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ABSTRACT

Markov games that exhibit potential functions for rewards in each state, referred
to as Reward-Potential Markov Games (RPMGs), do not inherently qualify as
Markov Potential Games (MPGs), which require state-dependent potential func-
tions for value functions. This discrepancy, widely acknowledged in recent liter-
ature on MPGs, remains highly unexplored. RPMGs, with their easier-to-verify
and arguably more minimal reward-potential property, have not received adequate
attention. We embark on the exploration of RPMGs, observing that computing
a stationary Nash equilibrium (NE) is PPAD-hard for infinite-horizon RPMGs,
even under constraints on transition functions. In contrast to results on stationary
equilibria in Markov games, we establish that computing a nonstationary Nash
equilibrium in finite-horizon RPMGs is PPAD-hard without any assumptions on
transition functions. On a positive note, we present an algorithm capable of break-
ing curse of multiagents by efficiently computing an ϵ-approximate NE in RPMGs
with additive transitions, with a runtime polynomial in 1/ϵ. Furthermore, we
extend our analysis to include an adversarial player seeking to maximize the under-
lying potential function, introducing the concept of Adversarial Reward-Potential
Markov Games.

1 INTRODUCTION

The current work revolves around three main axes, potential games, Markov/stochastic games, and
the complexity of computing equilibria in the latter games. Over time, all three subjects have claimed
their fair share of attention in the literature of (algorithmic) game theory. Recent advances in the
theory of Markov games have left certain questions unanswered. With the present text, we aspire to
settle those questions — i.e., what is the computational landscape of the Markovian extensions of
potential games when one does not assume the existence of a potential function for the values, rather
one only assumes it for the rewards of each state? Before proceeding to answer, let us introduce
some context.

Potential games (Monderer & Shapley, 1996; Rosenthal, 1973) have enduringly reserved a central
role in the theory of games. They enjoy an array of favorable mathematical properties and are able
to model an abundance of real-world applications. Roughly, they are defined as games in which
deviations in the utility of any agent —when they unilaterally deviate— can be tracked by a single
function, the potential function. Much of the research of algorithmic game theory revolves around
devising algorithms that can compute equilibria in such games, and arguing about the computational
complexity of that task. Before substantial progress had been made, research dealt with the framework
of static and normal-form games that do not allow change in the game itself. Arguably, a good portion
of the initial issues (Babichenko & Rubinstein, 2021; Fearnley et al., 2022) has been settled and
now researchers are investigating games that are allowed to change over time. This is where Markov
games enter the frame; they are games with an inherent dynamic nature.

Markov games (MGs) — or stochastic games — (Shapley, 1953) are a generalization of multi-agent
Markov decision processes (MDPs). The joint action of all players affects the transitions of the
process and not just the individual instantaneous rewards of each agent. MGs stand as the theoretical
framework for the purpose of rigorously formulating and addressing questions in field of multi-agent
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reinforcement learning (MARL) (Littman, 1994). A computational issue which has been encountered
by MARL literature is the curse of multiagents. Effectively, the curse of multiagents signifies an
algorithmic complexity of achieving a given objective (e.g. computing an equilibrium) that depends
exponentially on the number of agents and/or each agent’s actions.

The complexity of computing a Nash equilibrium is a central topic in algorithmic game theory. Far
from being a peculiar intellectual pursuit, advances such as proving the intractability of comput-
ing Nash equilibria in general games have challenged the then-established credo of economists
that markets reach and operate in equilibrium states (Papadimitriou, 2014). The complexity class
PPAD (Papadimitriou, 1994) characterizes problems that belong in the class NP but whose solutions
are guaranteed to exist due to a fixed point argument — particularly, using the Brouwer fixed point
theorem. Approximating Nash equilibria in two-player general-sum games is known to be PPAD-
complete, (Daskalakis et al., 2009; Chen et al., 2009) and it is highly unlikely that an ϵ-approximate
equilibrium can be approximate in time that is polynomial in 1/ϵ. Nevertheless, not all games assume
full generality and, as such, the equilibrium intractability results do not apply to them Structure in the
game does not reduce it into triviality and still poses theoretical challenges when designing algorithms
to approximate equilibria. Apart from potential games, research has focused on two-player zero-sum
games, (strategically) zero-sum polymatrix games, adversarial team games, and monotone games;
for all the latter, there have been contributed algorithms and learning dynamics that approximate
equilibria with a varying degree of efficiency that is mostly favorable.

Outline of our contributions. In the current work, we address the underlying question posed in a
number of recent papers that concern the Markovian or stochastic extension of static potential games,
(Leonardos et al., 2021; Lin et al., 2020; Mguni et al., 2021),

Is the assumption of rewards that exhibit a potential function
enough for the tractability of equilibria in Markov games? (⋆)

In a nutshell, we prove that when no assumption holds for the transitions, even nonstationary
approximate equilibria are PPAD-hard to compute — regardless of the reward-potential assumption
(Theorem 3.2) and in contrast to recent results that concern (Markovian) stationary approximate
equilibria of infinite-horizon games (Daskalakis et al., 2022; Jin et al., 2022; Deng et al., 2023). We
observe how the latter results can be utilized to derive the PPAD-hardness of approximate equilibria in
reward-potential games even when the transition functions are restricted from attaining full generality
(Observation 1).

After concluding that a certain assumption on the transitions is necessary, we consider reward-
potential MGs with additive transitions, the most general assumption we are allowed to hold in light
of our hardness results. We manage to design an efficient algorithm for computing NE that runs in
time polynomial in 1/ϵ and H , where H is the horizon of the game. We then extend our results to the
class of adversarial reward-potential MGs (Theorem 3.3).

2 PRELIMINARIES

In this section, we will introduce the framework of Markov games (MGs), and furthermore restate
some preliminary definitions of potential and other kinds of games relevant to our work.

Notation. We will denote [n] := {1, . . . ,n}. A boldface is used for matrices and vectors, while
scalars are denoted using a lightface font. Unless stated otherwise ∥ · ∥ := ∥ · ∥2. The O(·) might be
used to suppress polynomial dependencies on the natural parameters of the game. ∆(A) denotes the
simplex of support A.

2.1 NORMAL-FORM POTENTIAL GAMES

As a reminder, we define normal-form potential games. A normal-form game is the tuple
G
(
n, {Ai}i∈[n]{ui}i∈[n]

)
; every player i is endowed with pure strategies ai ∈ Ai; their mixed

strategies are denoted as xi ∈ ∆(Ai), and we mark x := (x1, . . . ,xn). The utility of player i is
denoted as ui(x). A potential game is a game that asserts a function ψ :

∏n
i=1Ai → R, such that

∀x ∈
∏n

i=1 ∆(Ai),∀i ∈ [n],∀x′
i ∈ ∆(Ai)

ψ(x′
i,x−i)− ψ(x) = ui(x

′
i,x−i)− ui(x).
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2.2 MARKOV GAMES

Following, we present the framework of MGs in both finite and infinite-horizon and then proceed to
define value functions and equilibrium notions. First, we note that an n-player MG consists of a tuple
Γ
(
n,H,S, {Ai}i∈[n],P, {ri}i∈[n], γ,ρ

)
. In particular,

• H ∈ N+ stands for the time horizon, or the length of every episode of the game,

• S, is the finite state space whose cardinality is denoted as S := |S|
• {Ai}i∈[n] is the set of action spaces of the players, and A := A1 × · · · × An stands for the

joint action space; moreover, a joint action will generally be noted as a = (a1, . . . , an) ∈ A,

• P := {Ph}h∈[H] is the set of all transition kernels, with Ph : S × A → ∆(S); further,
Ph(·|s,a) denotes the probability of transitioning to a state of the state space conditioned
on the joint action a being selected at time h and state s — in infinite-horizon games P does
not depend on h and we drop the index,

• ri := {ri,h} is the reward function of player i at time h; ri,h : S,A → [−1, 1] yields the
reward of player i at a given state and joint action — in infinite-horizon games, ri,h is the
same for every h and the subscript is dropped,

• a discount factor γ ∈ [0, 1], which is generally set to 1 when H < ∞, and γ < 1 when
H →∞,

• an initial state distribution ρ ∈ ∆(S).

Given a MG, Γ, we define the (s,h)-subgame, Γs,h, as the game that inherits every element of game
Γ—reward functions, transitions, etc.— starting at time step h ∈ [H] and state s ∈ S.

2.3 POLICIES, VALUE FUNCTIONS, AND EQUILIBRIA

We commence with the remark that all the different notions of equlibria to be defined are guaranteed
to always exist (Fink, 1964; Solan & Vieille, 2015). Before proceeding to the definition of different
notions of equilibria in MGs, one needs to present the different kinds of individual policies followed
by players. There are two main dichotomies of policies in the contemporary literature of MARL. A
policy can be stationary or nonstationary, and Markovian or non-Markovian. Nonstationary policies
of player i, πi, are allowed to change depending on the time step of the horizon of the game, while
stationary policies, πi attribute the same probability distribution over actions in every state of the
game. Policies that are allowed to take into account past information of the game are known as
non-Markovian, while policies that depend only on the state and the time step of the horizon are
known as Markovian.

Moreover, policies that attribute a distribution of joint action in every state, i.e., joint policies can be
correlated or product policies. A joint policy π is said to be a product one when there exist individual
policies {πi}i∈[n] such that π = π1 × · · · × πn. Of course, product policies are a strict subset of
correlated policies. A policy that assigns probability 1 to a single action in every state s (and timestep
h if it is nonstationary) is called deterministic.

2.3.1 THE FINITE HORIZON

In the finite horizon setting, the game lasts for a finite amount of steps, H <∞. Typically, in this
setting, policies are defined to be nonstationary as even in a single-agent finite-horizon MDP, the
optimal stationary policy can be arbitrarily worse than an optimal nonstationary policy.

Policies. In detail, a (nonstationary Markovian) policy of player i, πi := {πi,s,h ∈ ∆(Ai)} ∈
∆(Ai)

S×[H] attributes a probability of playing an action a ∈ Ai at timestep h ∈ [H] and state s ∈ S .
Further, we denote a joint policy by dropping the subscript, i.e., π := {πs,h ∈ ∆(A)} ∈ ∆(A)S×[H].
A joint policy is possibly correlated as it is allowed to belong to the simplex of joint actions for every s
and h. We overload notation to note ri,h(s,π) = Ea∼π[ri,h(s,a)] and Ph(s,π) = Ea∼π[ri,h(s,a)]
accordingly.
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Value function. Typically, the discount factor γ is set to 1 in finite-horizon MGs. As such, we
define the value function of player i in a finite horizon MG to be the expected cumulative reward
when the game starts at state s1 and time step h = 1,

V π
i,h(s1) := Eπ

[
H∑

τ=h

ri,τ (sτ ,aτ )
∣∣∣ s1] .

Notions of equilibria. A best-response policy of player i to π−i will be noted as π†
i ∈

argmaxπ′
i
V

π′
i×π−i

i,1 (s1), π′
i ∈ ∆(Ai)

S×[H]. Moreover, the value of the best-responding policy

of player i is noted as V †,π−i

i,1 (s1) := maxπ′
i
V

π′
i×π−i

i,1 (s1), where π′
i ∈ ∆(Ai)

S×[H]. We will only
define the nonstationary Markovian NE.

Definition 2.1 (NE—nonstationary). For an ϵ ≥ 0, a joint product policy π ∈
∏n

i=1 ∆(Ai)
S×[H] is

• an ϵ-approximate Markov-perfect coarse Nash equilibrium if,

V
†,π−i

i,h (s)− V π
i,h(s) ≤ ϵ, ∀i ∈ [n], s ∈ S,h ∈ [H],

• an ϵ-approximate (Markov) coarse correlated equilibrium if,

V
†,π−i

i,1 (s1)− V π
i,1(s1) ≤ ϵ, ∀i ∈ [n].

2.3.2 THE INFINITE HORIZON

When the horizon of an MG is infinite, i.e., H →∞, the policies that are sought after are typically
stationary. Reward and transition functions do not depend on time and as such the subscript h is
dropped, rh = r, Ph = Ph,∀h ∈ [H]. There are two standard ways of defining value functions in
infinite-horizon games, undiscounted average reward and discounted cumulative reward. The latter
predominates contemporary literature of infinite-horizon MGs and it is the one we will define here.

Policies. For player i, Markovian stationary policy πi ∈ ∆(Ai)
S attributes a distribution over

actions in every state regardless of the time step of the horizon. Similarly, a stationary joint policy is
defined as π ∈ ∆(A)S .

Value functions. Given a joint policy π, the value function of player i is defined as the average
discounted cumulative reward,

V π
i (s1) := Eπ

[ ∞∑
τ=1

γτ−1ri(sτ ,aτ )
∣∣∣ s1] .

Moreover, slightly abusing notation we denote V π
i (ρ) = Es1∼ρ [V

π
i (s1)] .

Additionally, a best-response policy of player i to the potentially correlated policy π−i is denoted as
π†
i ∈ argmaxπ′

i
Vi(ρ),π

′
i ∈ ∆(Ai)

S . Finally, the value of the best-responding policy of player i is

noted as V †,π−i

i (ρ) = maxπ′ V
π′×π−i

i (ρ),π′ ∈ ∆(Ai)
S .

Notions of equilibria. Analogous to the finite-horizon MGs, infinite-horizon MGs assert an array
of equilibria that are guaranteed to exist. We will define the notions that are relevant, namely
approxiamte CCEs and approximate NEs.
Definition 2.2 (CCE—stationary). For an ϵ ≥ 0, a joint product policy π ∈ ∆(A)S is

• an ϵ-approximate Markov-perfect coarse coarse correlated equilibrium if,

V
†,π−i

i (s)− V π
i (s) ≤ ϵ, ∀i ∈ [n],

• an ϵ-approximate (Markov) coarse correlated equilibrium if,

V
†,π−i

i (ρ)− V π
i (ρ) ≤ ϵ, ∀i ∈ [n].
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Definition 2.3 (NE—stationary). For an ϵ ≥ 0, a joint product policy π ∈
∏n

i=1 ∆(Ai)
S is

• an ϵ-approximate Markov-perfect coarse Nash equilibrium if,

V
†,π−i

i (s)− V π
i (s) ≤ ϵ, ∀i ∈ [n],

• an ϵ-approximate (Markov) Nash equilibrium if,

V
†,π−i

i (ρ)− V π
i (ρ) ≤ ϵ, ∀i ∈ [n].

2.4 MARKOV GAMES WITH STRUCTURE

Here, we will provide a short exposition on different structures applied to the primitives of the MG,
i.e., the reward and transition functions.

Warm-up: Markov potential games. An important class of MGs that has gained traction in recent
literature is the class of Markov potential games (MPGs) (Leonardos et al., 2021; Zhang et al., 2021;
Mguni et al., 2021). In this class of games, there exists a state-dependent potential function for the
value functions of the players, rather than just the reward functions. In (Leonardos et al., 2021) it is
highlighted that an MPG can be zero-sum in the rewards of one state and potential in the rewards
of another. We remark that a MPG, it is assumed that there exists a potential function for the value
functions of the game, rather than the rewards. One is encouraged to revise the counterexamples
provded in (Leonardos et al., 2021; Zhang et al., 2021) for MGs which fail to be an MPG even though
every stage game is a potential game, or MGs with stage games which are zero-sum games, yet they
are MPGs.
Definition 2.4 (Markov potential game — MPG). An MG is a Markov potential game if there exists
a state-dependent potential function, Φπ(s), such that for all players i ∈ [n], joint policies π, and
unilateral deviations π′

i,

Φπ(s)− Φπ′
i,π−i(s) = V π

i (s)− V π′
i,π−i

i (s).

2.4.1 STRUCTURED REWARDS

Reward-potential Markov games. The class of reward-potential MGs is defined to be the MGs
whose rewards in every state are characterized by the existence of a potential function. I.e., given a
joint policy, changes in the utility of each player, when they unilaterally deviate, are described by the
differences in the potential function.
Remark 1. In our opinion, this is a justified and reasonable alternative Markovian extension of the
class of potential games. Further, the proposed assumption is rather minimal, a lot more so than the
existence of a potential function for the value functions of the players.
Definition 2.5 (Reward-potential Markov game — RPMG). We call a Markov game reward-potential
when for every state s (and timestep h of the horizon), there exists a function ϕh : S ×∆(A)→ R
such that for all players i ∈ [n], joint policies π ∈ ∆(A), and unilateral deviations π′

i ∈ ∆(Ai),

ϕh(s,π)− ϕh(s,π′
i,π−i) = ri,h(s,π)− ri,h(s,π′

i,π−i).

Adversarial reward-potential Markov games. Inspired by the setting proposed in (Babaioff et al.,
2007) and more recently studied by Anagnostides et al. (2023); Orzech & Rinard (2023), it is possible
to further extend RPMGs to MGs whose rewards follow an adversarial potential structure. This
means that the n+ 1 players of the game are split into a group of n agents and an adversarial player;
the reward functions of the group of the first n players are characterized by a potential function —
given that the strategy of the adversary remains fixed. The adversarial player’s reward function is
precisely the opposite value of the group’s potential function. Particularly, we define the following
class of games:
Definition 2.6 (Adversarial reward-potential Markov game — ARPMG). An adversarial reward-
potential Markov game is an MG with n+ 1 players. There exists a function ϕh : S ×∆(A)→ R
such that for all players of the group, i ∈ [n], joint policies π ∈ ∆(A), and unilateral deviations
π′
i ∈ ∆(Ai),

ϕh(s,π)− ϕh(s,π′
i,π−i) = ri,h(s,π)− ri,h(s,π′

i,π−i).
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Additionally, the reward function of the adversary is defined as:

radv,h(s,π) = ϕh(s,π).

Remark 2. We note that this class of MGs differs from the adversarial potential Markov games
defined in (Kalogiannis et al., 2022); the latter setting assumes the existence of a potential function
for the value functions of the players of the team rather than just their reward functions.

2.4.2 STRUCTURED TRANSITIONS

As we intend to demonstrate, the transition function can essentially be used to simulate any general-
sum normal form game even when the reward function form a potential game. This goes to show that
computing approximate stationary equilibria is not only hard in infinite-horizon games; transition
functions in their full generality can make even finite-horizon nonstationary equilibria intractable. As
such, we will present several assumptions that are standard in the literature of MGs and we shall see
that under those, approximating equilibria is a tractable problem. We will highlight the structural
assumptions of (i) a single controller, (ii) switching-control, and (iii) additive transitions. Each of
these assumptions is strictly contained to the one that follows it.

single controller ⊂ switching control ⊂ additive transitions.

Single controller. The single controller assumption in words translates to the fact that only one
player out of the many of a MG can affect the transitions from one state to another. This assumption
is one that has been studied extensively in past as well as contemporary literature (Parthasarathy &
Raghavan, 1981; Sayin et al., 2022).

Switching control. A more slightly more general assumption on the structure of the transitions is
that of switching control (Vrieze et al., 1983; Mohan & Raghavan, 1987; Kalogiannis & Panageas,
2023). When an n-player MG is characterized by switching control, the state-space is divided into
disjoint subsets {Si}i∈[n], with S = ∪ni=1Si; in every such set Si, it is only player i that controls the
transitions.

Additive transitions. Finally, the more general transition structure we will present is that of additive
transitions. This structure contains all previous assumptions as special cases and has been investigated
in an array of works (Raghavan et al., 1985; Flesch et al., 2007; Park et al., 2023). It can be seen as
inducing an interpolation between independent (or, product) state-space games (Flesch et al., 2008)
and standard MGs.
Definition 2.7 (Additive transitions). A Markov game is said to exhibit additive transitions when in
every state s and timestep h of the horizon, it holds that,

Ph(s
′|s,a) =

∑
i∈[n]

ωi,s,h Pi,h(s
′|s, ai),

where ωi,s,h ≥ 0,∀i ∈ [n] and
∑

i∈[n] ωi,s,h = 1.1

2.4.3 AN EXAMPLE

Turn-based MGs. Turn-based MGs are a class of structured MGs that has proven useful in
advancing the understanding of the computational complexity of equlibria in MGs (Daskalakis et al.,
2022; Jin et al., 2022; Deng et al., 2023).
Definition 2.8 (Turn-based Markov game—TBMG). In an n-player turn-based MG, the state space
S is split into disjoint sets {Si}i∈[n]. In every such set Si, player i (called the controller) determines
entirely through their actions both the transitions and the reward functions of all players.

One can observe that turn-based MGs are a special case of MGs with switching control. Further,
correlated policies are equivalent to product policies in those games, making CCEs and NEs equivalent
may they be stationary or nonstationary and perfect or not. We will refer to them as equilibria without
further specification.

1When, ωs,h,j = 1 and ωs,h,i = 0,∀k ̸= i we retrieve the switching-control setting.
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3 MAIN RESULTS

In this section, we demonstrate the necessity of assuming additive transitions in RPMGs even for
computing nonstationary approximate equilibria. Then, we present Algorithm 1 which computes NE
in RPMGs with additive transitions. We highlight that our results concern nonstationary equilibria
and not only stationary ones.

3.1 HARDNESS RESULTS

We commence this subsection by citing a recent result regarding the computational complexity of
computing stationary equilibria in infinite-horizon MGs which of course has implications for RPMGs.
Theorem 3.1 (PPAD-hardness for perfect equilibria — (Daskalakis et al., 2022; Jin et al., 2022; Deng
et al., 2023)). There exists a constant ϵ > 0 such that the problem of computing an ϵ-approximate
perfect NE in 2-player, turn-based stochastic games wiht γ = 1/2 is PPAD-hard. As such, the
problem of computing an ϵ-approximate perfect CCE in 2-player, infinite-horizon stochastic games
with γ = 1/2 is PPAD-hard.
Observation 1. Computing an ϵ-approximate stationary CCE in reward-potential Markov games is
PPAD-hard.

Let us make the latter observation clearer. We denote the controller of state s ∈ Si, cr(s) = i. From
the definition of TBMG, there exist functions r′j for each player j, such that rj(s,a) = r′j(s, acr(s)).
Similarly, there exist P′ such that P(s′|s,a) = P′(s′|s, acr(s)).
Now, we can observe that in a TBMG, the sum of rewards in every state is trivially a potential function
for the rewards of that state,

ϕ(s,a) =
∑
i∈[n]

ri(s,a) =
∑
i∈[n]

r′i
(
s, acr(s)

)
.

i.e., it holds that,
ϕ(s, a′j ,a−j)− ϕ(s,a) = r(s, a′j ,a−j)− r(s,a).

Hence, TBMGs are in fact a special case of reward-potential Markov games. Next, we show that
when transitions assert full generality, even the computation of nonstationary approximate NE is
PPAD-hard for finite-horizon games. Our main complexity contribution is that:
Theorem 3.2. Computing a nonstationary Markovian ϵ-approximate NE policy in reward-potential
Markov games is PPAD-hard.

Proof. Consider a 2-player general-sum game Γ with payoff matrices (U,V) for player 1, 2 accord-
ingly. Pure strategies of players 1 and 2 are denoted ai, bj , accordingly, with i ∈ [m] and j ∈ [n].
Hence, U,V ∈ Rm×n.

We construct a 2-player reward-potential Markov game Γ′ as follows:

• the time horizon of the game is H = 3,

• players 1, 2 have the same set of available actions as players in game Γ; {ai}i∈[m], {bj}j∈[n],

• there is an initial state s0,

• for every pair of actions ai, bj of the initial game there is a state sij ; i.e., S = {sij , ij ∈
[m]× [n]}

• in state sij player 1 gets reward Uij , player 2 gets Vij ; in s0, they both get reward 0,

• transitions are deterministic and P(sij |s0, ai, bj) = 1, while states sij are absorbing.

The value functions of players 1, 2 for policies in s0 x := π1(s0,h = 1),y =: π2(s0,h = 1) are:
V1(s0) = 0 +

∑
a,b

∑
sij∈S x(a)y(b)P(sij |s0, a, b)Uij

=
∑
x(aj)y(bj)Uij = x⊤Uy

V2(s0) = x⊤Vy.
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Figure 1: Illustration of the construction used for the PPAD-hardness of nonstationary NE.

Hence, Nash equilibria of game Γ coincide with the x,y policies of Nash equilibria in game Γ′

and the complexity of approximating them is known due to (Chen et al., 2009; Daskalakis et al.,
2009).

3.2 REWARD-POTENTIAL MARKOV GAMES

Having decisively proven the necessity of assuming a structure on the transitions of the game, we
state our main algorithmic result for RPGMs with additive transitions.
Theorem 3.3 (Informal version of Theorem D.3). Algorithm 1 computes an ϵ-approximate nonsta-
tionary NE for an RPMG with additive transitions in time O(H5|S|2/ϵ2).

Algorithm 1 Backwards-Inductive NE Computation in Reward-Potential MGs
1: input: n,S,H and accuracy parameter ϵ.
2: initialization: V̂i,H = 0 for all agents i ∈ [n]
3: for h = H − 1 to 1 do
4: \\Approx. NE for subgame Γs,h for all s with accuracy ϵ/H

xs,h ← NE-Oracle
(

ϵ
H ,
{
rh,Ph, V̂h+1

})
\\for all s ∈ S

5: \\Update value function
V̂i,s,h ← ri,h(s,xh) + Ph(s,xh)V̂i,s,h+1

6: end for
7: return {xh}h∈[H]

Properties of RMPGs. We conclude this subsection by noting an interesting property of RPMGs.
They do inherit the property of asserting pure NEs from their counterpart in nomral and static form.
In the case that it was desirable, we could modify the implementation of NE-Oraclein Algorithm 1
in such that could compute pure NE in every state and also retrieve deterministic nonstationary NE
policies for RPMGs.
Theorem 3.4. Finite-horizon reward-potential games with additive transitions assert pure Nash
equilibria.

8
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A further note we would like to include is the fact that infinite-horizon RPMGs attain deterministic
approximate nonstationary equilibria by the standard trick of truncating the horizon of the game.
Namely, we set H = log(1/ϵ)

1−γ and modifying the reward functions such that ri,h(s, ·) = γh−1ri(s, ·).
Corollary 3.1. Infinite-horizon RPMGs with discount parameter γ, attain a deterministic nonstation-
ary approximate NE that can be computed in time poly

(
1
ϵ ,

1
1−γ

)
.

4 APPLICATIONS

We extend our results to a setting that is inherently tied to an underlying potential function, namely
adversarial reward-potential Markov games. In (Anagnostides et al., 2023) it is proven that the
maximum of the group’s potential over the adversary’s actions is a potential function.

4.1 ADVERSARIAL REWARD-POTENTIAL MARKOV GAMES

As an extension, we consider ARPMGs, i.e., MGs whose rewards follow an adversarial potential
game structure. It is then straightforward to derive the following corollary from Theorem 3.2,
Corollary 4.1. Computing a nonstationary Markovian ϵ-approximate NE policy in adversarial
reward-potential Markov games is PPAD.

Proposition 4.1. Let an ARPMG with additive transitions, Γ(n+ 1,H,S,A,P, r, γ,ρ), and V̂i,h+1

be the value vector for the δ-approximate NE of the subgames Γs,h+1. Let the adversarial team
normal-form games Γ′

s,∀s ∈ S , each with n players in the team and one adversary. Define the utility
function of the team to be,

u(s,π) := ϕh(s,π)+
∑
s′∈S

∑
j∈[n]

ωj,s,h Pj,h(πj)V̂j,h+1(s
′)−

∑
s′∈S

ωadv,s,h Padv,h(πadv)V̂adv,h+1(s
′).

An ϵ-approximate NE of each subgame Γ′
s is also an (ϵ+ δ)-approximate NE of the Γs,h subgame.

Finally, using the algorithm of (Anagnostides et al., 2023) as a subroutine, we see that:
Theorem 4.1. An ϵ-approximate NE of a finite-horizon ARPMG with additive transitions can be
computed in time poly(1/ϵ,

∑
i∈[n+1] |Ai|, |S|,H).

5 CONCLUSIONS

We examined Markov games with an assumption on the structure of rewards rather than existing
stronger assumptions on the structure of individual value functions. This was a setting that was
implicitly defined in many contemporary texts; yet, its computational landscape remained unexplored.
We settled the question of the computational complexity of computing equilibria in such games and
provided necessary assumptions for their efficient computation. We also provided corresponding
algorithms. In conclusion, we would like to sketch the roadmap for some fascinating future work
with the following open problems.

Open problems.

• Can we design decentralized, rational, and convergent learning algorithms that converge to
a NE in additive transition RPMGs?

• Is it possible to overcome intractability using different structures on the rewards, e.g.,
monotone rewards?

• The notion of Price of Anarchy (Koutsoupias & Papadimitriou, 1999) has been studied
extensively in many classes of games including potential and smooth games (e.g., see
(Roughgarden, 2009)). It would be interesting to prove price of anarchy bounds for RPMGs,
extending the results of prior works that exist for MPGs (Chen et al., 2022; Zhang et al.,
2023).
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A A SHORT REMARK ON ADDITIVE TRANSITIONS

Before proceeding any further, we would like to make it clear that additive transitions is the most
general assumption that we can place on the transition function of a tabular MG with finite action-
spaces and finite state-spaces. By definition, the transition function is a multilinear function of the
individual policies. By our main theorem, Theorem 3.2, we have established that in general, bilinear
transition functions can emulate any two-player general-sum normal-form game; in our construction,
it is even true that the rewards will be constant in each state and independent of the actions of the
players. Additive transitions result in the most general multilinear function that does not lead to
intractability of equilibria and consequently the most general assumption on the transitions.

B BACKGROUND ON MDPS AND MGS

Since MGs are a generalization of MDPs, we offer an elementary exposition of basic notions shared
by both settings. We will define the value function and the action-value function (or, Q-function)
as they play a crucial role in the theory of MDPs and MGs. Essentially, we use the framework of
MGs to discuss MDPs; one just needs to consider that apart from a single agent, all other agents are
dummy, i.e., their actions have no effect in rewards or transitions whatsoever. We consider a MG,
Γ (n,H,S,A,P, r, γ,ρ), and define the following.

Policies. As previously discussed, policies can be either stationary or nonstationary and Markovian
or non-Markovian. We deem only Markovian policies to be relevant in the present work and, as
such, we only consider and define Markovian policies. A stationary policy, πi ∈ ∆(Ai)

|S| of
agent i ∈ [n] assigns the same distribution over actions Ai in every state s ∈ S. On the contrary,
nonstationary policies, πi ∈ ∆(Ai)

H×|S|, assign a potentially different probability distribution over
states depending on the timestep of the horizon h ∈ {1, . . . ,H}.

Value functions. Given a joint policy π, the value function of agent i in a MG satisfies the Bellman
conditions:

V π
i,h(s) = ri,h(s,π) +

∑
s′∈S

Ph(s
′|s,π)Vi,h+1(s

′), ∀h ∈ [H − 1], s ∈ S,

V π
i,H(s) = 0, ∀s ∈ S.

Action-value functions. We define the action-value function (or, q-functions), to be:

Qπ
i,h(s, a) = ri,h(s, a,π−i) +

∑
s′∈S

Ph(s, a,π−i)Vi,h+1(s
′).

Bellman optimality conditions. An optimal policy π⋆
i ∈ ∆(Ai)

[H]×|S| satisfies the following
optimality conditions,

V
π†

i ,π−i

i,h (s) = max
π′

i

{
ri,h(s,π

′
i,π−i) +

∑
s′∈S

Ph(s
′|s,π′

i,π−i)Vi,h+1(s
′)

}
, ∀h ∈ [H], s ∈ S.

When π†
i is optimal for agent i, then,

V
π†

i ,π−i

i,h (s) = max
a∈Ai

Q
π†

i ,π−i

i,h (s, a), ∀h ∈ [H], ∀s ∈ S.

Boundedness of value.
Fact B.1. Let the reward functions be bounded in [0, 1], i.e., 0 ≤ rh(s,a) ≤ 1, ∀s ∈ S,∀aA, it
holds that,

• Vi,h(s) ≤ H − h, ∀i ∈ [n], ∀h ∈ [H];

• Qi,h(s, a) ≤ h, ∀i ∈ [n],∀H − h ∈ [H],∀a ∈ Ai.
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Lipschitz continuity of rewards and transitions.
Claim B.1. In a MG Γ

(
n,H,S,A,P, {ri}i∈[n], γ,ρ

)
with additive transitions, the following in-

equalities hold true for any πs,h,π
′
s,h and any s ∈ S:

• ri,h(s,πs,h)− ri,h(s,π′
s,h) ≤

√∑
i∈[n] |Ai|

∥∥∥πs,h − π′
s,h

∥∥∥;

•
∣∣∑

s′∈S (Ph(s
′|s,πh)− Ph(s

′|s,π′
h))Vi,h+1(s

′)
∣∣ ≤ H|S|maxi∈[n]

√
|Ai|.

Proof. We use standard inequalities:

• Fixing any i, s,h ∈ [n]× S × [H], we have

ri,h(s,π) = Ea∼π[ri,h(s,a)] =
∑

(a1,...,an)∈A

ri,h(s,a)

n∏
i=1

πi,s,h(ai).

As a result,

|ri,h(s,π)− ri,h(s,π′)|

=

∣∣∣∣∣∣
∑

(a1,...,an)∈A

ri,h(s,a)

n∏
i=1

πi,s,h(ai)−
∑

(a1,...,an)∈A

ri,h(s,a)

n∏
i=1

π′
i,s,h(ai)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(a1,...,an)∈A

ri,h(s,a)

(
n∏

i=1

πi,s,h(ai)−
n∏

i=1

π′
i,s,h(ai)

)∣∣∣∣∣∣
≤

∑
(a1,...,an)∈A

∣∣∣∣∣
n∏

i=1

πi,s,h(ai)−
n∏

i=1

π′
i,s,h(ai)

∣∣∣∣∣ (1)

≤
n∑

k=1

∥πi,s,h − π′
i,s,h∥1 = ∥πs,h − π′

s,h∥1

≤

√√√√ n∑
i=1

Ai

 ∥πs,h − π′
s,h∥2, (2)

where (1) follows from the fact that |ri,h(s, ·)| ≤ 1 and the triangle inequality. (2) follows
from the fact that the total variation distance between two distributions is bounded by the
sum of total variation distances between their respective marginal distributions (Hoeffding
& Wolfowitz, 1958), and the equivalence between ℓ1-norm and ℓ2-norm — i.e., ∥x∥1 ≤√
m∥x∥2 for x ∈ Rm).

• the second item is proved using the same line of arguments along with the assumption of
additive transitions and the fact that

∣∣∣V π
i,h(s)

∣∣∣ ≤ H − h.

C MORE ON MPGS

Let us complement the previous exposition on MPGs; the main references that we cite are the ones
that have provided finite-time computation of approximate NE, (Leonardos et al., 2021; Zhang et al.,
2021; Mguni et al., 2021); nevertheless, the same setting is present in other works that considered
asymptotic convergence guarantees (Fudenberg & Levine, 1988; Macua et al., 2018). We note some
interesting properties of MPGs that further highlight the significance of our results.
Proposition C.1 ((Zhang et al., 2021)). None of the following conditions imply that an MG is an
MPG,
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1. There exists a function ϕ : S ×A in for each state, such that,

ri(s,a)− ri(s, a′i,a−i) = ϕ(s,a)− ϕ(s, a′i,a−i), ∀s ∈ S,∀a, a′i.

2. There exists a function ϕ : S ×A such that,

ri(s, a
′
−i,a−i)−ri(s′, a′′i ,a−i) = ϕ(s, a′−i,a−i)−ϕ(s′, a′′i ,a−i), ∀s, s′ ∈ S,∀a, a′i, a′′i .

3. Reward functions are independent of state s, such that,

ri(a)− ri(a′i,a−i) = ϕ(a)− ϕ(a′i,a−i), ∀a, a′i.

The papers referenced (Leonardos et al., 2021; Zhang et al., 2021; Mguni et al., 2021) do not offer an
answer regarding the complexity of computing equilibria in these games; assumptions of all three
items hold true in our construction in Theorem 3.2 — hence, with no assumption on the transition
function, computing approximate nonstationary NEs is PPAD-hard.

D MISSING PROOFS

D.1 PROOFS OF SECTION 3.1:HARDNESS

Theorem D.1. Computing a nonstationary Markovian ϵ-approximate NE policy in reward-potential
Markov games is PPAD-hard.

D.2 PROOF OF THEOREM 3.3: NE COMPUTATION IN RPMGS

Auxiliary lemmata. There are two key lemmata in the proof of our main theorem; one of them tells
us that the game with individual utilities

{
ri,h(s, ·) +

∑
s′∈S P(s′|s, ·)Vi,h+1(s

′)
}
i∈[n]

is a potential
game —w.r.t. policies πh of the corresponding timestep h— no matter the (fixed) value vector,
Vi,h+1, of the future states. The second lemma parametrizes the latter games with vectors Vi,h+1

that correspond to δ-approximate NE for the Γs,h+1 subgames; then, it is demonstrated that an
ϵ-approximate NE in this game is also a (δ + ϵ)-approximate NE of the Γs,h subgames.
Lemma D.1 (Potential game when future values fixed). Fix a timestep h ∈ [H] and let arbi-
trary vectors {vi ∈ R|S|}i∈[n]. Moreover, for every s ∈ S assume game with individual utilities
{ri,h(s, ·) +

∑
s′∈S Ph(s

′|s, ·)vi(s)}. Each such game is a potential game.

Proof. Indeed, let function ψh(s, ·) = ϕh(s, ·) +
∑

i∈[n]

∑
s′∈S ωi,s,h Pi,h(s, ·)vi(s′). We remind

the reader that Ph(s
′|s,π) =

∑
i∈[n] ωi,s,h P(s′|s,πi) due to the additive transitions assumption. It

holds for function ψh(s, ·), that,

ψh(s,πh)− ψh(s,π
′
i,h,π−i,h)

= ϕh(s,πh)− ϕh(s,π′
i,h,π−i,h) + ωi,s,h

∑
s′∈S

(Pi,h(s
′|s,πi,h)v(s

′)− Pi,h(s
′|s,π′

i.h)v(s
′))

= ri,h(s,πh)− ri,h(s,π′
i,h,π−i,h) + ωi,s,h

∑
s′∈S

(Pi,h(s
′|s,πi,h)v(s

′)− Pi,h(s
′|s,π′

i.h)v(s
′))

The last inequality follows from the reward-potential assumption and completes the proof.

For brevity, we simplify the notation for the following claim that we need for the promised second
lemma.
Claim D.1 (Approximate best reponses). Let v̂,v† ∈ RS such that ∥v̂ − v†∥∞ ≤ δ. Further, let
function r : A → R and transition kernel p : A → ∆(S), it holds that,∣∣∣∣∣ max

x′∈∆(A)

{
r(x′) +

∑
s′∈S

p(s′|x′)v̂(s′)

}
− max

x′′∈∆(A)

{
r(x′′) +

∑
s′∈S

p(s′|x′′)v†(s′)

}∣∣∣∣∣ ≤ δ.
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Proof. It follows that for every a ∈ A,

r(a) +
∑
s′∈S

p(s′|a)v̂(s′)−

(
r(a) +

∑
s′∈S

p(s′|a)v†(s′)

)
=
∑
s′∈S

p(s′|a)
(
v̂(s′)− v†(s′)

)
≤ δ.

Since the difference,∣∣∣∣∣ max
x′∈∆(A)

{
r(x′) +

∑
s′∈S

p(s′|x′)v̂(s′)

}
− max

x′′∈∆(A)

{
r(x′′) +

∑
s′∈S

p(s′|x′′)v†(s′)

}∣∣∣∣∣ . (3)

From linearity, it holds that,

max
x′∈∆(A)

{
r(x′) +

∑
s′∈S

p(s′|x′)v̂(s′)

}
= max

a∈A

{
r(a) +

∑
s′∈S

p(s′|a)v̂(s′)

}
and

max
x′′∈∆(A)

{
r(x′′) +

∑
s′∈S

p(s′|x′′)v†(s′)

}
= max

a∈A

{
r(a) +

∑
s′∈S

p(s′|a)v†(s′)

}
.

The last two displays in combination with (3) which holds for all a ∈ A completes the proof of the
claim.

The last claim proves the following lemma,

Lemma D.2. Let {V̂i,h+1}i∈[n] be a collection of value vectors that corresponds to a δ-approximate
NE, {πτ}τ∈{h+1,...,H}, for the subgames {Γs,h+1}s∈S . Further, let an ϵ-approximate NE, π̂h of the

games with individual utilities
{
ri,h(s, ·)+

∑
s′∈S Ph(s

′|s, ·)V̂i,h+1(s
′)
}
i∈[n]

. Then {πτ}τ={h,...,H}

is a (δ + ϵ)-approximate NE for subgames {Γs,h}s∈S .

The complexity of implementing the NE-Oracle. Now, we invoke a theorem that bounds the
number of iterations needed to compute an ϵ-approximate NE in a potential game when every player
employs the mirror-descent algorithm with a fixed stepsize.
Theorem D.2 (Theorem B.6 in (Anagnostides et al., 2022)). Assume a potential game
Γ
(
n, {Ai}i∈[n], {ui∈[n]}

)
with potential function Φ :

∏n
i=1Ai → R. Φ is L-Lipschitz continu-

ous. Suppose that each player i employs mirror-descent

• with stepsize η = 1
2L ,

• with regularizerRi(x), and ∇Ri(x) G-Lipschitz continuous,

• and Diam is the maximum diameter of the a player’s probability simplex due to their use of
regularizerRi.

Further, let T =
⌈
ηΦmax

ϵ2

⌉
+ 2, then it holds that, ∃t⋆ ∈ [T ], such that, xt⋆ is an

ϵ
(

GDiam
η +maxi∈[n]

√
|Ai|

)
-approximate equilibrium.

Bounding the total iteration complexity. Equipped with the latter bound, we are ready to state
our bound on the iteration complexity of computing an approximate NE in RPMGs.
Theorem D.3 (Full version of Theorem 3.3). Algorithm 1 with NE-Oracle implemented using
projected gradient descent with stepsize η = 1

2L for every agent i ∈ [n], input accuracy ϵ/H
for every h, computes an ϵ-approximate nonstationary NE for an RPMG with additive transitions
converges with a total number of iterations

128nH5|S|2 maxi∈[n] |Ai|5/2

ϵ2
.
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Proof. We remind the reader that the projected gradient descent algorithm is equivalent to mirror
descent withRi(·) = 1

2∥·∥
2. Hence, order to achieve accuracy ϵ/H , every projected gradient descent

subroutine needs T =
⌈
8LΦmaxG

2Diam2 maxi∈[n] |Ai|
ϵ2

⌉
+ 2 iterations. In our context, this translates to:

T =

⌈
128nH2|S|maxi∈[n] |Ai|5/2

ϵ2

⌉
+ 2.

Where we have taken Diam = 2maxi∈[n]

√
|Ai|, G = 1, Φmax = H . and we have bounded the

Lispchitz-continuity parameter of each Γs,h subgame by L = 4nH|S|maxi∈n

√
A due to Claim B.1.

Then, we inductively invoke Lemma D.2 to conclude that after H (backwards) inductive steps, we
accumulate an approximation error at most H ϵ

H = ϵ.

Concluding, we need |S|H calls to the NE-Oraclewith accuracy ϵ/H , raising the total iteration
complexity to the stated number.

D.3 PROOFS FOR SECTION 3.2

Theorem D.4. Finite-horizon reward-potential games with additive transitions assert pure Nash
equilibria.

Proof. By convention Vi,H(s) = 0, ∀i ∈ [n],∀s ∈ S. Further, for h = H − 1, the game played
in every state s asserts at least one pure Nash equilibrium (Monderer & Shapley, 1996). Then, by
Lemma D.1 and Lemma D.2 the claim holds.

Following using a standard trick we prove the following:
Corollary D.1. Infinite-horizon RPMGs with discount parameter γ, attain a deterministic nonstation-
ary approximate NE that can be computed in time poly

(
1
ϵ ,

1
1−γ

)
.

Proof. As proposed in (Daskalakis et al., 2022, Theorem 4.2), the infinite-horizon game can be
converted into a finite-horizon one in order to compute nonstationary policies of the initial game.
These nonstationary policies of course cannot span the whole horizon of the game; it suffices that
they only consider the first H := log(1/ϵ)

1−γ steps of the game where ϵ is the desired accuracy of the
equilibrium that is sought after.

After truncating the horizon into a finite one, every reward function is scaled according to the
initial discounting factor, i.e., ri,h(s, ·) = γh−1ri(s, ·), where ri(s, ·) are the reward functions of the
infinite-horizon game.

The complexity of computation follows from known results about the computational complexity
of pure approximate NE in potential games (Fabrikant et al., 2004) and the use of backwards
induction.

D.4 PROOFS FOR SECTION 4.1: ARPMGS

First, we prove that although the subgames defined are not adversarial potential games per se,
the variational inequalities corresponding to their approximate NE coincide with the variational
inequalities of a certain adversarial team game.

Proposition D.1. Let an ARPMG with additive transitions, Γ(n+1,H,S,A,P, r, γ,ρ), and V̂i,h+1

be the value vector for the δ-approximate NE of the subgames Γs,h+1. Let the adversarial team
normal-form games Γ′

s,∀s ∈ S , each with n players in the team and one adversary. Define the utility
function of the team to be,

u(s,π) := ϕh(s,π)+
∑
s′∈S

∑
j∈[n]

ωj,s,h Pj,h(πj)V̂j,h+1(s
′)−

∑
s′∈S

ωadv,s,h Padv,h(πadv)V̂adv,h+1(s
′).

An ϵ-approximate NE of each subgame Γ′
s is also an (ϵ+ δ)-approximate NE of the Γs,h subgame.
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Proof. For brevity, let xi := πi,h,∀i ∈ [n], with x := (x1, . . . ,xn), and y := πadv,h. Further,
X :=

∏
i∈[n] ∆(Ai) and Y := ∆(An+1). Then, we write us(π) = us(x,y). An ϵ-approximate NE

to the game is computed by solving the following variational inequality problem,

∇xu(s,x
⋆,y⋆)⊤(x⋆ − x) ≤ ϵ,∀x ∈ X and ∇yu(s,x

⋆,y⋆)⊤(y⋆ − y) ≥ −ϵ,∀y ∈ Y.

By computing such a point (x⋆,y⋆), it is also the case that,

∇y

(
radv,h(s,x

⋆,y⋆) +
∑
s′∈S

Ph(s
′|s,x⋆,y⋆)V̂adv,h+1(s

′)

)
= ∇y (−u(s,x⋆,y⋆))

We observe that,

∇y

(
radv,h(s,x,y) +

∑
s′∈S

Ph(s
′|s,x,y)V̂adv,h+1(s

′)

)

= ∇y

(
−ϕs,h(x,y) +

∑
s′∈S

Ph(s
′|s,x,y)V̂adv,h+1(s

′)

)
= −∇yu(s,x,y).

By computing such a point (x⋆,y⋆), it is also the case that,

∇x

(
ϕh(s,x,y) +

∑
s′∈S

Ph(s
′|s,x,y)V̂adv,h+1(s

′)

)⊤

(y⋆ − y) ≤ ϵ,∀y ∈ Y,

∇y

(
radv,h(s,x,y) +

∑
s′∈S

Ph(s
′|s,x,y)V̂adv,h+1(s

′)

)⊤

(y⋆ − y) ≥ −ϵ,∀y ∈ Y.

Concluding, such a strategy (x⋆,y⋆) is also a (δ + ϵ)-approximate NE for the subgame Γs,h.

This translates to the fact that the template algorithm, Algorithm 1, can be modified in order to
compute apprximate NEs for ARPMG using the algorithm proposed in (Anagnostides et al., 2023).
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