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ABSTRACT

Biological learning unfolds continuously in time, yet most algorithmic models
of error propagation rely on discrete updates and separate inference and learn-
ing phases. We study a continuous-time neural model that encompasses several
biologically plausible learning algorithms and removes the need for phase separa-
tion. Rules including stochastic gradient descent (SGD), feedback alignment (FA),
direct feedback alignment (DFA), and Kolen–Pollack (KP) emerge naturally as
limiting cases of the dynamics. Simulations show that these continuous-time net-
works stably learn at biological timescales, even under temporal mismatches and
integration noise. Our results reveal that, in the absence of longer-range memory
mechanisms, learning is constrained by the temporal overlap of inputs and errors.
Robust learning requires potentiation timescales that outlast the stimulus window
by at least an order of magnitude, placing the effective eligibility regime in the
few-second range. More broadly, this identifies a unifying principle: learning
succeeds when input and error are temporally correlated at each synapse, a rule
that yields testable predictions for neuroscience and practical design guidance for
analog hardware.

1 INTRODUCTION

Understanding how biological circuits learn has long been a central challenge at the interface of
neuroscience and machine learning. Among the many proposals for biologically plausible learning,
a prominent class consists of feedback-alignment-style, weight-transport-free algorithms such as
feedback alignment (FA; Lillicrap et al. (2016)), direct feedback alignment (DFA; Nøkland (2016)),
and Kolen–Pollack / weight mirrors (KP; Kolen & Pollack (1994); Akrout et al. (2019)). These
algorithms aim to relax the strong requirements of backpropagation, such as exact weight transport,
while preserving the ability to optimize deep networks. These models are attractive both as potential
models of cortical learning and as candidates for training in neuromorphic or analog hardware.

Two key aspects of real biological systems, however, are conspicuously absent from most error prop-
agation formulations: learning in biology unfolds continuously in time, and does not rely on sepa-
rate learning and inference phases. Realistic neurons operate with finite conduction and integration
times, so neither inference, error propagation, nor plasticity can be assumed to occur instantaneously
or in synchronized steps (Kandel et al., 2000). Unlike digital learning algorithms, biological systems
do not alternate between distinct inference and learning phases. By contrast, most existing algorith-
mic models of error propagation-driven learning are cast in discrete steps that alternate between
inference and learning phases, effectively assuming that forward and backward signals are globally
and instantaneously synchronized (Lillicrap et al., 2016; Nøkland, 2016; Akrout et al., 2019; Scel-
lier & Bengio, 2017). This leaves a basic question unaddressed: Do FA/KP/DFA-style learning rules
still work when implemented as continuous-time processes with biologically realistic propagation
and plasticity timescales?

In this work, we address this gap directly. We construct a continuous-time model in which both
neural states and synaptic weights evolve according to coupled first-order differential equations.
Each neuron receives a feedforward drive and a modulatory error drive, and updates its synapses
through a local two-signal rule. Crucially, inference and learning occur simultaneously: there is no
global phase separation, as all state variables evolve under the same ODE. The model is governed
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by distinct time constants for fast signal propagation, intermediate potentiation, and slow synaptic
decay, an ordering that mirrors the hierarchy of timescales in real neural tissue.

Our contributions are threefold:

1. Experimentally tested continuous-time formulation of feedback alignment style algo-
rithms. We specify a fully dynamical architecture for feedback alignment style algorithms,
without retaining algebraic error terms or instantaneous pathways. All computational vari-
ables, including error representations, are governed by continuous-time dynamics. Infer-
ence and learning run concurrently, and classical algorithms such as SGD, FA, DFA, and
KP emerge as limit cases (Section 3).

2. Temporal learning analysis. We analyze the effect of timing mismatches and show that
learning is determined by the temporal overlap between input and error. This predicts
failure when delay approaches the sample duration, depth fragility from accumulated lags,
and robustness patterns observed in simulation (Sections 4–5).

3. Biological timescales. We demonstrate effective learning at biologically realistic
timescales and derive a quantitative constraint: potentiation windows must outlast the stim-
ulus by an order of magnitude, placing the functional eligibility regime in the few-second
range (Section 5.3).

Together, these results support the biological feasibility of rules like KP, FA, and DFA when cast
in continuous time. They show that plasticity arises from temporal overlap between input and er-
ror, explaining the robustness of these algorithms and providing a physically grounded path toward
continuous-time learning in both biological and artificial systems.

2 RELATED WORK

Related families of learning algorithms, such as contrastive Hebbian learning (Xie & Seung, 2003),
equilibrium propagation (Scellier & Bengio, 2017), and other energy-based formulations (Hopfield,
1982; Bengio & Fischer, 2015), also instantiate continuous-time learning rules. Latent-equilibrium
networks and their extensions derive both neural and synaptic dynamics as gradient flows so that ar-
bitrarily slow neurons can approximate backpropagation (and backpropagation through time) with-
out explicit forward/backward phases (Haider et al., 2021; Ellenberger et al., 2024). These ap-
proaches differ from the heterosynaptic two-signal rules that are our focus here. While our model
shares the spirit of framing learning as a dynamical process, we restrict our focus in this work to
error-propagation style rules (FA, DFA, KP) and their continuous-time realizations.

Whittington and Bogacz (Whittington & Bogacz, 2019) review biologically plausible backpropaga-
tion schemes, but emphasize predictive-coding and dendritic-error frameworks rather than weight-
transport-free methods such as feedback alignment or Kolen–Pollack. Predictive coding (Whit-
tington & Bogacz, 2017) uses continuous-time ODEs for neuronal states but treats error terms and
weight updates as instantaneous algebraic quantities. Similarly, dendritic error models (Sacramento
et al., 2018) compute apical errors by algebraic functions of current somatic activity, which is distinct
from feedback alignment. Our work is orthogonal to these directions: we analyze feedback align-
ment type rules (FA, DFA, and KP) in layered feedforward networks, showing that these discrete-
time algorithms admit a continuous-time formulation in which neural states and synaptic weights
coevolve under coupled ODEs.

Both neural ODEs (Chen et al., 2018) and our neural differential-equation model cast network com-
putation as a continuous-time dynamical system, replacing discrete layers/updates with ODE flows
over time. In standard neural ODEs, parameters are fixed during the forward solve, and gradients
are typically recovered by integrating an adjoint ODE backward in time (Chen et al., 2018) or by
differentiating through the solver (Baydin et al., 2018). By contrast, our model couples learning and
inference in one forward-in-time system: both neural states and parameters evolve by ODEs, with
weights updated online via locally computed and propagated error terms.

Scope of our theoretical claims. In our work, statements about SGD, FA, DFA, and KP as limiting
cases of heterosynaptic two-signal rules are recapitulations of the discrete-time analysis of Ziyin
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Figure 1: Neuron design with two archetypal topologies. At left, (zoom): continuous-time heterosy-
naptic neuron model whose weights evolve according to plasticity rules. Neurons receive forward
input x and produce activated output z with weights w. Error signals ϵ enter through modulatory
weights v and drive plasticity of w. In center: layerwise error propagation topology, where errors
are propagated to previous layers via backward weights. At right: direct error propagation topology,
where error signals are broadcast to previous layers directly.

et al. (2025), Lillicrap et al. (2016), Nøkland (2016), and Akrout et al. (2019). Our contribution lies
in the continuous-time, delay-limited formulation and the analysis of temporal overlap and timescale
constraints; we therefore do not restate or reprove the discrete-time equivalence results here.

3 A CONTINUOUS-TIME MODEL OF FEEDBACK ALIGNMENT ERROR
PROPAGATION

Figure 1 illustrates the continuous-time heterosynaptic neuronal systems we study. The forward
pathway, parameterized by w and with activation σ, maps inputs x to neuronal output z. The error
pathway, parameterized by v, receives an error signal ϵ and provides a modulatory influence on
learning. Learning is heterosynaptic: the forward weights w update in proportion to the modulatory
drive (v⊤ϵ), while the error weights v update in proportion to the forward drive (w⊤x). Let layer
l have width dl. Stacking the per-neuron variables into matrices, we can use the following notation:
zl−1(t) ∈ Rdl−1 , zl(t) ∈ Rdl , Wl ∈ Rdl×dl−1 , and error source ϵl(t). Define

żl =
−zl + σl(W

⊤
l zl−1)

τprop
, Ẇl = − Wl

τWdec
+

zl−1 (V
⊤
l ϵl)

⊤

τWpot
, V̇l = − Vl

τVdec
+

(W⊤
l zl−1) ϵ

⊤
l

τVpot
.

(1)

Here τprop is the neuronal propagation time constant, setting how quickly zl relaxes to its driven
input. The constants τWpot, τ

V
pot control how rapidly synaptic potentiation occurs when presynaptic

and modulatory drives coincide. The constants τWdec, τ
V
dec govern passive weight decay, setting the

forgetting timescale. For the biological interpretation of these timescales, see Section 5.3. These
equations arise by stacking per-neuron heterosynaptic updates; see Appendix A for the per-neuron
update rules.

We emphasize that these equations describe rate-based dynamics, not spiking dynamics: the neu-
ronal state z(t) evolves continuously without threshold-triggered resets or discrete spikes (Hopfield,
1984; Wilson & Cowan, 1972). Abstracting away spikes allows focus on continuous-time error-
propagation rules. Notably, this neuron model performs both learning and inference simultaneously.
As neurons are connected, the result is a large coupled dynamical system. Unlike existing algo-
rithms that explicitly separate inference and learning phases, these networks evolve in continuous
time: outputs and weights change together in response to input and error signals.
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These dynamics can be understood as a continuous-time realization of the heterosynaptic two-
signal principle. Under separation of timescales, we may treat neuronal activity as equilibrated
relative to the slower synaptic updates. In this quasi-stationary regime, the fast variables satisfy
zl = σ(W⊤

l zl−1), and the weight dynamics reduce to the heterosynaptic updates analyzed in Ziyin
et al. (2025), where local stability guarantees each neuron implements a gradient step and global
consistency ensures alignment across layers. At full stationarity (ż = Ẇ = V̇ = 0) and with
equal size, the fixed-point equations imply Wl ∝ zl−1(V

⊤
l ϵl)

⊤ and Vl ∝ (W⊤
l zl−1)ϵ

⊤
l , so that

Wl converges to a configuration consistent with V ⊤
l . In this limit, the effective update to Wl is

the outer product of the input with the backpropagated error at that layer—recovering the canonical
backpropagation rule as the stationary solution of the dynamics.

The center and right panels of Figure 1 show how these neurons connect into multilayer networks.
Under timescale separation τprop ≪ τpot ≪ τdec, the activation states equilibrate quickly, and
weights update quasi-statically. Outputs track their steady state zl ≈ σl(W

⊤
l zl−1) within a sam-

ple window. Averaging the weight ODE over one input data presentation gives a weight update
∆Wl ∝ Ewindow

[
zl−1(V

⊤
l ϵl)

⊤]. The effective weight update rule corresponding to different learn-
ing algorithms depends only on the definitions of the feedback weights Vl and error drive ϵl. The
following discrete-time limits corresponding to SGD, FA, DFA, and KP follow directly from the
updates analyzed by Ziyin et al. (2025). Given the error eL as the gradient of the loss function with
respect to the output layer:

SGD. Under the constraint Vl = W⊤
l , the error signals are equal to the true backpropagated error,

ϵl = el. Then, ∆Wl ∝ E[zl−1e
⊤
l ], which is exactly the gradient of the loss.

Feedback Alignment (FA). Set Vl to fixed random matrices that project the error at each layer
backwards to the previous layer. Then, ∆Wl ∝ E[zl−1(V

⊤
l ϵl)

⊤], which is the standard FA update.
Gradient alignment arises empirically (Lillicrap et al., 2016).

Direct Feedback Alignment (DFA). Set Vl to fixed random matrices. Broadcast the output-layer
error eL to all hidden layers, such that ϵl = eL. Then, ∆Wl ∝ E[zl−1(V

⊤
l eL)

⊤], which is the DFA
update. Each layer learns from a direct projection of the global error (Nøkland, 2016).

Kolen-Pollack (KP) / Weight-Mirror Methods. Allow Vl to evolve under the full plasticity rules
in equation 1. Vl tracks the correlation between the forward drive W⊤

l zl−1 and the error ϵl. In
expectation, this update combined with weight decay pushes Vl towards W⊤

l . Thus KP can be
viewed as a dynamical mechanism that drives Vl → W⊤

l , in contrast to SGD which assumes this
equality is enforced from the start (Akrout et al., 2019; Kolen & Pollack, 1994).

We simulate training and inference of these models using ODE solvers (Kidger, 2021). Inputs to
the network are driven by the dataset’s input signals, and the error at the output neurons in layer
L are e = ∂L/∂zL. Figure 2 shows an example of the output-layer dynamics of early training.
Each data point is presented to the network’s input neurons for a fixed duration of time (sample
time), with interpolation between the images done smoothly over a constant, much shorter duration
(buffer time). Rather than impose the corresponding constraints and clamps on weights as traditional
SGD/KP/FA/DFA prescribe, our experiments leave both W and V free to learn. We find that this
makes our network architecture more general without sacrificing task performance.

During evaluation, weights are frozen and the model runs without error feedback. Only the inference
dynamics of z are active, while e is clamped to 0 and the learning rules for W and V are disabled.
The prediction is read out at the very end of the input sample time, right before it switches.

4 TIMING ROBUSTNESS

A central question is: under what conditions does a synapse receive a correct update? Two key con-
siderations are (i) the temporal mismatch between input and error signals, and (ii) the rate at which
the input changes. Figure 4 illustrates the dynamics of a final-layer weight when the error signal
arrives earlier or later than the corresponding input. During the mismatch period, the instantaneous
weight update is incorrect, leading to a cumulative update that deviates from the non-delayed case.

To analyze robustness, we isolate only the part of the weight update that is informative: that which is
proportional to the correlation between presynaptic activity and the matching error drive. Vectorized,
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Figure 2: Zoomed-in view of output neuron dy-
namics during early training. The network in-
put and corresponding error term changes dur-
ing the buffer time periods. Over a single sam-
ple, the neuron outputs move only minutely.
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Figure 3: Sample train/test accuracy during
training. Training set accuracy is measured
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rect/incorrect predictions on the network input
signals. Test set accuracy is measured by evalu-
ating the network with frozen weight dynamics.
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Figure 4: Single-neuron dynamics with different relative timings of the error and input signals. Left:
error signal arrives early. Right: error signal is delayed. The bottom panel of both plots depicts the
cumulative weight change and shows that in the presence of delay, the weight accumulates a biased
gradient update compared to the case where there was no error delay.

the informative weight change accumulated over a presentation window of length T is

∆Wl ∝
∫ T

0

zl−1(t)
(
V ⊤
l ϵl(t)

)⊤
kτpot

(t) dt, kτpot
(t) = exp

(
− (T − t)/τpot

)
, (2)

where the causal exponential kernel arises from the low-pass potentiation dynamics and weights
more recent coincidence more strongly. For a single synapse (i → j), this reduces to the scalar form

∆(Wl)ij ∝
∫ T

0

(zl−1(t))i
(
(Vl)

⊤
:,jϵl(t)

)
kτpot

(t) dt. (3)

This makes clear that learning depends on the temporal cross-correlation between the presynaptic
drive (zl−1)i and the local modulatory/error drive at neuron j.

Piecewise-constant inputs with delay. Assume (zl−1)i(t) is active on [0, T ] and the error drive is
active on [∆,∆+T ] (same duration, delayed by ∆). In the fast-propagation limit τprop ≪ τpot, the
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expected update becomes

E[∆(Wl)ij ] ∝
∫ t1

t0

exp
(
(t− T )/τpot

)
dt

= τpot

(
e−(T−t1)/τpot − e−(T−t0)/τpot

)
= τpot e

−(T−t1)/τpot

(
1− e−L/τpot

)
, (4)

where t0 = max(0,∆), t1 = min(T,∆+ T ), and L = t1 − t0 = (T − |∆|)+.

Flat-kernel limit and prediction. When T ≪ τpot (the regime standard in our experiments), kτpot

is approximately constant over [0, T ], so equation 4 reduces to the symmetric triangular law
E[∆(Wl)ij ] ∝ (T − |∆|)+. (5)

Thus learning succeeds if and only if input and error overlap in time, and it degrades sharply as
|∆| → T . When T approaches τpot, the exact expression equation 4 predicts a mildly skewed
triangle that up-weights late-arriving errors (positive ∆) relative to equally early ones; the skew
vanishes continuously as τpot/T → ∞.

A fixed overlap budget. For delay ∆, define the correct-overlap set C(∆) = [0, T ]∩ [∆,∆+T ] of
length L = (T − |∆|)+ and mismatched set I(∆) = [0, T ] \ C(∆). With potentiation kernel k(t),
let

KC(∆) =

∫
C(∆)

k(t) dt, KI(∆) =

∫
I(∆)

k(t) dt,

so that KC(∆) +KI(∆) = KT :=
∫ T

0
k(t) dt. Thus overlap and mismatch trade off under a fixed

budget. In the flat-kernel case k ≡ 1, this reduces to L+(T −L) = T , yielding E[∆(Wl)ij ] ∝ L =
(T − |∆|)+, i.e. accuracy improves with either larger T or smaller |∆|.
Our analysis predicts and experiments confirm near-symmetry between early and late error in the
flat-kernel regime. By contrast, biological plasticity is causally gated: synaptic activity first writes
a short-lived eligibility trace, and only subsequently arriving modulatory/error signals consolidate
it into weight change (Yagishita et al., 2014). Thus, early error fails to drive learning even though
late error can—an asymmetry our simplified model compresses into a symmetric overlap law. Incor-
porating an explicit eligibility gate would recover this asymmetry without altering our conclusions
about temporal overlap and timescale separation; we leave such extensions for future work.

5 EXPERIMENTS

In this section, we evaluate three experimental regimes. Section 5.1 demonstrates that networks
can robustly learn so long as error signals overlap with inputs. Section 5.2 demonstrate that deeper
networks accumulate propagation lag, making them less tolerant to error delays and requiring longer
sample times for stable learning. Finally, Section 5.3 shows that our framework operates effectively
under synaptic, plasticity, and decay timescales that align with known cortical physiology.

5.1 DIRECT ERROR ROUTING

The direct error routing topology sets the local error at each layer to be the global error (from
the output layer), ϵl = eL. This corresponds to a Direct Feedback Alignment scheme where the
backward weights Vl are also learned. Figure 5 examines the accuracy of the direct error routing
topology on the 7 × 7 downsampled MNIST dataset as the error-signal delay and sample duration
are varied.

In the direct error routing topology, each layer receives a direct copy of the error signal. As a result,
all neurons in the network receive the error signal with a propagation delay of one synaptic length.
Learning fails when the error signal delay is approximately equal to or longer than the sample
duration, since the error signal has zero overlap with its corresponding input. In these regions
(accuracy ∼ 10%), weights only change due to spurious correlations between mismatched input-
label pairs. Transitional regions (∼ 70% accuracy) arise when error and input partially overlap:
some useful updates occur, but they are mixed with incorrect updates from mismatched periods.
These networks have a fixed τpot = 10s while the sample time T lies in 0.01-0.25s, putting them
primarily in the flat-kernel learning limit. As a result, learning responds fairly symmetrically to both
early and late error signals.
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Figure 5: Evaluation of the direct error routing topology on the 7×7 downsampled MNIST dataset.
The x-axis denotes the temporal delay between input signal and label: negative values indicate the
label arrives before the input, while positive values indicate the label arrives after the input. At left
is a network with 1 hidden layer of 49 neurons, and at right is a network with 2 hidden layers of 49
and 32 neurons. The learning is fairly robust until the delay exceeds the sample time.
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Figure 6: Evaluation of the layerwise error routing topology on the circle dataset as error signal
delay and sample duration are swept. The network topologies increase in the number of hidden
layers, where each added hidden layer has 24 neurons. From left to right, the networks have one
hidden layer of 24 ReLU neurons, two hidden layers of 24 ReLU neurons, and three hidden layers
of 24 ReLU neurons. Layerwise error routing imposes stricter requirements on delay due to longer
error propagation paths.

5.2 LAYERWISE ERROR ROUTING

The layerwise error routing topology propagates error from the output layer step by step to previ-
ous layers via V ⊤

l ϵl. This corresponds to a KP or weight mirroring scheme where the backward
weights Vl are learned and converge to transposes of the forward weights. Figure 6 examines the
accuracy of the layerwise error routing topology on a synthetic two-dimensional circles dataset (see
Appendix B). This task is more nonlinear than the 7 × 7 downsampled MNIST task, and requires
deeper ReLU networks to represent an accurate decision boundary.

Unlike the direct error routing topology, the layerwise error routing topology suffers more from finite
propagation times: not only does the input signal have to propagate to the output layer, but the error
signal must also propagate backward from the output layer back to the input layer. The heatmaps
show that these deeper networks require longer sample times and are more sensitive to delay in the
error signal. Finite propagation speed means that deeper networks accumulate lag, degrading the
learning signal especially in early layers. Longer sample durations mitigate this effect by increasing
the window where inputs and their true errors coincide. In the language of Section 4, this increases
T relative to a fixed ∆, resulting in a greater correct update E[∆W ]. In the lower triangular regions
of the heatmap (large absolute delays), overlap is insufficient and learning fails entirely.

5.3 BIOLOGICAL TIMESCALES

A central motivation for these algorithms is their relevance to biological learning. Real neural cir-
cuits operate on multiple nested timescales, from millisecond synaptic conductances to second-scale
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plasticity windows and slower homeostatic processes. Yet most algorithmic work has abstracted
away these temporal constraints. Here, we parameterize our continuous-time networks with biolog-
ically motivated constants and show that they learn effectively on timescales observed in the brain.
Of the three time constants relevant in our model, τpot is the least constrained biologically. Our
results therefore provide a new theoretical prediction that narrows its plausible functional range.

In our model, τprop corresponds to the dominant synaptic conductance time constant, which is set
primarily by the decay of the postsynaptic current.We interpret the potentiation constant τpot as the
biochemical induction gate during which coincident presynaptic drive and modulatory/error input
can trigger plasticity via second-messenger cascades. Finally, we assign the synaptic weight decay
time constant τdec to be ∼ 20 minutes, capturing the gradual decay of synaptic efficiency in the
absence of reinforcement. As long as τdec is significantly larger than the propagation and potenti-
ation constants, it primarily sets a slow baseline for weight decay rather than shaping the learning
dynamics. We find in simulation that once τdec ≫ τprop, τpot, its precise value has little effect
on performance or dynamics for the tasks we study. Table 1 details the corresponding biophysical
processes for each of these time constants.

Constant Corresponding Biophysical Process Typical Range
τprop Fast synaptic transmission determined by recep-

tor/channel kinetics and membrane RC filtering.
Dominated by AMPA/GABAA receptor conductance
decay after vesicular glutamate/GABA release (Destexhe
et al., 1998; O’Brien et al., 1998).

2–30ms in cortex; sub-
ms in auditory brainstem
synapses.

τpot Coincidence-gated plasticity via second-messenger cas-
cades (dopamine D1/D2→cAMP/PKA, Ca2+→CaMKII),
regulating AMPAR phosphorylation and trafficking. De-
fines the biochemical “induction gate” during which
pre/post and modulatory signals interact (Yagishita et al.,
2014; Gerstner et al., 2018).

∼0.3–10 s depending on
circuit (striatal vs. corti-
cal/hippocampal).

τdec Slow synaptic weakening via protein turnover, phos-
phatase activity, and homeostatic scaling (e.g., AMPAR
endocytosis, transcriptional regulation). Provides a grad-
ual baseline decay of synaptic efficacy in the absence of
reinforcement (Turrigiano et al., 1998).

Minutes to tens of min-
utes.

Table 1: Biophysical timescales in continuous-time network models. Time constants correspond
to distinct molecular/cellular mechanisms: rapid receptor/channel kinetics (τprop), seconds-scale
intracellular signaling and receptor trafficking (τpot), and slow homeostatic regulation (τdec).

Figure 7 evaluates the trained accuracy of two layerwise error routing networks on these biologically
grounded timescales. We find a broad regime where learning is stable and accurate, despite finite
propagation and potentiation times. This demonstrates that the timescales τprop ≪ τpot ≪ τdec
characteristic of cortical tissue are sufficient to support effective learning in our continuous-time
framework. Furthermore, our results predict that effective feedback-driven learning in cortical-like
circuits requires potentiation windows that outlast the stimulus by at least an order of magnitude,
placing τpot firmly in the few-second range—a regime that is both biologically plausible and exper-
imentally testable.

6 DISCUSSION

Limitations. Our empirical evaluation focuses on small datasets and simple tasks due to compu-
tational constraints: training of these systems requires explicit forward integration over long time
periods of high-dimensional, coupled ODEs whose timescales span over 6 orders of magnitude.
This is computationally intensive and numerically delicate (high stiffness, tight tolerances, long
horizons), making large benchmarks prohibitive without extensive engineering. Additionally, our
neurons are rate-based and simplified, and many biophysical phenomena (spikes, neuromodulatory
heterogeneity, etc.) are not modeled. Despite these simplifications, the success of our continuous-
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Figure 7: Evaluation of a layerwise error routing network on the 7 × 7 MNIST dataset. Left: 1
hidden layer (49 neurons). Right: 2 hidden layers (49 and 32 neurons). Learning is unstable when
the potentiation timescale τpot is comparable to the presentation window (T = 50ms), but becomes
robust only once τpot exceeds ∼ 2 s. This corresponds to τpot/T ≈ 40, highlighting the requirement
that potentiation persist far longer than the input presentation time.

time, overlap-driven networks is promising, and future work may address incorporating more faith-
ful biophysics.

Temporal overlap as the operative constraint. In our ODE formulation, the expected update of
a synapse is proportional to the temporal cross-correlation between its presynaptic drive x and a
locally projected error V ⊤

l ϵl, low-pass filtered by the plasticity kernel with time constant τpot. For
piecewise-constant presentations, this yields the analytic overlap kernel (T − |∆|)+. Failure bands
seen at |∆| ≈ T confirm this prediction: deeper networks accumulate propagation delays that reduce
overlap in early layers, degrading learning. This perspective unifies algorithms like FA, DFA, and
KP under a single causal principle: a synapse can learn if and only if temporally overlapping input
and error reach it. Weight symmetry or fixed feedback are not essential; overlap is.

Potentiation timescale requirement. From the overlap kernel analysis in Section 4, robust learning
requires the potentiation kernel to be effectively flat over a presentation window T . Allowing at
most a fractional attenuation η across the window yields τpot ≥ T/ ln

(
1/(1 − η)

)
. Empirically

we observe a transition near τpot/T ≈ 40, i.e., η ≈ 1 − e−1/40 ≈ 0.025. With T = 50ms, this
places the threshold at τpot ≳ 2 s. Thus, in our protocols, seconds-scale eligibility is sufficient and
apparently necessary; deeper networks and finite propagation tighten this bound by further reducing
effective overlap.

Depth and architectural shortcuts. Unlike digital networks, where error gradients are computed
simultaneously for all layers, continuous-time networks suffer cumulative delay with depth. This
makes learning increasingly fragile as networks grow deeper. Biological circuits appear to mitigate
this through architectural shortcuts: skip and feedback pathways are implemented as interareal pro-
jections that bypass intermediate layers and, in the neocortex, create shortcuts across the cortical
hierarchy (Douglas & Martin, 2004). These connections can provide faster routes for both inference
and error signals, preserving temporal overlap in early layers. This interpretation links our results to
HSP theory, which argues that arbitrary backward pathways can suffice for credit assignment—our
analysis suggests that their role is to preserve overlap, not to enforce symmetry.

Timescales as a design principle. We find that biologically measured timescales are sufficient to
support robust learning in our framework. The observed hierarchy τprop ≪ τpot ≪ τdec mirrors
the organization of cortical tissue: millisecond synaptic currents, second-scale eligibility traces, and
slow homeostatic decay. In simulation, this separation creates a broad regime where learning is
stable and accurate, even in the presence of delays and noise. These results suggest that the brain’s
hierarchy of clocks may be a functional requirement for maintaining gradient-aligned learning in
continuous time.

Implications for hardware. Analog or neuromorphic implementations face the same challenges as
biology: finite propagation speeds, integration imperfections, and heterogeneous device dynamics.
Our results indicate that hardware does not need to enforce strict weight symmetry, but must pre-
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serve overlap between input and error signals across relevant timescales. Designing circuits with
fast signal propagation, intermediate eligibility accumulation, and slow decay may therefore be a
practical recipe for stable analog learning systems.

Broader perspective.

Our continuous-time formulation gives a model for biological and physical learning where inference
and plasticity unfold together, constrained by finite propagation and integration dynamics. In this
setting, the essential ingredient is not weight transport or symmetry, but the preservation of temporal
overlap between inputs and errors within a hierarchy of timescales.

This perspective yields concrete predictions for biology. Deeper circuits are predicted to be more
fragile to propagation delays, motivating anatomical shortcuts (skip and feedback pathways) that
preserve overlap in early layers. More importantly, robust learning requires potentiation dynamics
that outlast the stimulus window by at least an order of magnitude; with cortical integration times
of tens of milliseconds, this places the effective eligibility regime in the seconds range. Thus, we
predict that eligibility traces supporting error-driven learning must persist at least on the order of
seconds—a regime that experimentalists can directly probe by manipulating trace duration or dis-
rupting long-range feedback pathways.

More broadly, our analysis links cortical physiology, algorithmic proposals like FA/DFA/KP, and
the practical requirements of analog hardware. It points to a unifying condition—learning succeeds
when input and error are temporally correlated at each synapse—that provides both a mechanistic
hypothesis for neuroscience and a design rule for neuromorphic systems.

LLM USAGE

LLMs (ChatGPT-5, accessed via web) were used to assist with drafting and refining phrasing of the
manuscript. They were also employed to generate portions of the experimental code and plotting
scripts. All outputs from the LLM were reviewed, verified, and, where necessary, modified by the
authors.
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A DYNAMICS OF A SINGLE NEURON

The single-neuron version of the dynamics presented in equation 1:

ż =
− z + σ(w⊤x)

τprop
, ẇ = − w

τWdec
+

(v⊤ϵ)x

τWpot
, v̇ = − v

τVdec
+

(w⊤x) ϵ

τVpot
.

B DATASETS & METHODOLOGY

We use two datasets in our evaluation of these models. The 7 × 7 downsampled MNIST dataset is
the standard MNIST (LeCun, 1998) dataset that has been downsampled with 4× 4 average pooling.
The circles dataset is the make circles dataset from scikit-learn (Pedregosa et al., 2011). It is
well established that simple linear classifiers achieve surprisingly high accuracy on MNIST, with
only modest improvements from deeper architectures (LeCun et al., 2002). We find a linear softmax
regressor on 7× 7 downsampled MNIST achieves over 89% test accuracy. In contrast, a logistic re-
gressor on the 2-circle concentric-rings dataset achieves only 75% test accuracy, which corresponds
to the class imbalance itself (75% outer ring, 25% inner ring).

W are initialized according Xavier normalization (Glorot & Bengio, 2010). V are initialized to a
fixed constant 0.1. Classification decisions are read out from output neurons at the very end of each
input sample’s presentation. Evaluation is done on frozen W and V dynamics. Each heatmap data
point is the average of 3-5 runs, depending on the experiment.

We integrate all continuous-time dynamics using Diffrax’s (Kidger, 2021) Tsit5 solver (Tsitouras,
2011) (a fifth-order explicit Runge–Kutta method with an embedded fourth-order error estimate)
equipped with a PID adaptive step-size controller (rtol = 2 × 10−3, atol = 10−5). This setup
allows the solver to take large steps during slowly varying segments of the dynamics while automat-
ically refining steps around rapid transients induced by input switches and error onsets. Although
the timescales of our systems span several orders of magnitude, we empirically find that they are not
so stiff as to require an implicit method; Tsit5 remains stable and efficient under these tolerances.
Compared to a fixed-step forward Euler integrator tuned to resolve the fastest timescale, this adaptive
scheme reduces wall-clock time by several orders of magnitude while producing indistinguishable
learning curves and dynamics.

C COMPARISON TO SGD

To ensure a fair comparison, we train baseline multi-layer perceptrons (MLPs) with the same hidden
unit counts as our continuous-time networks with layerwise error propagation. Both models are
exposed to the same training data samples in the same order. For the baselines, we use the Adam
optimizer (Kingma, 2014) with an initial learning rate of 0.001, rather than vanilla SGD, to avoid
penalizing the baseline with suboptimal hyperparameters. Training is performed with a batch size
of 1, matching the presentation schedule used by the continuous-time networks. All networks use
ReLU activations (Glorot et al., 2011) on hidden layers.
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Table 2 shows accuracies on the 7 × 7 MNIST dataset. In shallow networks, our layerwise error
propagation network matches the baseline on both training and test accuracy, but in deeper networks
lags slightly. On simple and fairly linear tasks, this is expected: signal lag accumulates with depth
(Section 4), and the dataset itself yields diminishing returns from additional layers.

Train Accuracy Test Accuracy
Model Discrete-time Continuous-time Discrete-time Continuous-time

1-layer 0.8750± 0.0054 0.9318± 0.0028 0.8634± 0.0056 0.9209± 0.0011
2-layer 0.8758± 0.0220 0.9318± 0.0032 0.8673± 0.0259 0.8919± 0.0050

Table 2: Accuracy (mean ± std) on the 7×7 MNIST dataset across 3 runs. We compare discrete-time
MLP baselines (SGD with Adam, lr= 0.001) to our continuous-time layerwise error propagation
network across architectures with 1–2 hidden layers.

On the more nonlinear task of distinguishing concentric circles, additional depth provides a benefit
(Table 3). Our continuous-time layerwise error propagation networks achieve comparable or higher
test accuracies than the discrete-time baselines.

Train Accuracy Test Accuracy
Model Discrete-time Continuous-time Discrete-time Continuous-time

1-layer 0.8318± 0.0276 0.9241± 0.0133 0.8272± 0.0282 0.9470± 0.0101
2-layer 0.9520± 0.0076 0.9657± 0.0082 0.9485± 0.0066 0.9683± 0.0109
3-layer 0.9322± 0.0300 0.9494± 0.0588 0.9312± 0.0218 0.9568± 0.0452

Table 3: Accuracy (mean ± std) on the concentric circles dataset across 3 runs. We compare discrete-
time MLP baselines (SGD with Adam, lr = 0.001) to our continuous-time layerwise error propaga-
tion network across architectures with 1–3 hidden layers.

We can also compare the resilience of our models versus standard SGD in the presence of label
error. In our continuous time networks, this arises due to delays in the error signal, as discussed in
Section 4. We can model the same error in standard discrete-time neural networks by presenting
a standard neural network optimizer a corresponding fraction of mislabeled data. For example, a
delay of half the sample time, ∆ = 1

2T in our continuous-time model, corresponds to presenting the
correct data pairing (Xi, Yi) and then the mismatched label (Xi, Yi+1), where i is the index into the
input and label datasets.

Figure 8 compares our continuous-time neural network with a standard discrete-time neural network
trained with label dithering, which models the effect of delayed error signals without duplicating
training data. Instead of splitting each sample into sub-intervals, we approximate the delay ratio
r = τdelay/Tsample by a rational fraction p/q, and then assign exactly p out of every q samples to use
the previous label while the rest use the current label. This ensures that the fraction of “mismatched”
updates matches the physical delay ratio in expectation, while keeping each sample presented only
once. In this way, the training dynamics reflect the temporal overlap of input and delayed error, but
the dataset size and number of SGD steps remain unchanged.
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Figure 8: Delay ratio versus accuracy. Panels (a), (b), and (c) correspond to networks with 1, 2,
and 3 hidden layers. Our continuous-time neural networks with the layerwise error propagation
topology demonstrate comparable, if not slightly better, robustness to mismatch than corresponding
discrete-time neural networks.

14


	Introduction
	Related Work
	A Continuous-Time Model of Feedback Alignment Error Propagation
	Timing Robustness
	Experiments
	Direct Error Routing
	Layerwise Error Routing
	Biological Timescales

	Discussion
	Dynamics of a Single Neuron
	Datasets & Methodology
	Comparison to SGD

