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Abstract

Does continued scaling of large language models (LLMs) yield diminishing returns?
Real-world value often stems from the length of task an agent can complete. We
start this work by observing the simple, but counter-intuitive fact that marginal
gains in single-step accuracy can compound into exponential improvements in the
length of a task the model can successfully complete. Then, we argue that failures
of LLMs when simple tasks are made longer arise from mistakes in execution,
rather than an inability to reason. We propose isolating execution capability, by
explicitly providing the knowledge and plan needed to solve a long-horizon task.
We find that larger models correctly execute for far more turns even when a small
model has similarly high single-turn accuracy. Curiously, this is not just due to
long-context limitations, but we also observe a self-conditioning effect—models
become more likely to make mistakes when the context contains their errors in
prior turns. Self-conditioning does not reduce by just scaling model size. We find
recent thinking models can not only perform long tasks in a single turn, but also
self-condition less. We conclude by benchmarking frontier thinking models on the
length of task they can execute in a single turn. Overall, by focusing on execution,
we hope to reconcile debates on how LLMs can solve complex reasoning problems
yet fail at simple tasks when made longer, and highlight the massive benefits of
scaling model size and sequential test-time compute for long-horizon tasks.

1 Introduction

Is continued scaling of compute for Large Language Models (LLMs) economically justified given
diminishing marginal gains? This question lies at the heart of the ongoing debate on the viability of
continued massive investments in LLMs. While scaling laws show diminishing returns on metrics
like test loss, the true economic potential of LLMs might arise from automating long, multi-step
tasks [35]. However, long-horizon tasks have been the Achilles’ heel of Deep Learning. We see
recent vision models generating impressive images, yet consistency over long videos remains an
unsolved challenge. As the industry races to build agents that tackle entire projects, not just isolated
questions, a fundamental question arises:

How can we measure the number of steps an LLM can reliably execute?

LLM failures on simple, but long tasks have been considered a fundamental inability to reason [36].
Despite massive improvements on complex reasoning benchmarks, Shojaee et al. [47] claim thinking
models [18] only give an “illusion of thinking”, as they eventually fail when the task is made longer.
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Diminishing Gains On A Single Step Can Lead To Exponential Gains Over Long Horizon
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Figure 1: A summary of our contributions. Our work measures long-horizon execution, finding
large benefits from scaling model size and sequential test-time compute. We identify a failure mode
where models self-condition on their own errors, degrading future performance.

These results have sparked much debate in the community, which we think can be resolved by
decoupling the need for planning and execution in reasoning or agentic tasks. Planning involves
deciding what information to retrieve or tools to use and in which order, while execution involves
carrying out the plan. In Shojaee et al. [47] setup, the LLMs know the correct plan, as they initially
follow it correctly for many steps. We posit that the eventual failures are in execution—as the task
gets longer, the model is more likely to make a mistake in executing the plan. Although much
attention has been paid to LLM planning abilities [24], execution remains an understudied challenge,
despite being increasingly important as LLMs begin to be used for long reasoning and agentic tasks.

In this work, we measure long-horizon execution capabilities of LLMs in a controlled setting. We
isolate the execution capability of LLMs by explicitly providing them the knowledge and plan needed.
By controlling the number of turns, and the number of steps per turn, which together contribute to
task length, we reveal insights about long-horizon execution in LLMs:

Does Scaling have Diminishing Returns? We observe that diminishing improvements in single-step
accuracy can compound, leading to exponential growth in the length of task a model can complete. Tra-
ditionally, scaling model size is assumed to increase capacity to store parametric knowledge or search
for plans. Yet, even when the required knowledge and plan are explicitly provided, we find that scaling
model size leads to large improvements in the number of turns a model can execute successfully.

The Self-Conditioning Effect. One might assume that failures on long tasks are simply due to the
compounding of a small, constant per-step error rate and context length issues. However, we find that
the per-step error rate itself rises as the task progresses. This is in contrast to humans, who typically
improve at executing a task with practice. We hypothesize that, as a significant fraction of model
training is to predict the most likely next token given its context, conditioning models on their own
error-prone history increases the likelihood of future errors. We test this by controlling the error
rate in the history provided to the model. As the error rate in the history is increased, we observe
a sharp degradation in subsequent step accuracy, validating that models self-condition. We show how
self-conditioning leads to degradation in model performance in long-horizon tasks beyond previously
identified long-context issues, and unlike the latter, is not mitigated by scaling model size.

The Impact of Thinking. We find that recent thinking models are not affected by prior mistakes,
fixing the self-conditioning effect. Further, sequential test time compute also significantly improves
the length of task a model can complete in a single turn. Where, without chain-of-thought prompting,
even frontier LLMs like DeepSeek-V3 fail at performing even four steps of execution, and its thinking
version R1 can execute over 100 steps, highlighting the importance of reasoning before acting [60].
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We benchmark frontier thinking models, and find GPT-5 thinking (codenamed “Horizon”) can
execute over 2100 steps, far ahead of the next best competitor, Claude-4 Sonnet at 432.

The “jagged frontier” [13] of LLM capabilities remains fascinating yet confusing. Unlike traditional
machines, LLMs are more susceptible to failure when used for executing repetitive tasks. Thus, we
argue that execution failures in long tasks should not be misinterpreted as the inability to reason. We
show that long-horizon execution improves dramatically by scaling model size and sequential test
time compute. If the length of tasks a model can complete indicates its economic value, continued
investment in scaling compute might be worth the cost, even if short-task benchmarks give the illusion
of slowing progress.

2 Formulation

First, we define key capabilities involved in an agentic or reasoning task. As a motivating example,
consider an agent for the task of booking flights. Upon receiving a search result, the agent must
reason to choose a flight that aligns with user preferences. One plan for this reasoning task could be:

For each flight, verify the flight timings, baggage allowance, and airline reviews. Then apply any
available discounts or reward programs, and finally select a flight based on cost and travel time.

Each of these individual steps requires two operations: retrieving some information, and composing
it with the existing information state, until the goal of choosing the final flight is reached. Both these
operations require knowledge, potentially tacit, about how to perform them. Execution is carrying out
this plan, a sequence of retrieve-then-compose steps, until a final booking is made. We formalize
these terms for our work as follows:

Key Terms

Planning. Deciding what steps to take, and in what sequence.
Execution. Carrying out the steps decided in the plan.
Knowledge. Information about different types of steps, and how to compose them.
A reasoning task. Requires planning the steps needed to solve it, and then executing them.
An agentic task. Requires planning what actions to take, and then executing them.

In this work, we focus on execution, as we argue that it is a critical component of long-horizon capa-
bilities. Execution has traditionally received less attention [50] than capabilities such as reasoning,
planning, and world knowledge, which have been the primary focus of LLM capability discussions.
In fact, failures in execution have been misattributed to limitations in reasoning or planning capabili-
ties [47, 26]. This perception may stem from the view that execution is straightforward or mundane.
For example, once we as humans learn how to do a task, we are quite reliable at executing it, even
improving with practice. However, as LLMs do not come with correctness guarantees, we posit that
just execution over a long horizon can surprisingly be a challenge. We hypothesize that:

Even if planning and world knowledge are perfected,
LLMs will still make mistakes in execution over a long-horizon.

In an agentic or reasoning task, the model begins in an initial state (based on the first input) and has
to perform a sequence of steps to reach the final goal. A long-horizon task requires a large number of
steps, with the task length being the number of steps needed to complete it. We define the following
metrics to evaluate performance:

Evaluation Metrics

Step Accuracy. Measures the fraction of samples where the state update from step i− 1 to
step i is correct, regardless of the correctness of the model’s state at step i− 1.

Turn Accuracy. A turn is a single interaction with the model, which may require executing
multiple steps. Turn Accuracy measures the fraction of samples where the state
update from turn t− 1 to turn t is correct, regardless of the correctness of the model’s
state at turn t− 1.
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Turn Complexity (K). Defined as the number of steps the model has to execute per turn.
Task Accuracy. Measures the fraction of samples in which the model can complete a task

of i steps without making any mistakes in the process.
Horizon Length (Hs). Given a success rate threshold 0 ≤ s ≤ 1, the horizon length is the

first step i where the model’s mean task accuracy across samples drops below s. It can
be interpreted as: the model can perform a task of length Hs without making mistakes,
with probability s. We use s = 0.5 unless otherwise specified, like Kwa et al. [29].

2.1 Diminishing Returns in Step Accuracy Compound Over a Long Horizon

We begin by analyzing the relationship between a model’s single-step accuracy and its horizon length.
Note that this analysis applies not just to execution, but rather to any general long-horizon task. To
obtain a mathematical relation, we make two simplifying assumptions similar to LeCun [30]. First,
we assume a model’s step accuracy remains constant over the task. Second, we assume a model does
not self-correct, meaning any single error leads to task failure. We assume this only for the analysis
here, which is illustrative and provides useful intuition. Our subsequent empirical analysis goes
beyond this, investigating how LLMs, in fact, do not exhibit constant step accuracy for long-horizon
execution, and may also correct their mistakes.
Proposition 1. Assuming a constant step accuracy p and no self-correction, the task-length H at
which a model achieves a success rate s is given by:

Hs(p) =

⌈
ln(s)

ln(p)

⌉
≈ ln(s)

ln(p)

(The derivation is provided in Appendix H.)

Figure 2: Growth of Horizon Length.
The length of task a model can perform
grows hyperbolically in the high accu-
racy regime.

This shows that the horizon length grows hyperbolically
with the step accuracy. We illustrate this growth in Figure 2
across different values for the success rate s. Notice the
sharp growth in horizon length beyond 80% single-step
accuracy, performance that frontier models now achieve
on many question-answering benchmarks [55], which can
be considered short tasks.

We note that human labor is often compensated for its
time. If the economic value of an agent also arises from
the length of tasks it can complete, single-turn or short
task benchmarks may be misleading for evaluating the
benefits of further investment in LLM compute. While
these benchmarks reveal genuine diminishing returns at
the step level, they understate the compounding benefits
that emerge over long-horizons. Beyond a threshold, small improvements in step accuracy can
translate into success at rapidly increasing task lengths, which may provide a more faithful indicator
of economic value.

For example, in METR’s horizon length plot on software engineering tasks [29], it was empirically
observed that the horizon length at s = 0.5 of frontier models is growing exponentially, doubling
every 7 months. Using our result above, in Figure 1 we show that such exponential growth in horizon
length occurs even in a regime of diminishing returns on step accuracy. If we set s = 0.5, we obtain
H0.5 = − ln(2)

ln(p) . As such, the step-accuracy p required to sustain exponential growth in H0.5 over

time (t) is 2
−1

2t , which is indeed a diminishing function.

2.2 Isolating execution by decoupling planning and knowledge

We now describe how we measure long-horizon execution empirically. We isolate execution failures
by explicitly providing the requisite knowledge and plan. We study the chaining of the retrieve-then-
compose step motivated in the flight-selection agent example earlier. Each step involves retrieving
relevant information or a tool specified by the plan and then composing its output to update the

4



Our Abstraction: Key-Value Dictionary Addition

The Plan
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Step 2

Step N
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The StateThe Execution

Retrieve Compose Output 1
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Retrieve Compose Output N

Long-Horizon Tasks Can Be Represented As

We isolate and study
Long-Horizon Execution by LLMs

Current sum= 0, Apple= -82, Grape= 56 -82 + 56 = -26 

<answer> -26 </answer>

Keep track of this dictionary
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Add Break
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<answer> 2 </answer>
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Figure 3: Overview of our framework. (Left) Our framework models long-horizon tasks as a
sequence of retrieve-then-compose steps. (Right) We design a simple task that decouples planning
from execution: in each turn, we provide the model the plan as key(s), asking it to retrieve their
value(s), and compose them to maintain a running sum. We control the number of turns and turn
complexity (keys per query).

current state. The plan is deciding what to retrieve and how to compose it, whereas execution is
actually performing those operations. This fits a natural abstraction—a key-value dictionary. The key
serves as one step of a plan specifying what knowledge to retrieve, or tool to call, while the value
represents the knowledge or tool output, which then has to be composed with the current state. In
our study, we provide the plan as the keys in each query, eliminating the need for planning abilities
from the LLM. We also provide the key-value dictionary in context, removing any dependency on the
model’s parametric knowledge. With this design, we directly control two important axes that multiply
to obtain the task length (number of retrieve-then-compose steps): the number of turns, and the turn
complexity (K). The turn complexity can be varied by changing the number of keys queried per turn.

3 Experiments

We design a simple task where even language models with 4 billion parameters can achieve high
accuracy, to isolate the capability of long-horizon execution.

Setup. As illustrated in Figure 3, we provide the model with the needed knowledge, a fixed, in-context
dictionary D : V → Z, where V is a vocabulary of common five-letter English words and values are
integers sampled uniformly from [−99, 99]. The initial state is S0 = 0. In turn t ∈ {1, . . . , T}, the
model receives an explicit plan Pt = {kt,1, . . . , kt,K}, which is a set of K keys sampled from V . For
each turn t, the model must execute this plan, which requires updating the state, St, to maintain a
running sum of values for all past queried keys. This requires the retrieve-then-compose steps:

1. Retrieval: Look up the integer value D[k] for each key k ∈ Pt

2. Composition: Sum these values and add them to the previous state, St = St−1 +
∑K

i=1 D[kt,i]

We choose short English words and two-digit integers to minimize errors arising from tokenization.
We provide few-shot examples to clarify the task. More details, including the exact prompt, are
provided in Appendix E. We also disentangle performance on the individual retrieval and composition
operations, finding that models have much higher accuracies on each of them alone (Appendix D).

3.1 Effect of increasing the number of turns

We first test our hypothesis that long-horizon execution can be challenging even when a model has
the required knowledge and planning ability, and then study the benefits of scaling model size.

Setup. We evaluate the Qwen3 [59] and Gemma3 [17] model families, as they offer a range of
sizes: [4, 8, 14, 32]B and [4, 12, 27]B parameters, respectively. For this experiment, we set the turn
complexity to its simplest form (K = 1), providing a single key per turn, and vary the number of
turns. Models are instructed to output the final answer directly, without intermediate thinking tokens,
with the format enforced via few-shot examples. We verify that format-following errors are not the
primary failure mode (Appendix F). We also show that the results below hold with chain-of-thought
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(a) (b) (c)
Gemma3-4B Gemma3-12B Gemma3-27B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B

(d)

Figure 4: Scaling model size has non-diminishing improvements in the number of turns it can
execute. The first-step accuracy for our task is near-perfect for all except the smallest models (a). Yet,
as the model size is scaled, the horizon length increases significantly (b). We also see the effect of
scaling in widening the gap between small and large models in task accuracy (c) and turn accuracy (d)
as the number of turns increases. The shaded region is the mean ± one standard deviation over 100
samples; the solid line is the moving average over 5 turns; the dotted line is a hypothetical baseline
model with constant step-accuracy of 0.99.

(CoT) prompting, and thinking models (Appendix Figure 12), and the trends are not affected by the
temperature used (Appendix Figure 13).

Result 1: Execution alone is challenging. As seen in Figure 4 (a), all models except Gemma3-4B
and Qwen3-4B achieve near-perfect accuracy on the first step, confirming they have the knowledge
required to perfectly do a single step of our task. Yet, task accuracy falls rapidly over subsequent
turns (Figure 4 (c)). Even the best-performing model (Qwen3-32B) sees its accuracy fall below 50%
within 15 turns. This confirms our hypothesis that long-horizon execution can be challenging for
LLMs, even if they have the needed knowledge and plan.

Result 2: Non-diminishing benefits of scaling model size. As shown in Figure 4 (c), larger models
sustain higher task accuracy for significantly more turns, resulting in a clear scaling trend for horizon
length (Figure 4 (b)). We abstain from deriving a “scaling law” since we can only obtain at most four
model sizes from the same family, but the improvements do not seem diminishing. This observation
is non-trivial. While the benefits of increasing model size are often attributed to improved capacity
for knowledge, our task is not knowledge-constrained, as models achieve near-perfect first step
accuracy (Figure 4 (a)), nor is the task more complex so that a larger model would be required. Yet,
larger models are clearly more reliable at executing the task for longer. A possible explanation is
the redundancy of internal circuits in larger models, which ensembles to reduce error [33]. However,
we find that simulating this redundancy with output-level aggregation of parallel compute does not
replicate the gains observed from scaling model size (Appendix B).

3.2 Why Does Turn Accuracy Degrade? The Self-Conditioning Effect

One might expect a model’s turn accuracy to remain constant. Yet, Figure 4 (d) shows the accuracy of
individual turns degrading as the number of turns increases. We investigate two competing hypotheses:

1. Degradation as the context length increases. The model’s performance degrades simply due to
increasing context length [62], irrespective of its content.

2. Self-conditioning. The model conditions on its own past mistakes. It becomes more likely to
make a mistake after observing its own past errors in previous turns.

Setup. To disentangle these factors, we conduct a counterfactual experiment by manipulating the
model’s chat history. We control the error rate by injecting artificial output histories with a chosen
error rate in the same format. If we fully heal the history, with a 0% error rate, degradation in the
model’s turn accuracy between turn 1 and a later turn can be attributed to long-context issues. If
a model’s accuracy for a fixed later turn consistently worsens with increasing error rate in prior turns,
this would support our self-conditioning hypothesis.

Result 3: Self-conditioning causes degradation in turn accuracy beyond long-context. Our
results in Figure 5 (a) show evidence for degradation due to both long-context and self-conditioning.
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(a)

Gemma3-12B

Qwen3-32B

Qwen3-14B

(b)

Figure 5: Models self-condition on their previous mistakes, leading to more mistakes in sub-
sequent turns. By manipulating the chat history, we counterfactually vary the fraction of errors
in previous turns. We find this increases the likelihood of errors in future turns (left). This shows
a source of degradation in turn-wise model accuracy beyond long-context, as in the turn 100 slice
(right) model accuracies are much higher when we provide a fully correct history. Scaling model size
increases self-conditioning, even for frontier non-thinking models.

When conditioned on an error-free history (Induced Error Rate = 0.00), model turn accuracy at turn
100 is below its initial value, consistent with prior observations of long-context degradation [62].
More interestingly, as we increase the rate of injected errors into the context, accuracy at turn 100
consistently degrades further. This demonstrates the self-conditioning effect—as models make
mistakes, they become more likely to make more mistakes, leading to a continuous degradation in
per-turn accuracy throughout the output trajectory as shown in Figure 5 (b).

Result 4: Unlike long-context, scaling model size does not mitigate self-conditioning. At the
error rate of 0%, notice that the accuracy at turn 100 consistently improves as you scale model
size. As shown in Figure 5 (b), scaling to frontier (200B+ parameter) models like Kimi-K2 [28],
DeepSeek-V3 [12], and Qwen3-235B-Instruct-2507 [59] largely solves long-context degradation
for up to 100 turns, achieving near-perfect accuracy on a healed history. However, even these large
models remain susceptible to self-conditioning, as their performance consistently degrades as the
induced error rate in their history increases. This may be akin to recent results showing larger models
shift in personality during multi-turn conversations [10, 4], where in our case, the drift is toward a
personality that makes errors.

In Appendix G, we try the above setup of output manipulations with CoT prompting, finding that
accuracy still deteriorates as the induced error rate increases. A potential confounder is that the
manipulated outputs deviate from the CoT. We try to mitigate this issue with programmatically
generated CoT traces, but still observe self-conditioning. We also try removing CoT traces from
previous turns from history, which causes the model to stop using CoT completely. So, we now
present results for the Qwen3 thinking models, which are trained with reinforcement learning (RL) to
think even when previous turn traces are not presented. As before, we observe their turn 100 accuracy
while controlling the error rate in prior turns.

Qwen3-4b

Qwen3-8b

Qwen3-14b

Qwen3-32b

Figure 6: Thinking fixes self-conditioning.
Qwen3 models with thinking enabled no longer
self-condition, even when the entire prior history
has wrong answers, in contrast to non-thinking re-
sults.

Result 5: Thinking fixes self-conditioning. In
Figure 6, we observe that the Qwen3 thinking
models do not self-condition—the accuracy of
the models at turn 100 remains stable, regardless
of the error rate in its context. This could arise
from two reasons. First, RL training can reduce
the most likely next token prediction behaviour
of language models, making them oriented to-
wards task success rather than continuing the
context. Second, the removal of thinking traces
from prior turns could reduce the influence of
prior turns on the model’s output, as it thinks
about the new turn independently. By inspect-
ing the models’ thinking traces, we observe that
they do not refer back to their answers in prior
turns, which could be a potential reason why
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Without CoT

(a) (b)

Figure 7: Benchmarking the length of task models can execute in a single turn. Without CoT
or thinking, even the biggest models fail to execute more than a few steps (a). Sequential test time
compute (thinking tokens) significantly improves this, especially when trained with RL (b), where
GPT-5 is far ahead of the rest.

they do not self-condition. Inspired by this, for non-thinking models, we experiment with context
engineering by explicitly removing prior history and find that it indeed mitigates self-conditioning
(Appendix A.2). We also find that just prompting models to self-verify their answers does not solve
self-conditioning completely (Appendix A.1).

3.3 What is the length of tasks models can complete in a single turn?

In the previous sections, we measured how many turns models can successfully execute a single
retrieve-then-compose step. However, most real-world tasks require more complex processing
every turn. In fact, in Appendix C we show that the horizon length of different models can vary
significantly at different turn complexities. The total task length a model can handle is a function
of both the number of turns and the number of steps to execute per turn. We now measure the latter
dimension: the maximum number of steps a model can execute per turn.

Setup. To quantify the length of task models can complete in one go, without user input, we run a bi-
nary search [31] to find the highest turn complexity (K, the number of keys) the model can provide the
correct sum for with accuracy ≥ 80%. We evaluate a suite of frontier models like GPT-5 [39], Claude-
4 Sonnet [2], Grok 4 [57], Gemini 2.5 Pro [16], Kimi K2 [28], and DeepSeek-R1 [18]. An advantage
of our benchmark is that it is contamination-free, as new examples can be generated programmatically.

Result 6: Without CoT, non-thinking models struggle to chain more than a few steps per turn.
In Figure 7 (left), we first find that when prompted to answer directly, without chain-of-thought,
the larger Qwen3 32B, Gemma3 27B, as well as frontier non-thinking models like DeepSeek-V3
(670B), and Kimi K2 (1026B), fail to execute even a turn complexity of more than six. This is
consistent with prior work showing the necessity of thinking tokens for transformers to perform
sequential tasks [56, 34]. We see that the number of steps the model can execute in a single turn
improves significantly with chain-of-thought. This reinforces the importance of reasoning before
acting (ReAct [60]) for agents, even if this costs more and fills up the context window. We show
preliminary evidence that parallel test time compute is not as helpful, with majority voting leading
to only marginal improvements in execution length (Appendix B).

Result 7: Benchmarking frontier models. In Figure 7 (right), we benchmark frontier models on the
length of task they can execute in a single turn. We find a surprisingly large gap between GPT-5 (code-
named Horizon) with 2176 steps and others like Claude-4 Sonnet (432 steps), Grok 4 (384 steps), and
Gemini 2.5 Pro (120 steps). Overall, even our simple task can separate frontier models in their long-
horizon execution capability, and presents a clear opportunity to improve current open-weight models.

4 Related Work

Increasing Task Length. Multiple works have recently shown how models worsen as problem
complexity increases [63], often attributed to failures of reasoning [9, 47]. Recently, multiple real-
world long-horizon agentic benchmarks have been proposed [3, 58, 46], where prior work has studied
planning failures [8]. By designing a task where no reasoning is required, given that we provide

8



the model the requisite plan and knowledge, we show that execution alone can be a challenge,
degrading model accuracy on longer tasks. Our observations on scaling could hold for the related
problem of length-generalization—training models to succeed on tasks longer than those seen during
training [14, 6].

Long Context. Much of prior work has focused on improving the maximum context length that can
be provided in the input to a language model [51], and evaluating whether [53] and how [38, 32]
models maintain performance as the context gets longer [53]. Closest is the recent RULER [22] and
GSM-Infinite [63], which also use synthetic data to systematically evaluate long-context abilities.
While long-context will help models execute for longer, it is a different capability compared to
long-horizon execution [61, 7], as it focuses on performance as a function of input, not output length.
We identified one such difference, the self-conditioning effect—where past errors in model output
increase the chance of future mistakes, and disentangle this effect from long-context degradation in
Section 3.2. Motivated by a similar effect at the token level, termed exposure bias, Ranzato et al. [43]
proposed training language models with RL.

Scaling LLMs and RL. Scaling laws for language models show diminishing returns on the loss for
the single step of predicting the next token [25, 21]. When models competed in simple knowledge-
based question-answering tasks such as MMLU [19], such single-step measurements could inform us
about the rate of progress. This has changed in the last year. Where earlier we could only post-train
on human demonstrations [37], language models can now be trained with just rewards [45], enabling
sophisticated reasoning [18, 23] and agents [27]. This opens up the opportunity to solve much
longer tasks where earlier human supervision would be too expensive to scale. Our work shows how
diminishing returns on single-step performance can compound to provide large benefits in the length
of tasks a model can solve. This motivates the need to study empirical scaling laws for horizon length
in agents [20].

Tool Use. In symbolic AI, once tasks are formalized, for example, into STRIPS plans [15], they can be
executed without issues. Prior work [8, 54] has shown LLMs struggle to match symbolic algorithms
for automated planning. In contrast, we show LLMs can fail on straightforward execution [64, 52, 50]
over a long horizon even when the plan is provided. Teaching LLMs to use tools offers one way to
shift the burden of execution from probabilistic models to reliable programs [44]. However, reasoning
is often fuzzy and not always easy to implement as a tool, requiring the model to execute some steps
by itself. Even calling the right tools requires reliable execution from the model [40].

5 Conclusion

In this work, we show how short-task benchmarks may give the illusion of slowing progress for
modern language models. We show that scaling model size increases the number of turns a model
can execute, while sequential test-time compute increases the length of tasks a model can perform
on a single turn. Together, these contribute to dramatically increasing horizon lengths for LLMs.

Limitations. As with any “synthetic” task [1, 41, 11] used for a controlled study of LLM capabilities,
there are a few limitations of our setup. It does not reflect complexities and sources of error arising in
real agentic tasks with a large number of possible actions. In such settings, the number of actions and
the accuracy of each action can both vary based on the plan, requiring more careful consideration.
It would be interesting future work to study the self-conditioning effect when doing diverse actions
instead of repeating the same ones. Our results are observations about pretrained LLMs, and not
inherent properties of transformers, so they might change with task-specific finetuning. Improvement
on our task is necessary, but not sufficient for long-horizon execution on real-world tasks. Finally,
our current task accuracy metric does not account for self-correction. In tasks where mistakes
are acceptable and easy to undo, self-correction is a promising direction to improve long-horizon
execution.

Outlook. Scaling up the length of tasks a model can complete would be a major step towards
realizing the true potential of general, open-ended agents [42]. If they are trained in simulated
environments created with generative models [5], maintaining accuracy over a long-horizon becomes
doubly important. By showing long-horizon execution can be studied on simple tasks, we hope to
inspire more research on this capability, as it is an increasingly important capability in the era of
experience [48].

9



References
[1] Zeyuan Allen-Zhu. ICML 2024 Tutorial: Physics of Language Models, July 2024. Project page: https:

//physics.allen-zhu.com/.

[2] Anthropic. System card: Claude Opus 4 & Claude Sonnet 4, May 2025. URL https://www.anthropic.
com/claude-4-system-card. Covers Claude Sonnet 4 and Opus 4.

[3] Axel Backlund and Lukas Petersson. Vending-Bench: A Benchmark for Long-Term Coherence of
Autonomous Agents. arxiv:2502.15840[cs], February 2025. doi: 10.48550/arXiv.2502.15840. URL
http://arxiv.org/abs/2502.15840.

[4] Jonas Becker, Lars Benedikt Kaesberg, Andreas Stephan, Jan Philip Wahle, Terry Ruas, and Bela Gipp.
Stay Focused: Problem Drift in Multi-Agent Debate. arxiv:2502.19559[cs], May 2025. doi: 10.48550/
arXiv.2502.19559. URL http://arxiv.org/abs/2502.19559.

[5] Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative interactive environments.
In Forty-first International Conference on Machine Learning, 2024.

[6] Ziyang Cai, Nayoung Lee, Avi Schwarzschild, Samet Oymak, and Dimitris Papailiopoulos. Extrapolation
by Association: Length Generalization Transfer in Transformers. arxiv:2506.09251[cs], August 2025. doi:
10.48550/arXiv.2506.09251. URL http://arxiv.org/abs/2506.09251.

[7] Siwei Chen, Anxing Xiao, and David Hsu. LLM-State: Open World State Representation for Long-horizon
Task Planning with Large Language Model. arxiv:2311.17406[cs], April 2024. doi: 10.48550/arXiv.2311.
17406. URL http://arxiv.org/abs/2311.17406.

[8] Yanan Chen, Ali Pesaranghader, Tanmana Sadhu, and Dong Hoon Yi. Can We Rely on LLM Agents to
Draft Long-Horizon Plans? Let’s Take TravelPlanner as an Example. arxiv:2408.06318[cs], August 2024.
doi: 10.48550/arXiv.2408.06318. URL http://arxiv.org/abs/2408.06318.

[9] Jingde Cheng. Why cannot large language models ever make true correct reasoning?, 2025. URL
https://arxiv.org/abs/2508.10265.

[10] Junhyuk Choi, Yeseon Hong, Minju Kim, and Bugeun Kim. Examining identity drift in conversations of
llm agents. arXiv preprint arXiv:2412.00804, 2024.

[11] Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical report.
arXiv preprint arXiv:2412.04604, 2024.

[12] DeepSeek-AI, Aixin Liu, Bei Feng, et al. Deepseek-v3 technical report, 2025. URL https://arxiv.
org/abs/2412.19437.

[13] Fabrizio Dell’Acqua, Edward McFowland III, Ethan R. Mollick, Hila Lifshitz-Assaf, Katherine C. Kel-
logg, Saran Rajendran, Lisa Krayer, François Candelon, and Karim R. Lakhani. Navigating the jagged
technological frontier: Field experimental evidence of the effects of AI on knowledge worker productivity
and quality. Working paper, Harvard Business School Technology & Operations Management Unit, 2023.
URL https://ssrn.com/abstract=4573321. Also circulated as The Wharton School Research Paper;
last revised 2023-09-27.

[14] Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped Transformers for Length
Generalization. In The Thirteenth International Conference on Learning Representations, October 2024.
URL https://openreview.net/forum?id=2edigk8yoU.

[15] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3):189–208, December 1971. ISSN 0004-3702. doi:
10.1016/0004-3702(71)90010-5. URL https://www.sciencedirect.com/science/article/pii/
0004370271900105.

[16] Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities. Technical report, Google DeepMind, June 2025. URL https:
//storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf.

[17] Gemma-Team, Aishwarya Kamath, Johan Ferret, et al. Gemma 3 technical report, 2025. URL https:
//arxiv.org/abs/2503.19786.

[18] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://physics.allen-zhu.com/
https://physics.allen-zhu.com/
https://www.anthropic.com/claude-4-system-card
https://www.anthropic.com/claude-4-system-card
http://arxiv.org/abs/2502.15840
http://arxiv.org/abs/2502.19559
http://arxiv.org/abs/2506.09251
http://arxiv.org/abs/2311.17406
http://arxiv.org/abs/2408.06318
https://arxiv.org/abs/2508.10265
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://ssrn.com/abstract=4573321
https://openreview.net/forum?id=2edigk8yoU
https://www.sciencedirect.com/science/article/pii/0004370271900105
https://www.sciencedirect.com/science/article/pii/0004370271900105
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786


[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

[20] Jacob Hilton, Jie Tang, and John Schulman. Scaling laws for single-agent reinforcement learning. arXiv
preprint arXiv:2301.13442, 2023.

[21] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022.

[22] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. RULER: What’s the Real Context Size of Your Long-Context Language Models? In First Conference
on Language Modeling, August 2024. URL https://openreview.net/forum?id=kIoBbc76Sy.

[23] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large
language models for code. arXiv preprint arXiv:2403.07974, 2024.

[24] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bhambri,
Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv
preprint arXiv:2402.01817, 2024.

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL
https://arxiv.org/abs/2001.08361.

[26] Sheraz Khan, Subha Madhavan, and Kannan Natarajan. A comment on" the illusion of thinking":
Reframing the reasoning cliff as an agentic gap. arXiv preprint arXiv:2506.18957, 2025.

[27] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen,
Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint arXiv:2507.20534,
2025.

[28] Kimi-Team, Yifan Bai, Yiping Bao, et al. Kimi k2: Open agentic intelligence, 2025. URL https:
//arxiv.org/abs/2507.20534.

[29] Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar, Megan
Kinniment, Nate Rush, Sydney Von Arx, et al. Measuring ai ability to complete long tasks. arXiv preprint
arXiv:2503.14499, 2025.

[30] Yann LeCun. Do large language models need sensory grounding for meaning and understanding? Slide
deck, NYU Philosophy of Deep Learning debate, March 2023. URL https://drive.google.com/
file/d/1BU5bV3X5w65DwSMapKcsr0ZvrMRU_Nbi/view. Includes slide “Autoregressive LLMs are
Doomed.”.

[31] Derrick H Lehmer. Teaching combinatorial tricks to a computer. In Proceedings of Symposia in Applied
Mathematics, pages 179–193. American Mathematical Society, 1960.

[32] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as
Algorithms: Generalization and Stability in In-context Learning. In Proceedings of the 40th International
Conference on Machine Learning, pages 19565–19594. PMLR, July 2023. URL https://proceedings.
mlr.press/v202/li23l.html.

[33] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner, Craig
Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly Templeton,
Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam Jermyn, Andy Jones,
Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley Rivoire, Thomas Conerly, Chris
Olah, and Joshua Batson. On the biology of a large language model. Transformer Circuits Thread, 2025.
URL https://transformer-circuits.pub/2025/attribution-graphs/biology.html.

[34] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought. arXiv
preprint arXiv:2310.07923, 2023.

[35] METR. Measuring ai ability to complete long tasks, March 2025. URL https://metr.org/blog/
2025-03-19-measuring-ai-ability-to-complete-long-tasks/.

[36] Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models. arXiv
preprint arXiv:2410.05229, 2024.

11

https://openreview.net/forum?id=kIoBbc76Sy
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://drive.google.com/file/d/1BU5bV3X5w65DwSMapKcsr0ZvrMRU_Nbi/view
https://drive.google.com/file/d/1BU5bV3X5w65DwSMapKcsr0ZvrMRU_Nbi/view
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/


[37] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization via
natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773, 2021.

[38] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben
Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-
Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context
Learning and Induction Heads. CoRR, January 2022. URL https://openreview.net/forum?id=
nJ10GgImU0.

[39] OpenAI. Gpt-5 system card, August 2025. URL https://cdn.openai.com/gpt-5-system-card.
pdf. Canonical system card PDF.

[40] Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and Joseph E
Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large
language models. In Forty-second International Conference on Machine Learning, 2025.

[41] Michael Poli, Armin W. Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian Kersting,
Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Re, Ce Zhang, and Stefano Massaroli. Mechanistic
Design and Scaling of Hybrid Architectures. In Forty-First International Conference on Machine Learning,
June 2024. URL https://openreview.net/forum?id=GDp7Gyd9nf.

[42] Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton, Bethanie
Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable agents across many
simulated worlds. arXiv preprint arXiv:2404.10179, 2024.

[43] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with
recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

[44] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Processing Systems, 36:68539–68551, 2023.

[45] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

[46] Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, and
Yueting Zhuang. TaskBench: Benchmarking large language models for task automation. In Proceedings
of the 38th International Conference on Neural Information Processing Systems, volume 37 of NIPS ’24,
pages 4540–4574, Red Hook, NY, USA, June 2025. Curran Associates Inc. ISBN 979-8-3313-1438-5.

[47] Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad Farajtabar.
The illusion of thinking: Understanding the strengths and limitations of reasoning models via the lens of
problem complexity, 2025. URL https://arxiv.org/abs/2506.06941.

[48] David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

[49] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

[50] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an analysis of
cot in planning. Advances in Neural Information Processing Systems, 37:29106–29141, 2024.

[51] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary
position embedding, 2021.

[52] Simeng Sun, Cheng-Ping Hsieh, Faisal Ladhak, Erik Arakelyan, Santiago Akle Serano, and Boris Ginsburg.
L0-Reasoning Bench: Evaluating Procedural Correctness in Language Models via Simple Program
Execution. arxiv:2503.22832[cs], April 2025. doi: 10.48550/arXiv.2503.22832. URL http://arxiv.
org/abs/2503.22832.

[53] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long Range Arena : A Benchmark for Efficient Transformers. In
International Conference on Learning Representations, October 2020. URL https://openreview.net/
forum?id=qVyeW-grC2k.

12

https://openreview.net/forum?id=nJ10GgImU0
https://openreview.net/forum?id=nJ10GgImU0
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://openreview.net/forum?id=GDp7Gyd9nf
https://arxiv.org/abs/2506.06941
http://arxiv.org/abs/2503.22832
http://arxiv.org/abs/2503.22832
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k


[54] Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, and Subbarao Kambhampati. A Systematic
Evaluation of the Planning and Scheduling Abilities of the Reasoning Model o1. Transactions on Machine
Learning Research, December 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
FkKBxp0FhR.

[55] Joshua Vendrow, Edward Vendrow, Sara Beery, and Aleksander Madry. Do large language model
benchmarks test reliability? arXiv preprint arXiv:2502.03461, 2025.

[56] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference on
Machine Learning, pages 11080–11090. PMLR, 2021.

[57] xAI. Grok 4 model card, August 2025. URL https://data.x.ai/2025-08-20-grok-4-model-card.
pdf.

[58] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024. URL https:
//arxiv.org/abs/2402.01622.

[59] An Yang, Anfeng Li, Baosong Yang, et al. Qwen3 technical report, 2025. URL https://arxiv.org/
abs/2505.09388.

[60] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023.

[61] Haoyu Zhou, Mingyu Ding, Weikun Peng, Masayoshi Tomizuka, Lin Shao, and Chuang Gan. Generalizable
Long-Horizon Manipulations with Large Language Models. arxiv:2310.02264[cs], October 2023. doi:
10.48550/arXiv.2310.02264. URL http://arxiv.org/abs/2310.02264.

[62] Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How do
your llms behave over infinitely increasing context length and reasoning complexity? arXiv preprint
arXiv:2502.05252, 2025.

[63] Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. GSM-$\infty$: How Do your
LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length? In Forty-Second
International Conference on Machine Learning, June 2025. URL https://openreview.net/forum?
id=n52yyvEwPa.

[64] Minjun Zhu, Qiujie Xie, Yixuan Weng, Jian Wu, Zhen Lin, Linyi Yang, and Yue Zhang. AI Scientists Fail
Without Strong Implementation Capability. arxiv:2506.01372[cs], June 2025. doi: 10.48550/arXiv.2506.
01372. URL http://arxiv.org/abs/2506.01372.

13

https://openreview.net/forum?id=FkKBxp0FhR
https://openreview.net/forum?id=FkKBxp0FhR
https://data.x.ai/2025-08-20-grok-4-model-card.pdf
https://data.x.ai/2025-08-20-grok-4-model-card.pdf
https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2310.02264
https://openreview.net/forum?id=n52yyvEwPa
https://openreview.net/forum?id=n52yyvEwPa
http://arxiv.org/abs/2506.01372


A Investigating Potential Fixes for Self-conditioning

A.1 Turn-wise Self-Verification Prompting

We investigate whether the self-conditioning effect can be mitigated by explicitly prompting the
model to perform active self-correction. At each turn, we instruct the model to first re-validate its
previously reported state and, if required, recalculate the full historical sum before processing the
current turn’s keys.

The results, shown in Figure 8, are mixed. For the Gemma3 family with CoT, this setup provides an
initial boost in accuracy, successfully breaking the self-conditioning loop in early turns. However, the
self-verification process significantly increases the number of tokens generated per turn, causing the
model to exhaust its context window much sooner, which leads to a sharper performance collapse
in later stages. In contrast, the Qwen3 thinking models show negligible improvement. Manually
inspecting their reasoning traces, we find that these models, likely due to their fine-tuning, overthink
and frequently fail at the verification step itself, sometimes making arithmetic errors even during their
re-calculation process.

These findings suggest that prompting self-correction may not be a viable solution. It is computation-
ally expensive, incurring a context-length penalty, and is itself a complex, error-prone execution task
that models may not be able to perform reliably.

Qwen3 8B [Thinking] Gemma3 12B [CoT] Gemma3 12B [CoT]

Original RunWith Self-Verification

Figure 8: Self-verification does not fix self-conditioning. Prompting to self-verify does not suffice to
fix the self-conditioning effect completely. It leads to overthinking in thinking models and increases
the amount of tokens required per turn, leading to faster context consumption in CoT models.

A.2 Context Engineering

Another natural mitigation strategy is to limit the model’s exposure to its own past errors in its history.
We operationalize this using a simple sliding context window, which is particularly well-suited for
Markovian tasks like ours. This approach maintains only the N most recent turns in the model’s
context. The rationale is that a smaller context window reduces the probability of the model observing
a lot of its own past failures, thereby breaking the negative feedback loop of self-conditioning.

As shown in Figure 9 (a), performance improves significantly as the context window size is reduced,
allowing models to sustain execution for longer horizons. While a fixed sliding window is only
applicable to tasks without long-range dependencies, this result validates a more general principle:
active context management designed to minimize the accumulation of errors in the context is a
promising direction for improving long-horizon reliability in LLM agents.
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Context Size=1 TurnOriginal Run Context Size=25 Turns

(a) Context Engineering

Original RunMajority Vote (N=10)

(b) Majority Voting

Figure 9: Context engineering and majority voting on Gemma3 12B. Controlling context size
reduces the self-conditioning effect, but relies on the Markovian nature of our task. Majority voting
at K=1 provides only minimal improvements over the baseline.

B Can Parallel Test-time Compute Scaling Match Thinking?

Chain of Thought Enabled

Majority Vote [No CoT] (N=100)

Figure 10: Parallel test time scaling on
Gemma3 12B at K=2. Majority voting
with the same amount of tokens as CoT
traces does not match the performance
of CoT.

We also experiment to validate if parallel scaling in
test-time compute can achieve the same improvements
as thinking. We verify this by testing if parallel majority
voting can replicate the gains from either model scale or
sequential computation (thinking). To create a fair com-
parison, we sample multiple outputs from a non-thinking
Gemma3 model at each turn, with the number of samples
set to match the average token count of its CoT counterpart.
The final answer is determined by a majority vote over
these parallel generations. From the results in Figure 10
and 9 (b), we see that while majority voting yields a
marginal performance improvement over the base model,
it is insufficient to match the reliability of a larger, non-
thinking model, let alone the substantial gains from using
CoT reasoning. This suggests that for long-horizon exe-
cution, sequential computation provides an advantage that
parallel test time scaling cannot match. This contrasts with
findings in other domains, such as math or common-sense
reasoning, where parallel sampling with self-consistency
has been shown to be highly competitive [49].

C Number of Turns vs Turn Complexity

In our experiments, we show that we can increase the
length of the task needed to be performed by either (1) increasing the number of turns or (2)
increasing the turn complexity, i.e, providing more inputs in the same turn. To investigate the
relationship between these two axes, we perform an experiment where a model has to perform a
fixed number of operations while varying the turn complexity. With a higher turn complexity, the
model requires fewer turns to reach the fixed number of operations. Results in Figure 11 (a) indicate
there is no strict turn complexity that is consistently the best across model families. Rather, we found
that different models behave quite differently for the same turn complexities. Qwen3 32B seems to
show poorer performance at lower turn complexities, indicating that it is unable to perform well over
a large number of turns, even if the turns are simple themselves. Gemma3 12B shows a different
trend. It reaches accuracy peaks at either extreme of the turn complexity spectrum, failing badly at
mid-level turn complexities. This indicates it suffers when the turn complexity and the number of
turns are both sufficiently high.

Another axis of evaluating the number of turns vs turn complexity trade-off is the test-time compute
used. From a cost perspective, increasing the number of turns increases the overall cost of inference.
We can lower the number of turns by increasing the turn complexity, but that would result in an
increase in the per-turn inference cost, as a result of the added complexity. For the same experiment
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Qwen3 32B Gemma3 12B

(a) For the same number of total steps, different turn complexities lead to different outcomes. We find no trend
across families.

Qwen3 32B Gemma3 12B

(b) Average output tokens used to complete the execution vs final accuracy. We see that for Qwen3 32B, more
turns lead to more token usage, even at lower turn complexities, pointing to overthinking. Gemma3 12B, on the
other hand, uses fewer tokens for very low turn complexity or very high turn complexity.

Figure 11: Relation between the turn complexity and the number of turns.

Gemma3-4B Gemma3-12B Gemma3-27B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B

K=2 K=10*Thinking Enabled*Thinking Disabled *Thinking Enabled *Thinking Enabled(a) (b) (c) (d)

Figure 12: Scaling trends hold even after enabling Sequential Test Time compute. We compare
model performance with thinking disabled (a) against thinking enabled (b, c) at varying turn complex-
ities. (a) Without thinking, all models fail to execute even two steps (K = 2) in a single turn. (b) In
contrast, enabling thinking prevents this performance collapse, with all models successfully handling
K = 2. (c) When the turn complexity is further increased to K = 10, performance degrades, but a
clear scaling trend emerges. (d) This trend is explicitly shown, illustrating that for complex turns, the
horizon length increases consistently with model size, reinforcing the benefits of scaling model size
even when thinking is enabled.

above, we track the number of output tokens used for computation (including thinking tokens) per
sample, and again find diverging results for each family in Figure 11 (b).

D Deconstructing Errors in Retrieve-then-compose Steps

To further isolate the source of execution errors, we decompose our task into its two constituent
operations–retrieval and addition–and evaluate models on them individually:
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Gemma3-4B Gemma3-12B Gemma3-27B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B

Figure 13: Temperature does not impact the trends observed. We reproduce the same trends in
Figure 4, when running with temperature 0.

• Retrieval-Only Task. A stateless task where, at each turn, the model is given a key and
must simply return the corresponding integer value from the dictionary. No running sum is
maintained. This isolates the retrieval component.

• Addition-Only Task. A stateless task where, at each turn, the model is given two random
integers to add. No running sum is maintained. This isolates the arithmetic component.

• Prefix-sum Task. A stateful task where, at each turn, the model is given an integer directly
and must add it to its previously reported running sum. This isolates the combination of
arithmetic and state-tracking components.

From Figure 14, we can observe that models achieve near-perfect performance on the stateless retrieval
and addition task, indicating that neither simple dictionary lookup nor addition is a significant source
of error. In contrast, the prefix sum task, while significantly better than our task, still exhibits a slow
degradation over time.

This leads to two key insights. First, the difficulty lies not in the atomic operations themselves,
which models perform with high accuracy in isolation over long horizons. Second, this suggests that
the primary source of degradation is the state-management component of the task. While stateless
retrieval and addition are trivial, the requirement to reliably maintain and update a running sum
introduces higher chances of error. This suggests that the models struggle with the requirement to
concurrently manage information lookup and state updates.

Gemma3-27b Qwen3-32b

Addition Cumulative Retrieval + Addition

Retrieval Cumulative Addition

Figure 14: Analysis of execution failures. (a) Self-conditioning effect emerges as tasks get longer.
Even for models that ace the task at a task length of 100, the Turn Accuracy drops constantly as we
further increase the turns. (b) Models are good at the tasks individually, but not on their composition.
State tracking introduces additional difficulty.
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E Experimental Setup

E.1 Task Details

We create a dictionary where keys consist of common five-letter English words, and the values consist
of integers uniformly sampled from −99 to 99. The range of values is deliberately kept large to
minimize the chance of an assistant being wrong in an earlier turn correcting its response by pure
accident. For our experiment, we first create a fixed set of 100 keys. Then, we create multiple rollouts
(samples) of 50, 000 steps. For each rollout, we uniformly sample a separate set of values to be
assigned to each key, in order to increase experimental breadth. Next, at each step, we uniformly
sample a key to be provided at that step with replacement. This gives us a list of keys to be processed
in order, which is exactly the plan to be executed by the agent.

To account for the turn complexity (K), we group K consecutive keys together and represent them as
one turn. Thus, we can fully specify our intended evaluation by (1) specifying the number of samples
(rollouts) needed, (2) the turn complexity, K, and (3) the number of turns required. This gives us
a superset of data from which we sample rollouts to use in our experiments. For the Qwen3 and
Gemma3 families, we sample 100 rollouts. For frontier models, due to cost limitations, we sample
20-50 rollouts. To ensure consistency in evaluation, we provide the same rollouts to each model.

E.2 Prompting

Each LLM is provided a standardized prompt describing the task at the start of the conversation. This
prompt specifies the dictionary containing the five-letter word keys and their corresponding values.
Further, the prompt specifies the number of keys that will be provided to the LLM at each subsequent
turn. To ensure format following, the prompt also contains few-shot examples with different turn
complexities. Finally, the LLM is asked to provide the running sum after each turn in <answer> tags.
An example conversation is shown below.

E.3 Prompting for Thinking Models

To enable models to use chain-of-thought prompting, we add the line “Think step by step
before answering.” to the prompt and also add CoT traces to the few-shot examples. We find that
models stop performing CoT reasoning after a few turns, as it starts conditioning on the answer format
in its history. Thus, we end up including the chain-of-thought trace in the conversation history, to
ensure the model does not forget the CoT instruction. This is a trade-off we had to make as it increases
the input context of the LLM, however, it was essential to ensure instruction following. Thinking
models provided their reasoning in <think> tags, which were removed from the conversation history.
No other changes were needed to make the thinking models follow instructions.

E.4 Model Specifications

For chain-of-thought prompting, we set the per-turn output token limit to 10, 000 tokens, and for
thinking models, the token limit is set to 32, 000 tokens, consistent with token limits provided by
OpenRouter. We ensure that these token limits are sufficient to complete the required computations.

We use a temperature of 0.6 and a top-p value of 0.95 for all Gemma models. For Qwen, we use a
temperature of 0.6 and a top-p value of 0.95 for thinking mode and a temperature of 0.7 and a top-p
value of 0.8 for non-thinking as recommended in their documentation.2 We find in Figure 13 that
temperature does not affect the observed trends by much.

E.5 Compute Details

All experiments were conducted on machines equipped with 4x NVIDIA A100 GPUs with 40/80GB
memory. Frontier model evaluations were performed using OpenRouter.

2https://huggingface.co/Qwen/Qwen3-32B
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Starting Prompt:
You are an AI assistant. I will provide you with a dictionary and then give you
keys in groups of 2. Your task is to keep a running total (starting from 0) by
adding the values associated with the keys I provide.
In each turn, I’ll provide 2 keys (comma-separated). Respond with the current
running sum, enclosed in <answer> tags.
Examples:
Dictionary to maintain: ‘apple’: 5, ‘banana’: 0, ‘cherry’: 7, ‘grape’: -4,
‘kiwi’: 2, ‘mango’: -1
Example 1: keys in groups of 2
User: apple, banana
Assistant: <answer>5</answer>
User: cherry, grape
Assistant: <answer>8</answer>
User: kiwi, mango
Assistant: <answer>9</answer>
Example 2: keys in groups of 3
User: apple, banana, cherry
Assistant: <answer>12</answer>
User: grape, kiwi, mango
Assistant: <answer>9</answer>
Example 3: keys in groups of 6
User: apple, banana, cherry, grape, kiwi, mango
Assistant: <answer>9</answer>
Now, here is the actual task:
Dictionary to maintain:
’doubt’: -64, ‘alone’: 46, ‘adult’: 84, ‘fault’: -19, ‘brain’: -45,
‘blind’: 68, ... ‘coach’: -31, ‘alarm’: 88, ‘could’: 25, ‘cable’: -32
Ready to start!
IMPORTANT: DO NOT OUTPUT ANY OTHER TEXT OUTSIDE ANSWER TAGS. Only provide the
final running sum OF ALL TURNS in <answer> tags.

User: alarm,coach

Assistant: <answer>57</answer>

User: doubt,cable

Assistant: <answer>-39</answer>

F Format Following Failures

In any LLM evaluation, format following failures are a common source of error that is often neglected.
In our experiments, any model can have 2 types of format following failures: (1) They do not provide
<answer> tags in their answer, and (2) They do not provide a valid integer within <answer> tags.
To minimize format following failures, we ensure clarity in the starting prompt with clear format
instructions, as well as few-shot examples. To empirically verify that model errors on our task are
actually execution errors and not just format following errors in disguise, for each experiment, we
also track the format failure fraction: the fraction of samples that do not correctly follow the format,
with the failure being either (1) or (2). It is important to note that while we try to minimize any such
error to the best of our abilities, we still count format following as a limitation of the model and hence
a source of error.

Our results for format following failures are presented in Figure 15 for the experiments presented in
Section 3. We observe that smaller models are more susceptible to format failures, with the Qwen3
family in particular being worse at following format instructions. Overall, the fraction for format
following errors is low (around 0.1), with the Qwen3-8B being an exception. We find that the error
here actually comes from the model trying to cheat, and do the entire summation inside the <answer>
tags (For example, <answer>39 + 51 = 90</answer>). This is explicitly forbidden as we do not
allow chain-of-thought or thinking in this experiment, and thus we count this as an error. Gemma3
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(a) K=1 (b) K=2, Thinking Disabled (c) K=2, Thinking Enabled

Gemma3-4B Gemma3-12B Gemma3-27B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B

(d) K=10, Thinking Enabled

Figure 15: Format following is not the primary mode of failure. We analyze the fraction of errors
attributed to incorrect format following for the experiments presented in Section 3. Overall, format
adherence is high and not the primary source of execution errors.

4B fails at later turns due to context length limitations; however, that does not affect any results, as its
accuracies drop much earlier.

For the experiments presented in Figure 15, we find the Qwen3 family to be prone to format following
errors in the case where we have thinking disabled for K = 2. We again find this to be the
consequence of models trying to cheat and use extra tokens for computation inside the answer tags.
This is fixed by enabling thinking. Following this, the errors in format become negligible. At K = 10,
we see Gemma3 12B sharply rise to a format failure fraction of 1.0, again due to a full context
window.

G Chain-of-Thought Self-Conditioning

While our self-conditioning analysis provides clear insights for thinking models, extending this to
models using Chain-of-Thought (CoT) presents some significant methodological challenges.

First, a fundamental prerequisite for reliable CoT reasoning is the inclusion of prior CoT traces in the
context history. As we observed with the Gemma3 models, they often condition on the format of
the context; if prior turns lack CoT traces, the models cease to generate them, even when explicitly
instructed to do so. Consequently, this experiment for CoT must include the full reasoning trace
for every preceding turn. This requirement immediately makes the setup practically infeasible, as
the verbose nature of CoT traces would rapidly exhaust the context window limits of even frontier
models.

Second, even if context length were not a constraint, the process of injecting controlled errors into
CoT histories is not straightforward. A naive approach of only altering the final answer while
preserving the original, correct CoT trace creates an unfaithful history. When conditioned on a
history where reasoning and conclusions are contradictory, the model is no longer being tested on its
execution reliability but on how it resolves inconsistency—it might learn to distrust its own reasoning,
introducing a confounding variable.

The alternative is to programmatically generate flawed CoT traces. We implemented and experimented
with this, and as seen in Figure 16, CoT does not mitigate the self-conditioning effect. However, this
setup also introduces its own complexities. For our simple task, there are multiple distinct points of
failure within a single trace: an error in the retrieval step (looking up an incorrect value) or an error in
the composition step (an arithmetic mistake). A controlled experiment would need to systematically
manage the type, frequency, and location of these injected errors, making the setup intractable. Even
establishing a “perfectly correct” (Induced Error Rate = 0.00) baseline history is problematic. A
model might have a CoT trace with flawed reasoning (e.g., a minor calculation error that cancels out),
which we then replace with the correct final answer. Such a history is also unfaithful.

Given these challenges—the practical infeasibility due to context length and the difficulty of designing
a faithful error injection mechanism, we limit our self-conditioning analysis to non-thinking and
thinking models.
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Figure 16: CoT does not fix self-conditioning. We observe that even with programmatically
generated CoT history, the Gemma3 models cannot mitigate self-conditioning.

H Proof and Analysis of Proposition 1

Proposition 1. Assuming a constant per-step accuracy p and no self-correction, the horizon-length
H at which a model can achieve a success rate s is given by:

Hs(p) =
ln(s)

ln(p)

Proof. Let p be the constant probability of successfully executing a single step. Under the assumption
of no self-correction, a task of length H is successful only if all H independent steps are executed
correctly. The probability of this joint event, P (success, H), is the product of the individual step
probabilities:

P (success, H) = p× p× · · · × p︸ ︷︷ ︸
H times

= pH

This is equivalent to the Task Accuracy at turn H , i.e., TA(H) = pH . We define the horizon-length
H as the number of turns at which the probability of success equals a desired rate s. Therefore, we
set our expression for the success probability equal to s:

pH = s

Solving for H ,
ln(pH) = ln(s) ⇒ H · ln(p) = ln(s)

Hs(p) =

⌈
ln(s)

ln(p)

⌉
≈ ln(s)

ln p

This completes the proof.

H.1 Implications for Horizon Length (H0.5)

We can apply this general result to our specific metric, the Horizon Length (H0.5), which is defined
as the number of turns at which Task Accuracy drops to s = 0.5,

H0.5(p) =

⌈
ln(0.5)

ln p

⌉
=

⌈
− ln(2)

ln p

⌉
For analysis, we use the continuous approximation:

H0.5(p) ≈ − ln(2)

ln p
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Sensitivity to Small Changes in Step Accuracy. This formulation allows us to analyze the
sensitivity of the horizon length to small improvements in per-step accuracy by taking the derivative
with respect to p,

dH0.5

dp
= − ln(2) ·

(
− 1

(ln p)2
· 1
p

)
=

ln 2

p(ln p)2

This implies that a small change in accuracy ∆p results in a change in horizon length ∆H0.5 of,

∆H0.5 ≈ ln 2

p(ln p)2
∆p

Near-Perfect Accuracy Regime. The effect is most dramatic when accuracy is already high. For
near-perfect accuracy, let p = 1− ε where ε ≪ 1. Using the Taylor approximation ln(1− ε) ≈ −ε,
we can simplify the expression for H0.5,

H0.5 ≈ − ln(2)

ln(1− ε)
≈ − ln(2)

−ε
=

ln 2

ε
=

ln 2

1− p

The sensitivity in this regime becomes,

dH0.5

dp
≈ ln 2

(1− p)2
⇒ ∆H0.5 ≈ ln 2

(1− p)2
∆p

This demonstrates that as p → 1, the improvement in horizon length for a fixed gain in step accuracy
grows quadratically, highlighting the compounding benefits of scale.
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