208>.

669

670 OpenAI. Chatgpt. <https://chat.openai.com/>, 2025. Large language model (GPT-5).

671

672 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

673

674 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 675 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 676 models, 2025. URL <https://arxiv.org/abs/2501.09747>.

677

678 Ashwini Pokle, Matthew J. Muckley, Ricky T. Q. Chen, and Brian Karrer. Training-free linear image
 679 inverses via flows, 2024. URL <https://arxiv.org/abs/2310.04432>.

680

681 Md Masudur Rahman and Yexiang Xue. Robust policy optimization in deep reinforcement learning,
 682 2022. URL <https://arxiv.org/abs/2212.07536>.

683

684 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 685 reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

686

687 Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil
 688 Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, Simon Alibert,
 689 Matthieu Cord, Thomas Wolf, and Remi Cadene. Smolvla: A vision-language-action model for
 690 affordable and efficient robotics, 2025. URL <https://arxiv.org/abs/2506.01844>.

691

692 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
 693 models for inverse problems. In *International Conference on Learning Representations*, 2023.
 694 URL <https://api.semanticscholar.org/CorpusID:259298715>.

695

696 Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
 697 Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
 698 manipulation, 2023. URL <https://arxiv.org/abs/2312.13139>.

699

700 Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
 701 quantization for diffusion transformers, 2024. URL <https://arxiv.org/abs/2405.16005>.

702

703 Bingxin Xu, Yuzhang Shang, Yunhao Ge, Qian Lou, and Yan Yan. freerunner: A training-free
 704 approach for large multimodal model acceleration. *arXiv preprint arXiv:2411.15446*, 2024.

705

706 Zhenjie Yang, Yilin Chai, Xiaosong Jia, Qifeng Li, Yuqian Shao, Xuekai Zhu, Haisheng Su, and
 707 Junchi Yan. Drivemoe: Mixture-of-experts for vision-language-action model in end-to-end au-
 708 tonomous driving, 2025. URL <https://arxiv.org/abs/2505.16278>.

702 Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
703 learning: Algorithms, recent developments, and challenges, 2023. URL <https://arxiv.org/abs/2309.02473>.
704

705 Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual ma-
706 nipulation with low-cost hardware, 2023. URL <https://arxiv.org/abs/2304.13705>.
707

708 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
709 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
710 *arXiv preprint arXiv:2412.20404*, 2024.
711

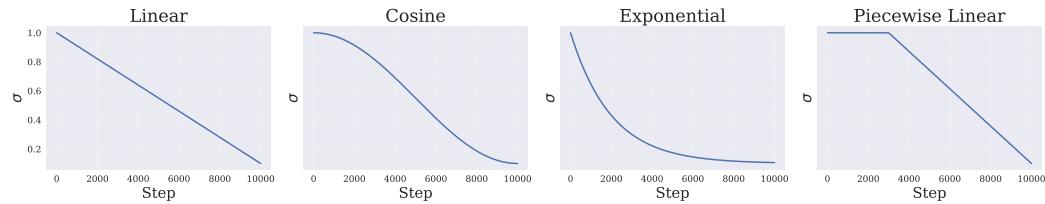
712 Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei
713 Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, Zhiqian Qi, Yitao Liang, Yuanpei Chen, and
714 Yaodong Yang. A survey on vision-language-action models: An action tokenization perspective,
715 2025. URL <https://arxiv.org/abs/2507.01925>.
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A HARDWARE SETUP**
757

758 Figure 6 illustrates our robot setup, where the gap between the gripper jaws is deliberately reduced
 759 to increase task difficulty and require finer control. Although two third-view cameras are mounted,
 760 only one third-view camera and the wrist-mounted camera are used for data processing. This config-
 761 uration provides both a global view of the scene and a local, fine-grained perspective of the manip-
 762 ulation area, ensuring accurate observation while maintaining a controlled evaluation environment.
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777

778 Figure 6: Robot setup illustration.
779780 **B SCHEDULING FUNCTION VARIANTS**
781

782 Figure 7 illustrates different variants of the scheduling function σ . While multiple options are avail-
 783 able, we primarily adopt the piecewise linear schedule, as it provides a smoother warm-up phase
 784 and more stable optimization compared to other choices.
 785

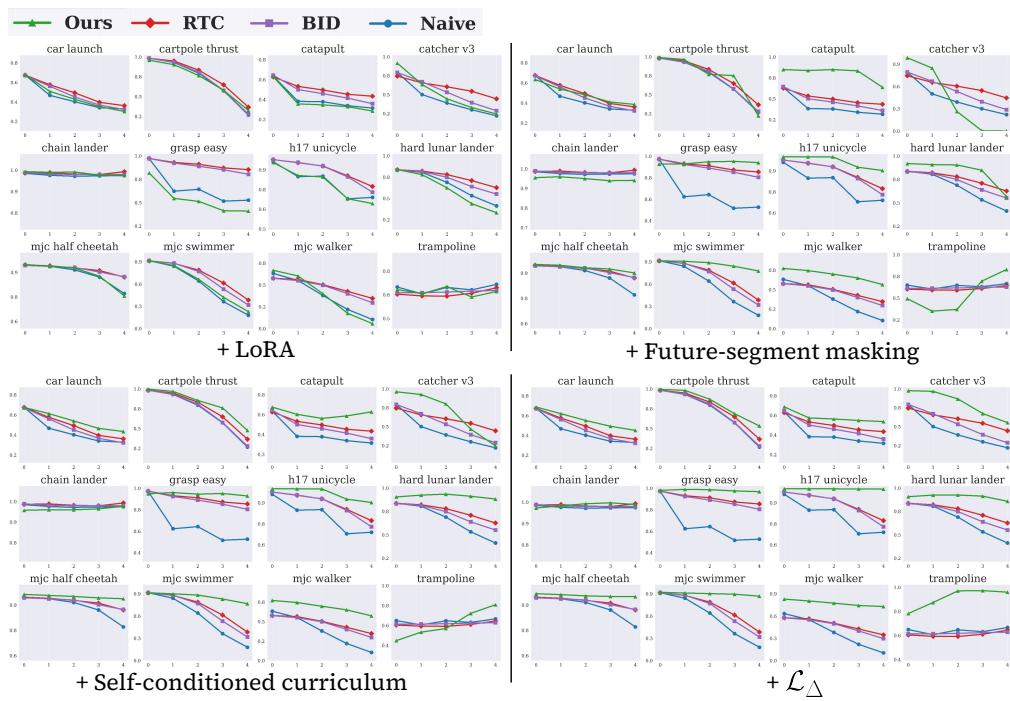
793 Figure 7: Different scheduling functions.
794795 **C TASK EXAMPLES**
796

797 Figure 8 presents wrist-camera views of the tasks included in our experiments. These examples high-
 798 light the visual perspectives used for policy input and illustrate the varying levels of manipulation
 799 difficulty across tasks.
 800

808 Figure 8: Examples of our included tasks.
809

810 **D PER-TASK SIMULATION RESULTS**
811

812 Figure 9 presents the per-task results corresponding to the ablations in Table 1. The detailed metrics
813 demonstrate that each component of our method contributes consistent improvements in success rate
814 across tasks, highlighting the generalizability of the design choices.
815

838 Figure 9: Per-task results for component ablations.
839
840
841842 **E ADDITIONAL ABLATIONS**
843844 **E.1 EFFECT OF q_{\max} AND q_{\min}**
845

846 In Figure. 10(a), we evaluate the influence of the hyperparameters q_{\max} and q_{\min} (Sec. 4.3) by testing
847 multiple combinations under the same training setup. Overall, we observe only minor performance
848 variation across different settings, indicating that REMAC is not sensitive to the exact choice of
849 these values. However, larger values - particularly a larger q_{\min} - tend to produce slightly worse
850 performance. This is expected: when $q_{\min} > 0$, the prefix of length q_{\min} is always masked during
851 training, which encourages the model to behave over-conservatively during rollout. In practice, we
852 adopt $q_{\max} = 4$ and $q_{\min} = 0$. Although this choice happens to coincide with the delay range
853 evaluated in our simulation experiments, it should not be interpreted as limiting the range of delays
854 REMAC can handle.
855

856 **E.2 EFFECT OF LEARNING A MASK EMBEDDING**
857

858 Our method conditions on the inference delay by converting it into a prefix mask that is applied
859 during both training and inference. Beyond its role in loss computation and sampling, this mask can
860 also be treated as an additional input signal by projecting it into a learnable mask embedding and
861 injecting it into the model. In Figure 10(b), we evaluate the effect of introducing such a learned mask
862 embedding under the same training setup. The results show mixed but generally stable outcomes:
863 while a few tasks see marginal changes, most tasks retain similar performance. This indicates that
864 REMAC is robust to architectural variations and does not depend critically on whether the delay
865 mask is embedded or used directly.
866

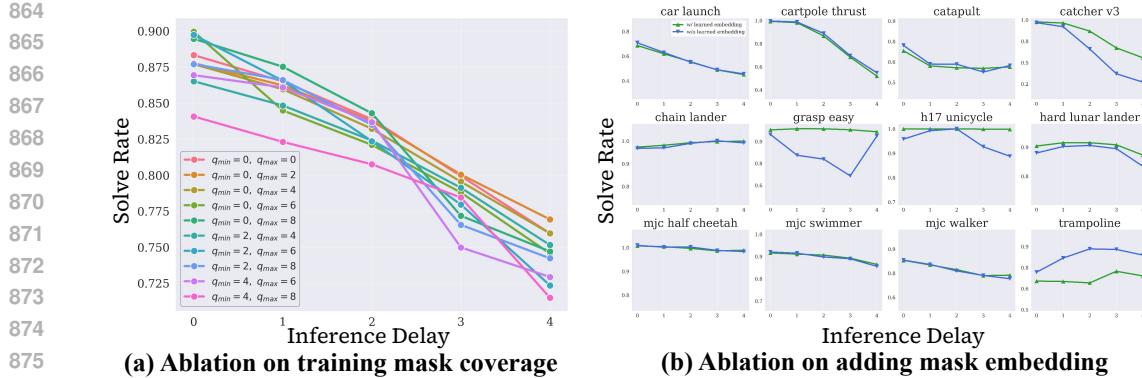


Figure 10: (a) Ablation on the effect of different q_{\max} and q_{\min} . (b) Ablation on the effect of adding mask embeddings as additional information.

E.3 DATA-EFFICIENCY OF REMAC

To evaluate sensitivity to dataset size, we conducted additional real-world experiments using only 10 demonstrations per task, compared to the total 200 demonstrations used in the main paper. The average completion progress (10 evaluations per task) is shown in Table 4 below:

Table 4: Effect of Training Data Quantity

#Traj	Grasp-Easy	Grasp-Medium	Grasp-Hard
200	0.910	0.936	0.820
30	0.900	0.905	0.810

Even with much less data, REMAC maintains performance very close to the 200-trajectory model, with only mild degradation. These results indicate that REMAC is not data-hungry and remains effective in low-data regimes, thanks to its self-supervised masking mechanism that exposes the model to diverse prefix deviations without requiring additional demonstrations.

E.4 EFFECT OF REMAC ON GENERALIZABILITY

We further examine whether REMAC affects the policy’s generalization ability. Our fine-tuning pipeline is as follows: we first fine-tune π_0 using our collected demonstrations following the official implementation, updating both the VLM backbone and the action expert. This fine-tuned π_0 serves as the baseline model for all methods (Naive, RTC, BID, and REMAC). REMAC then applies LoRA *only* to the baseline model’s action expert, while keeping the entire VLM backbone frozen.

We evaluate generalizability under two settings: (i) scene/background variation and (ii) novel language prompts. For background variation, we remove curtains, replace the table covering, and introduce additional distractor objects. REMAC behaves similarly to the baseline model: both policies reliably ground objects seen during fine-tuning despite the visual changes and background noise. However, under unseen language instructions, both the baseline and REMAC fail to perform novel tasks or recognize unseen objects (e.g., “cup,” “box”), suggesting that the limitation stems from the underlying fine-tuned policy rather than from REMAC.

We additionally evaluate on $\pi_{0.5}$ (Intelligence et al., 2025b), which exhibits stronger open-world generalization under our settings. Under unseen language prompts, the fine-tuned $\pi_{0.5}$ correctly recognizes unseen objects but still struggles with unseen tasks. Applying REMAC on top of $\pi_{0.5}$ preserves this OOD capability and does not introduce noticeable degradation, confirming that REMAC does not harm the generalization already present in the underlying VLA model.

In summary, REMAC performs only low-rank adjustments on the action expert and leaves the grounding and perception capabilities of the VLM untouched. As a result, it does not diminish the generalizability of the fine-tuned base model.

918

919

920 **E.5 APPLICATION TO OTHER POLICY CLASSES**

921

We further demonstrate that REMAC is *not* restricted to flow-matching policies and can be applied to other policy architectures. While diffusion-style models are a natural extension due to their structural similarity to flow matching, we additionally show that REMAC is compatible with **Transformer-based chunking policies**.

926

927

928

929

930

931

932

To validate this, we integrate REMAC into ACT (Zhao et al., 2023) by applying LoRA to its decoder layers and action head, and replacing the ℓ_2 losses used in Eq. 3 and 5 with ACT’s ℓ_1 and KL objectives. In Table 5 and 6, we evaluate on two bimanual ACT tasks and report *success rate / average return* under varying delays. Across all delay settings, REMAC consistently outperforms both the naive asynchronous baseline and the LoRA-only baseline. These results indicate that REMAC generalizes beyond flow-matching models and can be seamlessly incorporated into diverse action-chunking frameworks.

933

934

Table 5: Transfer Cube (h = 12)

d	Naive	+LoRA	Ours
4	0.40 / 354.44	0.52 / 335.04	0.74 / 486.78
6	0.48 / 348.76	0.58 / 352.24	0.72 / 508.28
8	0.46 / 309.32	0.68 / 422.62	0.68 / 460.86

Table 6: Insert Box (h = 30)

d	Naive	+LoRA	Ours
0	0.14 / 230.74	0.20 / 218.74	0.18 / 245.72
5	0.14 / 219.78	0.12 / 179.90	0.18 / 217.12
10	0.14 / 216.98	0.10 / 183.94	0.16 / 220.68

935

936

937 **F ROBUSTNESS TO VARYING DELAY CONDITIONS**

938

Real-world latency can be fluctuating and noisy. We conducted additional evaluations in both simulation and the real world to assess REMAC’s robustness under noisy, rapidly fluctuating, and adversarially spiky delay patterns.

939

(1) Simulation experiments. We fix the true execution delay to d , but deliberately pass incorrect delay values to the policy using the following schemes:

- **Noisy and rapidly fluctuating delays:** For each policy call, we sample the delay from $\{d - 1, d, d + 1\}$ (i.e., 66% inaccurate).
- **Spiky delays:** With 10% probability, we replace the delay with the maximum valid value to simulate infrequent but large latency spikes.

Below we report the average performance over 12 Kinetix tasks:

940

941

Table 7: Performance Comparison under Different Latency Conditions.

Setting	d=0	d=1	d=2	d=3	d=4
RTC	0.817	0.778	0.733	0.665	0.588
Ours	0.877	0.860	0.832	0.796	0.760
RTC + Noisy & Fluct.	0.816	0.770	0.728	0.653	0.573
Ours + Noisy & Fluct.	0.866	0.837	0.799	0.746	0.757
RTC + Noisy & Fluct. & Spiky	0.814	0.772	0.728	0.653	0.575
Ours + Noisy & Fluct. & Spiky	0.820	0.796	0.769	0.718	0.757

942

Even under extremely ill-conditioned latency sequences, both RTC and REMAC degrade gracefully—never catastrophically. Importantly, REMAC under corrupted delays still outperforms RTC under accurate delays, demonstrating strong robustness to delay miscalibration.

943

944

(2) Real-world experiments. All of our real-world evaluations already operate under realistic network- and compute-induced delay profiles, where delay measurements are noisy and temporally correlated. The measured delay includes multiple sources—VLA inference time, network transmission, file I/O, memory contention, and system-level scheduling jitter. Because the delay measurement always includes inference time, it is necessarily historical. Following RTC (Black et al., 2025), we use the maximum delay observed in a recent window as the estimate passed to the policy. Thus,

972 all real-world results (Table 3 and Figure 4) inherently reflect noisy and imprecise delay estimates,
 973 yet REMAC remains robust and performs strongly under these conditions.
 974

975 To further stress-test the system, we artificially corrupt the delay input by sampling from
 976 $\{d-1, d, d+1, d+2\}$ for every inference step. This induces noisy, fluctuating, and spiky delays.
 977 The system exhibits only 1–2 additional failures out of 10 trials, primarily due to occasional overes-
 978 timation ($d+2$), which leads the robot to temporarily pause and exceed the 300-step time limit. This
 979 is a timeout artifact rather than an indication of policy instability.
 980

981 **(3) Inherent robustness from discretized delays.** Asynchronous execution exhibits a natural ro-
 982 bustness property: the inference delay is defined as
 983

$$d = \left\lfloor \frac{\delta}{\Delta t} \right\rfloor,$$

984 where δ is the continuous inference latency and Δt is the controller sampling period (67 ms at
 985 15 Hz). For d to fluctuate by ± 1 , the underlying latency must shift by more than 67 ms—an extreme
 986 fluctuation rarely observed in practice. This discretization smooths noise in δ , making asynchronous
 987 methods, including ours, inherently robust to moderate latency variations.
 988

989 G VIDEO EXAMPLES

990 We provide video demonstrations at this anonymous link, showcasing the distinctive characteristics
 991 and performance of our method.
 992

993 H LIMITATIONS

994 Our method is not without limitations. First, it requires specifying a maximum inference delay in
 995 advance to ensure that the optimization process covers the full range of possible delays. If the actual
 996 delay during execution exceeds this bound, unexpected failure may occur. Second, the approach may
 997 demand a substantial amount of finetuning data for masked finetuning, which could limit practicality
 998 in settings where data collection is costly or constrained.
 999

1000 I LLM USAGE

1001 We used LLM (ChatGPT) to assist with writing refinement. Specifically, it was employed to im-
 1002 prove clarity, grammar, and flow of text, as well as to adjust tone for academic writing. No content
 1003 generation, experimental design, or analysis was delegated to the LLM; all technical contributions,
 1004 mathematical definitions, and experimental results were developed by the authors. The LLM’s role
 1005 was limited to language polishing and presentation, and all outputs were carefully reviewed and
 1006 edited by the authors.
 1007

1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025