
Published as a conference paper at ICLR 2023

EQUIVARIANT ENERGY-GUIDED SDE FOR INVERSE
MOLECULAR DESIGN

Fan Bao1 ∗ , Min Zhao1 ∗, Zhongkai Hao1, Peiyao Li1, Chongxuan Li2 3 †, Jun Zhu1 †
1Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua-Huawei Joint Center for AI
BNRist Center, State Key Lab for Intell. Tech. & Sys., Tsinghua University, Beijing, China
2Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
3Beijing Key Laboratory of Big Data Management and Analysis Methods , Beijing, China
bf19@mails.tsinghua.edu.cn, gracezhao1997@gmail.com,
{hzj21, lipy19}@mails.tsinghua.edu.cn,
chongxuanli@ruc.edu.cn, dcszj@tsinghua.edu.cn

ABSTRACT

Inverse molecular design is critical in material science and drug discovery, where
the generated molecules should satisfy certain desirable properties. In this
paper, we propose equivariant energy-guided stochastic differential equations
(EEGSDE), a flexible framework for controllable 3D molecule generation under
the guidance of an energy function in diffusion models. Formally, we show that
EEGSDE naturally exploits the geometric symmetry in 3D molecular conforma-
tion, as long as the energy function is invariant to orthogonal transformations. Em-
pirically, under the guidance of designed energy functions, EEGSDE significantly
improves the baseline on QM9, in inverse molecular design targeted to quantum
properties and molecular structures. Furthermore, EEGSDE is able to generate
molecules with multiple target properties by combining the corresponding energy
functions linearly.

1 INTRODUCTION

The discovery of new molecules with desired properties is critical in many fields, such as the drug
and material design (Hajduk & Greer, 2007; Mandal et al., 2009; Kang et al., 2006; Pyzer-Knapp
et al., 2015). However, brute-force search in the overwhelming molecular space is extremely chal-
lenging. Recently, inverse molecular design (Zunger, 2018) provides an efficient way to explore the
molecular space, which directly predicts promising molecules that exhibit desired properties.

A natural way of inverse molecular design is to train a conditional generative model (Sanchez-
Lengeling & Aspuru-Guzik, 2018). Formally, it learns a distribution of molecules conditioned on
certain properties from data, and new molecules are predicted by sampling from the distribution with
the condition set to desired properties. Among them, equivariant diffusion models (EDM) (Hooge-
boom et al., 2022) leverage the current state-of-art diffusion models (Ho et al., 2020), which involves
a forward process to perturb data and a reverse process to generate 3D molecules conditionally
or unconditionally. While EDM generates stable and valid 3D molecules, we argue that a single
conditional generative model is insufficient for generating accurate molecules that exhibit desired
properties (see Table 1 and Table 3 for an empirical verification).

In this work, we propose equivariant energy-guided stochastic differential equations (EEGSDE), a
flexible framework for controllable 3D molecule generation under the guidance of an energy func-
tion in diffusion models. EEGSDE formalizes the generation process as an equivariant stochastic
differential equation, and plugs in energy functions to improve the controllability of generation.
Formally, we show that EEGSDE naturally exploits the geometric symmetry in 3D molecular con-
formation, as long as the energy function is invariant to orthogonal transformations.

We apply EEGSDE to various applications by carefully designing task-specific energy functions.
When targeted to quantum properties, EEGSDE is able to generate more accurate molecules than
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Figure 1: Overview of our EEGSDE. EEGSDE iteratively generates molecules with desired prop-
erties (represented by the condition c) by adopting the guidance of energy functions in each step.
As the energy function is invariant to rotational transformation R, its gradient (i.e., the energy guid-
ance) is equivariant to R, and therefore the distribution of generated samples is invariant to R.

EDM, e.g., reducing the mean absolute error by more than 30% on the dipole moment property.
When targeted to specific molecular structures, EEGSDE better capture the structure information
in molecules than EDM, e.g, improving the similarity to target structures by more than 10%. Fur-
thermore, EEGSDE is able to generate molecules targeted to multiple properties by combining the
corresponding energy functions linearly. These demonstrate that our EEGSDE enables a flexible
and controllable generation of molecules, providing a smart way to explore the chemical space.

2 RELATED WORK

Diffusion models are initially proposed by Sohl-Dickstein et al. (2015). Recently, they are bet-
ter understood in theory by connecting it to score matching and stochastic differential equations
(SDE) (Ho et al., 2020; Song et al., 2020). After that, diffusion models have shown strong em-
pirical performance in many applications Dhariwal & Nichol (2021); Ramesh et al. (2022); Chen
et al. (2020); Kong et al. (2020). There are also variants proposed to improve or accelerate diffusion
models (Nichol & Dhariwal, 2021; Vahdat et al., 2021; Dockhorn et al., 2021; Bao et al., 2022b;a;
Salimans & Ho, 2022; Lu et al., 2022).

Guidance is a technique to control the generation process of diffusion models. Initially, Song et al.
(2020); Dhariwal & Nichol (2021) use classifier guidance to generate samples belonging to a class.
Then, the guidance is extended to CLIP (Radford et al., 2021) for text to image generation, and
semantic-aware energy (Zhao et al., 2022) for image-to-image translation. Prior guidance methods
focus on image data, and are nontrivial to apply to molecules, since they do not consider the geo-
metric symmetry. In contrast, our work proposes a general guidance framework for 3D molecules,
where an invariant energy function is employed to leverage the geometric symmetry of molecules.

Molecule generation. Several works attempt to model molecules as 3D objects via deep genera-
tive models Nesterov et al. (2020); Gebauer et al. (2019); Satorras et al. (2021a); Hoffmann & Noé
(2019); Hoogeboom et al. (2022). Among them, the most relevant one is the equivariant diffusion
model (EDM) (Hoogeboom et al., 2022), which generates molecules in an iterative denoising man-
ner. Benefiting from recent advances of diffusion models, EDM is stable to train and is able to
generate high quality molecules. We provide a formal description of EDM in Section 3. Some other
methods generate simplified representations of molecules, such as 1D SMILES strings (Weininger,
1988) and 2D graphs of molecules. These include variational autoencoders (Kusner et al., 2017;
Dai et al., 2018; Jin et al., 2018; Simonovsky & Komodakis, 2018; Liu et al., 2018), normalizing
flows (Madhawa et al., 2019; Zang & Wang, 2020; Luo et al., 2021), generative adversarial net-
works (Bian et al., 2019; Assouel et al., 2018), and autoregressive models (Popova et al., 2019;
Flam-Shepherd et al., 2021). There are also methods on generating torsion angles in molecules. For
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instance, Torsional Diffusion (Jing et al., 2022) employs the SDE formulation of diffusion models
to model torsion angles in a given 2D molecular graph for the conformation generation task.

Inverse molecular design. Generative models have been applied to inverse molecular design. For
example, conditional autoregressive models (Gebauer et al., 2022) and EDM (Hoogeboom et al.,
2022) directly generate 3D molecules with desired quantum properties. Gebauer et al. (2019)
also finetune pretrained generative models on a biased subset to generate 3D molecules with small
HOMO-LUMO gaps. In contrast to these conditional generative models, our work further proposes
a guidance method, a flexible way to control the generation process of molecules. Some other meth-
ods apply optimization methods to search molecules with desired properties, such as reinforcement
learning (Zhou et al., 2019; You et al., 2018) and genetic algorithms (Jensen, 2019; Nigam et al.,
2019). These optimization methods generally consider the 1D SMILES strings or 2D graphs of
molecules, and the 3D information is not provided.

3 BACKGROUND

3D representation of molecules. Suppose a molecule has M atoms and let xi ∈ Rn (n = 3 in
general) be the coordinate of the ith atom. The collection of coordinates x = (x1, . . . ,xM ) ∈
RMn determines the conformation of the molecule. In addition to the coordinate, each atom is also
associated with an atom feature, e.g., the atom type. We use hi ∈ Rd to represent the atom feature
of the ith atom, and use h = (h1, . . . ,hM ) ∈ RMd to represent the collection of atom features in a
molecule. We use a tuple z = (x,h) to represent a molecule, which contains both the 3D geometry
information and the atom feature information.

Equivariance and invariance. Suppose R is a transformation. A distribution p(x,h) is said to be
invariant to R, if p(x,h) = p(Rx,h) holds for all x and h. Here Rx = (Rx1, . . . ,RxM ) is
applied to each coordinate. A function (ax,ah) = f(x,h) that have two components ax,ah in its
output is said to be equivariant to R, if f(Rx,h) = (Rax,ah) holds for all x and h. A function
f(x,h) is said to be invariant to R, if f(Rx,h) = f(x,h) holds for all x and h.

Zero CoM subspace. It has been shown that the invariance to translational and rotational trans-
formations is an important factor for the success of 3D molecule modeling (Köhler et al., 2020;
Xu et al., 2022). However, the translational invariance is impossible for a distribution in the full
space RMn (Satorras et al., 2021a). Nevertheless, we can view two collections of coordinates x
and y as equivalent if x can be translated from y, since the translation doesn’t change the identity
of a molecule. Such an equivalence relation partitions the whole space RMn into disjoint equiva-
lence classes. Indeed, all elements in the same equivalence classes represent the same conformation,
and we can use the element with zero center of mass (CoM), i.e., 1

M

∑M
i=1 x

i = 0, as the spe-
cific representation. These elements collectively form the zero CoM linear subspace X (Xu et al.,
2022; Hoogeboom et al., 2022), and the rest of the paper always uses elements in X to represent
conformations.

Equivariant graph neural network. Satorras et al. (2021b) propose equivariant graph neural
networks (EGNNs), which incorporate the equivariance inductive bias into neural networks. Specif-
ically, (ax,ah) = EGNN(x,h) is a composition of L equivariant convolutional layers. The l-th
layer takes the tuple (xl,hl) as the input and outputs an updated version (xl+1,hl+1), as follows:

mij = Φm(hil,h
j
l , ∥x

i
l − xjl ∥

2
2, e

ij ;θm), wij = Φw(m
ij ;θw), h

i
l+1 = Φh(h

i
l,
∑
j ̸=i

wijmij ;θh),

xil+1 = xil +
∑
j ̸=i

xil − xjl
∥xil − xjl ∥2 + 1

Φx(h
i
l,h

j
l , ∥x

i
l − xjl ∥

2
2, e

ij ;θx),

where Φm,Φw,Φh,Φx are parameterized by fully connected neural networks with parameters
θm,θw,θh,θx respectively, and eij are optional feature attributes. We can verify that these layers
are equivariant to orthogonal transformations, which include rotational transformations as special
cases. As their composition, the EGNN is also equivariant to orthogonal transformations. Fur-
thermore, let EGNNh(x,h) = ah, i.e., the second component in the output of the EGNN. Then
EGNNh(x,h) is invariant to orthogonal transformations.
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Equivariant diffusion models (EDM) (Hoogeboom et al., 2022) are a variant of diffusion models
for molecule data. EDMs gradually inject noise to the molecule z = (x,h) via a forward process

q(z1:N |z0)=
N∏
n=1

q(zn|zn−1), q(zn|zn−1) = NX(xn|
√
αnxn−1, βn)N (hn|

√
αnhn−1, βn), (1)

where αn and βn represent the noise schedule and satisfy αn + βn = 1, and NX represent the
Gaussian distribution in the zero CoM subspace X (see its formal definition in Appendix A.2). Let
αn = α1α2 · · ·αn, βn = 1− αn and β̃n = βnβn−1/βn. To generate samples, the forward process
is reversed using a Markov chain:

p(z0:N )=p(zN )

N∏
n=1

p(zn−1|zn), p(zn−1|zn)=NX(xn−1|µxn(zn), β̃n)N(hn−1|µhn(zn), β̃n). (2)

Here p(zN ) = NX(xN |0, 1)N (hN |0, 1). The mean µn(zn) = (µxn(zn),µ
h
n(zn)) is parameter-

ized by a noise prediction network ϵθ(zn, n), and is trained using a MSE loss, as follows:

µn(zn) =
1√
αn

(zn −
βn√
βn

ϵθ(zn, n)), min
θ

EnEq(z0,zn)w(t)∥ϵθ(zn, n)− ϵn∥2,

where ϵn = zn−
√
αnz0√
βn

is the standard Gaussian noise injected to z0 and w(t) is the weight term.

Hoogeboom et al. (2022) show that the distribution of generated samples p(z0) is invariant to rota-
tional transformations if the noise prediction network is equivariant to orthogonal transformations.
In Section 4.2, we extend this proposition to the SDE formulation of molecular diffusion modelling.

Hoogeboom et al. (2022) also present a conditional version of EDM for inverse molecular design by
adding an extra input of the condition c to the noise prediction network as ϵθ(zn, c, n).

4 EQUIVARIANT ENERGY-GUIDED SDE

In this part, we introduce our equivariant energy-guided SDE (EEGSDE), as illustrated in Figure 1.
EEGSDE is based on the SDE formulation of molecular diffusion modeling, which is described in
Section 4.1 and Section 4.2. Then, we formally present our EEGSDE that incorporates an energy
function to guide the molecular generation in Section 4.3. We provide derivations in Appendix A.

4.1 SDE IN THE PRODUCT SPACE

Recall that a molecule is represented as a tuple z = (x,h), where x = (x1, . . . ,xM ) ∈ X
represents the conformation and h = (h1, . . . ,hM ) ∈ RMd represents atom features. Here X =

{x ∈ RMn : 1
M

∑M
i=1 x

i = 0} is the zero CoM subspace mentioned in Section 3, and d is the
feature dimension. We first introduce a continuous-time diffusion process {zt}0≤t≤T in the product
spaceX×RMd, which gradually adds noise to x and h. This can be described by the forward SDE:

dz = f(t)zdt+ g(t)d(wx,wh), z0 ∼ q(z0), (3)

where f(t) and g(t) are two scalar functions, wx and wh are independent standard Wiener processes
in X and RMd respectively, and the SDE starts from the data distribution q(z0). Note that wx can
be constructed by subtracting the CoM of a standard Wiener process w in RMn, i.e., wx = w−w,
where w = 1

M

∑M
i=1 w

i is the CoM of w = (w1, . . . ,wM ). It can be shown that the SDE has a
linear Gaussian transition kernel q(zt|zs) = q(xt|xs)q(ht|hs) from xs to xt, where 0 ≤ s < t ≤
T . Specifically, there exists two scalars αt|s and βt|s, s.t., q(xt|xs) = NX(xt|

√
αt|sxs, βt|s) and

q(ht|hs) = N (ht|
√
αt|shs, βt|s). Here NX denotes the Gaussian distribution in the subspace X ,

and see Appendix A.2 for its formal definition. Indeed, the forward process of EDM in Eq. (1) is a
discretization of the forward SDE in Eq. (3).
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To generate molecules, we reverse Eq. (3) from T to 0. Such a time reversal forms another a SDE,
which can be represented by both the score function form and the noise prediction form:

dz =[f(t)z − g(t)2 (∇x log qt(z)−∇x log qt(z),∇h log qt(z))︸ ︷︷ ︸
score function form

]dt+ g(t)d(w̃x, w̃h),

=[f(t)z +
g(t)2√
βt|0

Eq(z0|zt)ϵt︸ ︷︷ ︸
noise prediction form

]dt+ g(t)d(w̃x, w̃h), zT ∼ qT (zT ). (4)

Here qt(z) is the marginal distribution of zt, ∇x log qt(z) is the gradient of log qt(z) w.r.t. x1,
∇x log qt(z) = 1

M

∑M
i=1∇xi log qt(z) is the CoM of ∇x log qt(z), dt is the infinitesimal nega-

tive timestep, w̃x and w̃h are independent reverse-time standard Wiener processes in X and RMd

respectively, and ϵt =
zt−√

αt|0z0√
βt|0

is the standard Gaussian noise injected to z0. Compared to the

original SDE introduced by Song et al. (2020), our reverse SDE in Eq. (4) additionally subtracts the
CoM of∇x log qt(z). This ensures xt always stays in the zero CoM subspace as time flows back.

To sample from the reverse SDE in Eq. (4), we use a noise prediction network ϵθ(zt, t) to estimate
Eq(z0|zt)ϵt, through minimizing the MSE loss minθ EtEq(z0,zt)w(t)∥ϵθ(zt, t) − ϵt∥2, where t is
uniformly sampled from [0, T ], and w(t) controls the weight of the loss term at time t. Note that the
noise ϵt is in the product space X × RMd, so we subtract the CoM of the predicted noise of xt to
ensure ϵθ(zt, t) is also in the product space.

Substituting ϵθ(zt, t) into Eq. (4), we get an approximate reverse-time SDE parameterized by θ:

dz = [f(t)z +
g(t)2√
βt|0

ϵθ(z, t)]dt+ g(t)d(w̃x, w̃h), zT ∼ pT (zT ), (5)

where pT (zT ) = NX(xT |0, 1)N (hT |0, 1) is a Gaussian prior in the product space that approxi-
mates qT (zT ). We define pθ(z0) as the marginal distribution of Eq. (5) at time t = 0, which is the
distribution of our generated samples. Similarly to the forward process, the reverse process of EDM
in Eq. (2) is a discretization of the reverse SDE in Eq. (5).

4.2 EQUIVARIANT SDE

To leverage the geometric symmetry in 3D molecular conformation, pθ(z0) should be invariant to
translational and rotational transformations. As mentioned in Section 3, the translational invariance
of pθ(z0) is already satisfied by considering the zero CoM subspace. The rotational invariance can
be satisfied if the noise prediction network is equivariant to orthogonal transformations, as summa-
rized in the following theorem:
Theorem 1. Let (ϵxθ(zt, t), ϵ

h
θ(zt, t)) = ϵθ(zt, t), where ϵxθ(zt, t) and ϵhθ(zt, t) are the predicted

noise of xt and ht respectively. If for any orthogonal transformation R ∈ Rn×n, ϵθ(zt, t) is
equivariant to R, i.e., ϵθ(Rxt,ht, t) = (Rϵxθ(xt,ht, t), ϵ

h
θ(xt,ht, t)), and pT (zT ) is invariant to

R, i.e., pT (RxT ,hT ) = pT (xT ,hT ), then pθ(z0) is invariant to any rotational transformation.

As mentioned in Section 3, the EGNN satisfies the equivariance constraint, and we parameterize
ϵθ(zt, t) using an EGNN following Hoogeboom et al. (2022). See details in Appendix D.

4.3 EQUIVARIANT ENERGY-GUIDED SDE

Now we describe equivariant energy-guided SDE (EEGSDE), which guides the generated molecules
of Eq. (5) towards desired properties c by leveraging a time-dependent energy function E(z, c, t):

dz = [f(t)z + g(t)2(
1√
βt|0

ϵθ(z, t)

+ (∇xE(z, c, t)−∇xE(z, c, t),∇hE(z, c, t))︸ ︷︷ ︸
energy gradient taken in the product space

)]dt+ g(t)d(w̃x, w̃h), zT ∼ pT (zT ), (6)

1While qt(z) is defined in X ×RMd, its domain can be extended to RMn ×RMd and the gradient is valid.
See Remark 1 in Appendix A.2 for details.
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which defines a distribution pθ(z0|c) conditioned on the property c. Here the CoM ∇xE(z, c, t)
of the gradient is subtracted to keep the SDE in the product space, which ensures the translational
invariance of pθ(z0|c). Besides, the rotational invariance is satisfied by using energy invariant to
orthogonal transformations, as summarized in the following theorem:

Theorem 2. Suppose the assumptions in Theorem 1 hold and E(z, c, t) is invariant to any or-
thogonal transformation R, i.e., E(Rx,h, c, t) = E(x,h, c, t). Then pθ(z0|c) is invariant to any
rotational transformation.

Note that we can also use a conditional model ϵθ(z, c, t) in Eq. (6). See Appendix C for details.
To sample from pθ(z0|c), various solvers can be used for Eq. (6), such as the Euler-Maruyama
method (Song et al., 2020) and the Analytic-DPM sampler (Bao et al., 2022b;a). We present the
Euler-Maruyama method as an example in Algorithm 1 at Appendix B.

4.4 HOW TO DESIGN THE ENERGY FUNCTION

Our EEGSDE is a general framework, which can be applied to various applications by specifying
different energy functions E(z, c, t). For example, we can design the energy function according
to consistency between the molecule z and the property c, where a low energy represents a well
consistency. As the generation process in Eq. (6) proceeds, the gradient of the energy function
encourages generated molecules to have a low energy, and consequently a well consistency. Thus,
we can expect the generated molecule z aligns well with the property c. In the rest of the paper,
we specify the choice of energy functions, and show these energies improve controllable molecule
generation targeted to quantum properties, molecular structures, and even a combination of them.

Remark. The term “energy” in this paper refers to a general notion in statistical machine learning,
which is a scalar function that captures dependencies between input variables (LeCun et al., 2006).
Thus, the “energy” in this paper can be set to a MSE loss when we want to capture how the molecule
align with the property (as done in Section 5). Also, the “energy” in this paper does not exclude
potential energy or free energy in chemistry, and they might be applicable when we want to generate
molecules with small potential energy or free energy.

5 GENERATING MOLECULES WITH DESIRED QUANTUM PROPERTIES

Let c ∈ R be a certain quantum property. To generate molecules with the desired property, we set
the energy function as the squared error between the predicted property and the desired property
E(zt, c, t) = s|g(zt, t)− c|2, where g(zt, t) is a time-dependent property prediction model, and s is
the scaling factor controlling the strength of the guidance. Specifically, g(zt, t) can be parameterized
by equivariant models such as EGNN (Satorras et al., 2021b), SE3-Transformer (Fuchs et al., 2020)
and DimeNet (Klicpera et al., 2020) to ensure the invariance of E(zt, c, t), as long as they perform
well in the task of property prediction. In this paper we consider EGNN. We provide details on
parameterization and the training objective in Appendix E. We can also generate molecules targeted
to multiple quantum properties by combining energy functions linearly (see details in Appendix F.1).

5.1 SETUP

We evaluate on QM9 (Ramakrishnan et al., 2014), which contains quantum properties and coordi-
nates of ∼130k molecules with up to nine heavy atoms from (C, N, O, F). Following EDM, we split
QM9 into training, validation and test sets, which include 100K, 18K and 13K samples respectively.
The training set is further divided into two non-overlapping halves Da, Db equally. The noise pre-
diction network and the time-dependent property prediction model of the energy function are trained
on Db separately. By default, EEGSDE uses a conditional noise prediction network ϵθ(z, c, t) in
Eq. (6), since we find it generate more accurate molecules than using an unconditional one (see
Appendix G.1 for an ablation study). See more details in Appendix F.3.

Evaluation metric: Following EDM, we use the mean absolute error (MAE) to evaluate how gen-
erated molecules align with the desired property. Specifically, we train another property prediction
model ϕp (Satorras et al., 2021b) onDa, and the MAE is calculated as 1

K

∑K
i=1 |ϕp(zi)−ci|, where

zi is a generated molecule, ci is its desired property. We generate K=10,000 samples for evaluation
with ϕp. For fairness, the property prediction model ϕp is different from g(zt, t) used in the energy
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Table 1: How generated molecules align with the target quantum property. The L-bound (Hooge-
boom et al., 2022) represents the loss of ϕp on Db and can be viewed as a lower bound of the MAE
metric. The conditional EDM results are reproduced, and are consistent with Hoogeboom et al.
(2022) (see Appendix G.4). “#Atoms” uses public results from Hoogeboom et al. (2022).

Method MAE↓ Method MAE↓ Method MAE↓

Cv ( cal
molK) µ (D) α (Bohr3)

U-bound 6.879±0.015 U-bound 1.613±0.003 U-bound 8.98±0.02
#Atoms 1.971 #Atoms 1.053 #Atoms 3.86
Conditional EDM 1.065±0.010 Conditional EDM 1.123±0.013 Conditional EDM 2.78±0.04
EEGSDE (s=1) 1.037±0.010 EEGSDE (s=0.5) 0.930±0.005 EEGSDE (s=0.5) 2.67±0.04
EEGSDE (s=5) 0.981±0.002 EEGSDE (s=1) 0.858±0.006 EEGSDE (s=1) 2.62±0.03
EEGSDE (s=10) 0.941±0.005 EEGSDE (s=2) 0.777±0.007 EEGSDE (s=3) 2.50±0.02
L-bound 0.040 L-bound 0.043 L-bound 0.09

∆ε (meV) εHOMO (meV) εLUMO (meV)

U-bound 1464±4 U-bound 645±41 U-bound 1457±5
#Atoms 866 #Atoms 426 #Atoms 813
Conditional EDM 671±5 Conditional EDM 371±2 Conditional EDM 601±7
EEGSDE (s=0.5) 574±4 EEGSDE (s=0.1) 357±4 EEGSDE (s=0.5) 525±4
EEGSDE (s=1) 542±2 EEGSDE (s=0.5) 320±1 EEGSDE (s=1) 496±2
EEGSDE (s=3) 487±3 EEGSDE (s=1) 302±2 EEGSDE (s=3) 447±6
L-bound 65 L-bound 39 L-bound 36

Table 2: The mean absolute error (MAE) computed by the Gaussian software instead of ϕp.

Method MAE↓ Method MAE↓ Method MAE↓ Method MAE↓ Method MAE↓

µ (D) α (Bohr3) ∆ε (meV) εHOMO (meV) εLUMO (meV)

Conditional EDM 1.20 Conditional EDM 2.41 Conditional EDM 775 Conditional EDM 354 Conditional EDM 573
EEGSDE (s=0.5) 0.96 EEGSDE (s=0.5) 2.27 EEGSDE (s=0.5) 638 EEGSDE (s=0.1) 349 EEGSDE (s=0.5) 495
EEGSDE (s=1) 0.78 EEGSDE (s=1) 2.03 EEGSDE (s=1) 555 EEGSDE (s=0.5) 341 EEGSDE (s=1) 445
EEGSDE (s=2) 0.73 EEGSDE (s=3) 1.85 EEGSDE (s=3) 532 EEGSDE (s=1) 284 EEGSDE (s=3) 416

Table 3: How generated molecules align with multi-
ple target quantum properties.

Method MAE1↓ MAE2↓

Cv ( cal
molK), µ (D)

Conditional EDM 1.079±0.007 1.156±0.011
EEGSDE (s1=10, s2=1) 0.981±0.008 0.912±0.006

∆ε (meV), µ (D)

Conditional EDM 683±1 1.130±0.007
EEGSDE (s1=s2=1) 563±3 0.866±0.003

α (Bohr3), µ (D)

Conditional EDM 2.76±0.01 1.158±0.002
EEGSDE (s1=s2=1.5) 2.61±0.01 0.855±0.007

Table 4: How generated molecules align
with target structures.

Method Similarity↑
QM9

cG-SchNet 0.499±0.002
Conditional EDM 0.671±0.004
EEGSDE (s=0.1) 0.696±0.002
EEGSDE (s=0.5) 0.736±0.002
EEGSDE (s=1.0) 0.750±0.003

GEOM-Drug

Conditional EDM 0.165±0.001
EEGSDE (s=0.5) 0.185±0.001
EEGSDE (s=1.0) 0.193±0.001

function, and they are trained on the two non-overlapping training subsetsDa, Db respectively. This
ensures no information leak occurs when evaluating our EEGSDE. To further verify the effective-
ness of EEGSDE, we also calculate the MAE without relying on a neural network. Specifically, we
use the Gaussian software (which calculates properties according to theories of quantum chemistry
without using neural networks) to calculate the properties of 100 generated molecules. For complete-
ness, we also report the novelty, the atom stability and the molecule stability following Hoogeboom
et al. (2022) in Appendix G.2, although they are not our main focus.

Baseline: The most direct baseline is conditional EDM, which only adopts a conditional noise pre-
diction network. We also compare two additional baselines “U-bound” and “#Atoms” from Hooge-
boom et al. (2022) (see Appendix F.2 for details).

5.2 RESULTS

Following Hoogeboom et al. (2022), we consider six quantum properties in QM9: polarizability
α, highest occupied molecular orbital energy εHOMO, lowest unoccupied molecular orbital energy
εLUMO, HOMO-LUMO gap ∆ε, dipole moment µ and heat capacity Cv . Firstly, we generate
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Target 
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Figure 2: Generated molecules on QM9 targeted to specific structures (unseen during training). The
molecular structures of EEGSDE align better with target structures then conditional EDM.

molecules targeted to one of these six properties. As shown in Table 1, with the energy guidance, our
EEGSDE has a significantly better MAE than the conditional EDM on all properties. Remarkably,
with a proper scaling factor s, the MAE of EEGSDE is reduced by more than 25% compared to
conditional EDM on properties ∆ε, εLUMO, and more than 30% on µ. What’s more, as shown in
Table 2, our EEGSDE still has better MAE under the evaluation by the Gaussian software, which
further verifies the effectiveness of our EEGSDE. We further generate molecules targeted to multiple
quantum properties by combining energy functions linearly. As shown in Table 3, our EEGSDE still
has a significantly better MAE than the conditional EDM.

Conclusion: These results suggest that molecules generated by our EEGSDE align better with the
desired properties than molecules generated by the conditional EDM baseline (for both the single-
property and multiple-properties cases). As a consequence, EEGSDE is able to explore the chemical
space in a guided way to generate promising molecules for downstream applications such as the
virtual screening, which may benefit drug and material discovery.

6 GENERATING MOLECULES WITH TARGET STRUCTURES

Following Gebauer et al. (2022), we use the molecular fingerprint to encode the structure information
of a molecule. The molecular fingerprint c = (c1, . . . , cL) is a series of bits that capture the presence
or absence of substructures in the molecule. Specifically, a substructure is mapped to a specific
position l in the bitmap, and the corresponding bit cl will be 1 if the substructure exists in the
molecule and will be 0 otherwise. To generate molecules with a specific structure (encoded by the
fingerprint c), we set the energy function as the squared errorE(zt, c, t) = s∥m(zt, t)−c∥2 between
a time-dependent multi-label classifier m(zt, t) and c. Here s is the scaling factor, and m(zt, t) is
trained with binary cross entropy loss to predict the fingerprint as detailed in Appendix E.2. Note that
the choice of the energy function is flexible and can be different to the training loss of m(zt, t). In
initial experiments, we also try binary cross entropy loss for the energy function, but we find it causes
the generation process unstable. The multi-label classifierm(zt, t) is parameterized in a similar way
to the property prediction model g(zt, t) in Section 5, and we present details in Appendix E.1.

6.1 SETUP

We evaluate on QM9 and GEOM-Drug. We train our method (including the noise prediction network
and the multi-label classifier) on the whole training set. By default, we use a conditional noise
prediction network ϵθ(z, c, t) in Eq. (6) for a better performance. See more details in Appendix F.4.

Evaluation metric: To measure how the structure of a generated molecule aligns with the target one,
we use the Tanimoto similarity (Gebauer et al., 2022), which captures similarity between structures
by comparing their fingerprints.

Baseline: The most direct baseline is conditional EDM (Hoogeboom et al., 2022), which only adopts
a conditional noise prediction network without the guidance of an energy model. We also consider
cG-SchNet (Gebauer et al., 2022), which generates molecules in an autoregressive manner.

6.2 RESULTS

As shown in Table 4, EEGSDE significantly improves the similarity between target structures and
generated structures compared to conditional EDM and cG-SchNet on QM9. Also note in a proper
range, a larger scaling factor results in a better similarity, and EEGSDE with s=1 improves the sim-
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Figure 3: Generate molecules on QM9 targeted to both the quantum property α and the molecular
structure. As the scaling factor s2 grows, the substructure of generated molecule gradually change
from the symmetric ring to a less isometrically shaped structure. Meanwhile the generated molecule
aligns better with the target structure as the scaling factor s1 grows.

ilarity by more than 10% compared to conditional EDM. In Figure 2, we plot generated molecules
of conditional EDM and EEGSDE (s=1) targeted to specific structures, where our EEGSDE aligns
better with them. We further visualize the effect of the scaling factor in Appendix G.3, where the
generated structures align better as the scaling factor grows. These results demonstrate that our
EEGSDE captures the structure information in molecules well.

We also perform experiments on the more challenging GEOM-Drug (Axelrod & Gomez-Bombarelli,
2022) dataset, and we train the conditional EDM baseline following the default setting of Hooge-
boom et al. (2022). As shown in Table 4, we find the conditional EDM baseline has a similarity of
0.165, which is much lower than the value on QM9. We hypothesize this is because molecules in
GEOM-Drug has much more atoms than QM9 with a more complex structure, and the default set-
ting in Hoogeboom et al. (2022) is suboptimal. For example, the conditional EDM on GEOM-Drug
has a smaller number of parameters than the conditional EDM on QM9 (15M v.s. 26M), which
is insufficient to capture the structure information. Nevertheless, our EEGSDE still improves the
similarity by ∼%17. We provide generated molecules on GEOM-Drug in Appendix G.5.

Finally, we demonstrate that our EEGSDE is a flexible framework to generate molecules targeted to
multiple properties, which is often the practical case. We additionally target to the quantum property
α (polarizability) on QM9 by combining the energy function for structures in this section and the
energy function for quantum properties in Section 5. Here we choose α = 100 Bohr3, which is a
relatively large value, and we expect it to encourage less isometrically shaped structures. As shown
in Figure 3, the generated molecule aligns better with the target structure as the scaling factor s1
grows, and meanwhile a ring substructure in the generated molecule vanishes as the scaling factor
for polarizability s2 grows, leading to a less isometrically shaped structure, which is as expected.

Conclusion: These results suggest that molecules generated by our EEGSDE align better with the
target structure than molecules generated by the conditional EDM baseline. Besides, EEGSDE can
generate molecules targeted to both specific structures and desired quantum properties by combining
energy functions linearly. As a result, EEGSDE may benefit practical cases in molecular design
when multiple properties should be considered at the same time.

7 CONCLUSION

This work presents equivariant energy-guided SDE (EEGSDE), a flexible framework for con-
trollable 3D molecule generation under the guidance of an energy function in diffusion models.
EEGSDE naturally exploits the geometric symmetry in 3D molecular conformation, as long as the
energy function is invariant to orthogonal transformations. EEGSDE significantly improves the
conditional EDM baseline in inverse molecular design targeted to quantum properties and molecu-
lar structures. Furthermore, EEGSDE is able to generate molecules with multiple target properties
by combining the corresponding energy functions linearly.

9
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A DERIVATIONS

A.1 ZERO COM SUBSPACE

The zero CoM subspace X = {x ∈ RMn :
∑M
i=1 x

i = 0} is a (M − 1)n dimensional subspace
of RMn. Therefore, there exists an isometric isomorphism ϕ from R(M−1)n to X , i.e., ϕ is a
linear bijection from R(M−1)n to X , and ∥ϕ(x̂)∥2 = ∥x̂∥2 for all x̂ ∈ R(M−1)n. We use Aϕ ∈
RMn×(M−1)n represent the matrix corresponding to ϕ, so we have ϕ(x̂) = Aϕx̂. An important
property of the isometric isomorphism is that AϕA⊤

ϕx = x − x for all x ∈ RMn. We show the
proof as following.
Proposition 1. Suppose ϕ is an isometric isomorphism from R(M−1)n to X , and let Aϕ ∈
RMn×(M−1)n be the matrix corresponding to ϕ. Then we have AϕA⊤

ϕx = x−x for all x ∈ RMn,

where x = 1
M

∑M
i=1 x

i.

Proof. We consider a new subspace of RMn, X⊥ = {x ∈ RMn : x ⊥ X}, i.e., the orthogonal
component of X . We can verify that X⊥ = {x ∈ RMn : x1 = x2 = · · · = xM}, and X⊥ is n
dimensional. Thus, there exists an isometric isomorphism ψ from Rn toX⊥. LetAψ ∈ RMn×n rep-
resent the matrix corresponding to ψ. Then we define λ(x̂, ŷ) = ϕ(x̂)+ψ(ŷ), where x̂ ∈ R(M−1)n

and ŷ ∈ Rn. The image of λ is {x + y : x ∈ X,y ∈ X⊥} = RMn. Therefore, λ is a linear bi-
jection from RMn to RMn, and the matrix corresponding to λ is Aλ = [Aϕ, Aψ]. Furthermore,
λ is an isometric isomorphism, since ∥λ(x̂, ŷ)∥2 = ∥ϕ(x̂)∥2 + ∥ψ(ŷ)∥2 + 2 ⟨ϕ(x̂), ψ(ŷ)⟩ =
∥x̂∥2 + ∥ŷ∥2 = ∥(x̂⊤, ŷ⊤)⊤∥2. This means Aλ is orthogonal transformation. Therefore,
AλA

⊤
λ = AϕA

⊤
ϕx + AψA

⊤
ψ = I and AϕA

⊤
ϕx + AψA

⊤
ψx = x. Since AϕA⊤

ϕx ∈ X and
AψA

⊤
ψx ∈ X⊤, we can conclude that AϕA⊤

ϕx is the orthogonal projection of x to X , which is
exactly x− x.

Since R(M−1)n and X are two intrinsically equivalent spaces, an equivalence of distributions in
these two spaces can also be established, as shown in the following propositions.
Proposition 2. Suppose x is a random vector distributed in X , and x̂ = ϕ−1(x) is its equivalent
representation in R(M−1)n. If x ∼ q(x), then x̂ ∼ q̂(x̂), where q̂(x̂) = q(ϕ(x̂)).
Proposition 3. Suppose x,y is are two random vectors distributed in X , and x̂ = ϕ−1(x), ŷ =
ϕ−1(y) are their equivalent representations in R(M−1)n. If x|y ∼ q(x|y), then x̂|ŷ ∼ q̂(x̂|ŷ),
where q̂(x̂|ŷ) = q(ϕ(x̂)|ϕ(ŷ))).

A.2 SDE IN THE PRODUCT SPACE

Definition 1 (Gaussian distributions in the zero CoM subspace). Suppose µ ∈ X . Let
NX(x|µ, σ2) := (2πσ2)−(M−1)n/2 exp(− 1

2σ2 ∥x−µ∥22), which is the isotropic Gaussian distribu-
tion with mean µ and variance σ2 in the zero CoM subspace X .
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Proposition 4 (Transition kernels of a SDE in the zero CoM subspace). Suppose dx = f(t)xdt+
g(t)dwx, x0 ∼ q(x0) is a SDE in the zero CoM subspace. Then the transition kernel from xs
to xt (0 ≤ s < t ≤ T ) can be expressed as q(xt|xs) = NX(xt|

√
αt|sxs, βt|s), where αt|s =

exp(2
∫ t
s
f(τ)dτ) and βt|s = αt|s

∫ t
s
g(τ)2/ατ |sdτ are two scalars determined by f(·) and g(·).

Proof. Firstly, we map the process {xt}Tt=0 in the zero CoM subspace to the equivalent space
R(M−1)n through the isometric isomorphism ϕ introduced in Appendix A.1. This produces a new
process {x̂}Tt=0, where x̂t = ϕ−1(xt). By applying ϕ−1 to the SDE in the zero CoM subspace, we
know x̂t = ϕ−1(xt) satisfies the following SDE in R(M−1)n:

dx̂ = f(t)x̂dt+ g(t)dŵ, x̂0 ∼ q̂(x̂0), (7)

where ŵ is the standard Wiener process in R(M−1)n and q̂(x̂0) = q(ϕ(x̂0)). According to Song
et al. (2020), the transition of Eq. (7) from x̂s to x̂t (s < t) can be expressed as q̂(x̂t|x̂s) =

N (x̂t|
√
αt|sx̂s, βt|sI), where αt|s = exp(2

∫ t
s
f(τ)dτ) and βt|s = αt|s

∫ t
s
g(τ)2/ατ |sdτ are two

scalars determined by f(·) and g(·). According to Proposition 3, we know the transition kernel
q(xt|xs) from xs to xt satisfies

q(xt|xs) =q̂(ϕ−1(xt)|ϕ−1(xs)) = (2πβt|s)
−(M−1)n/2 exp(− 1

2βt|s
∥ϕ−1(xt)−

√
αt|sϕ

−1(xs)∥22)

=(2πβt|s)
−(M−1)n/2 exp(− 1

2βt|s
∥ϕ−1(xt −

√
αt|sxs)∥22) // linearity of ϕ−1

=(2πβt|s)
−(M−1)n/2 exp(− 1

2βt|s
∥xt −

√
αt|sxs∥22) // norm preserving of ϕ−1

=NX(xt|
√
αt|sxs, βt|s).

Proposition 5 (Transition kernels of the SDE in the product space). Suppose dz = f(t)zdt +
g(t)d(wx,wh), z0 ∼ q(z0) is the SDE in the product space X × RMd, as introduced in
Eq. (3). Then the transition kernel from zs to zt (0 ≤ s < t ≤ T ) can be expressed
as q(zt|zs) = q(xt|xs)q(ht|hs), where q(xt|xs) = NX(xt|

√
αt|sxs, βt|s) and q(ht|hs) =

N (ht|
√
αt|shs, βt|s). Here αt|s and βt|s are defined as in Proposition 4.

Proof. Since wx and wh are independent to each other, the transition kernel from zs to zt can
be factorized as q(zt|zs) = q(xt|xs)q(ht|hs), where q(xt|xs) is the transition kernel of dx =
f(t)xdt+ g(t)dwx and q(ht|hs) is the transition kernel of dh = f(t)hdt+ g(t)dwh. According
to Proposition 4 and Song et al. (2020), we have q(xt|xs) = NX(xt|

√
αt|sxs, βt|s) and q(ht|hs) =

N (ht|
√
αt|shs, βt|s).

Remark 1. The marginal distribution of zt is

qt(zt) =

∫
Z

∫
RMd

q(z0)q(xt|x0)q(ht|h0)dh0λ(dx0),

where λ is the Lebesgue measure in the zero CoM subspace X . While qt(zt) is a distribu-
tion in X × RMd, it has a natural differentiable extension to RMn × RMd, since q(xt|x0) =
NX(xt|

√
αt|sxs, βt|s) has a differentiable extension to RMn according to Definition 1. Thus, we

can take gradient of qt(zt) w.r.t. xt in the whole space RMn.
Proposition 6 (Time reversal of the SDE in the product space). Suppose dz = f(t)zdt +
g(t)d(wx,wh), z0 ∼ q(z0) is the SDE in the product space X × RMd, as introduced in Eq. (3).
Then its time reversal satisfies the following reverse-time SDE, which can be represented by both the
score function form and the noise prediction form:

dz =[f(t)z − g(t)2 (∇x log qt(z)−∇x log qt(z),∇h log qt(z))︸ ︷︷ ︸
score function form

]dt+ g(t)d(w̃x, w̃h),

=[f(t)z +
g(t)2√
βt|0

Eq(z0|zt)ϵt︸ ︷︷ ︸
noise prediction form

]dt+ g(t)d(w̃x, w̃h), zT ∼ qT (zT ),
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where w̃x and w̃h are reverse-time standard Wiener processes in X and RMd respectively, and
ϵt =

zt−√
αt|0z0√
βt|0

is the standard Gaussian noise in X × RMd injected to z0.

Furthermore, we have∇x log qt(x)−∇x log qt(x) = − 1√
βt|0

Eq(x0|xt)ϵt, where ϵt =
xt−√

αt|0x0√
βt|0

is the standard Gaussian noise in the zero CoM subspace injected to x0.

Proof. Let ẑt = (x̂t,ht), where x̂t = ϕ−1(xt), introduced in the proof of Proposition 4. Then
{ẑt}Tt=0 is a process in R(M−1)n × RMd determined by the following SDE

dẑ = f(t)ẑdt+ g(t)dŵ, ẑ0 ∼ q̂(ẑ0), (8)

where ŵ is the standard Wiener process in R(M−1)n × RMd and q̂(ẑ0) = q(ϕ(x̂0),h).

According to Song et al. (2020), Eq. (8) has a time reversal:

dẑ = [f(t)ẑ − g(t)2∇ẑ log q̂t(ẑ)]dt+ g(t)dw̃, ẑT ∼ q̂T (ẑT ), (9)

where q̂t(z) is the marginal distribution of ẑt, which satisfies q̂t(ẑt) = qt(ϕ(x̂t),ht) according to
Proposition 2, and w̃ is the reverse-time standard Wiener process in R(M−1)n × RMd.

Then we apply the linear transformation T ẑ = (ϕ(x̂),h) to Eq. (9), which maps ẑt back to zt. This
yields

dz = [f(t)z − g(t)2T (∇ẑ log q̂t(ẑ))]dt+ g(t)d(w̃x, w̃h), zT ∼ qT (zT ). (10)

Here w̃x and w̃h are reverse-time standard Wiener processes in X and RMd respectively, and
T (∇ẑ log q̂t(ẑ)) can be expressed as (ϕ(∇x̂ log q̂t(ẑ)),∇h log q̂t(ẑ)).

Since ∇x̂ log q̂t(ẑ) = A⊤
ϕ∇x log qt(x,h) = A⊤

ϕ∇x log qt(z), we have ϕ(∇x̂ log q̂t(ẑ)) =

AϕA
⊤
ϕ∇x log qt(z), where Aϕ represents the matrix corresponding to ϕ. According to Propo-

sition 1, we have ϕ(∇x̂ log q̂t(ẑ)) = ∇x log qt(z) − ∇x log qt(z). Besides, ∇h log q̂t(ẑ) =
∇h log qt(z). Thus, Eq. (10) can be written as

dz = [f(t)z − g(t)2(∇x log qt(z)−∇x log qt(z),∇h log qt(z))]dt+ g(t)d(w̃x, w̃h),

which is the score function form of the reverse-time SDE.

We can also write the score function in Eq. (9) as ∇ẑ log q̂t(ẑ) = Eq̂(ẑ0|ẑt)∇ẑ log q̂(ẑt|ẑ0) =

− 1√
βt|0

Eq̂(ẑ0|ẑt)ϵ̂t, where ϵ̂t =
ẑt−√

αt|0ẑ0√
βt|0

is the standard Gaussian noise injected to ẑ0. With

this expression, we have T (∇ẑ log q̂t(ẑ)) = − 1√
βt|0

Eq̂(ẑ0|ẑt)T (ϵ̂t) = − 1√
βt|0

Eq(z0|zt)ϵt, where

ϵt =
zt−√

αt|0z0√
βt|0

is the standard Gaussian noise in X ×RMd injected to z0. Thus, Eq. (10) can also

be written as

dz = [f(t)z +
g(t)2√
βt|0

Eq(z0|zt)ϵt]dt+ g(t)d(w̃x, w̃h),

which is the noise prediction form of the reverse-time SDE.

A.3 EQUIVARIANCE

Theorem 1. Let (ϵxθ(zt, t), ϵ
h
θ(zt, t)) = ϵθ(zt, t), where ϵxθ(zt, t) and ϵhθ(zt, t) are the predicted

noise of xt and ht respectively. If for any orthogonal transformation R ∈ Rn×n, ϵθ(zt, t) is
equivariant to R, i.e., ϵθ(Rxt,ht, t) = (Rϵxθ(xt,ht, t), ϵ

h
θ(xt,ht, t)), and pT (zT ) is invariant to

R, i.e., pT (RxT ,hT ) = pT (xT ,hT ), then pθ(z0) is invariant to any rotational transformation.

Proof. Suppose R ∈ Rn×n is an orthogonal transformation. Let zθ
t = (xθ

t ,h
θ
t ) (0 ≤ t ≤ T ) be

the process determined by Eq. (5). Let yθ
t = Rxθ

t and uθ
t = (yθ

t ,h
θ
t ). We use put (ut) and pzt (zt)

to denote the distributions of uθ
t and zθ

t respectively, and they satisfy put (yt,ht) = pzt (R
−1yt,ht).
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By applying the transformation Tz = (Rx,h) to Eq. (5), we know the new process {uθ
t }Tt=0

satisfies the following SDE:

du = Tdz = [f(t)u+
g(t)2√
βt|0

(Rϵxθ(z, t), ϵ
h
θ(z, t))]dt+ g(t)d(Rw̃x, w̃h)

=[f(t)u+
g(t)2√
βt|0

(ϵxθ(Rx,h, t), ϵhθ(Rx,h, t))]dt+ g(t)d(Rw̃x, w̃h) // by equivariance

=[f(t)u+
g(t)2√
βt|0

ϵθ(u, t)]dt+ g(t)d(w̃x, w̃h), // Winner process is isotropic

and its initial distribution is puT (uT ) = puT (yT ,hT ) = pzT (R
−1yT ,hT ) = pT (R

−1yT ,hT ) =
pT (yT ,hT ) = pT (uT ). Thus, the SDE of {uθ

t }Tt=0 is exactly the same to that of {zθ
t }Tt=0.

This indicates that the distribution of uθ
0 is the same to the distribution of zθ

0 , i.e., pu0 (u0) =
pz0 (u0) = pθ(u0). Also note that pu0 (u0) = pz0 (R

−1y0,h0) = pθ(R
−1y0,h0). Thus,

pθ(u0) = pθ(R
−1y0,h0), and consequently pθ(Rx0,h0) = pθ(x0,h0). This means pθ(z0)

is invariant to any orthogonal transformation, which includes rotational transformations as special
cases.

Theorem 2. Suppose the assumptions in Theorem 1 hold and E(z, c, t) is invariant to any or-
thogonal transformation R, i.e., E(Rx,h, c, t) = E(x,h, c, t). Then pθ(z0|c) is invariant to any
rotational transformation.

Proof. Suppose R ∈ Rn×n is an orthogonal transformation. Taking gradient to both side of
E(Rx,h, c, t) = E(x,h, c, t) w.r.t. x, we get

R⊤∇yE(y,h, c, t)|y=Rx = ∇xE(x,h, c, t).

Multiplying R to both sides, we get

∇yE(y,h, c, t)|y=Rx = R∇xE(x,h, c, t).

Let ϕ(z, c, t) = (∇xE(z, c, t)−∇xE(z, c, t),∇hE(z, c, t)). Then we have

ϕ(Rx,h, c, t) =(∇yE(y,h, c, t)−∇yE(y,h, c, t),∇hE(y,h, c, t))|y=Rx

=(R∇xE(x,h, c, t)−R∇xE(x,h, c, t),∇hE(Rx,h, c, t))

=(R(∇xE(x,h, c, t)−∇xE(x,h, c, t)),∇hE(x,h, c, t)).

Thus, ϕ(z, c, t) is equivariant to R. Let ϵ̂θ(z, c, t) = ϵθ(z, t) +
√
βt|0ϕ(z, c, t), which is a linear

combination of two equivariant functions and is also equivariant to R.

Then, Eq. (6) can be written as

dz = [f(t)z +
g(t)2√
βt|0

ϵ̂θ(z, c, t)]dt+ g(t)d(w̃x, w̃h), zT ∼ pT (zT ).

According to Theorem 1, we know its marginal distribution at time t = 0, i.e., pθ(z0|c), is invariant
to any rotational transformation.

B SAMPLING

In Algorithm 1, we present the Euler-Maruyama method to sample from EEGSDE in Eq. 6.
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Algorithm 1 Sample from EEGSDE using the Euler-Maruyama method

Require: Number of steps N
∆t = T

N
z ← (x− x,h), where x ∼ N (0, 1), h ∼ N (0, 1) {Sample from the prior pT (zT )}
for i = N to 1 do
t← i∆t
gx ← ∇xE(z, c, t), gh ← ∇hE(z, c, t) {Calculate the gradient of the energy function}
g ← (gx − gx, gh) {Subtract the CoM of the gradient}
F ← f(t)z + g(t)2( 1√

βt|0
ϵθ(z, t) + g)

ϵ← (ϵx − ϵx, ϵh), where ϵx ∼ N (0, 1), ϵh ∼ N (0, 1)

z ← z − F∆t+ g(t)
√
∆tϵ {Update z according to Eq. (6)}

end for
return z

C CONDITIONAL NOISE PREDICTION NETWORKS

In Eq. (6), we can alternatively use a conditional noise prediction network ϵθ(z, c, t) for a stronger
guidance, as follows

dz = [f(t)z + g(t)2(
1√
βt|0

ϵθ(z, c, t)

+ (∇xE(z, c, t)−∇xE(z, c, t),∇hE(z, c, t)))]dt+ g(t)d(w̃x, w̃h), zT ∼ pT (zT ).

The conditional noise prediction network is trained similarly to the unconditional one, using the
following MSE loss

min
θ

EtEq(c,z0,zt)w(t)∥ϵθ(zt, c, t)− ϵt∥2.

D PARAMETERIZATION OF NOISE PREDICTION NETWORKS

We parameterize the noise prediction network following Hoogeboom et al. (2022), and we pro-
vide the specific parameterization for completeness. For the unconditional model ϵθ(z, t), we
first concatenate each atom feature hi and t, which gives hi′ = (hi, t). Then we input x and
h′ = (h1′, . . . ,hM ′) to the EGNN as follows

(ax,ah′) = EGNN(x,h′)− (x,0).

Finally, we subtract the CoM of ax, and gets the parameterization of ϵθ(z, t):

ϵθ(z, t) = (ax − ax,ah),

where ah comes from discarding the last component of ah′ that corresponds to the time.

For the conditional model ϵθ(z, c, t), we additionally concatenate c to the atom feature hi, i.e.,
hi′ = (hi, t, c), and other parts in the parameterization remain the same.

E DETAILS OF ENERGY FUNCTIONS

E.1 PARAMETERIZATION OF TIME-DEPENDENT MODELS

The time-dependent property prediction model g(zt, t) is parameterized using the second compo-
nent in the output of EGNN (see Section 3) followed by a decoder (Dec):

g(zt, t) = Dec(EGNNh(xt,h
′
t)), h′

t = concatenate(ht, t), (11)

where the concatenation is performed on each atom feature, and the decoder is a small neural
network based on Satorras et al. (2021b). This parameterization ensures that the energy function
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E(zt, c, t) is invariant to orthogonal transformations, and thus the distribution of generated samples
is also invariant according to Theorem 2.

Similarly, the time-dependent multi-label classifier is parameterized by EGNN as

m(zt, t) = σ(Dec(EGNNh(xt,h
′
t))), h′

t = concatenate(ht, t).

The multi-label classifier has the same backbone to the property prediction model in Eq. (11), except
that the decoder outputs a vector of dimension L, and the sigmoid function σ is adopted for multi-
label classification. Similarly to Eq. (11), the EGNN in the multi-label classifier guarantees the
invariance of the distribution of generated samples according to Theorem 2.

E.2 TRAINING OBJECTIVES OF ENERGY FUNCTIONS

Time-dependent property prediction model. Since the quantum property is a scalar, we train the
time-dependent property prediction model g(zt, t) using the ℓ1 loss

EtEq(c,z0,zt)|g(zt, t)− c|,
where t is uniformly sampled from [0, T ].

Time-dependent multi-label classifier. Since the fingerprint is a bit map, predicting it can be
viewed as a multi-label classification task. Thus, we use a time dependent multi-label classifier
m(zt, t), and train it using the binary cross entropy loss

EtEq(c,x0,xt)

L∑
l=1

cl logml(zt, t) + (1− cl) log(1−ml(zt, t)),

where t is uniformly sampled from [0, T ], and ml(zt, t) is the l-th component of m(zt, t).

F EXPERIMENTAL DETAILS

F.1 HOW TO GENERATE MOLECULES TARGETED TO MULTIPLE QUANTUM PROPERTIES

When we want to generate molecules with K quantum properties c = (c1, c2, . . . , cK), we com-
bine energy functions for single properties linearly as E(zt, c, t) =

∑K
k=1Ek(zt, ck, t), where

Ek(zt, ck, t) = sk|gk(zt, t) − ck|2 is the energy function for the k-th property, sk is the scaling
factor and gk(zt, t) is the time-dependent property prediction model for the k-th property. Then we
use the gradient of E(zt, c, t) to guide the reverse SDE as described in Eq. (6).

F.2 THE “U-BOUND” AND “#ATOMS” BASELINES

The “U-bound” and “#Atoms” baselines are from Hoogeboom et al. (2022). The “U-bound” baseline
shuffles the labels in Db and then calculate the loss of ϕc on it, which can be regarded as an upper
bound of the MAE. The “#Atoms” baseline predicts a quantum property c using only the number of
atoms in a molecule.

F.3 GENERATING MOLECULES WITH DESIRED QUANTUM PROPERTIES

For the noise prediction network, we use the same setting with EDM (Hoogeboom et al., 2022) for
a fair comparison, where the models is trained ∼2000 epochs with a batch size of 64, a learning
rate of 0.0001 with the Adam optimizer and an exponential moving average (EMA) with a rate of
0.9999.

The EGNN used in the energy function has 192 hidden features and 7 layers. We train 2000 epochs
with a batch size of 128, a learning rate of 0.0001 with the Adam optimizer and an exponential
moving average (EMA) with a rate of 0.9999.

During evaluation, we need to generate a set of molecules. Following the EDM (Hoogeboom et al.,
2022), we firstly sample the number of atoms in a molecule M ∼ p(M) and the property value
c ∼ p(c|M) (or c1 ∼ p(c1|M), c2 ∼ p(c2|M), . . . , cK ∼ p(cK |M) for multiple properties). Here
p(M) is the distribution of molecule sizes on training data, and p(c|M) is the distribution of the
property on training data. Then we generate a molecule given M, c.
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F.4 GENERATING MOLECULES WITH TARGET STRUCTURES

Computation of Tanimoto similarity. Let Sg be the set of bits that are set to 1 in the fingerprint of
a generated molecule, and St be the set of bits that are set to 1 in the target structure. The Tanimoto
similarity is defined as |Sg ∩ St|/|Sg ∪ St|, where | · | denotes the number of elements in a set.

Experimental details on QM9. For the backbone of the noise prediction network, we use a three-
layer MLP with 768, 512 and 192 hidden nodes as embedding to encode the fingerprint and add the
output of it with the embedding of atom features h, which is then fed into the following EGNN.
The EGNN has 256 hidden features and 9 layers. We train it 1500 epoch with a batch size of 64, a
learning rate of 0.0001 with the Adam optimizer and an exponential moving average (EMA) with a
rate of 0.9999. The energy function is trained with 1750 epoch with a batch size of 128, a learning
rate of 0.0001 with the Adam optimizer and an exponential moving average (EMA) with a rate of
0.9999. Its EGNN has 192 hidden features and 7 layers. For the baseline cG-SchNet, we reproduce
it using the public code. Since the default data split in cG-SchNet is different with ours, we train
the cG-SchNet under the same data split with ours for a fair comparison. We report results at 200
epochs (there is no gain on similarity metric after 150 epochs). We evaluate the Tanimoto similarity
on the whole test set.

Experimental details on GEOM-Drug. We use the same data split of GEOM-Drug with Hooge-
boom et al. (2022), where training, validation and test set include 554K, 70K and 70K samples
respectively. We train the noise prediction network and the energy function on the training set.
For the noise prediction network, we use the recommended hyperparameters of EDM (Hoogeboom
et al., 2022), where the EGNN has 256 hidden features and 4 layers, and the other part is the same
as that in QM9. We train 10 epoch with a batch size of 64, a learning rate of 0.0001 with the Adam
optimizer and an exponential moving average (EMA) with a rate of 0.9999. The backbone of the
energy function is the same as that in QM9 and we train the energy function for 14 epoch. We
evaluate the Tanimoto similarity on randomly selected 10K molecules from the test set.

G ADDITIONAL RESULTS

G.1 ABLATION STUDY ON NOISE PREDICTION NETWORKS AND ENERGY GUIDANCE

We perform an ablation study on the conditioning, i.e., use conditional or unconditional noise pre-
diction networks, and the energy guidance. When neither the conditioning nor the energy guidance
is adopted, a single unconditional model can’t perform conditional generation, and therefore we only
report its atom stability and the molecule stability. As shown in Table 5, Table 6 and Table 7, the
conditional noise prediction network improves the MAE compared to the unconditional one, and the
energy guidance improves the MAE compared to a sole conditional model. Both the conditioning
and the energy guidance do not affect the atom stability and the molecule stability much.

Table 5: Effects of conditioning and energy guidance on a single quantum property µ (D).

Conditional Guidance Scale MAE↓ Novelty↑ AS↑ MS↑

× × - - 82.92 98.37 81.74
× ✓ 0.1 1.415 83.60 98.33 81.16
× ✓ 0.5 1.241 83.84 98.27 80.75

✓ - - 1.138 84.04 98.14 80.04
✓ ✓ 0.1 1.071 84.36 98.18 80.08
✓ ✓ 0.5 0.935 84.06 98.20 80.05
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Table 6: Effects of conditioning and energy guidance on a single quantum property Cv ( cal
molK).

Conditional Guidance Scale MAE↓ Novelty ↑ AS↑ MS↑

× × - - 82.92 98.37 81.74
× ✓ 1 2.360 84.15 98.36 81.44
× ✓ 10 1.459 84.25 98.07 79.06

✓ × - 1.066 83.64 98.25 80.50
✓ ✓ 1 1.038 83.71 98.21 80.61
✓ ✓ 10 0.939 83.92 98.06 79.21

Table 7: Effects of conditioning and energy guidance on multiple quantum properties Cv , µ.

Conditional Guidance Scale MAE1↓ MAE2↓ Novelty↑ AS↑ MS↑

× × - - - 82.92 98.37 81.74
× ✓ 1,0.1 2.381 1.421 83.81 98.31 80.52
× ✓ 10,1 1.501 1.157 84.11 98.02 78.20

✓ × - 1.075 1.163 85.45 97.99 77.02
✓ ✓ 1,0.1 1.053 1.097 85.20 97.96 77.08
✓ ✓ 10,1 0.982 0.916 85.51 97.58 73.94

G.2 RESULTS ON NOVELTY, ATOM STABILITY AND MOLECULE STABILITY

For completeness, we also report novelty, atom stability and molecule stability on 10K generated
molecules. Below we briefly introduce these metrics.

• Novelty (Simonovsky & Komodakis, 2018) is the proportion of generated molecules that
do not appear in the training set. Specifically, let G be the set of generated molecules, the
novelty is calculated as 1 − |G∩Db|

|G| . Note that the novelty is evaluated on Db, since the
reproduced conditional EDM and our method are trained on Db. This leads to an inflated
value compared to the one evaluated on the whole dataset (Hoogeboom et al., 2022).

• Atom stability (AS) (Hoogeboom et al., 2022) is the proportion of atoms that have the right
valency. Molecule stability (MS) (Hoogeboom et al., 2022) is the proportion of gener-
ated molecules where all atoms are stable. We use the official implementation for the two
metrics from the EDM paper (Hoogeboom et al., 2022).

As shown in Table 8 and Table 9, conditional EDM and EEGSDE with a small scaling factor have
a slightly better stability, and EEGSDE with a large scaling factor has a slightly better novelty in
general. The additional energy changes the distribution of generated molecules, which improves the
novelty of generated molecules in general. Since there is a tradeoff between novelty and stability
(see the caption of Table 5 in the EDM paper (Hoogeboom et al., 2022)), a slight decrease on the
stability is possible when the scaling factor is large.
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Table 8: Additional results on the novelty, the atom stability (AS) and the molecule stability (MS)
of generated molecules targeted to a single quantum property.

Method Novelty↑ AS↑ MS↑ Method Novelty↑ AS↑ MS↑

Cv µ

Conditional EDM 83.64±0.30 98.25±0.02 80.82±0.32 Conditional EDM 83.93±0.11 98.17±0.04 80.25±0.40
EEGSDE (s=1) 83.53±0.18 98.25±0.06 80.83±0.33 EEGSDE (s=0.5) 83.85±0.20 98.18±0.02 80.25±0.18
EEGSDE (s=5) 83.57±0.17 98.16±0.04 80.22±0.34 EEGSDE (s=1) 84.43±0.21 98.17±0.04 80.06±0.35
EEGSDE (s=10) 83.78±0.49 98.03±0.04 79.07±0.24 EEGSDE (s=2) 84.62±0.31 98.06±0.02 78.92±0.30

∆ε εHOMO

Conditional EDM 83.93±0.45 98.30±0.04 81.95±0.27 Conditional EDM 84.35±0.31 98.17±0.07 79.61±0.32
EEGSDE (s=0.5) 84.09±0.27 98.18±0.06 80.99±0.29 EEGSDE (s=0.1) 84.44±0.33 98.19±0.03 79.81±0.20
EEGSDE (s=1) 83.91±0.38 98.08±0.04 79.85±0.29 EEGSDE (s=0.5) 84.57±0.28 98.13±0.02 79.40±0.32
EEGSDE (s=3) 85.17±0.69 97.76±0.03 77.43±0.37 EEGSDE (s=1) 84.77±0.25 98.08±0.02 78.90±0.23

α εLUMO

Conditional EDM 84.56±0.47 98.13±0.04 79.33±0.30 Conditional EDM 84.62±0.28 98.26±0.04 81.34±0.29
EEGSDE (s=0.5) 84.35±0.31 98.19±0.03 80.08±0.34 EEGSDE (s=0.5) 84.37±0.31 98.25±0.04 81.18±0.31
EEGSDE (s=1) 84.45±0.33 98.17±0.04 80.04±0.36 EEGSDE (s=1) 84.70±0.34 98.27±0.05 81.23±0.75
EEGSDE (s=3) 84.19±0.32 98.26±0.03 80.95±0.35 EEGSDE (s=3) 84.83±0.30 98.14±0.01 80.00±0.21

Table 9: Additional results on the novelty, the atom stability (AS) and the molecule stability (MS)
of generated molecules targeted to multiple quantum properties.

Method Novelty↑ AS↑ MS↑
Cv , µ

Conditional EDM 85.31±0.43 98.00±0.07 77.42±0.80
EEGSDE (s1=10, s2=1) 85.62±0.86 97.67±0.08 74.56±0.54

∆ε, µ

Conditional EDM 85.06±0.27 97.96±0.00 75.95±0.30
EEGSDE (s1=s2=1) 85.56±0.56 97.61±0.04 72.72±0.27

α, µ

Conditional EDM 85.18±0.35 98.00±0.06 77.96±0.33
EEGSDE (s1=s2=1.5) 85.36±0.03 97.99±0.06 77.77±0.26

G.3 VISUALIZATION OF THE EFFECT OF THE SCALING FACTOR

We visualize the effect of the scaling factor in Figure 4, where the generated structures align better
as the scaling factor grows.

Target 
structure

S = 0 S = 0.5

Figure 4: Visualization of the effect of the scaling factor on QM9. As the scaling factor grows,
the generated structures align better with the target structure. S = 0 corresponds to the conditional
EDM.
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G.4 REPRODUCE

We compare our reproduced results and the original results of conditional EDM (Hoogeboom et al.,
2022) in Table 10. The results are consistent.

Table 10: The reproduced results of conditional EDM and L-bound are consistent with the original
ones.

Quantum property α ∆ε εHOMO εLUMO µ Cv
Unit Bohr3 meV meV meV D cal

molK

Conditional EDM (Hoogeboom et al., 2022) 2.76 655 356 584 1.111 1.101
Conditional EDM (reproduce) 2.79 674 371 593 1.118 1.054

L-bound (Hoogeboom et al., 2022) 0.10 64 39 36 0.043 0.040
L-bound (reproduce) 0.09 65 39 36 0.043 0.040

G.5 GENERATING MOLECULES WITH TARGET STRUCTURES ON GEOM-DRUG

We plot generated molecules on GEOM-Drug in Figure 5, and it can be observed that the atom types
of generated molecules with EEGSDE often match the target better than conditional EDM.

Target 

structure

EDM

EEGSDE 

(ours)

Figure 5: Generated molecules on GEOM-Drug.

G.6 THE DISTRIBUTIONS OF PROPERTIES

We plot the distribution of the properties of the training set, as well as the distribution of the prop-
erties of generated molecules (calculated by the Gaussian software). As shown in Figure 6, these
distributions match well.

22



Published as a conference paper at ICLR 2023

（A） （B） （C）

（D） （E）

Figure 6: The distribution of the properties of the training set vs. the distribution of the properties
of molecules generated by EEGSDE.
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