

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DOES FEEDBACK ALIGNMENT WORK AT BIOLOGICAL TIMESCALES?

Anonymous authors

Paper under double-blind review

ABSTRACT

Biological learning unfolds continuously in time, yet most algorithmic models of error propagation rely on discrete updates and separate inference and learning phases. We study a continuous-time neural model that encompasses several biologically plausible learning algorithms and removes the need for phase separation. Rules including stochastic gradient descent (SGD), feedback alignment (FA), direct feedback alignment (DFA), and Kolen–Pollack (KP) emerge naturally as limiting cases of the dynamics. Simulations show that these continuous-time networks stably learn at biological timescales, even under temporal mismatches and integration noise. Our results reveal that, in the absence of longer-range memory mechanisms, learning is constrained by the temporal overlap of inputs and errors. Robust learning requires potentiation timescales that outlast the stimulus window by at least an order of magnitude, placing the effective eligibility regime in the few-second range. More broadly, this identifies a unifying principle: *learning succeeds when input and error are temporally correlated at each synapse*, a rule that yields testable predictions for neuroscience and practical design guidance for analog hardware.

1 INTRODUCTION

Understanding how biological circuits learn has long been a central challenge at the interface of neuroscience and machine learning. Among the many proposals for biologically plausible learning, a prominent class consists of feedback-alignment-style, weight-transport-free algorithms such as feedback alignment (FA; Lillicrap et al. (2016)), direct feedback alignment (DFA; Nøkland (2016)), and Kolen–Pollack / weight mirrors (KP; Kolen & Pollack (1994); Akroud et al. (2019)). These algorithms aim to relax the strong requirements of backpropagation, such as exact weight transport, while preserving the ability to optimize deep networks. These models are attractive both as potential models of cortical learning and as candidates for training in neuromorphic or analog hardware.

Two key aspects of real biological systems, however, are conspicuously absent from most error propagation formulations: learning in biology unfolds continuously in time, and does not rely on separate learning and inference phases. Realistic neurons operate with finite conduction and integration times, so neither inference, error propagation, nor plasticity can be assumed to occur instantaneously or in synchronized steps (Kandel et al., 2000). Unlike digital learning algorithms, biological systems do not alternate between distinct inference and learning phases. By contrast, most existing algorithmic models of error propagation-driven learning are cast in discrete steps that alternate between inference and learning phases, effectively assuming that forward and backward signals are globally and instantaneously synchronized (Lillicrap et al., 2016; Nøkland, 2016; Akroud et al., 2019; Scellier & Bengio, 2017). This leaves a basic question unaddressed: *Do FA/KP/DFA-style learning rules still work when implemented as continuous-time processes with biologically realistic propagation and plasticity timescales?*

In this work, we address this gap directly. We construct a continuous-time model in which both neural states and synaptic weights evolve according to coupled first-order differential equations. Each neuron receives a feedforward drive and a modulatory error drive, and updates its synapses through a local two-signal rule. Crucially, inference and learning occur simultaneously: there is no global phase separation, as all state variables evolve under the same ODE. The model is governed

054 by distinct time constants for fast signal propagation, intermediate potentiation, and slow synaptic
 055 decay, an ordering that mirrors the hierarchy of timescales in real neural tissue.
 056

057 Our contributions are threefold:

- 058 1. **Experimentally tested continuous-time formulation of feedback alignment style algo-**
 059 **rithms.** We specify a fully dynamical architecture for feedback alignment style algorithms,
 060 without retaining algebraic error terms or instantaneous pathways. All computational vari-
 061 ables, including error representations, are governed by continuous-time dynamics. Infer-
 062 ence and learning run concurrently, and classical algorithms such as SGD, FA, DFA, and
 063 KP emerge as limit cases (Section 3).
- 064 2. **Temporal learning analysis.** We analyze the effect of timing mismatches and show that
 065 learning is determined by the temporal overlap between input and error. This predicts
 066 failure when delay approaches the sample duration, depth fragility from accumulated lags,
 067 and robustness patterns observed in simulation (Sections 4–5).
- 068 3. **Biological timescales.** We demonstrate effective learning at biologically realistic
 069 timescales and derive a quantitative constraint: potentiation windows must outlast the stim-
 070 ulus by an order of magnitude, placing the functional eligibility regime in the few-second
 071 range (Section 5.3).

072 Together, these results support the biological feasibility of rules like KP, FA, and DFA when cast
 073 in continuous time. They show that plasticity arises from temporal overlap between input and er-
 074 rror, explaining the robustness of these algorithms and providing a physically grounded path toward
 075 continuous-time learning in both biological and artificial systems.

077 2 RELATED WORK

079 Related families of learning algorithms, such as contrastive Hebbian learning (Xie & Seung, 2003),
 080 equilibrium propagation (Scellier & Bengio, 2017), and other energy-based formulations (Hopfield,
 081 1982; Bengio & Fischer, 2015), also instantiate continuous-time learning rules. **Latent-equilibrium**
 082 **networks and their extensions derive both neural and synaptic dynamics as gradient flows so that ar-**
 083 **bitrarily slow neurons can approximate backpropagation (and backpropagation through time) with-**
 084 **out explicit forward/backward phases (Haider et al., 2021; Ellenberger et al., 2024).** These ap-
 085 proaches differ from the heterosynaptic two-signal rules that are our focus here. While our model
 086 shares the spirit of framing learning as a dynamical process, we restrict our focus in this work to
 087 error-propagation style rules (FA, DFA, KP) and their continuous-time realizations.

088 **Whittington and Bogacz (Whittington & Bogacz, 2019) review biologically plausible backpropaga-**
 089 **tion schemes, but emphasize predictive-coding and dendritic-error frameworks rather than weight-**
 090 **transport-free methods such as feedback alignment or Kolen–Pollack. Predictive coding (Whit-**
 091 **tington & Bogacz, 2017) uses continuous-time ODEs for neuronal states but treats error terms and**
 092 **weight updates as instantaneous algebraic quantities. Similarly, dendritic error models (Sacramento**
 093 **et al., 2018) compute apical errors by algebraic functions of current somatic activity, which is distinct**
 094 **from feedback alignment. Our work is orthogonal to these directions: we analyze feedback align-**
 095 **ment type rules (FA, DFA, and KP) in layered feedforward networks, showing that these discrete-**
 096 **time algorithms admit a continuous-time formulation in which neural states and synaptic weights**
 097 **coevolve under coupled ODEs.**

098 Both neural ODEs (Chen et al., 2018) and our neural differential-equation model cast network com-
 099 putation as a continuous-time dynamical system, replacing discrete layers/updates with ODE flows
 100 over time. In standard neural ODEs, parameters are fixed during the forward solve, and gradients
 101 are typically recovered by integrating an adjoint ODE backward in time (Chen et al., 2018) or by
 102 differentiating through the solver (Baydin et al., 2018). By contrast, our model couples learning and
 103 inference in one forward-in-time system: both neural states and parameters evolve by ODEs, with
 104 weights updated online via locally computed and propagated error terms.

105
 106 **Scope of our theoretical claims.** In our work, statements about SGD, FA, DFA, and KP as limiting
 107 cases of heterosynaptic two-signal rules are recapitulations of the discrete-time analysis of Ziyin

$$\dot{\mathbf{z}}_l = \frac{-\mathbf{z}_l + \sigma_l(W_l^\top \mathbf{z}_{l-1})}{\tau_{\text{prop}}}, \quad \dot{W}_l = -\frac{W_l}{\tau_{\text{dec}}^W} + \frac{\mathbf{z}_{l-1}(V_l^\top \epsilon_l)^\top}{\tau_{\text{pot}}^W}, \quad \dot{V}_l = -\frac{V_l}{\tau_{\text{dec}}^V} + \frac{(W_l^\top \mathbf{z}_{l-1}) \epsilon_l^\top}{\tau_{\text{pot}}^V}. \quad (1)$$

Here τ_{prop} is the neuronal propagation time constant, setting how quickly \mathbf{z}_l relaxes to its driven input. The constants $\tau_{\text{pot}}^W, \tau_{\text{pot}}^V$ control how rapidly synaptic potentiation occurs when presynaptic and modulatory drives coincide. The constants $\tau_{\text{dec}}^W, \tau_{\text{dec}}^V$ govern passive weight decay, setting the forgetting timescale. For the biological interpretation of these timescales, see Section 5.3. These equations arise by stacking per-neuron heterosynaptic updates; see Appendix A for the per-neuron update rules.

We emphasize that these equations describe rate-based dynamics, not spiking dynamics: the neuronal state $\mathbf{z}(t)$ evolves continuously without threshold-triggered resets or discrete spikes (Hopfield, 1984; Wilson & Cowan, 1972). Abstracting away spikes allows focus on continuous-time error-propagation rules. Notably, this neuron model performs both learning and inference simultaneously. As neurons are connected, the result is a large coupled dynamical system. Unlike existing algorithms that explicitly separate inference and learning phases, these networks evolve in continuous time: outputs and weights change together in response to input and error signals.

162 These dynamics can be understood as a continuous-time realization of the heterosynaptic two-
 163 signal principle. Under separation of timescales, we may treat neuronal activity as equilibrated
 164 relative to the slower synaptic updates. In this quasi-stationary regime, the fast variables satisfy
 165 $\mathbf{z}_l = \sigma(W_l^\top \mathbf{z}_{l-1})$, and the weight dynamics reduce to the heterosynaptic updates analyzed in Ziyin
 166 et al. (2025), where local stability guarantees each neuron implements a gradient step and global
 167 consistency ensures alignment across layers. At full stationarity ($\dot{\mathbf{z}} = \dot{W} = \dot{V} = 0$) and with
 168 equal size, the fixed-point equations imply $W_l \propto \mathbf{z}_{l-1}(V_l^\top \epsilon_l)^\top$ and $V_l \propto (W_l^\top \mathbf{z}_{l-1})\epsilon_l^\top$, so that
 169 W_l converges to a configuration consistent with V_l^\top . In this limit, the effective update to W_l is
 170 the outer product of the input with the backpropagated error at that layer—recovering the canonical
 171 backpropagation rule as the stationary solution of the dynamics.

172 The center and right panels of Figure 1 show how these neurons connect into multilayer networks.
 173 Under timescale separation $\tau_{\text{prop}} \ll \tau_{\text{pot}} \ll \tau_{\text{dec}}$, the activation states equilibrate quickly, and
 174 weights update quasi-statically. Outputs track their steady state $\mathbf{z}_l \approx \sigma_l(W_l^\top \mathbf{z}_{l-1})$ within a sam-
 175 ple window. Averaging the weight ODE over one input data presentation gives a weight update
 176 $\Delta W_l \propto \mathbb{E}_{\text{window}}[\mathbf{z}_{l-1}(V_l^\top \epsilon_l)^\top]$. The effective weight update rule corresponding to different learn-
 177 ing algorithms depends only on the definitions of the feedback weights V_l and error drive ϵ_l . **The following discrete-time limits corresponding to SGD, FA, DFA, and KP follow directly from the**
 178 **updates analyzed by Ziyin et al. (2025)**. Given the error \mathbf{e}_L as the gradient of the loss function with
 179 respect to the output layer:

180 **SGD.** Under the constraint $V_l = W_l^\top$, the error signals are equal to the true backpropagated error,
 181 $\epsilon_l = \mathbf{e}_l$. Then, $\Delta W_l \propto \mathbb{E}[\mathbf{z}_{l-1} \mathbf{e}_l^\top]$, which is exactly the gradient of the loss.

182 **Feedback Alignment (FA).** Set V_l to fixed random matrices that project the error at each layer
 183 backwards to the previous layer. Then, $\Delta W_l \propto \mathbb{E}[\mathbf{z}_{l-1}(V_l^\top \epsilon_l)^\top]$, which is the standard FA update.
 184 Gradient alignment arises empirically (Lillicrap et al., 2016).

185 **Direct Feedback Alignment (DFA).** Set V_l to fixed random matrices. Broadcast the output-layer
 186 error \mathbf{e}_L to all hidden layers, such that $\epsilon_l = \mathbf{e}_L$. Then, $\Delta W_l \propto \mathbb{E}[\mathbf{z}_{l-1}(V_l^\top \mathbf{e}_L)^\top]$, which is the DFA
 187 update. Each layer learns from a direct projection of the global error (Nøkland, 2016).

188 **Kolen-Pollack (KP) / Weight-Mirror Methods.** Allow V_l to evolve under the full plasticity rules
 189 in equation 1. V_l tracks the correlation between the forward drive $W_l^\top \mathbf{z}_{l-1}$ and the error ϵ_l . In
 190 expectation, this update combined with weight decay pushes V_l towards W_l^\top . Thus KP can be
 191 viewed as a dynamical mechanism that drives $V_l \rightarrow W_l^\top$, in contrast to SGD which assumes this
 192 equality is enforced from the start (Akrout et al., 2019; Kolen & Pollack, 1994).

193 We simulate training and inference of these models using ODE solvers (Kidger, 2021). Inputs to
 194 the network are driven by the dataset’s input signals, and the error at the output neurons in layer
 195 L are $\mathbf{e} = \partial \mathcal{L} / \partial \mathbf{z}_L$. Figure 2 shows an example of the output-layer dynamics of early training.
 196 Each data point is presented to the network’s input neurons for a fixed duration of time (sample
 197 time), with interpolation between the images done smoothly over a constant, much shorter duration
 198 (buffer time). Rather than impose the corresponding constraints and clamps on weights as traditional
 199 SGD/KP/FA/DFA prescribe, our experiments leave both W and V free to learn. We find that this
 200 makes our network architecture more general without sacrificing task performance.

201 During evaluation, weights are frozen and the model runs without error feedback. Only the inference
 202 dynamics of \mathbf{z} are active, while \mathbf{e} is clamped to 0 and the learning rules for W and V are disabled.
 203 The prediction is read out at the very end of the input sample time, right before it switches.

204 4 TIMING ROBUSTNESS

205 A central question is: *under what conditions does a synapse receive a correct update?* Two key con-
 206 siderations are (i) the temporal mismatch between input and error signals, and (ii) the rate at which
 207 the input changes. Figure 4 illustrates the dynamics of a final-layer weight when the error signal
 208 arrives earlier or later than the corresponding input. During the mismatch period, the instantaneous
 209 weight update is incorrect, leading to a cumulative update that deviates from the non-delayed case.

210 To analyze robustness, we isolate only the part of the weight update that is informative: that which is
 211 proportional to the correlation between presynaptic activity and the matching error drive. Vectorized,

229 Figure 2: Zoomed-in view of output neuron dy-
230 namics during early training. The network in-
231 put and corresponding error term changes dur-
232 ing the *buffer* time periods. Over a single sam-
233 ple, the neuron outputs move only minutely.

234 Figure 3: Sample train/test accuracy during
235 training. Training set accuracy is measured
236 as the moving average of instantaneous cor-
237 rect/incorrect predictions on the network input
238 signals. Test set accuracy is measured by eval-
239 uating the network with frozen weight dynamics.

250 Figure 4: Single-neuron dynamics with different relative timings of the error and input signals. Left:
251 error signal arrives early. Right: error signal is delayed. The bottom panel of both plots depicts the
252 cumulative weight change and shows that in the presence of delay, the weight accumulates a biased
253 gradient update compared to the case where there was no error delay.

254 the informative weight change accumulated over a presentation window of length T is

257
$$\Delta W_l \propto \int_0^T \mathbf{z}_{l-1}(t) (\mathbf{V}_l^\top \boldsymbol{\epsilon}_l(t))^\top k_{\tau_{\text{pot}}}(t) dt, \quad k_{\tau_{\text{pot}}}(t) = \exp(- (T-t)/\tau_{\text{pot}}), \quad (2)$$

260 where the causal exponential kernel arises from the low-pass potentiation dynamics and weights
261 more recent coincidence more strongly. For a single synapse ($i \rightarrow j$), this reduces to the scalar form

263
$$\Delta(W_l)_{ij} \propto \int_0^T (\mathbf{z}_{l-1}(t))_i ((\mathbf{V}_l)_{:,j}^\top \boldsymbol{\epsilon}_l(t)) k_{\tau_{\text{pot}}}(t) dt. \quad (3)$$

266 This makes clear that learning depends on the temporal cross-correlation between the presynaptic
267 drive (\mathbf{z}_{l-1}) and the local modulatory/error drive at neuron j .

268 **Piecewise-constant inputs with delay.** Assume $(\mathbf{z}_{l-1})_i(t)$ is active on $[0, T]$ and the error drive is
269 active on $[\Delta, \Delta + T]$ (same duration, delayed by Δ). In the fast-propagation limit $\tau_{\text{prop}} \ll \tau_{\text{pot}}$, the

270 expected update becomes
 271

$$\begin{aligned} 272 \quad \mathbb{E}[\Delta(W_l)_{ij}] &\propto \int_{t_0}^{t_1} \exp((t-T)/\tau_{\text{pot}}) dt \\ 273 \\ 274 \quad &= \tau_{\text{pot}} \left(e^{-(T-t_1)/\tau_{\text{pot}}} - e^{-(T-t_0)/\tau_{\text{pot}}} \right) = \tau_{\text{pot}} e^{-(T-t_1)/\tau_{\text{pot}}} \left(1 - e^{-L/\tau_{\text{pot}}} \right), \quad (4) \\ 275 \end{aligned}$$

276 where $t_0 = \max(0, \Delta)$, $t_1 = \min(T, \Delta + T)$, and $L = t_1 - t_0 = (T - |\Delta|)_+$.

277 **Flat-kernel limit and prediction.** When $T \ll \tau_{\text{pot}}$ (the regime standard in our experiments), $k_{\tau_{\text{pot}}}$
 278 is approximately constant over $[0, T]$, so equation 4 reduces to the symmetric triangular law
 279

$$\mathbb{E}[\Delta(W_l)_{ij}] \propto (T - |\Delta|)_+. \quad (5)$$

280 Thus learning succeeds if and only if input and error *overlap in time*, and it degrades sharply as
 281 $|\Delta| \rightarrow T$. When T approaches τ_{pot} , the exact expression equation 4 predicts a mildly *skewed*
 282 *triangle* that up-weights late-arriving errors (positive Δ) relative to equally early ones; the skew
 283 vanishes continuously as $\tau_{\text{pot}}/T \rightarrow \infty$.

284 **A fixed overlap budget.** For delay Δ , define the correct-overlap set $C(\Delta) = [0, T] \cap [\Delta, \Delta + T]$ of
 285 length $L = (T - |\Delta|)_+$ and mismatched set $I(\Delta) = [0, T] \setminus C(\Delta)$. With potentiation kernel $k(t)$,
 286 let

$$288 \quad K_C(\Delta) = \int_{C(\Delta)} k(t) dt, \quad K_I(\Delta) = \int_{I(\Delta)} k(t) dt,$$

289 so that $K_C(\Delta) + K_I(\Delta) = K_T := \int_0^T k(t) dt$. Thus overlap and mismatch trade off under a fixed
 290 budget. In the flat-kernel case $k \equiv 1$, this reduces to $L + (T - L) = T$, yielding $\mathbb{E}[\Delta(W_l)_{ij}] \propto L =$
 291 $(T - |\Delta|)_+$, i.e. accuracy improves with either larger T or smaller $|\Delta|$.

292 Our analysis predicts and experiments confirm near-symmetry between early and late error in the
 293 flat-kernel regime. By contrast, biological plasticity is causally gated: synaptic activity first writes
 294 a short-lived eligibility trace, and only subsequently arriving modulatory/error signals consolidate
 295 it into weight change (Yagishita et al., 2014). Thus, early error fails to drive learning even though
 296 late error can—an asymmetry our simplified model compresses into a symmetric overlap law. Incorpor-
 297 ating an explicit eligibility gate would recover this asymmetry without altering our conclusions
 298 about temporal overlap and timescale separation; we leave such extensions for future work.

300 5 EXPERIMENTS

301 In this section, we evaluate three experimental regimes. Section 5.1 demonstrates that networks
 302 can robustly learn so long as error signals overlap with inputs. Section 5.2 demonstrate that deeper
 303 networks accumulate propagation lag, making them less tolerant to error delays and requiring longer
 304 sample times for stable learning. Finally, Section 5.3 shows that our framework operates effectively
 305 under synaptic, plasticity, and decay timescales that align with known cortical physiology.

306 5.1 DIRECT ERROR ROUTING

307 The direct error routing topology sets the local error at each layer to be the global error (from
 308 the output layer), $\epsilon_l = \mathbf{e}_L$. This corresponds to a Direct Feedback Alignment scheme where the
 309 backward weights V_l are also learned. Figure 5 examines the accuracy of the direct error routing
 310 topology on the 7×7 downsampled MNIST dataset as the error-signal delay and sample duration
 311 are varied.

312 In the direct error routing topology, each layer receives a direct copy of the error signal. As a result,
 313 all neurons in the network receive the error signal with a propagation delay of one synaptic length.
 314 Learning fails when the error signal delay is approximately equal to or longer than the sample
 315 duration, since the error signal has zero overlap with its corresponding input. In these regions
 316 (accuracy $\sim 10\%$), weights only change due to spurious correlations between mismatched input-
 317 label pairs. Transitional regions ($\sim 70\%$ accuracy) arise when error and input partially overlap:
 318 some useful updates occur, but they are mixed with incorrect updates from mismatched periods.
 319 These networks have a fixed $\tau_{\text{pot}} = 10\text{s}$ while the sample time T lies in 0.01-0.25s, putting them
 320 primarily in the flat-kernel learning limit. As a result, learning responds fairly symmetrically to both
 321 early and late error signals.

Figure 5: Evaluation of the direct error routing topology on the 7×7 downsampled MNIST dataset. The x -axis denotes the temporal delay between input signal and label: negative values indicate the label arrives before the input, while positive values indicate the label arrives after the input. At left is a network with 1 hidden layer of 49 neurons, and at right is a network with 2 hidden layers of 49 and 32 neurons. The learning is fairly robust until the delay exceeds the sample time.

Figure 6: Evaluation of the layerwise error routing topology on the circle dataset as error signal delay and sample duration are swept. The network topologies increase in the number of hidden layers, where each added hidden layer has 24 neurons. From left to right, the networks have one hidden layer of 24 ReLU neurons, two hidden layers of 24 ReLU neurons, and three hidden layers of 24 ReLU neurons. Layerwise error routing imposes stricter requirements on delay due to longer error propagation paths.

5.2 LAYERWISE ERROR ROUTING

The layerwise error routing topology propagates error from the output layer step by step to previous layers via $V_l^\top \epsilon_l$. This corresponds to a KP or weight mirroring scheme where the backward weights V_l are learned and converge to transposes of the forward weights. Figure 6 examines the accuracy of the layerwise error routing topology on a synthetic two-dimensional circles dataset (see Appendix B). This task is more nonlinear than the 7×7 downsampled MNIST task, and requires deeper ReLU networks to represent an accurate decision boundary.

Unlike the direct error routing topology, the layerwise error routing topology suffers more from finite propagation times: not only does the input signal have to propagate to the output layer, but the error signal must also propagate backward from the output layer back to the input layer. The heatmaps show that these deeper networks require longer sample times and are more sensitive to delay in the error signal. Finite propagation speed means that deeper networks accumulate lag, degrading the learning signal especially in early layers. Longer sample durations mitigate this effect by increasing the window where inputs and their true errors coincide. In the language of Section 4, this increases T relative to a fixed Δ , resulting in a greater correct update $\mathbb{E}[\Delta W]$. In the lower triangular regions of the heatmap (large absolute delays), overlap is insufficient and learning fails entirely.

5.3 BIOLOGICAL TIMESCALES

A central motivation for these algorithms is their relevance to biological learning. Real neural circuits operate on multiple nested timescales, from millisecond synaptic conductances to second-scale

378 plasticity windows and slower homeostatic processes. Yet most algorithmic work has abstracted
 379 away these temporal constraints. Here, we parameterize our continuous-time networks with biolog-
 380 ically motivated constants and show that they learn effectively on timescales observed in the brain.
 381 Of the three time constants relevant in our model, τ_{pot} is the least constrained biologically. Our
 382 results therefore provide a new theoretical prediction that narrows its plausible functional range.

383 In our model, τ_{prop} corresponds to the dominant synaptic conductance time constant, which is set
 384 primarily by the decay of the postsynaptic current. We interpret the potentiation constant τ_{pot} as the
 385 biochemical induction gate during which coincident presynaptic drive and modulatory/error input
 386 can trigger plasticity via second-messenger cascades. Finally, we assign the synaptic weight decay
 387 time constant τ_{dec} to be ~ 20 minutes, capturing the gradual decay of synaptic efficiency in the
 388 absence of reinforcement. As long as τ_{dec} is significantly larger than the propagation and poten-
 389 tiation constants, it primarily sets a slow baseline for weight decay rather than shaping the learning
 390 dynamics. We find in simulation that once $\tau_{\text{dec}} \gg \tau_{\text{prop}}, \tau_{\text{pot}}$, its precise value has little effect
 391 on performance or dynamics for the tasks we study. Table 1 details the corresponding biophysical
 392 processes for each of these time constants.

Constant	Corresponding Biophysical Process	Typical Range
τ_{prop}	Fast synaptic transmission determined by receptor/channel kinetics and membrane RC filtering. Dominated by AMPA/GABA _A receptor conductance decay after vesicular glutamate/GABA release (Destexhe et al., 1998; O’Brien et al., 1998).	2–30 ms in cortex; sub-ms in auditory brainstem synapses.
τ_{pot}	Coincidence-gated plasticity via second-messenger cascades (dopamine D1/D2 → cAMP/PKA, $\text{Ca}^{2+} \rightarrow \text{CaMKII}$), regulating AMPAR phosphorylation and trafficking. Defines the biochemical “induction gate” during which pre/post and modulatory signals interact (Yagishita et al., 2014; Gerstner et al., 2018).	$\sim 0.3\text{--}10$ s depending on circuit (striatal vs. cortical/hippocampal).
τ_{dec}	Slow synaptic weakening via protein turnover, phosphatase activity, and homeostatic scaling (e.g., AMPAR endocytosis, transcriptional regulation). Provides a gradual baseline decay of synaptic efficacy in the absence of reinforcement (Turrigiano et al., 1998).	Minutes to tens of minutes.

411 Table 1: Biophysical timescales in continuous-time network models. Time constants correspond
 412 to distinct molecular/cellular mechanisms: rapid receptor/channel kinetics (τ_{prop}), seconds-scale
 413 intracellular signaling and receptor trafficking (τ_{pot}), and slow homeostatic regulation (τ_{dec}).
 414

415 Figure 7 evaluates the trained accuracy of two layerwise error routing networks on these biologically
 416 grounded timescales. We find a broad regime where learning is stable and accurate, despite finite
 417 propagation and potentiation times. This demonstrates that the timescales $\tau_{\text{prop}} \ll \tau_{\text{pot}} \ll \tau_{\text{dec}}$
 418 characteristic of cortical tissue are sufficient to support effective learning in our continuous-time
 419 framework. Furthermore, our results predict that effective feedback-driven learning in cortical-like
 420 circuits requires potentiation windows that outlast the stimulus by at least an order of magnitude,
 421 placing τ_{pot} firmly in the few-second range—a regime that is both biologically plausible and exper-
 422 imentally testable.

424 6 DISCUSSION

425 **Limitations.** Our empirical evaluation focuses on small datasets and simple tasks due to compu-
 426 tational constraints: training of these systems requires explicit forward integration over long time
 427 periods of high-dimensional, coupled ODEs whose timescales span over 6 orders of magnitude.
 428 This is computationally intensive and numerically delicate (high stiffness, tight tolerances, long
 429 horizons), making large benchmarks prohibitive without extensive engineering. Additionally, our
 430 neurons are rate-based and simplified, and many biophysical phenomena (spikes, neuromodulatory
 431 heterogeneity, etc.) are not modeled. Despite these simplifications, the success of our continuous-

Figure 7: Evaluation of a layerwise error routing network on the 7×7 MNIST dataset. Left: 1 hidden layer (49 neurons). Right: 2 hidden layers (49 and 32 neurons). Learning is unstable when the potentiation timescale τ_{pot} is comparable to the presentation window ($T = 50$ ms), but becomes robust only once τ_{pot} exceeds ~ 2 s. This corresponds to $\tau_{\text{pot}}/T \approx 40$, highlighting the requirement that potentiation persist far longer than the input presentation time.

time, overlap-driven networks is promising, and future work may address incorporating more faithful biophysics.

Temporal overlap as the operative constraint. In our ODE formulation, the expected update of a synapse is proportional to the temporal cross-correlation between its presynaptic drive \mathbf{x} and a locally projected error $V_l^\top \epsilon_l$, low-pass filtered by the plasticity kernel with time constant τ_{pot} . For piecewise-constant presentations, this yields the analytic overlap kernel $(T - |\Delta|)_+$. Failure bands seen at $|\Delta| \approx T$ confirm this prediction: deeper networks accumulate propagation delays that reduce overlap in early layers, degrading learning. This perspective unifies algorithms like FA, DFA, and KP under a single causal principle: a synapse can learn if and only if temporally overlapping input and error reach it. Weight symmetry or fixed feedback are not essential; overlap is.

Potentiation timescale requirement. From the overlap kernel analysis in Section 4, robust learning requires the potentiation kernel to be effectively flat over a presentation window T . Allowing at most a fractional attenuation η across the window yields $\tau_{\text{pot}} \geq T / \ln(1/(1 - \eta))$. Empirically we observe a transition near $\tau_{\text{pot}}/T \approx 40$, i.e., $\eta \approx 1 - e^{-1/40} \approx 0.025$. With $T = 50$ ms, this places the threshold at $\tau_{\text{pot}} \gtrsim 2$ s. Thus, in our protocols, seconds-scale eligibility is sufficient and apparently necessary; deeper networks and finite propagation tighten this bound by further reducing effective overlap.

Depth and architectural shortcuts. Unlike digital networks, where error gradients are computed simultaneously for all layers, continuous-time networks suffer cumulative delay with depth. This makes learning increasingly fragile as networks grow deeper. Biological circuits appear to mitigate this through architectural shortcuts: skip and feedback pathways are implemented as interareal projections that bypass intermediate layers and, in the neocortex, create shortcuts across the cortical hierarchy (Douglas & Martin, 2004). These connections can provide faster routes for both inference and error signals, preserving temporal overlap in early layers. This interpretation links our results to HSP theory, which argues that arbitrary backward pathways can suffice for credit assignment—our analysis suggests that their role is to preserve overlap, not to enforce symmetry.

Timescales as a design principle. We find that biologically measured timescales are sufficient to support robust learning in our framework. The observed hierarchy $\tau_{\text{prop}} \ll \tau_{\text{pot}} \ll \tau_{\text{dec}}$ mirrors the organization of cortical tissue: millisecond synaptic currents, second-scale eligibility traces, and slow homeostatic decay. In simulation, this separation creates a broad regime where learning is stable and accurate, even in the presence of delays and noise. These results suggest that the brain’s hierarchy of clocks may be a functional requirement for maintaining gradient-aligned learning in continuous time.

Implications for hardware. Analog or neuromorphic implementations face the same challenges as biology: finite propagation speeds, integration imperfections, and heterogeneous device dynamics. Our results indicate that hardware does not need to enforce strict weight symmetry, but must pre-

486 serve overlap between input and error signals across relevant timescales. Designing circuits with
 487 fast signal propagation, intermediate eligibility accumulation, and slow decay may therefore be a
 488 practical recipe for stable analog learning systems.

489 **Broader perspective.**

490 Our continuous-time formulation gives a model for biological and physical learning where inference
 491 and plasticity unfold together, constrained by finite propagation and integration dynamics. In this
 492 setting, the essential ingredient is not weight transport or symmetry, but the preservation of temporal
 493 overlap between inputs and errors within a hierarchy of timescales.

494 This perspective yields concrete predictions for biology. Deeper circuits are predicted to be more
 495 fragile to propagation delays, motivating anatomical shortcuts (skip and feedback pathways) that
 496 preserve overlap in early layers. More importantly, robust learning requires potentiation dynamics
 497 that outlast the stimulus window by at least an order of magnitude; with cortical integration times
 498 of tens of milliseconds, this places the effective eligibility regime in the seconds range. Thus, we
 499 predict that eligibility traces supporting error-driven learning must persist at least on the order of
 500 seconds—a regime that experimentalists can directly probe by manipulating trace duration or dis-
 501 rupting long-range feedback pathways.

502 More broadly, our analysis links cortical physiology, algorithmic proposals like FA/DFA/KP, and
 503 the practical requirements of analog hardware. It points to a unifying condition—*learning succeeds*
 504 *when input and error are temporally correlated at each synapse*—that provides both a mechanistic
 505 hypothesis for neuroscience and a design rule for neuromorphic systems.

506 **LLM USAGE**

507 LLMs (ChatGPT-5, accessed via web) were used to assist with drafting and refining phrasing of the
 508 manuscript. They were also employed to generate portions of the experimental code and plotting
 509 scripts. All outputs from the LLM were reviewed, verified, and, where necessary, modified by the
 510 authors.

511 **REFERENCES**

512 Mohamed Akroud, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
 513 learning without weight transport. *Advances in neural information processing systems*, 32, 2019.

514 Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
 515 Automatic differentiation in machine learning: a survey. *Journal of machine learning research*,
 516 18(153):1–43, 2018.

517 Yoshua Bengio and Asja Fischer. Early inference in energy-based models approximates back-
 518 propagation. *arXiv preprint arXiv:1510.02777*, 2015.

519 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 520 differential equations. *Advances in neural information processing systems*, 31, 2018.

521 Alain Destexhe, Zachary F Mainen, Terrence J Sejnowski, et al. Kinetic models of synaptic trans-
 522 mission. *Methods in neuronal modeling*, 2:1–25, 1998.

523 Rodney J Douglas and Kevan AC Martin. Neuronal circuits of the neocortex. *Annu. Rev. Neurosci.*,
 524 27(1):419–451, 2004.

525 Benjamin Ellenberger, Paul Haider, Jakob Jordan, Kevin Max, Ismael Jaras, Laura Kriener, Federico
 526 Benitez, and Mihai A Petrovici. Backpropagation through space, time, and the brain. *arXiv*
 527 *preprint arXiv:2403.16933*, 2024.

528 Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
 529 traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor
 530 learning rules. *Frontiers in neural circuits*, 12:53, 2018.

531 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 532 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and*
 533 *statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

540 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
 541 *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp.
 542 315–323. JMLR Workshop and Conference Proceedings, 2011.

543

544 Paul Haider, Benjamin Ellenberger, Laura Kriener, Jakob Jordan, Walter Senn, and Mihai A Petro-
 545 vici. Latent equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily
 546 slow neurons. *Advances in neural information processing systems*, 34:17839–17851, 2021.

547

548 John J Hopfield. Neural networks and physical systems with emergent collective computational
 549 abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.

550

551 John J Hopfield. Neurons with graded response have collective computational properties like those
 552 of two-state neurons. *Proceedings of the national academy of sciences*, 81(10):3088–3092, 1984.

553

554 Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth, Sarah
 555 Mack, et al. *Principles of neural science*, volume 4. McGraw-hill New York, 2000.

556

557 Patrick Kidger. *On Neural Differential Equations*. PhD thesis, University of Oxford, 2021.

558

559 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 560 2014.

561

562 John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In *Proceedings of
 563 1994 IEEE International Conference on Neural Networks (ICNN'94)*, volume 3, pp. 1375–1380.
 564 IEEE, 1994.

565

566 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

567

568 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 569 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.

570

571 Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
 572 feedback weights support error backpropagation for deep learning. *Nature communications*, 7(1):
 573 13276, 2016.

574

575 Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. *Advances in
 576 neural information processing systems*, 29, 2016.

577

578 Richard J O'Brien, Sunjeev Kamboj, Michael D Ehlers, Kenneth R Rosen, Gerald D Fischbach,
 579 and Richard L Huganir. Activity-dependent modulation of synaptic ampa receptor accumulation.
 580 *Neuron*, 21(5):1067–1078, 1998.

581

582 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 583 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
 584 Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011.

585

586 João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcir-
 587 cuits approximate the backpropagation algorithm. *Advances in neural information processing
 588 systems*, 31, 2018.

589

590 Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
 591 based models and backpropagation. *Frontiers in computational neuroscience*, 11:24, 2017.

592

593 Ch Tsitouras. Runge–kutta pairs of order 5 (4) satisfying only the first column simplifying assump-
 594 tion. *Computers & mathematics with applications*, 62(2):770–775, 2011.

595

596 Gina G Turrigiano, Kenneth R Leslie, Niraj S Desai, Lana C Rutherford, and Sacha B Nelson.
 597 Activity-dependent scaling of quantal amplitude in neocortical neurons. *Nature*, 391(6670):892–
 598 896, 1998.

599

600 James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
 601 in a predictive coding network with local hebbian synaptic plasticity. *Neural computation*, 29(5):
 602 1229–1262, 2017.

594 James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. *Trends*
 595 *in cognitive sciences*, 23(3):235–250, 2019.
 596

597 Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized populations
 598 of model neurons. *Biophysical journal*, 12(1):1–24, 1972.

599 Xiaohui Xie and H Sebastian Seung. Equivalence of backpropagation and contrastive hebbian learn-
 600 ing in a layered network. *Neural computation*, 15(2):441–454, 2003.
 601

602 Sho Yagishita, Akiko Hayashi-Takagi, Graham CR Ellis-Davies, Hidetoshi Urakubo, Shin Ishii, and
 603 Haruo Kasai. A critical time window for dopamine actions on the structural plasticity of dendritic
 604 spines. *Science*, 345(6204):1616–1620, 2014.

605 Liu Ziyin, Isaac Chuang, and Tomaso Poggio. Heterosynaptic circuits are universal gradient ma-
 606 chines. *arXiv preprint arXiv:2505.02248*, 2025.
 607

608 A DYNAMICS OF A SINGLE NEURON

609 The single-neuron version of the dynamics presented in equation 1:

$$612 \dot{z} = \frac{-z + \sigma(\mathbf{w}^\top \mathbf{x})}{\tau_{\text{prop}}}, \quad \dot{\mathbf{w}} = -\frac{\mathbf{w}}{\tau_{\text{dec}}^W} + \frac{(\mathbf{v}^\top \boldsymbol{\epsilon}) \mathbf{x}}{\tau_{\text{pot}}^W}, \quad \dot{\mathbf{v}} = -\frac{\mathbf{v}}{\tau_{\text{dec}}^V} + \frac{(\mathbf{w}^\top \mathbf{x}) \boldsymbol{\epsilon}}{\tau_{\text{pot}}^V}.$$

615 B DATASETS & METHODOLOGY

616 We use two datasets in our evaluation of these models. The 7×7 downsampled MNIST dataset is
 617 the standard MNIST (LeCun, 1998) dataset that has been downsampled with 4×4 average pooling.
 618 The circles dataset is the `make_circles` dataset from scikit-learn (Pedregosa et al., 2011). It is
 619 well established that simple linear classifiers achieve surprisingly high accuracy on MNIST, with
 620 only modest improvements from deeper architectures (LeCun et al., 2002). We find a linear softmax
 621 regressor on 7×7 downsampled MNIST achieves over 89% test accuracy. In contrast, a logistic re-
 622 gressor on the 2-circle concentric-rings dataset achieves only 75% test accuracy, which corresponds
 623 to the class imbalance itself (75% outer ring, 25% inner ring).
 624

625 W are initialized according Xavier normalization (Glorot & Bengio, 2010). V are initialized to a
 626 fixed constant 0.1. Classification decisions are read out from output neurons at the very end of each
 627 input sample’s presentation. Evaluation is done on frozen W and V dynamics. Each heatmap data
 628 point is the average of 3-5 runs, depending on the experiment.
 629

630 We integrate all continuous-time dynamics using DiffraX’s (Kidger, 2021) Tsit5 solver (Tsitouras,
 631 2011) (a fifth-order explicit Runge–Kutta method with an embedded fourth-order error estimate)
 632 equipped with a PID adaptive step-size controller ($\text{rtol} = 2 \times 10^{-3}$, $\text{atol} = 10^{-5}$). This setup
 633 allows the solver to take large steps during slowly varying segments of the dynamics while automati-
 634 cally refining steps around rapid transients induced by input switches and error onsets. Although
 635 the timescales of our systems span several orders of magnitude, we empirically find that they are not
 636 so stiff as to require an implicit method; Tsit5 remains stable and efficient under these tolerances.
 637 Compared to a fixed-step forward Euler integrator tuned to resolve the fastest timescale, this adaptive
 638 scheme reduces wall-clock time by several orders of magnitude while producing indistinguishable
 639 learning curves and dynamics.
 640

641 C COMPARISON TO SGD

642 To ensure a fair comparison, we train baseline multi-layer perceptrons (MLPs) with the same hidden
 643 unit counts as our continuous-time networks with layerwise error propagation. Both models are
 644 exposed to the same training data samples in the same order. For the baselines, we use the Adam
 645 optimizer (Kingma, 2014) with an initial learning rate of 0.001, rather than vanilla SGD, to avoid
 646 penalizing the baseline with suboptimal hyperparameters. Training is performed with a batch size
 647 of 1, matching the presentation schedule used by the continuous-time networks. All networks use
 648 ReLU activations (Glorot et al., 2011) on hidden layers.
 649

648
 649
 650
 651
 652
 Table 2 shows accuracies on the 7×7 MNIST dataset. In shallow networks, our layerwise error
 propagation network matches the baseline on both training and test accuracy, but in deeper networks
 lags slightly. On simple and fairly linear tasks, this is expected: signal lag accumulates with depth
 (Section 4), and the dataset itself yields diminishing returns from additional layers.

Model	Train Accuracy		Test Accuracy	
	Discrete-time	Continuous-time	Discrete-time	Continuous-time
1-layer	0.8750 ± 0.0054	0.9318 ± 0.0028	0.8634 ± 0.0056	0.9209 ± 0.0011
2-layer	0.8758 ± 0.0220	0.9318 ± 0.0032	0.8673 ± 0.0259	0.8919 ± 0.0050

653
 654
 655
 656
 657
 658
 Table 2: Accuracy (mean \pm std) on the 7×7 MNIST dataset across 3 runs. We compare discrete-time
 659 MLP baselines (SGD with Adam, lr= 0.001) to our continuous-time layerwise error propagation
 660 network across architectures with 1–2 hidden layers.

661
 662
 663 On the more nonlinear task of distinguishing concentric circles, additional depth provides a benefit
 664 (Table 3). Our continuous-time layerwise error propagation networks achieve comparable or higher
 665 test accuracies than the discrete-time baselines.

Model	Train Accuracy		Test Accuracy	
	Discrete-time	Continuous-time	Discrete-time	Continuous-time
1-layer	0.8318 ± 0.0276	0.9241 ± 0.0133	0.8272 ± 0.0282	0.9470 ± 0.0101
2-layer	0.9520 ± 0.0076	0.9657 ± 0.0082	0.9485 ± 0.0066	0.9683 ± 0.0109
3-layer	0.9322 ± 0.0300	0.9494 ± 0.0588	0.9312 ± 0.0218	0.9568 ± 0.0452

666
 667
 668 Table 3: Accuracy (mean \pm std) on the concentric circles dataset across 3 runs. We compare discrete-
 669 time MLP baselines (SGD with Adam, lr = 0.001) to our continuous-time layerwise error propaga-
 670 tion network across architectures with 1–3 hidden layers.

671
 672
 673 We can also compare the resilience of our models versus standard SGD in the presence of label
 674 error. In our continuous time networks, this arises due to delays in the error signal, as discussed in
 675 Section 4. We can model the same error in standard discrete-time neural networks by presenting
 676 a standard neural network optimizer a corresponding fraction of mislabeled data. For example, a
 677 delay of half the sample time, $\Delta = \frac{1}{2}T$ in our continuous-time model, corresponds to presenting the
 678 correct data pairing (X_i, Y_i) and then the mismatched label (X_i, Y_{i+1}) , where i is the index into the
 679 input and label datasets.

680
 681
 682
 683
 684 Figure 8 compares our continuous-time neural network with a standard discrete-time neural network
 685 trained with *label dithering*, which models the effect of delayed error signals without duplicating
 686 training data. Instead of splitting each sample into sub-intervals, we approximate the delay ratio
 687 $r = \tau_{\text{delay}}/T_{\text{sample}}$ by a rational fraction p/q , and then assign exactly p out of every q samples to use
 688 the *previous* label while the rest use the current label. This ensures that the fraction of “mismatched”
 689 updates matches the physical delay ratio in expectation, while keeping each sample presented only
 690 once. In this way, the training dynamics reflect the temporal overlap of input and delayed error, but
 691 the dataset size and number of SGD steps remain unchanged.

692
 693
 694
 695
 696
 697
 698
 699
 700
 701

Figure 8: Delay ratio versus accuracy. Panels (a), (b), and (c) correspond to networks with 1, 2, and 3 hidden layers. Our continuous-time neural networks with the layerwise error propagation topology demonstrate comparable, if not slightly better, robustness to mismatch than corresponding discrete-time neural networks.