
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REAL-TIME ROBOT EXECUTION
WITH MASKED ACTION CHUNKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-time execution is essential for cyber-physical systems such as robots. These
systems operate in dynamic real-world environments where even small delays can
undermine responsiveness and compromise performance. Asynchronous infer-
ence has recently emerged as a system-level paradigm for real-time robot manip-
ulation, enabling the next action chunk to be predicted while the current one is
being executed. While this approach achieves real-time responsiveness, naive in-
tegration often results in execution failure. Previous methods attributed this failure
to inter-chunk discontinuity and developed test-time algorithms to smooth chunk
boundaries. In contrast, we identify another critical yet overlooked factor: intra-
chunk inconsistency, where the robot’s executed action chunk partially misaligns
with its current perception. To address this, we propose REMAC, which learns
corrective adjustments on the pretrained policy through masked action chunking,
enabling the policy to remain resilient under mismatches between intended ac-
tions and actual execution during asynchronous inference. In addition, we intro-
duce a prefix-preserved sampling procedure to reinforce inter-chunk continuity.
Overall, our method delivers more reliable policies without incurring additional
latency. Extensive experiments in both simulation and real-world settings demon-
strate that our method enables faster task execution, maintains robustness across
varying delays, and consistently achieves higher completion rates.

1 INTRODUCTION

The deployment of large-scale models has revolutionized AI capabilities across various do-
mains (Liu et al., 2023; Esser et al., 2024; Zheng et al., 2024; OpenAI, 2025). In robotics, Vision-
Language-Action (VLA) models (Wu et al., 2023; Brohan et al., 2023b;a; Kim et al., 2024; Black
et al., 2024; Intelligence et al., 2025a; Yang et al., 2025; Zhong et al., 2025) have emerged as a
promising direction for translating human instructions and sensory observations into physical ac-
tions. While real-time responsiveness is desirable across all such applications, its importance varies
by context. For language or image models, slower responses primarily lead to increased waiting
time but won’t result in generation failure. In contrast, for cyber-physical systems like robots op-
erating in dynamic, real-world environments, the absence of real-time responsiveness can mean the
difference between successfully filling a cup and catastrophically spilling juice onto the table.

A real-time robot control system must ensure a continuous stream of executable actions so that
the robot never runs idle (Hester et al., 2011). A straightforward approach is to reduce the time
cost of action acquisition—primarily arising from VLA action generation and network commu-
nication—such that it falls below the robot’s control period. Although a variety of model-level
techniques have been proposed to accelerate model prediction (Leviathan et al., 2023; Bolya et al.,
2023; Wu et al., 2024; Lin et al., 2024; Shang et al., 2024; Xu et al., 2024; Shukor et al., 2025), these
methods typically sacrifice accuracy for speed. Moreover, as model sizes continue to scale, control
frequencies increase, and deployment conditions vary in real-world settings, such approaches be-
come increasingly limited in their ability to guarantee real-time performance.

Action chunking (Zhao et al., 2023; Chi et al., 2024), where a policy predicts and executes a se-
quence of actions per inference step, offers a partial solution to real-time control. Although it has
achieved state-of-the-art results in dexterous manipulation, action chunking inherently reduces sys-
tem reactivity to sudden state changes (Liu et al., 2025) and introduces discontinuities at chunk

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

boundaries (Black et al., 2025). These limitations have motivated the search for more general
system-level inference frameworks, among which asynchronous inference (Shukor et al., 2025)
has recently emerged as a promising solution for real-time robotic execution. Unlike synchronous
inference (Chi et al., 2024), which pauses until future actions are available, asynchronous inference
predicts upcoming actions while executing the current ones, ensuring a continuous supply of actions.
However, incorporating asynchronous inference into VLA-based control systems is nontrivial: when
coupled with action chunking, it amplifies existing limitations and results in substantial performance
degradation (Liu et al., 2025; Black et al., 2025; Shukor et al., 2025).

Previous methods (Zhao et al., 2023; Liu et al., 2025; Black et al., 2025) addressing this challenge
primarily aimed to mitigate inter-chunk discontinuity, seeking a balance between long-term co-
herence and short-term reactivity. These approaches typically treat the already executed actions as
informative priors and apply test-time refinements to the upcoming action chunks. However, such
refinements are either heuristic in nature and prone to catastrophic failure (Zhao et al., 2023), or
exploit the generative and inpainting capabilities of diffusion/flow-matching models (Song et al.,
2023) while incurring additional latency (Liu et al., 2025; Black et al., 2025). Moreover, these
works overlook a critical failure mode: intra-chunk inconsistency, arising from misalignment be-
tween observations and the actions executed within a single chunk.

In this work, we aim to improve both inter-chunk continuity and intra-chunk consistency when inte-
grating asynchronous inference with chunking policies. We first formulate intra-chunk inconsistency
as a partial mismatch between observations and executed actions, leading to a shift in intra-chunk
distribution between training and sampling. To address this, we propose Real-time Execution with
Masked Action Chunking (REMAC) to learn corrective adjustments to the pretrained policy by
masking arbitrary portions of action chunks. In parallel, we enhance inter-chunk continuity by re-
fining the sampling pipeline to incorporate previously executed actions as informative priors.

Our method introduces no additional inference delay compared to the pretrained policy (Black et al.,
2024; 2025), and can be seamlessly integrated into existing VLA frameworks. Extensive experi-
ments across 12 simulated tasks and three real-world settings demonstrate its effectiveness, show-
ing higher success rates, faster task completion, and smoother robot dynamics under varying delay
conditions. Moreover, our approach can be combined with existing test-time algorithms, further
underscoring its utility to produce stronger backbone policies for asynchronous execution.

2 RELATED WORKS

2.1 VLA AND ACTION CHUNKING

An emerging line of robotics research focuses on developing generalist policies capable of perform-
ing a broad spectrum of tasks and transfer across different environments and robot embodiments.
Vision-Language-Action (VLA) models (Brohan et al., 2023b;a; Wu et al., 2023; Kim et al., 2024;
Black et al., 2024; Bjorck et al., 2025; Intelligence et al., 2025a; Shukor et al., 2025) have become a
leading approach in this pursuit. By conditioning on high-level inputs such as video frames, natural
language instructions, and proprioceptive signals, VLAs generate the corresponding low-level motor
control commands. Among these models, diffusion and flow-matching approaches (Lipman et al.,
2023; Chi et al., 2024) have gained prominence for their ability to generate high-quality actions
efficiently, and they serve as the representative setting for our work.

Moreover, scaling to long-horizon manipulation requires temporal abstraction: models must predict
not just the next command, but coherent segments of behavior. Inspired by principles of human mo-
tor control (Lai et al., 2022), recent systems structure behavior into temporally extended sequences,
or action chunks, which are generated by the VLA and executed by a low-level controller. This
action-chunking paradigm enables visuomotor policies to operate over meaningful sequences and
provides a foundation for alternative strategies of action execution.

2.2 EXECUTION STRATEGIES FOR CHUNKED POLICIES

While action chunks are temporally consistent within a single segment, discontinuities and distri-
bution shifts often arise at chunk boundaries. To mitigate this issue, Zhao et al. (2023) proposed
Temporal Ensembling (TE), which aggregates the overlapping portions of consecutive chunks to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Robot

VLA Observation(t)

Pred(t)

Execute(t)

VLA

Observation(t)

Pred(t)

Execute(t)

Pred(t-h)

Execute(t-h)

(a) Synchronous Inference (b) Asynchronous Inference

Executed
Actions

Policy
Outputs

Intra-chunk
Inconsistency

Inter-chunk Discontinuity

(c) Inference Challenges

…

P=3, h=2, d=1

Figure 1: Illustration of execution paradigms. Arrowed lines of the same style indicate processes
occurring simultaneously. (a) Synchronous inference: VLA prediction and robot execution alter-
nate sequentially. (b) Asynchronous inference: VLA prediction runs concurrently with execution.
(c) Although asynchronous inference enables real-time execution, it introduces two performance-
degrading challenges: exacerbated inter-chunk discontinuity and intra-chunk inconsistency.

improve smoothness. Liu et al. (2025) highlighted the importance of balancing long-term consis-
tency with short-term reactivity, introducing Bidirectional Decoding (BID), a method that samples
multiple candidate predictions and selects the optimal one. More recently, RTC (Black et al., 2025)
explored real-time execution strategies under asynchronous inference by framing the task as a test-
time inpainting (Pokle et al., 2024) problem, proposing to leverage the prior chunk to warm-start
planning for the next and applies gradient-based corrections to the predicted chunk. However, RTC
introduces additional computational latency, which may degrade performance. In this paper, we
likewise target real-time execution under asynchronous inference, but instead adopt a training-time
adaptation approach. Our method introduces no additional inference overhead, consistently outper-
forms existing strategies, and can be seamlessly combined with test-time correction methods.

3 PRELIMINARIES

Let vπ(At|ot) denote the action chunking policy, where At = [at,at+1, . . . ,at+P−1] represents
the predicted action chunk of length P , ot denotes the current observation, and t indexes the con-
troller timestep. The parameter P is the prediction horizon. During rollout, only the first h actions
are executed, where h is the execution horizon with 1 ≤ h ≤ P . In real-world robotic manipula-
tion, latency arises from stages such as VLA action prediction and network communication, which
together define the inference delay: a continuous quantity representing the time lag between the
acquisition of ot and the availability of the corresponding At in the control queue. Following Black
et al. (2025), we discretize this delay as d := ⌊δ/∆t⌋, where δ is the continuous inference latency
and ∆t is the controller sampling period. For simplicity, our definition of inference delay excludes
observation latency and sub–timestep–level delays.

Flow-matching policies. We follow prior work (Liu et al., 2025; Black et al., 2025) and consider
action-chunking policies trained via flow matching (Lipman et al., 2023). In standard flow matching,
the model learns a velocity field that maps intermediate action states toward expert trajectories.
Training proceeds by minimizing an ℓ2 objective between the predicted flow û and the ground-truth
target u. At inference time, a flow-matching policy generates an action chunk by first sampling
an initial latent action sequence A0

t from a Gaussian prior. The final chunk is then obtained by
integrating this sample along the learned velocity field vπ over a normalized time variable τ ∈ [0, 1].
Using n integration steps, the update rule is:

A
τ+

1
n

t = Aτ
t + 1

n vπ(A
τ
t , ot, τ) , (1)

where ot is the current observation. After iterating over τ ∈ [0, 1], the final state A1
t is used as the

predicted action chunk.

Synchronous inference is the conventional paradigm adopted in many works (Zhao et al., 2023;
Black et al., 2024; Bjorck et al., 2025), where the robot executes all actions within the current
execution horizon before supplying the latest observation to the VLA to infer the next chunk (Fig-
ure 1(a)). For synchronous inference to achieve real-time execution, the condition δ < ∆t (i.e.,
d = 0) must hold, which is practically unattainable. For example, with a 50 Hz control frequency
(∆t = 20 ms) and π0 (Black et al., 2024) as the VLA model, action generation alone requires 76 ms
on an NVIDIA RTX 4090 GPU, with additional overhead from preprocessing, disk I/O, and network
transmission further increasing latency. As control frequencies rise for fine-grained tasks and larger

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

VLA models are deployed, the effect of inference delay only becomes more pronounced. Conse-
quently, synchronous inference is fundamentally constrained, resulting in jerky transitions between
chunks and extended execution times that undermine policy effectiveness.

Asynchronous inference, in contrast, achieves real-time execution by ensuring that actions are al-
ways available (Figure 1(b)). While this produces smoother trajectories, it introduces two challenges
that degrades performance: ❶ Inter-chunk discontinuity. Let A1

t and A2
t+h denote two consec-

utive action chunks sampled from trajectories T1 and T2 with execution horizon h. If T1 and T2
coincide up to timestep t but diverge thereafter, inter-chunk discontinuity arises at the boundary,
yielding incoherent transitions between chunks. Intuitively, because an action chunk represents only
a local segment of a trajectory, A1

t and A2
t+h may originate from different latent expert modes. Al-

though both T1 and T2 are valid continuations of the same past, switching between these modes at
the chunk boundary can introduce a large jump in the action sequence, producing jerky or out-of-
distribution motion during execution. ❷ Intra-chunk inconsistency. Assume the policy vπ(At|ot)
perfectly captures the underlying environment dynamics and therefore yields the optimal action se-
quence. Given perception ot, the optimal executed chunk should fully correspond to At. However,
under inference delay d with execution horizon h, the first d actions executed are instead taken
from At−h. This results in intra-chunk inconsistency, where these inherited prefix actions become
suboptimal for the current state, because they were conditioned on ot−h rather than ot, creating
a perception–action mismatch within the chunk. Figure 1(c) illustrates an example with P = 3,
h = 2, and d = 1, highlighting both challenges. Note that inter-chunk discontinuity also arises
under synchronous inference, but is further exacerbated in asynchronous settings.

4 METHODOLOGY

We consider a flow-matching policy vπ(At|ot). Our objective is to mitigate both intra-chunk
inconsistency and inter-chunk discontinuity by learning a delay-aware policy v̂π(At|ot, d), built
upon vπ(At|ot). By conditioning on the inference delay d, the new policy learns to predict action
chunks that are reliable despite the uncertainty introduced by delayed execution. The following
sections describe the components of our approach in detail.

4.1 MASKED ACTION CHUNKING

Given the pretrained policy vπ(At|ot), asynchronous inference executes the first few actions from
the previous chunk At−h, while the remaining actions are drawn from At, where h denotes the exe-
cution horizon. This misalignment between perception and execution induces a train–test mismatch:
supervision on the unexecuted early actions during pretraining can provide misleading signals, lead-
ing to off-distribution priors. To address this issue, we introduce REMAC, which incorporates the
following learning strategies. The details are described below and summarized in Alg. 1.

Prefix Masking. We begin by shifting the learning emphasis toward the to-be-executed action
chunk segment, only focusing on the portion of the trajectory that directly influences execution while
leaving the unexecuted prior intact. Formally, for the predicted flow û ∈ RP×D from v̂π(At|ot, d)
and the ground-truth target u ∈ RP×D, we introduce a delay-conditioned prefix mask md that
restricts supervision to the executable portion of each chunk:

md = {mτ
d}P−1

τ=0 = 1[τ ≥ d], (2)

where τ indexes the timesteps within the chunk, 1[·] is the indicator function, and d ∼ U{0, . . . , P−
1} is a uniformly sampled random inference delay. By incorporating the prefix mask into the con-
ventional flow-matching loss, we obtain the following objective:

Lm =
∑
d

∑P−1
τ=0 mτ

d ||ûτ − uτ ||22
max

(
1,
∑P−1

τ=0 mτ
d

) . (3)

This formulation directly builds on the masking strategy, restricting supervision to the unmasked
segment while excluding the already-committed prefix. By randomly sampling across all valid in-
ference delays, the policy is exposed to the full spectrum of conditions—from the trivial unmasked

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

case (d = 0) to extreme masking scenarios (d = h). This mitigates intra-chunk inconsistency by
strengthening the policy’s adaptability to uncertainty in unexecuted actions, yielding rollouts that
remain resilient even under imperfectly predictable environment dynamics. Moreover, the strategy
enhances the policy’s predictive capacity and equips a single model to handle all valid delay settings,
removing the need to train separate policies for different delays.

Self-conditioned Curriculum. The actions executed within the inference delay during rollout
can serve as informative test-time priors for refining subsequent action chunks. However, during
training the executed portion of the chunk is unavailable, unless the current policy is rolled out
from scratch for each input sample—a strategy that is prohibitively expensive and impractical, even
in simulation. To address this limitation, we introduce a self-conditioned curriculum scheduling
method that leverages the pretrained policy to imitate test-time conditions, thereby improving both
intra-chunk consistency and inter-chunk discontinuity.

As a concrete example, consider standard flow matching, where the training input is constructed
by linearly interpolating between Gaussian noise and the ground-truth action chunk At. Instead of
directly using the ground-truth chunk, we modify the formulation to incorporate self-conditioning
from the pretrained policy, defined as:

Ât = γAt + (1− γ)Ãt, γ ∼ Bernoulli(σ), σ ∈ [0, 1]. (4)

Here, Ãt denotes the action chunk predicted by the pretrained policy. The mixing parameter σ is
scheduled based on the training progress, annealing from σ = 1 (pure ground-truth input) to σ = 0

(pure self-conditioned input). The resulting mixture Ât is then used in place of At for interpolation.

Algorithm 1 REMAC

Input: Delay set Sd, dataloader D, epochs E
Initialize: Pretrained policy vπ(·), target policy v̂π(·)

1: for e← 0 to E − 1 do
2: Sample d ∈ Sd and compute md via Eq. 2.
3: for all (ot,ut) ∈ D do
4: Ãt ← Integrate(vπ(ot))

5: Ât ← Interpolate(Ãt,ut) ▷ Eq. 4
6: ût ← v̂π(ot, Ât) ▷ LoRA enabled
7: ũt ← vπ(ot, Ât) ▷ LoRA disabled
8: Update v̂π by minimizing Eq. 6
9: end for

10: end for

Therefore, the model input evolves during
training: in the early stages, ground-truth
actions serve as stable anchors, while in
later stages the model is gradually condi-
tioned on its own predictions yet still re-
quired to produce accurate outputs. This
scheduled curriculum not only stabilizes
training, but also mitigates exposure bias
by aligning training inputs with test-time
conditions. In doing so, it enables the
model to learn corrective adjustments over
the pretrained policy, refining its own pro-
posals and improving robustness to distri-
bution shifts and compounding rollout er-
rors. Figure 7 illustrates several schedul-
ing functions for σ, among which we adopt the piecewise linear decay as the default.

Residual Alignment. In addition to standard supervision against the ground truth, we introduce a
∆-matching term on the unmasked action chunk. This term explicitly aligns the induced correction
with the residual between the pretrained policy’s prediction and the ground-truth target. Specifically,
let ũ denote the flow estimate from the pretrained backbone vπ(At|ot). The correction is then
encouraged to match the residual toward the target through the following objective:

L∆ =
∑
d

∑P−1
τ=0 ||mτ

d(uτ − ũτ)−mτ
d(ûτ − ũτ)||22

max
(
1,
∑P−1

τ=0 mτ
d

) . (5)

While mathematically related to Eq. 3, the two objectives emphasize different aspects: Eq. 3 en-
forces direct alignment with the ground truth, whereas Eq. 5 explicitly models the residual adjust-
ment relative to the pretrained policy. Empirically, we observe that incorporating L∆ into training
yields substantial performance improvements.

Finally, the overall training objective is defined as:

L = λmLm + λ∆L∆, (6)

where λm = 0.01 and λ∆ = 0.01 are the weighting coefficients.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 PREFIX-PRESERVED SAMPLING

Having obtained the new policy v̂π(At|ot, d), we further adjust the sampling pipeline to align with
the training procedure and enhance inter-chunk continuity. Firstly, the initial action state A0

t is no
longer drawn from the Gaussian prior. Instead, it is initialized using the executed actions during the
delayed time steps, denoted as Ap

t ∈ RP×D, whose first P − h entries are filled with the last P − h
actions from the previous predicted chunk, while the remaining entries are zero-initialized.

Secondly, during the sampling process, the overlapping segment between the currently executing
chunk and the upcoming chunk are preserved as the executed ones, and only the remaining portion
of the action chunk is newly synthesized. Specifically, if the sampling process integrates the learned
velocity field v̂π over n integration steps, let m ∈ {0, 1}P denote the delay-conditioned prefix mask
and Aτ

t is the intermediate action state at integration time τ , then:

A
τ+

1
n

t = m⊙
(
Aτ

t + 1
n v̂π(A

τ
t , ot, τ)

)
+ (1−m)⊙Ap

t , (7)

where ⊙ denotes element-wise multiplication. A special case arises for the first action chunk gener-
ation at rollout initialization, where no previous actions have yet been executed. In this case, we set
Ap

t = 0 or random Gaussian noise to indicate the absence of prior actions, and apply the standard
integration rule in Eq. 1.

4.3 IMPLEMENTATION DETAILS

Model Adaptation. We adapt the pretrained policy using the parameter-efficient finetuning tech-
nique LoRA (Hu et al., 2021), introducing at most 1.5% additional parameters relative to the original
model. The reasons we adopt LoRA instead of full model finetuning are twofolds. First, we con-
ceptualize the transformation from vπ(At|ot) to v̂π(At|ot, d) as a distributional adjustment with
respect to the pretrained policy, rather than a wholesale re-learning of the policy under a differ-
ent objective. Second, LoRA offers a flexible mechanism that can leave the original parameters
untouched, thereby preserving the predictive capacity of the pretrained model and making it well
suited to our method. During implementation, the LoRA module can be further extended with an
additional projection matrix that incorporates the prefix mask to enrich the input representation.

Training and Sampling. During training, we control the prefix-mask coverage by uniformly sam-
pling d in Eq. 2 from a gradually shrinking interval [q, qmax], where qmax is fixed and q is linearly
annealed from qmax down to a final qmin. Importantly, qmax and qmin are not limits on the inference
delays that the model can handle; rather, they are hyper-parameters that determine the strength of
mask-induced perturbations during training. The total loss defined in Eq. 6 is then used to update
the LoRA parameters. During action sampling, compared to the conventional approaches in prior
works (Chi et al., 2024; Black et al., 2024), the model additionally takes the pre-determined or esti-
mated inference delay and the previous action chunk as inputs for the next action chunk prediction.
The LoRA modules can be further merged into the backbone model layers, such that no additional
time cost is introduced.

Deployment Framework. For simulation benchmarks, we follow the setting of Black et al.
(2025), in which the predicted actions are deliberately segmented and concatenated according to
predefined delays and execution horizons. For the real-world deployment, we adopt a setup similar
to Shukor et al. (2025), in which actions are predicted on a remote server and transmitted to the
robot via gRPC. The robot maintains a queue of actions to execute while sending observations to
the server at the same frequency as its control loop. The remote server, hosting the VLA model,
likewise maintains a queue of incoming observations and performs action prediction as frequently
as possible using the most recent inputs and states. The inference delay is estimated on the robot
client side as the maximum of the most recent few measured delays.

5 EXPERIMENTS

In this section, we present experiments evaluating the effectiveness of our method against baseline
approaches under various inference delay settings. We also perform ablation studies on different

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Inference Delay

So
lv

e
R

at
e

Inference Delay

Average Execution Time

Average Solve Rate

Figure 2: Performance comparison in Kinetix environments. Left: Solve rates for individual tasks
under varying inference delays. Right (top): Average performance across all environments. Our
method consistently outperforms baselines under all delay settings and exhibits smaller performance
degradation as delay increases. Right (bottom): Average execution time across all environments.
Our method requires fewer steps and achieves faster task completion.

components to assess their individual contributions. Our empirical analysis spans both simulation
and real-world tasks, providing a comprehensive evaluation of the proposed method.

5.1 KINETIX ENVIRONMENT

We first evaluate our method on the Kinetix simulator (Matthews et al., 2025), following the protocol
of Black et al. (2025). The benchmark comprises 12 highly dynamic and stochastic environments
specifically designed to test asynchronous execution. Expert policies are first trained under a bi-
nary success reward using RPO (Rahman & Xue, 2022), from which training data are collected via
demonstration generation. Flow-matching policies are then learned through imitation learning (Zare
et al., 2023; Argall et al., 2009). For each task, the trained policies are configured with a prediction
horizon of 8. The inference delay d ranges from 0 to 4, and the execution horizon for each delay
is chosen within max{1, d} to 9− d, ensuring continuous action availability without gaps between
consecutive chunks. LoRA is applied to all linear layers except the time-embedding and AdaLN
layers (Peebles & Xie, 2023), with each LoRA layer assigned a rank of 4. For each fixed delay
value, evaluation metrics are reported as averages over all corresponding execution horizon settings.

Baselines. The baselines we compare with include: (1) Naive Async, which directly uses the pre-
trained policy and executes actions from the most recently generated action chunk. (2) Bidirectional
Decoding (BID) (Liu et al., 2025), a test-time method that samples multiple candidate predictions
and applies rejection sampling to select the optimal one, aiming to balance long-term consistency
with short-term reactivity. (3) RTC (Black et al., 2025), also a test-time execution strategy that
leverages an inpainting algorithm (Pokle et al., 2024). It applies gradient-based corrections to the
predicted actions, using the executed actions during the inference delay as priors. We omit the base-
line of Temporal Ensembling (TE) (Zhao et al., 2023), as both our experiments and Black et al.
(2025) show that TE substantially underperforms the other baselines in this simulation benchmark,
even falling behind Naive Async.

Results. Figure 2 reports the per-task and average performance across 12 tasks, measured by both
task success rate and completion time. Generally, we observe a consistent decline in performance as
inference delay increases across all methods. This degradation stems from the growing mismatch be-
tween actions and observations, which amplifies intra-chunk inconsistency, and from the increasing
influence of the previous chunk, which exacerbates inter-chunk discontinuity. Our method consis-
tently outperforms all baselines across all delay settings, with especially pronounced gains under
larger inference delays. It also achieves shorter average execution time than competing methods,
demonstrating the ability to produce more efficient policies for faster task completion.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Effectiveness of the different components in REMAC.
Method d=0 d=1 d=2 d=3 d=4

Naive 0.828 0.702 0.639 0.525 0.451

+ LoRA 0.825 0.710 0.630 0.510 0.428

+ Prefix masking 0.863 0.825 0.752 0.729 0.636

+ Self-conditioned curriculum 0.848 0.837 0.805 0.762 0.710

+ L∆ (Ours) 0.888 0.879 0.859 0.817 0.779
0 1 2 3 4

Inference Delay
0.5

0.6

0.7

0.8

0.9

1.0

So
lv

e
R

at
e

Curriculum scheduling
Only ground-truth
Only self-conditioned

Figure 3: Schedule comparison.

Table 2: Integration with test-time methods.

Method d=0 d=1 d=2 d=3 d=4

Ours 0.888 0.879 0.859 0.817 0.779

+ BID 0.888 0.880 0.862 0.821 0.781

+ RTC 0.888 0.879 0.864 0.826 0.791

Our method also improves performance under
d = 0. We attribute this to the masked ac-
tion chunking formulation, which encourages
the policy to enforce stronger coherence and
temporal dependencies even without inference
delay, thereby enhancing its predictive ability.
Moreover, as the inference delay increases, our
method exhibits both a smaller performance drop and a lower rise in execution time compared to
baselines. This trend highlights the robustness of our approach under increasing delays, underscor-
ing its potential as a versatile solution for asynchronous inference.

Ablations and Analysis. We conduct ablation studies to evaluate the contribution of each compo-
nent and further analyze the extensibility of our approach.
• Table 1 reports the contribution of each component in our method. First, adding LoRA

alone—without modifying the training paradigm—yields no performance gain, indicating that
the effectiveness of our approach cannot be attributed merely to the increase in parameters. In
contrast, progressively incorporating the components described in Sec. 4.1 leads to consistent im-
provements, with the full method achieving the highest overall success rate. Detailed per-task
results are provided in Sec. D.

• Figure 3 compares variations of the self-conditioned curriculum schedule introduced in Eq. 4. We
compare with two baselines: one that initializes exclusively with ground-truth actions (σ = 1)
and another that relies entirely on self-conditioned inputs (σ = 0). The results show that the
curriculum schedule improves both performance and training stability relative to these extremes.
Training with pure ground-truth inputs suffers from exposure bias, since during policy rollout
the sampling process relies on the model’s own predictions. Conversely, training with fully self-
conditioned inputs often destabilizes early learning. The curriculum schedule mitigates both is-
sues by gradually transitioning from ground-truth to self-conditioned inputs.

• Our method can further be integrated with other test-time approaches such as BID and RTC, since
it only modifies the backbone policy. Table 2 shows that, although the improvements are modest,
integration consistently provides additional performance gains across delay settings, with larger
improvements observed under higher delays. This demonstrates both the compatibility of our
approach with existing test-time strategies and its potential as a plug-and-play method.

• We also ablate the choice of qmax and qmin (Sec. 4.3) to assess how mask coverage affects perfor-
mance. As shown in Fig. 10(a), performance changes only marginally across configurations, indi-
cating that REMAC is not highly sensitive to these hyper-parameters. Larger values—particularly
a larger qmin—produce slightly worse results. We use qmax = 4 and qmin = 0 in practice.

• We further show that REMAC is not limited to flow-matching policies. In Sec. E.5, we integrate
REMAC into the Transformer-based ACT (Zhao et al., 2023) framework, where it consistently
outperforms both the naive asynchronous baseline and the LoRA-only baseline. These results
demonstrate that REMAC readily extends beyond flow matching and can be seamlessly incorpo-
rated into diverse action–chunking architectures.

5.2 REAL-WORLD ENVIRONMENT

Setup. We employ a Franka Research 3 robot (7-DoF arm) (Haddadin, 2024) equipped with
parallel-jaw grippers and adopt the DROID setup (Khazatsky et al., 2025) (Figure 6). The additional
tactile sensors of the grippers are disabled and repurposed to narrow the gripping range, thereby
acting as constraints for evaluating fine-grained control. This design ensures that the tasks demand
precise action execution, making them well suited for assessing performance under asynchronous

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Average completion progress. Progress is measured
by discrete scores corresponding to the sub-tasks completed.

Method Grasp-Easy Grasp-Medium Grasp-Hard

Synchronous 0.805 0.718 0.670

Naive (Shukor et al., 2025) 0.825 0.825 0.460

TE (Zhao et al., 2023) 0.825 0.868 0.717

RTC (Black et al., 2025) 0.823 0.848 0.753

Ours 0.903 0.943 0.812

+0ms +75ms +150ms
Injected Delay

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

So
lv

e
R

at
e

Ours
RTC
TE
Naive
Sync

Figure 4: Performance under delay
injections on Grasp-Hard.

inference. For the backbone VLA, we use π0 (Black et al., 2024), configured with a prediction hori-
zon of P = 50, and adopt its memory-efficient variant for finetuning. A total of 200 trajectories are
collected for model adaptation, with LoRA layers of rank 8 inserted only into the action expert mod-
ule. After finetuning, the LoRA weights are merged into the backbone, ensuring that no additional
computational overhead is introduced at inference.

During execution, the robot operates at a control frequency of 15Hz, corresponding to ∆t ≈ 67ms.
The execution horizon is fixed at h = 8, and sampling is performed over 10 steps. Processing
through the VLA model without any test-time strategies takes approximately 76-80ms per obser-
vation. Since the model is hosted on a separate server, communication over LAN introduces an
additional network delay of 34–40ms, while data processing and disk writing contribute a further
10–20ms. In total, the end-to-end inference delay is roughly 122–140ms, corresponding to an effec-
tive inference delay of d = 2 or 3.

Task Design and Measurement. We evaluate our approach on three single-arm grasp-and-place
tasks (Grasp-Easy, Medium, Hard) of varying difficulty. The tasks range from manipulating simple
objects, such as a cucumber, to more challenging ones, such as a Rubik’s cube whose sides are only
1cm shorter than the gripper’s jaw gap, requiring precise control. Placement targets are either a plate
or a bowl, with the latter posing greater difficulty and demanding finer manipulation accuracy.

Task performance is measured using a stage-based solve rate that evaluates progress through four
steps: (1) reaching the object, (2) gripping and lifting it, (3) moving it toward the target location,
and (4) placing it correctly into the container. For each task, we conduct 30 evaluation trials per
method, with each trial capped at 300 steps, amounting to a total of 6 hours of robot execution time.
The initial position and orientation of the objects are randomized across trials.

Baselines. We compare our method against four baselines: (1) Synchronous inference, the widely
used baseline in prior works (Black et al., 2024; Kim et al., 2024; Hu et al., 2025; Kim et al., 2025;
Pertsch et al., 2025), which executes an entire predicted action chunk and then pauses until new
actions are received. (2) Naive Async, and sampling is run as frequently as possible such that the
most recent actions are queued. (3) Temporal Ensembling (Zhao et al., 2023), an extension of
Naive Async that aggregates overlapping actions across consecutive chunks by weighted averaging.
(4) RTC, the state-of-the-art baseline but it introduces an additional 55− 64ms of inference latency.
We omit BID from comparison, as it is substantially more time- and computation-intensive than the
other methods (Black et al., 2025), and is therefore not a competitive baseline in real-world settings.

Results. Table 3 reports the average completion progress for each task, showing that our method
achieves higher completion rates across all tasks. During execution, synchronous inference produces
frequent pauses, often leading to unintended object drops and inaccurate localization. Asynchronous
baselines generate smoother trajectories without pronounced jerkiness. However, Naive Async and
Temporal Ensembling remain prone to premature or delayed grasping and placement. In contrast,
RTC suffers from the additional inference delay it introduces.

Figure 4 reports results with additional latency injections of 75ms and 150ms, simulating deploy-
ment under slower hardware and network conditions. Even with total inference delays of 3− 5, our
method consistently outperforms all baselines, demonstrating robustness to varying delay levels.
Interestingly, Naive Async performs comparatively better under larger delays, while RTC exhibits
significantly degraded performance. We attribute this to the fact that larger delays correspond to
longer execution horizons in real-world settings: less frequent chunk switching reduces inter-chunk
discontinuity, but the test-time adjustments made by RTC can have adverse effects.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Velocity Acceleration

Sync

RTC

Ours

Start

Start

Start Finish

Finish

Finish

t

K
in
em

at
ic
s

Figure 5: Visual comparison of different methods under a 150ms injected delay. Top: Task com-
pletion progress, where our method achieves faster completion. Bottom: Average robot kinematics
during task execution on Grasp-Hard. Our method produces smoother trajectories and faster com-
pletion. Additional video demonstrations are provided in Sec. G.

Figure 5 compares task completion progress and corresponding robot kinematics. We evaluate under
an injected 150ms delay and adopt cases where all policies achieve successful rollouts, ensuring
fair comparison while amplifying differences across methods. Qualitatively, our method completes
tasks within a shorter time. Quantitatively, analysis of average robot velocity and acceleration over
15 trials shows that synchronous inference produces abrupt, periodic kinematic changes, whereas
asynchronous inference methods yield smoother trajectories. Among these, our method achieves
the most stable dynamics with fewer abrupt changes, highlighting both speed and stability.

6 CONCLUSION

In this paper, we address the problem of effective real-time robot manipulation under asynchronous
inference. We identify two critical challenges in this setting—exacerbated inter-chunk discontinu-
ity and intra-chunk inconsistency—and propose REMAC to mitigate them. Unlike prior test-time
approaches, REMAC learns corrective adjustments on top of a pretrained policy through a masked
action chunking strategy and a prefix-preserved sampling pipeline, while introducing no additional
inference delay. Extensive experiments in both simulation and real-world benchmarks demonstrate
that our method is robust to varying delay conditions and achieves faster task completion.

ETHICS STATEMENT

This work focuses on algorithmic development and evaluation for asynchronous inference in robotic
control. All experiments were conducted either in simulation or with a physical Franka Research 3
robotic arm in a controlled laboratory setting. Our method is intended solely for research purposes
and does not present foreseeable risks of harmful deployment. We believe our work fully adheres to
the ethical standards and guidelines of the community.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed algorithmic description in Alg. 1 and implementa-
tion choices in Sec. 4.3, outlining each step of the proposed method. In the experimental section,
we clearly specify the datasets, training protocols, evaluation metrics, and implementation details,
including inference settings. Hyperparameters, model configurations, and training schedules are
reported to allow faithful replication of our results. In addition, source code and pretrained model
checkpoints will be released upon request to further support verification and reuse by the community.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. ISSN 0921-8890.
doi: https://doi.org/10.1016/j.robot.2008.10.024. URL https://www.sciencedirect.
com/science/article/pii/S0921889008001772.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi ”Jim”
Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang, Jan Kautz,
Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu, Edith Llontop,
Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed, You Liang Tan,
Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen Xu, Zhen-
jia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng, and
Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid robots, 2025. URL
https://arxiv.org/abs/2503.14734.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-
language-action flow model for general robot control, 2024. URL https://arxiv.org/
abs/2410.24164.

Kevin Black, Manuel Y. Galliker, and Sergey Levine. Real-time execution of action chunking flow
policies, 2025. URL https://arxiv.org/abs/2506.07339.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster, 2023. URL https://arxiv.org/abs/
2210.09461.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
https://arxiv.org/abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vin-
cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b. URL
https://arxiv.org/abs/2212.06817.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
https://arxiv.org/abs/2303.04137.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis, 2024. URL https://arxiv.org/abs/
2403.03206.

11

https://www.sciencedirect.com/science/article/pii/S0921889008001772
https://www.sciencedirect.com/science/article/pii/S0921889008001772
https://arxiv.org/abs/2503.14734
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2506.07339
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sami Haddadin. The franka emika robot: A standard platform in robotics research. IEEE Robotics
& Automation Magazine, 31(4):136–148, 2024. doi: 10.1109/MRA.2024.3451788.

Todd Hester, Michael Quinlan, and Peter Stone. A real-time model-based reinforcement learning
architecture for robot control, 2011. URL https://arxiv.org/abs/1105.1749.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
predictive visual representations, 2025. URL https://arxiv.org/abs/2412.14803.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π0.5: a
vision-language-action model with open-world generalization, 2025a. URL https://arxiv.
org/abs/2504.16054.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π0.5: a
vision-language-action model with open-world generalization, 2025b. URL https://arxiv.
org/abs/2504.16054.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman,
Pannag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake
Wulfe, Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Ro-
han Baijal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake,
Ethan Paul Foster, Jensen Gao, Vitor Guizilini, David Antonio Herrera, Minho Heo, Kyle
Hsu, Jiaheng Hu, Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li,
Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony
Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, An-
drew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani,
Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayara-
man, Joseph J Lim, Jitendra Malik, Roberto Martı́n-Martı́n, Subramanian Ramamoorthy, Dorsa
Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine,
and Chelsea Finn. Droid: A large-scale in-the-wild robot manipulation dataset, 2025. URL
https://arxiv.org/abs/2403.12945.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model, 2024. URL https://arxiv.org/
abs/2406.09246.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success, 2025. URL https://arxiv.org/abs/2502.19645.

12

https://arxiv.org/abs/1105.1749
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2412.14803
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2502.19645

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lucy Lai, Ann Zixiang Huang, and Samuel J Gershman. Action chunking as policy compression.
PsyArXiv, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023. URL https://arxiv.org/abs/2211.17192.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
https://arxiv.org/abs/2304.08485.

Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho Lee, Maximilian Du, and Chelsea Finn.
Bidirectional decoding: Improving action chunking via guided test-time sampling, 2025. URL
https://arxiv.org/abs/2408.17355.

Michael Matthews, Michael Beukman, Chris Lu, and Jakob Foerster. Kinetix: Investigating the
training of general agents through open-ended physics-based control tasks, 2025. URL https:
//arxiv.org/abs/2410.23208.

OpenAI. Chatgpt. https://chat.openai.com/, 2025. Large language model (GPT-5).

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models, 2025. URL https://arxiv.org/abs/2501.09747.

Ashwini Pokle, Matthew J. Muckley, Ricky T. Q. Chen, and Brian Karrer. Training-free linear image
inverses via flows, 2024. URL https://arxiv.org/abs/2310.04432.

Md Masudur Rahman and Yexiang Xue. Robust policy optimization in deep reinforcement learning,
2022. URL https://arxiv.org/abs/2212.07536.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
reduction for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil
Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, Simon Alibert,
Matthieu Cord, Thomas Wolf, and Remi Cadene. Smolvla: A vision-language-action model for
affordable and efficient robotics, 2025. URL https://arxiv.org/abs/2506.01844.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.
URL https://api.semanticscholar.org/CorpusID:259298715.

Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
manipulation, 2023. URL https://arxiv.org/abs/2312.13139.

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
quantization for diffusion transformers, 2024. URL https://arxiv.org/abs/2405.
16005.

Bingxin Xu, Yuzhang Shang, Yunhao Ge, Qian Lou, and Yan Yan. freepruner: A training-free
approach for large multimodal model acceleration. arXiv preprint arXiv:2411.15446, 2024.

Zhenjie Yang, Yilin Chai, Xiaosong Jia, Qifeng Li, Yuqian Shao, Xuekai Zhu, Haisheng Su, and
Junchi Yan. Drivemoe: Mixture-of-experts for vision-language-action model in end-to-end au-
tonomous driving, 2025. URL https://arxiv.org/abs/2505.16278.

13

https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2408.17355
https://arxiv.org/abs/2410.23208
https://arxiv.org/abs/2410.23208
https://chat.openai.com/
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2501.09747
https://arxiv.org/abs/2310.04432
https://arxiv.org/abs/2212.07536
https://arxiv.org/abs/2506.01844
https://api.semanticscholar.org/CorpusID:259298715
https://arxiv.org/abs/2312.13139
https://arxiv.org/abs/2405.16005
https://arxiv.org/abs/2405.16005
https://arxiv.org/abs/2505.16278

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges, 2023. URL https://arxiv.
org/abs/2309.02473.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual ma-
nipulation with low-cost hardware, 2023. URL https://arxiv.org/abs/2304.13705.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei
Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, Zhiquan Qi, Yitao Liang, Yuanpei Chen, and
Yaodong Yang. A survey on vision-language-action models: An action tokenization perspective,
2025. URL https://arxiv.org/abs/2507.01925.

14

https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2507.01925

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A HARDWARE SETUP

Figure 6 illustrates our robot setup, where the gap between the gripper jaws is deliberately reduced
to increase task difficulty and require finer control. Although two third-view cameras are mounted,
only one third-view camera and the wrist-mounted camera are used for data processing. This config-
uration provides both a global view of the scene and a local, fine-grained perspective of the manip-
ulation area, ensuring accurate observation while maintaining a controlled evaluation environment.

Figure 6: Robot setup illustration.

B SCHEDULING FUNCTION VARIANTS

Figure 7 illustrates different variants of the scheduling function σ. While multiple options are avail-
able, we primarily adopt the piecewise linear schedule, as it provides a smoother warm-up phase
and more stable optimization compared to other choices.

0 2000 4000 6000 8000 10000
Step

0.2

0.4

0.6

0.8

1.0
Linear

0 2000 4000 6000 8000 10000
Step

Cosine

0 2000 4000 6000 8000 10000
Step

Exponential

0 2000 4000 6000 8000 10000
Step

Piecewise Linear

Figure 7: Different scheduling functions.

C TASK EXAMPLES

Figure 8 presents wrist-camera views of the tasks included in our experiments. These examples high-
light the visual perspectives used for policy input and illustrate the varying levels of manipulation
difficulty across tasks.

Grasp-Easy Grasp-Medium Grasp-Hard

Figure 8: Examples of our included tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D PER-TASK SIMULATION RESULTS

Figure 9 presents the per-task results corresponding to the ablations in Table 1. The detailed metrics
demonstrate that each component of our method contributes consistent improvements in success rate
across tasks, highlighting the generalizability of the design choices.

+ LoRA + Future-segment masking

+ + Self-conditioned curriculum

Figure 9: Per-task results for component ablations.

E ADDITIONAL ABLATIONS

E.1 EFFECT OF qMAX AND qMIN

In Figure. 10(a), we evaluate the influence of the hyperparameters qmax and qmin (Sec. 4.3) by testing
multiple combinations under the same training setup. Overall, we observe only minor performance
variation across different settings, indicating that REMAC is not sensitive to the exact choice of
these values. However, larger values - particularly a larger qmin - tend to produce slightly worse
performance. This is expected: when qmin > 0, the prefix of length qmin is always masked during
training, which encourages the model to behave over-conservatively during rollout. In practice, we
adopt qmax = 4 and qmin = 0. Although this choice happens to coincide with the delay range
evaluated in our simulation experiments, it should not be interpreted as limiting the range of delays
REMAC can handle.

E.2 EFFECT OF LEARNING A MASK EMBEDDING

Our method conditions on the inference delay by converting it into a prefix mask that is applied
during both training and inference. Beyond its role in loss computation and sampling, this mask can
also be treated as an additional input signal by projecting it into a learnable mask embedding and
injecting it into the model. In Figure 10(b), we evaluate the effect of introducing such a learned mask
embedding under the same training setup. The results show mixed but generally stable outcomes:
while a few tasks see marginal changes, most tasks retain similar performance. This indicates that
REMAC is robust to architectural variations and does not depend critically on whether the delay
mask is embedded or used directly.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Inference Delay

So
lv

e
R

at
e

So
lv

e
R

at
e

Inference Delay
(a) Ablation on training mask coverage (b) Ablation on adding mask embedding

Figure 10: (a) Ablation on the effect of different qmax and qmin. (b) Ablation on the effect of adding
mask embeddings as additional information.

E.3 DATA-EFFICIENCY OF REMAC

To evaluate sensitivity to dataset size, we conducted additional real-world experiments using only
10 demonstrations per task, compared to the total 200 demonstrations used in the main paper. The
average completion progress (10 evaluations per task) is shown in Table 4 below:

Table 4: Effect of Training Data Quantity

#Traj Grasp-Easy Grasp-Medium Grasp-Hard

200 0.910 0.936 0.820
30 0.900 0.905 0.810

Even with much less data, REMAC maintains performance very close to the 200-trajectory model,
with only mild degradation. These results indicate that REMAC is not data-hungry and remains
effective in low-data regimes, thanks to its self-supervised masking mechanism that exposes the
model to diverse prefix deviations without requiring additional demonstrations.

E.4 EFFECT OF REMAC ON GENERALIZABILITY

We further examine whether REMAC affects the policy’s generalization ability. Our fine-tuning
pipeline is as follows: we first fine-tune π0 using our collected demonstrations following the official
implementation, updating both the VLM backbone and the action expert. This fine-tuned π0 serves
as the baseline model for all methods (Naive, RTC, BID, and REMAC). REMAC then applies LoRA
only to the baseline model’s action expert, while keeping the entire VLM backbone frozen.

We evaluate generalizability under two settings: (i) scene/background variation and (ii) novel lan-
guage prompts. For background variation, we remove curtains, replace the table covering, and intro-
duce additional distractor objects. REMAC behaves similarly to the baseline model: both policies
reliably ground objects seen during fine-tuning despite the visual changes and background noise.
However, under unseen language instructions, both the baseline and REMAC fail to perform novel
tasks or recognize unseen objects (e.g., “cup,” “box”), suggesting that the limitation stems from the
underlying fine-tuned policy rather than from REMAC.

We additionally evaluate on π0.5 (Intelligence et al., 2025b), which exhibits stronger open-world
generalization under our settings. Under unseen language prompts, the fine-tuned π0.5 correctly
recognizes unseen objects but still struggles with unseen tasks. Applying REMAC on top of π0.5 pre-
serves this OOD capability and does not introduce noticeable degradation, confirming that REMAC
does not harm the generalization already present in the underlying VLA model.

In summary, REMAC performs only low-rank adjustments on the action expert and leaves the
grounding and perception capabilities of the VLM untouched. As a result, it does not diminish
the generalizability of the fine-tuned base model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.5 APPLICATION TO OTHER POLICY CLASSES

We further demonstrate that REMAC is not restricted to flow-matching policies and can be applied to
other policy architectures. While diffusion-style models are a natural extension due to their structural
similarity to flow matching, we additionally show that REMAC is compatible with Transformer-
based chunking policies.

To validate this, we integrate REMAC into ACT (Zhao et al., 2023) by applying LoRA to its de-
coder layers and action head, and replacing the ℓ2 losses used in Eq. 3 and 5 with ACT’s ℓ1 and
KL objectives. In Table 5 and 6, we evaluate on two bimanual ACT tasks and report success
rate / average return under varying delays. Across all delay settings, REMAC consistently out-
performs both the naive asynchronous baseline and the LoRA-only baseline. These results indicate
that REMAC generalizes beyond flow-matching models and can be seamlessly incorporated into
diverse action–chunking frameworks.

Table 5: Transfer Cube (h = 12)

d Naive +LoRA Ours

4 0.40 / 354.44 0.52 / 335.04 0.74 / 486.78
6 0.48 / 348.76 0.58 / 352.24 0.72 / 508.28
8 0.46 / 309.32 0.68 / 422.62 0.68 / 460.86

Table 6: Insert Box (h = 30)

d Naive +LoRA Ours

0 0.14 / 230.74 0.20 / 218.74 0.18 / 245.72
5 0.14 / 219.78 0.12 / 179.90 0.18 / 217.12

10 0.14 / 216.98 0.10 / 183.94 0.16 / 220.68

F ROBUSTNESS TO VARYING DELAY CONDITIONS

Real-world latency can be fluctuating and noisy. We conducted additional evaluations in both simu-
lation and the real world to assess REMAC’s robustness under noisy, rapidly fluctuating, and adver-
sarially spiky delay patterns.

(1) Simulation experiments. We fix the true execution delay to d, but deliberately pass incorrect
delay values to the policy using the following schemes:
• Noisy and rapidly fluctuating delays: For each policy call, we sample the delay from {d −
1, d, d+ 1} (i.e., 66% inaccurate).

• Spiky delays: With 10% probability, we replace the delay with the maximum valid value to
simulate infrequent but large latency spikes.

Below we report the average performance over 12 Kinetix tasks:

Table 7: Performance Comparison under Different Latency Conditions.

Setting d=0 d=1 d=2 d=3 d=4

RTC 0.817 0.778 0.733 0.665 0.588
Ours 0.877 0.860 0.832 0.796 0.760
RTC + Noisy & Fluct. 0.816 0.770 0.728 0.653 0.573
Ours + Noisy & Fluct. 0.866 0.837 0.799 0.746 0.757
RTC + Noisy & Fluct. & Spiky 0.814 0.772 0.728 0.653 0.575
Ours + Noisy & Fluct. & Spiky 0.820 0.796 0.769 0.718 0.757

Even under extremely ill-conditioned latency sequences, both RTC and REMAC degrade grace-
fully—never catastrophically. Importantly, REMAC under corrupted delays still outperforms RTC
under accurate delays, demonstrating strong robustness to delay misestimation.

(2) Real-world experiments. All of our real-world evaluations already operate under realistic
network- and compute-induced delay profiles, where delay measurements are noisy and temporally
correlated. The measured delay includes multiple sources—VLA inference time, network transmis-
sion, file I/O, memory contention, and system-level scheduling jitter. Because the delay measure-
ment always includes inference time, it is necessarily historical. Following RTC (Black et al., 2025),
we use the maximum delay observed in a recent window as the estimate passed to the policy. Thus,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

all real-world results (Table 3 and Figure 4) inherently reflect noisy and imprecise delay estimates,
yet REMAC remains robust and performs strongly under these conditions.

To further stress-test the system, we artificially corrupt the delay input by sampling from
{d−1, d, d+1, d+2} for every inference step. This induces noisy, fluctuating, and spiky delays.
The system exhibits only 1–2 additional failures out of 10 trials, primarily due to occasional overes-
timation (d+2), which leads the robot to temporarily pause and exceed the 300-step time limit. This
is a timeout artifact rather than an indication of policy instability.

(3) Inherent robustness from discretized delays. Asynchronous execution exhibits a natural ro-
bustness property: the inference delay is defined as

d =

⌊
δ

∆t

⌋
,

where δ is the continuous inference latency and ∆t is the controller sampling period (67 ms at
15 Hz). For d to fluctuate by±1, the underlying latency must shift by more than 67 ms—an extreme
fluctuation rarely observed in practice. This discretization smooths noise in δ, making asynchronous
methods, including ours, inherently robust to moderate latency variations.

G VIDEO EXAMPLES

We provide video demonstrations at this anonymous link, showcasing the distinctive characteristics
and performance of our method.

H LIMITATIONS

Our method is not without limitations. First, it requires specifying a maximum inference delay in
advance to ensure that the optimization process covers the full range of possible delays. If the actual
delay during execution exceeds this bound, unexpected failure may occur. Second, the approach may
demand a substantial amount of finetuning data for masked finetuning, which could limit practicality
in settings where data collection is costly or constrained.

I LLM USAGE

We used LLM (ChatGPT) to assist with writing refinement. Specifically, it was employed to im-
prove clarity, grammar, and flow of text, as well as to adjust tone for academic writing. No content
generation, experimental design, or analysis was delegated to the LLM; all technical contributions,
mathematical definitions, and experimental results were developed by the authors. The LLM’s role
was limited to language polishing and presentation, and all outputs were carefully reviewed and
edited by the authors.

19

https://remac-async.github.io/

	Introduction
	Related Works
	VLA and Action Chunking
	Execution Strategies for Chunked Policies

	Preliminaries
	Methodology
	Masked Action Chunking
	Prefix-preserved Sampling
	Implementation Details

	Experiments
	Kinetix Environment
	Real-World Environment

	Conclusion
	Hardware Setup
	Scheduling Function Variants
	Task Examples
	Per-task Simulation Results
	Additional Ablations
	Effect of qmax and qmin
	Effect of Learning a Mask Embedding
	Data-efficiency of REMAC
	Effect of REMAC on Generalizability
	Application to Other Policy Classes

	Robustness to Varying Delay Conditions
	Video Examples
	Limitations
	LLM Usage

