Learning to Route Among Specialized Experts for Zero-Shot Generalization

Mohammed Muqeeth! Haokun Liu?3 Yufan Liu* Colin Raffel >*

Abstract

Recently, there has been a widespread prolifera-
tion of “expert” language models that are spe-
cialized to a specific task or domain through
parameter-efficient fine-tuning. How can we re-
cycle large collections of expert language mod-
els to improve zero-shot generalization to un-
seen tasks? In this work, we propose Post-Hoc
Adaptive Tokenwise Gating Over an Ocean of
Specialized Experts (PHATGOOSE), which learns
to route among specialized modules that were
produced through parameter-efficient fine-tuning.
Unlike past methods that learn to route among
specialized models, PHATGOOSE explores the pos-
sibility that zero-shot generalization will be im-
proved if different experts can be adaptively cho-
sen for each token and at each layer in the model.
Crucially, our method is post-hoc - it does not re-
quire simultaneous access to the datasets used
to create the specialized models and only re-
quires a modest amount of additional compute
after each expert model is trained. In experi-
ments covering a range of specialized model col-
lections and zero-shot generalization benchmarks,
we find that PHATGOOSE outperforms past meth-
ods for post-hoc routing and, in some cases, out-
performs explicit multitask training (which re-
quires simultaneous data access). To better under-
stand the routing strategy learned by PHATGOOSE,
we perform qualitative experiments to validate
that PHATGOOSE’s performance stems from its
ability to perform per-token and per-module rout-
ing. We release all of our code to support future
work on improving zero-shot generalization by
recycling specialized experts. !

"'MIT-IBM 2University of Toronto *Vector Institute *University
of North Carolina at Chapel Hill. Correspondence to: Mohammed
Mugeeth <mugeeth101 @gmail.com>, Haokun Liu <haokun-
liu412@gmail.com>, Colin Raffel <craffel@gmail.com>.

Proceedings of the 41°" International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

! https://github.com/r-three/phatgoose

Merged Experts

Retrieval

Average Activation

Multitask |

Arrow |
PHATGOOSE

Oracle

40 45 50 55 60

Average Accuracy on TO Held-Out Tasks
Figure 1. Average performance of different multitask training and
expert routing methods when using the same held-in and held-out
tasks as TO (Sanh et al., 2021). Notably, our proposed method
PHATGOOSE outperforms all past methods for recycling experts as
well as explicit multitask training (which requires simultaneous
data access) and nearly matches the performance of an oracle
routing scheme. See Section 4 for more details. Exact numerical
results for all methods can be found in Table 3.

1 Introduction

The availability of performant pre-trained language models
has led to a proliferation of fine-tuned “expert” models that
are specialized to a particular task or domain. Many of these
expert models are created through parameter-efficient fine-
tuning (PEFT) techniques (Ding et al., 2022; Lialin et al.,
2023; He et al., 2021), which produce a fine-tuned model
by adding small “modules” (such as Low-Rank Adapters
(Hu et al., 2021) or (IA)? vectors (Liu et al., 2022)) that
only introduce or modify a small number of parameters.
Specialized PEFT modules can be easily shared due to their
small size, which has led to the distribution of an ever-
growing number of adapters on various platforms — for
example, as of writing over 17,000 adapters based on the
peft library (Mangrulkar et al., 2022) have been uploaded
to the Hugging Face Model Hub.! The availability of these
PEFT modules makes it cheap and easy to modularly adapt
a given pre-trained model to a specific task or domain.

In the meantime, extremely large-scale language models
(LLMs) are now being treated as “general-purpose” Al sys-
tems that can perform any task without any task-specific

'nttps://huggingface.co/models?library=
peft

https://github.com/r-three/phatgoose
https://huggingface.co/models?library=peft
https://huggingface.co/models?library=peft

Learning to Route Among Specialized Experts for Zero-Shot Generalization

r—Jﬁ
HEHE—dL

Routing vectors

LoRA pool

Figure 2. Visualization of how PHATGOOSE learns to route among specialized modules. This diagram shows how routing is learned at a
layer where a module is inserted; typically a PEFT-based model introduces many such modules at various layers throughout the model.
Left: After a specialized module (here, shown as a LoRA (Hu et al., 2021) module) has been trained, it is frozen and a sigmoid gate is
trained to choose which activations should be fed into the module. Right: During inference, a routing distribution (shown as a bar plot) is
computed from the dot product scores between the normalized gates and an activation. Top-k routing is then performed by choosing the

modules according to this routing distribution.

training or adaptation. This approach stems from the ob-
servation that LLMs often exhibit strong zero-shot general-
ization, i.e. the ability to perform new tasks that they were
not explicitly trained on. Such zero-shot generalization ca-
pabilities are often improved through large-scale multitask
fine-tuning (also called “instruction tuning”) (Sanh et al.,
2021; Wei et al., 2021; Mishra et al., 2022). Relying on
zero-shot generalization stands in stark contrast to the afore-
mentioned approach of training specialized models for each
task (via PEFT or otherwise).

The allure of general-purpose language models and the pro-
liferation of specialized PEFT-based models raises a natural
question: Can we leverage a large collection of specialized
modules to improve zero-shot generalization of a base lan-
guage model? Such an approach is attractive for various
reasons: First, it would provide a path to decentralized de-
velopment of generalist language models, which otherwise
require a huge amount of centralized compute (Kaplan et al.,
2020; Hoffmann et al., 2022). In addition, it would provide
a way to recycle the widespread effort and compute already
being expended to create specialized models. We might
hope such an approach might be successful given the ex-
tensive evidence that multitask training improves zero-shot
generalization (Sanh et al., 2021; Wei et al., 2021; Mishra
et al., 2022), and combining specialized models could be
seen as a form of multitask learning that does not require
simultaneous data access.

To tackle this problem, most past work (Jang et al., 2023;
Belofsky, 2023; Durbin, 2024; Maxine, 2023) learns a post-
hoc routing strategy by comparing an embedding of the
input query to the average embedding of examples in each
dataset used to train each expert. Such methods implicitly
assume there is a single expert well-suited for the query
and hope that the retrieval algorithm can accurately identify
this best expert. However, Jang et al. (2023) showed that
such approaches lag behind an “oracle” router that always
chooses the best expert for a given query. To explore alter-
native routing approaches, we first note that many PEFT

methods typically insert small trainable modules in many
places across the model (e.g. at each weight matrix (Hu
et al., 2021)). Meanwhile, many sparsely gated Mixture-of-
Experts models make routing decisions separately for each
token (Shazeer et al., 2016; Fedus et al., 2022; Du et al.,
2022). In this work, we therefore explore the angle of im-
proving zero-shot generalization through adaptive per-token
and per-module routing. In doing so, the aggregate model
might be better able to generalize to new tasks by using
different expert capabilities at different stages and/or for
different tokens. In addition, zero-shot performance would
not restrained by that of the single best specialized model
and the ability to correctly retrieve it.

Building on this reasoning, we introduce Post-Hoc Adaptive
Tokenwise Gating Over an Ocean of Specialized Experts
(PHATGOOSE), a post-hoc method that enables zero-shot gen-
eralization among specialized models. PHATGOOSE recycles
PEFT modules by introducing an additional computation-
ally inexpensive step after training the PEFT-based model
itself. Specifically, the entire model (including the newly
introduced PEFT modules) is frozen and a per-module gate
is trained. This gate (whose parameters are shared across
sequence positions) comprises a linear layer followed by a
sigmoid nonlinearity that determines whether the activation
at a given sequence position should be fed into the mod-
ule or not. Training this gate only requires a small amount
of additional compute compared to performing PEFT. The
gates for every module across specialized models are then
combined to determine how to route different tokens to dif-
ferent modules during inference using a standard “top-k”
routing strategy (Shazeer et al., 2016; Lepikhin et al., 2020;
Du et al., 2022).

To test the effectiveness of PHATGOOSE, we adapted T5-
family models to improve zero-shot generalization on stan-
dard benchmarks. Notably, we found that PHATGOOSE not
only outperforms prior methods involving merging experts
or retrieving a single expert but can also outperform explicit
multitask training in some cases. In qualitative analysis, we

Learning to Route Among Specialized Experts for Zero-Shot Generalization

find that PHATGOOSE uses a diverse set of modules to per-
form a given task, thereby combining abilities from multiple
specialized models and, in some cases, producing better
performance than the single best-performing expert model.
Overall, our work sets the groundwork for a promising new
framework for the decentralized development of generalist
Al systems.

2 Decentralized development of zero-shot
models

Our goal in this work is to enable individual contributors to
collectively improve zero-shot generalization capabilities of
a model by sharing specialized PEFT modules. Specifically,
we formulate our problem setting as follows:

1. We assume that individual contributors take a base
model and perform PEFT on their specific task of in-
terest. Since PEFT typically has lower computational
and communication costs than full-model finetuning,
the use of PEFT makes it easier to participate and con-
tribute.

2. We assume a PEFT method introduces modules
throughout the model — for example, as discussed fur-
ther in Section 3, LoRA (Hu et al., 2021) introduces a
low-rank update at every linear layer in the model. We
refer to each of these updates as a “module”.

3. We want to avoid placing constraints on contributors
or asking them to perform a large amount of additional
work beyond training their PEFT-based model.

4. Following standard practice, contributors only share
their trained parameters (e.g., PEFT modules), not the
dataset used for fine-tuning. Consequently, we don’t
allow simultaneous access to the datasets at any time,
and all training on a particular dataset must be done by
a single contributor.

5. We aim to use the collection of PEFT modules to im-
prove zero-shot performance on unseen tasks, i.e., on
tasks that neither have a specialized PEFT-based model
nor a training dataset. This reflects the current evalua-
tion standard and dominant use case of LLMs.

6. We don’t aim to improve performance on held-in tasks
(i.e. those that we have a specialized PEFT-based
model for) since we can always retain performance
on a given held-in task by using the expert that is spe-
cialized to that task.

This problem setting poses many challenges. First, while
the experts are trained independently, we must determine
a way to make them function together to improve perfor-
mance on unseen tasks. Second, we aim to expend as little

additional compute as possible, which precludes methods
that involve substantial training after the expert modules are
created. Finally, in zero-shot evaluation, the model needs to
determine routing solely from information in a single input
example. This last requirement differs from past works that
assume access to a target-task training dataset in order to
transfer knowledge from a collection of specialized models
(Huang et al., 2023; Wu et al., 2023; Pfeiffer et al., 2020;
Caccia et al., 2023; Shnitzer et al., 2023), which we do not
directly compare to.

To the best of our knowledge, most previously proposed
methods that are applicable to our problem setting aim to
choose a single specialized model based on properties of
the input query. The only exception we are aware of is the
contemporaneous Arrow method of Ostapenko et al. (2024),
which constructs a router using statistics of the expert param-
eters themselves. We compare to Arrow in our experiments
in Section 4. Among methods that route based on the input,
one class of approaches (e.g. (Jang et al., 2023; Belofsky,
2023; Durbin, 2024; Maxine, 2023)) routes to a single ex-
pert model by comparing an embedding of the input query
(Reimers & Gurevych, 2019) to the average embedding of
datapoints used to train each expert. We consider this class
of methods as a primary baseline for comparison. An ad-
ditional class of methods (e.g. (Durbin, 2024; Liu, 2024))
leverage an external general-purpose LLM (e.g. GPT-4) and
choose which model to route to by formulating a textual
query that asks which model to use (e.g. “I have a French
model and an English model. Which model should I use
for the query: combien pese une pomme?”). Since query-
ing a general-purpose model (which may be suitable for
processing the query itself) incurs significant expense, and
because this approach has not been rigorously defined or
evaluated outside of the context of open-source projects,
we do not include it as a baseline. Finally, Lu et al. (2023)
recently proposed “Zooter”, which routes among generalist
models by training a classifier to predict which model would
produce the highest-reward generation according to an aux-
iliary reward model. While Zooter’s goals are related to
our problem setting, the fact that it involves the centralized
distillation of a suitable reward model into a classifier and
its focus on generalist rather than specialist models led us
to exclude it as a baseline.

3 Post-Hoc Adaptive Tokenwise Gating Over
an Ocean of Specialized Experts

To recap, our goal in this work is to develop a method that is
applicable in our problem setting — i.e., it recycles the PEFT
modules from individual contributors to improve zero-shot
generalization without requiring significant extra work or si-
multaneous access to the contributors’ datasets. In addition,
we aim to develop a method that follows the hypothesis that

Learning to Route Among Specialized Experts for Zero-Shot Generalization

learning a per-token and per-module routing strategy can
achieve better zero-shot generalization than a routing strat-
egy that picks a single expert model for all tokens. Our pro-
posed method, Post-Hoc Adaptive Tokenwise Gating Over
an Ocean of Specialized Experts (PHATGOOSE), achieves
these goals by having contributors train a task-specific gate
and then using the parameters of each gate to perform dis-
crete top-k routing. This process is diagrammed in Figure 2.
We now detail the specifics of these steps.

For concreteness (and in line with our experimental setting
in Section 4), we consider the case where contributors per-
form PEFT using LoRA (Hu et al., 2021). We emphasize
that PHATGOOSE is applicable to any PEFT method that in-
troduces trainable modules throughout the model (e.g. (IA)3
(Liu et al., 2022), Adapters (Houlsby et al., 2019), etc.),
but we consider LoRA due to its popularity and widespread
use. LoRA modifies the output of each linear layer Wu,
with base model parameters W € R?*™ for the ¢ input
activation u; € R™ as Wu; + BAu; where A € R™" and
B € R¥X" are trainable parameters while W remains frozen
during fine-tuning. In doing so, a “module” (comprising a
pair of B and A matrices) is introduced at every linear layer
of the model.

After training PEFT modules on their dataset, the contribu-
tor adds a sigmoid gate layer in front of each PEFT module
and trains the gate (and the gate alone, with all other param-
eters fixed) for a relatively small number of steps (100 in our
experiments) using the same dataset and objective that was
used to train the PEFT module. The gate, which is shared
across all sequence positions, determines whether or not a
given activation will use the PEFT module. In the LoRA ex-
ample, a linear layer becomes Wu; + BAuso (v uy) where
v € R™ is the trainable gate vector initialized to all zeros
and W, B, and A are all frozen.

Once the contributors share their trained PEFT modules and
gate vectors, PHATGOOSE builds routers out of the trained
gating vectors vy, vp, U, - . . to perform top-k routing dur-
ing inference. A separate router is created at each layer
where modules are introduced so that PHATGOOSE can per-
form per-module routing. Specifically, we first standardize
(i.e. subtract the mean and divide by the standard deviation
across the dimensions) both the gating vectors (denoted by
Uq, Vb, - - -) and a given activation (denoted u;) for the pur-
pose of routing. Then, we assign each module a score by
computing the cosine similarity between u; and its routing
vector. We then route u; to the modules with the £ highest
scores and, as in Shazeer et al. (2016); Du et al. (2022);
Lepikhin et al. (2020), rescale their output by their softmax-
normalized weights. More explicitly, during inference
PHATGOOSE first computes the affinity o , between PEFT
module z and activation u; as Tgﬂt. Then, PHATGOOSE
assembles &, the set of the top-k PEFT modules for a

given activation, by computing & = top-k(cy q, Qe p, - -).
Then, scaling weights for each module are computed by
wy = softmax({ay ./v/n,z € & }) where the scaling by
1/4/n is included as the typical way of avoiding saturating
the softmax when fed dot products of standardized vectors
(Vaswani et al., 2017). Finally, the output of the linear layer
for activation u, is computed as Wy Jrzze&, wy, B A uy.

Why would sigmoid gates, trained with the rest of the model
fixed, to be useful for top-k style routing during inference?
We expect that the gate vector for a given PEFT module
learns to associate with characteristics of activations that are
associated with the task that the PEFT module is trained on.
Combining the gates from multiple PEFT modules trained
on different tasks will then route based on how relevant the
corresponding PEFT module is for a given input activation.
We note that fixing the rest of the model during gate training
prevents the rest of the model from coadapting with the
gate. To validate this approach, we consider two alternate
ways of forming gating vectors: First, in Section 4, we
consider a baseline where the router vectors are computed
as the average activation over a given dataset, and second, in
Appendix A, we consider jointly training the PEFT modules
and gates in one step. Training the gate after the PEFT
module has been trained and frozen ultimately leads to better
performance than either of these alternatives.

To reemphasize, PHATGOOSE can recycle PEFT modules
from contributors without requiring the datasets on which
the modules were trained and without incurring significant
additional costs. However, it is important to acknowledege
that PHATGOOSE requires an extra training step for the gates.
Despite this requirement, we find that the gate can be trained
in just 100 iterations using exactly the same dataset, objec-
tive, and hyperparameters as PEFT module training, and
thus imposes minimal additional burden on each contributor.

4 Experiments

Having introduced PHATGOOSE, we now turn to experimen-
tally validating our approach. We focus on the widely used
setting of improving zero-shot generalization in TS models.
Our experiments consider two different expert pools and
three different zero-shot benchmarks.

4.1 Setting

Sanh et al. (2021) found that explicit multitask training of
TS5 (Raffel et al., 2020) on a collection of prompted datasets
produces a model with strong zero-shot performance on
unseen tasks. This has become a common experimental set-
ting for benchmarking zero-shot generalization (e.g. (Chung
et al., 2022; Longpre et al., 2023; Jang et al., 2023; Zhou
et al., 2022), etc.), so we adopt it in our study. Specifically,
as a base model, we use LM-adapted T5.1.1 XL (Lester

Learning to Route Among Specialized Experts for Zero-Shot Generalization

et al., 2021), a 3B-parameter variant of the T5 language
model (Raffel et al., 2020) that underwent an additional
100K steps of training using a standard language modeling
objective on the C4 dataset.

For creating pools of expert modules to route among, we
consider two dataset collections. For the first (“TO Held-
In”), we use the same set of 36 held-in prompted datasets
and tasks that was used to train TO (Sanh et al., 2021). For
the second (“FLAN"), we consider the large FLAN collec-
tion of prompted datasets (Longpre et al., 2023). The FLAN
Collection extends TO Held-in with zero-shot and few-shot
prompted datasets from SuperGLUE (Wang et al., 2019),
Super Natural Instructions (Wang et al., 2022b), dialog
datasets, and Chain-of-Thought (Wei et al., 2022) datasets.
We consider only those datasets with a zero-shot prompting
format, leading to a total of 166 specialized models from
the FLAN Collection.

For our PEFT modules, we focus on Low-Rank Adapters
(LoRAs, Hu et al., 2021), but note that nothing about
PHATGOOSE requires the use of LoORA and we expect it would
be equally applicable to other module architectures (e.g.
(IA)? (Liu et al., 2022), Adapters (Houlsby et al., 2019),
etc.). We train a single PEFT module for each dataset in
either dataset collection, leading to two settings with 36 or
166 expert models for TO Held-In and FLAN respectively.

We consider three zero-shot generalization benchmarks for
evaluation. For the first (“TOHO”), we use the same held-out
datasets used to evaluate TO (Sanh et al., 2021). Since the
FLAN collection includes the held-out datasets from TO, we
don’t evaluate on TOHO when using the FLAN expert pool.
For the second and third, we consider two variants of BIG-
bench (BIG-bench authors, 2023), a community-curated
collection of datasets that measure different capabilities of
a model like reasoning, creativity, bias, etc. Specifically,
we evaluate on BIG-bench Hard (Suzgun et al., 2022) and
BIG-bench Lite (BIG-bench authors, 2023). BIG-Bench
Hard (BBH) is a collection of 23 datasets on which state-of-
the-art models performed significantly worse than humans.
BIG-Bench Lite (BBL) comprises 24 diverse datasets that
are meant as a lightweight proxy for the full BIG-Bench
benchmark. Since the TS tokenizer cannot tokenize some
datasets in the BIG-bench collection, we exclude them dur-
ing evaluation (discussion is provided in B). In all cases, we
source our datasets from the Hugging Face Hub.>**

Although PHATGOOSE doesn’t require that different con-
tributors use the same hyperparameters, for simplicity we

https://huggingface.co/datasets/
bigscience/P3

*https://huggingface.co/datasets/
tasksource/bigbench

*https://huggingface.co/datasets/
lukaemon/bbh

trained rank » = 16 LoRAs on every dataset for 1000 steps
on batches with 1024 max-length-512 sequences using the
AdamW (Loshchilov & Hutter, 2017) optimizer with learn-
ing rate 5e 3 and warmup ratio of 0.06. We perform check-
point selection on the validation step at a granularity of
100 steps. For PHATGOOSE, after training each module, we
freeze all parameters and train the gating vector for addi-
tional 100 steps with the same hyperparameters. Following
standard practice in past work (Shazeer et al., 2016; Du
et al., 2022; Lepikhin et al., 2020), we use k = 2 for top-k
routing.

4.2 Baselines

We compare against various baselines that similarly recycle
expert modules in order to improve zero-shot generalization.

Retrieval Multiple past works have considered retriev-
ing an expert model for a given query by comparing the
query’s embedding (Reimers & Gurevych, 2019) with the
embeddings of examples used to train each expert (Jang
et al., 2023; Maxine, 2023; Durbin, 2024; Belofsky, 2023).
Past works have differed slightly, but we found most im-
plementation details to be relatively unimportant and based
our implementation on Jang et al. (2023). Specifically, we
embed text using the MiniLM-L6-v2 model® (Reimers &
Gurevych, 2019), as used by Jang et al. (2023); Maxine
(2023); Belofsky (2023). We store the embeddings for 1000
random examples from each dataset used to train each expert
model. We then route each query to the expert correspond-
ing to the example whose embedding has the highest cosine
similarity to the query’s embedding.

Average Activation Since the Retrieval baseline performs
example- and model-level routing (rather than token- and
module-level like PHATGOOSE), we designed an additional
baseline to compare more directly with PHATGOOSE. Specifi-
cally, we consider a variant of PHATGOOSE where we replace
each learned gating vector (e.g. v,) with the average activa-
tion (i.e. the average of u1, us, . ..) over the dataset used to
train a given expert module. To compute the average, we
use the same 1000 random examples from each dataset as
used by the Retrieval method.

Arrow Ostapenko et al. (2024) routes among expert mod-
ules by constructing gating vectors from the expert modules
themselves. Specifically, the method assumes the modules
are LoRA experts and uses the first right singular vector
of the outer product of the LoRA update B A as the gating
vector. Each input is then routed based on the probability
distribution computed using the scores given by the absolute
dot product between the input’s representation and the gat-
ing vectors. We use top-k routing with k£ = 2 in this method

Shttps://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/tasksource/bigbench
https://huggingface.co/datasets/tasksource/bigbench
https://huggingface.co/datasets/lukaemon/bbh
https://huggingface.co/datasets/lukaemon/bbh
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Learning to Route Among Specialized Experts for Zero-Shot Generalization

to have same inference compute as PHATGOOSE.

Merged Experts Merging (Matena & Raffel, 2022;
Choshen et al., 2022), which involves averaging the pa-
rameters of different models or modules to create a single
aggregate model, provides another way to recycle models.
Recently, Ostapenko et al. (2023) demonstrated that com-
puting a uniform average of PEFT modules can improve
zero-shot generalization. Such an approach can be seen
as an extreme form of distributed or federated multitask
learning (Smith et al., 2017) with a single step of federated
averaging (McMahan et al., 2017) at the end of training.
We include merging as a baseline by computing a simple
unweighted average of all of the LoRA experts in the pool.
Following Ostapenko et al. (2023), we average after comput-
ing each LoRA outer product so that the merged modules
can have a rank higher than . Note that merging is only ap-
plicable when the individual expert modules have the same
architecture, whereas PHATGOOSE could in principle be used
with heterogeneous expert modules.

Beyond the above baseline methods that satisfy our problem
setting (Section 2), we compare against a few additional
baselines that violate our problem setting but nevertheless
provide a useful point of comparison.

Multitask Explicit multitask training requires simultane-
ous access to each expert’s dataset and therefore violates our
problem setting. Nevertheless, given that multitask training
is a widespread and performant way to improve zero-shot
generalization (Sanh et al., 2021; Wei et al., 2021), we in-
clude it as a baseline. We lack the computational resources
to train our own multitask models, so we used publicly
available models instead. For the TO Held-In datasets pool,
we compare the TO-3B model which was trained on the
same collection of datasets (Sanh et al., 2021). For FLAN,
there unfortunately is no public model trained on the same
datasets we consider. The model trained on the most similar
dataset mixture is FLAN-T5 XL, which includes a different
(and non-public) collection of datasets. We report the per-
formance of FLAN-TS XL of reference but emphasize that
it should not be compared to directly.

Oracle As considered in (Jang et al., 2023), we consider
an “oracle” routing scheme that chooses the specialized
expert from the pool with the highest performance on a
given evaluation dataset. Such a routing scheme is not zero-
shot and serves as an upper bound on the performance of
retrieval-style approaches.

Best Individual As also considered in (Jang et al., 2023),
we find the single expert with the highest average perfor-
mance across all evaluation datasets. This approach, which
is also not zero-shot, serves as the best-case performance of
a degenerate routing scheme that always chooses the same
expert for all inputs.

TO0 Held-In FLAN

Method TOHO BBH BBL BBH BBL
Multitask 516 349 36.6

Oracle 572 422 435 455 465
Best Individual 52.8 323 399 346 386
Retrieval 50 309 336 314 331
Arrow 551 33.6 345 306 296
Merged Experts 454 353 36 346 34
Average Activation 50.2 33.8 358 335 34
PHATGOOSE 569 349 373 356 352

Table 1. Comparison of zero-shot generalization among methods
built on top of LM-adapted T5.1.1 XL in two settings: TO Held-In,
where 36 experts are trained on the same datasets used to train TO
from PromptSource and FLAN, where 166 experts are trained on
datasets from the FLAN collection. For TO Held-In, we evaluate
on the same held-out datasets used to evaluate TO (TOHO) as well
as BIG-Bench Hard (BBH) and Big-Bench Lite (BBL). For a
multitask baseline, we consider T0-3B for the “TO Held-In” setting
and FLAN-T5-XL for “FLAN”. Since FLAN-T5-XL was trained
on a different set of datasets than the rest of the methods, we

out its results and caution against direct comparison. PHATGOOSE
generally performs best among methods that satisfy our problem
setting (Section 2) and can match or exceed the performance of
explicit multitask training or non-zero-shot baselines (“Oracle”
and “Best Individual”). Full results on each evaluation dataset are
provided in Appendix C and Appendix D.

4.3 Results

The performance of PHATGOOSE and the baselines we de-
scribe above on all expert pool/zero-shot benchmark combi-
nations is presented in Table 1.

In the TO Held-In setting, PHATGOOSE generally signifi-
cantly surpasses prior methods. The improvement is espe-
cially large on TO Held-Out tasks, where PHATGOOSE almost
matches the performance of non-zero-shot Oracle routing.
Notably, we find that PHATGOOSE consistently matches or
outperforms the Multitask baseline T0-3B, despite being
trained in a decentralized manner (i.e. without simultaneous
data access). PHATGOOSE has slightly lower performance
(0.4%) compared to Merged Experts in BBH but outper-
forms it by over 11% on TOHO and by 1.5% on BBL.

When expanding the expert pool from 36 experts in TO
Held-in to 166 experts in the FLAN setting, PHATGOOSE
outperforms all other routing methods on both BBL and
BBH. However, the gap between routing methods and or-
acle routing is generally larger in the FLAN setting. In
addition, the performance of all routing methods decreases
on BBL when scaling the expert pool. To better under-
stand this behavior, we note that PHATGOOSE’s performance
on tasks that require logical reasoning (e.g. Object Count-
ing, Ruin Names, Track Shuffled Objects, Operators, and
Winowhy) tended to increase as the expert pool was scaled
up, while performance on knowledge-heavy tasks (Con-

Learning to Route Among Specialized Experts for Zero-Shot Generalization

lang Translation, Known Unknown, Hindu Knowledge, and
Novel Concepts) tended to decrease. This could be because
knowledge-intensive tasks require experts that have mem-
orized certain information (which may be less common in
a larger expert pool) whereas reasoning-based tasks bene-
fit from composing more skills from more experts. In any
case, this behavior highlights the importance of future work
on learning post-hoc routing among specialized experts for
zero-shot generalization.

Beyond the specific insights covered above, we emphasize
that PHATGOOSE consistently and significantly outperforms
Retrieval and Arrow (the only prior works on post-hoc rout-
ing for zero-shot generalization). The gate-training step
in PHATGOOSE is essential as methods like Arrow that con-
structs gates using expert modules and Average Activation (a
variant of PHATGOOSE that avoids the gate-training step) un-
derperform compared to PHATGOOSE. In addition, Retrieval
— which lacks a mechanism to compose different experts —
consistently underperforms adaptive routing methods like
PHATGOOSE and Average Activation across all evaluations.
This suggests that the ability to compose knowledge from
specialized experts may be beneficial when learning post-
hoc routing for zero-shot generalization.

4.4 Qualitative Analysis

Having established PHATGOOSE’s strong performance, we
now perform a qualitative study to better understand the ben-
efits of adaptive per-token and per-module routing. Specif-
ically, we measure whether the alignment between the
learned routing of PHATGOOSE and the Oracle routing cor-
relates with the performance of PHATGOOSE. Given a par-
ticular evaluation dataset, we calculate the routing distribu-
tion for PHATGOOSE by averaging the routing probabilities
of all tokens within the dataset across all modules. We
then quantify the alignment between the learned routing
of PHATGOOSE and the Oracle using the KL divergence
between their respective routing distributions. Then, we
compute the correlation between the KL divergence of the
routing distributions and the performance of PHATGOOSE
across all datasets in our evaluation to determine whether
PHATGOOSE’s success can be attributed to alignment with
Oracle routing. We found a Pearson correlation coeffi-
cient of —0.2, indicating a little to no correlation between
PHATGOOSE’s performance and its alignment with Oracle.
This suggests that PHATGOOSE finds different performant
routing strategies than Oracle routing.

To explore such strategies, in Figure 3 we provide a vi-
sual representation of PHATGOOSE's routing distribution for
two datasets, highlighting cases where PHATGOOSE’s perfor-
mance either matches or outperforms Oracle routing. The
plot illustrates the routing distribution across the set of 36
TO Held-In modules at each layer throughout the model. For

the Story Cloze dataset, we notice that PHATGOOSE often
routes to the same module as the Oracle in encoder layers,
but uses a more diverse routing strategy in the decoder. On
CB, PHATGOOSE almost never routes to the Oracle module
but nevertheless outperforms Oracle routing by 10%. This
could be attributed to PHATGOOSE’s capability to effectively
combine the capabilities of multiple experts, thereby en-
hancing generalization.

5 Related Work

Routing among LLLMs Recent work by Shnitzer et al.
(2023) and Lu et al. (2023) considers the problem of picking
which generalist LLM to route a query to. Shnitzer et al.
(2023) trains a binary classifier for each LLM to predict the
correctness of its response to an input, enabling correct LLM
selection during inference. Lu et al. (2023) trains a router
to distribute queries among LLMs, informed by distilled
reward model rankings, thus avoiding the activation of all
LLMs for each query. In our work, we instead focus on
routing among specialized models.

Recycling modules for few-shot learning In contrast to
our focus on zero-shot generalization, some work has con-
sidered reusing specialized modules for few-shot learning
on a small labeled dataset. LoORAHub (Huang et al., 2023)
uses a black-box optimizer to learn weights that integrate
specialized LoRA modules for a few-shot task. In contrast,
Wu et al. (2024) uses few-shot examples to learn a gating
function with a trainable router, achieving comparable per-
formance to LoORAHub. Wu et al. (2023) trains task-specific
experts, then uses task embeddings based on the diagonal
of the Fisher information matrix to retrieve, average, and
train modules from the top-k most similar tasks to a target
task. Pfeiffer et al. (2020) independently learns adapters
for each task, then uses a knowledge composition module
to combine adapters at different layers, outperforming in-
dependent multitask training and full-model finetuning on
16 natural language understanding tasks. Gou et al. (2023)
trains LoRA for data clusters and a universal LoRA for the
entire dataset, enhancing generalization to unseen instruc-
tions. Shah et al. (2023) trains content and style LoRAs
independently, uses merge vectors to minimize interference,
and combines LoRAs by using training data from both do-
mains. Wang et al. (2023) merges SAM and CLIP models
to produce SAM-CLIP for language-based segmentation.
Since all of these works use labeled target-task datasets, we
exclude them from comparison.

Merging expert models Model merging (Choshen et al.,
2022; Wortsman et al., 2022; Ramé et al., 2022; Matena &
Raffel, 2022; Ilharco et al., 2022; Yadav et al., 2023; Tam
et al., 2023; Jin et al., 2022; Yang et al., 2023) aims to com-
bine the capabilities of models trained on different tasks or
domains into a single model. Many merging methods rely

Learning to Route Among Specialized Experts for Zero-Shot Generalization

Story Cloze Routing Distribution

CB Routing Distribution

e o P, ot o st jo

Oraclef

37-1p0CII008II0RPeREO T
Ludih oy 1 Ll L gy

b W o ||I M
] [N (]

i Il-!IIIII-IIIIIIII-IIH (LUl II\ n !

, VoW e ——— il

e
|II|"I\’

Module

1 "| I
il . oot !
L 1 [

'

LR TIEEIRT ||\||||||\H

Y e |I \II \IIIHI\IIIHIII o

PR TILUAE 1) | I|‘|||'l\u|l|'||||I IL T I 1

Hllllllll \JII I\II' Ill iy -llqlrll-\ -I-I* II I.I‘-‘FI, II‘IIFI |II
[} 1 1 |
chad bt e

Oracle

HIIIIIIIIIEI 1 L] i

| A
A ke LN
1

'J'f'l"II \I
! '.'.I" Lo .

Module

T T
Encoder layers Decoder layers

T
Encoder layers Decoder layers

Figure 3. Routing distributions produced by PHATGOOSE for Story Cloze and CB (from TOHO). The Oracle router’s chosen module is
highlighted by dashed lines. On Story Cloze, PHATGOOSE chooses the Oracle module in the encoder but uses diverse experts in the decoder
but nevertheless matches Oracle performance. On CB, PHATGOOSE almost never uses the Oracle module and produces significantly better

performance by using a wide range of modules.

on a dataset to compute statistics or tune hyperparameters,
so we focused on comparing to simple parameter averaging
in our experiments (which remains a widespread method).
In addition, state-of-the-art merging methods typically un-
derperform multitask training (Tam et al., 2023; Ilharco
et al., 2022). Merging has also been used as a component of
systems that aim to enable zero-shot generalization. For ex-
ample, Chronopoulou et al. (2023) merges separate task and
language adapters to enable cross-lingual generalization.

Multitask fine-tuning for zero-shot generalization In
multitask learning, a model is trained simultaneously on a
collection of datasets from different tasks. Multitask learn-
ing generally assumes access to all datasets at once, which
differs from the focus of our work. In the simplest case, a
base model is fine-tuned on a multitask mixture of datasets.
Such multitask learning has been consistently to improve
zero-shot generalization on unseen tasks (Sanh et al., 2021;
Chung et al., 2022; Wei et al., 2021).

Multitask mixture-of-expert models Alternatively, many
recent works have explored training mixture-of-experts-
style models on multitask mixtures. In such models, a router
selects the best experts for a given input, and both the router
and the experts are trained using all the datasets at once.
Studies like Mugeeth et al. (2023); Zadouri et al. (2023);
Wang et al. (2022a) train a system that routes each example
among a set of experts and have demonstrated improved per-
formance on unseen tasks. Alternatively, Ponti et al. (2023)
train a skill matrix that learns to allocate a task to a set of
skills, with each skill being a parameter-efficient module.
To adapt to a new few-shot task, they fine-tune both the
skill-matrix and the experts. Caccia et al. (2023) show that
splitting expert parameters into blocks and routing among
these blocks is more effective than just routing among a set
of experts. They also find that just fine-tuning the router for
a few-shot adaptation works almost as well as training both
experts and the router while being more efficient. Gupta
et al. (2022) train a separate router for each task, which
is a task-aware gating network. For a new task, they pick

a router from a similar task based on domain knowledge
and use it for routing examples from the new task. Ye et al.
(2022) trained a small pool of experts, each a complete trans-
former layer, with a router that selects different experts per
layer based on task representations derived from the average
embedding of dataset examples encoded using the BART en-
coder (Lewis et al., 2019). This approach allows the router
to effectively select the most suitable experts for unseen
tasks by leveraging task-specific representations. These
past works on multitask mixture-of-experts models bear
some similarity to our problem setting but ultimately rely
on simultaneous data access. However, we are optimistic
that insights could be shared between these complementary
settings.

6 Conclusion

In this paper, we introduced Post-Hoc Adaptive Tokenwise
Gating Over an Ocean of Specialized Experts (PHATGOOSE).
PHATGOOSE provides a way to recycle expert modules
created through parameter-efficient training to improve
zero-shot generalization of a base model. Specifically,
PHATGOOSE has contributors perform an additional com-
putationally inexpensive step that involves training a sig-
moid gate for each module. The parameters of these gates
are combined to produce a top-k router among modules.
In experiments on the widely used setting of improving
zero-shot generalization of T5-family models, we found
that PHATGOOSE generally outperforms other methods that
learn post-hoc routing strategies among specialized modules
and frequently matches or outperforms explicit multitask
training. We also qualitatively analyzed the routing learned
by PHATGOOSE and found that it can learn performant rout-
ing strategies that differ from a simple Oracle strategy that
routes to the module that attains the best performance on a
given task.

Our work, and our proposed problem setting, open up av-
enues for future work on decentralized collaborative model

Learning to Route Among Specialized Experts for Zero-Shot Generalization

development. First, while we focused on the standard setting
of adapting T5-family models for better zero-shot general-
ization, we would be interested in applying PHATGOOSE to
decoder-only Transformers that have become widespread
in the development of LLMs. Second, while our investiga-
tion centered on LoRA-based modules with the same rank
(Hu et al., 2021), PHATGOOSE is applicable to a wide range
of module architectures, including cases where modules
do not necessarily share an architecture. Exploring differ-
ent PEFT module architectures (such as Adapters (Houlsby
etal., 2019) and (IA)? (Liu et al., 2022)) and routing among
heterogeneous models could improve the performance and
efficiency of PHATGOOSE. Finally, we note again that none
of the post-hoc routing strategies we considered exhibited
consistent gains when increasing the size of the module
collection. This pattern mirrors trends noted in explicit mul-
titask training, where models exhibit strong performance
on certain datasets while underperforming on others (Sanh
et al., 2021; Chung et al., 2022). Addressing this could sig-
nificantly contribute to the development of models that not
only learn continually but also exhibit enhanced zero-shot
generalization for unseen tasks as the expert pool expands.
Overall, we are optimistic that future work will study and
build on these issues and enable a new paradigm for model
development.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

Thanks to Derek Tam for feedback on a draft of this paper.
This work was supported by NSF-AI Engage Institute DRL-
2112635.

References

Belofsky, J. Token-level adaptation of lora adapters
for downstream task generalization. arXiv preprint
arXiv:2311.10847, 2023.

BIG-bench authors. Beyond the imitation game: Quantify-
ing and extrapolating the capabilities of language mod-
els. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856.
net/forum?id=uyTL5Bvos].

Caccia, L., Ponti, E., Su, Z., Pereira, M., Le Roux, N., and
Sordoni, A. Multi-head adapter routing for cross-task
generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

URL https://openreview.

Choshen, L., Venezian, E., Slonim, N., and Katz, Y. Fusing
finetuned models for better pretraining. arXiv preprint
arXiv:2204.03044, 2022.

Chronopoulou, A., Pfeiffer, J., Maynez, J., Wang, X., Ruder,
S., and Agrawal, P. Language and task arithmetic with
parameter-efficient layers for zero-shot summarization.
arXiv preprint arXiv:2311.09344, 2023.

Chung, H. W.,, Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Ding, N., Qin, Y., Yang, G., Wei, F,, Yang, Z., Su, Y., Hu, S.,
Chen, Y., Chan, C.-M., Chen, W., Yi, J., Zhao, W., Wang,
X., Liu, Z., Zheng, H.-T., Chen, J., Liu, Y., Tang, J., Li,
J., and Sun, M. Delta tuning: A comprehensive study
of parameter efficient methods for pre-trained language
models. arXiv preprint arXiv:2203.06904, 2022.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-
ing, pp. 5547-5569. PMLR, 2022.

Durbin, J. airoboros: Customizable implementation
of the self-instruct paper. https://github.com/
jondurbin/airoboros, 2024.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120), 2022.

Gou, Y., Liu, Z., Chen, K., Hong, L., Xu, H., Li, A., Yeung,
D.-Y,, Kwok, J. T., and Zhang, Y. Mixture of cluster-
conditional lora experts for vision-language instruction
tuning. arXiv preprint arXiv:2312.12379, 2023.

Gupta, S., Mukherjee, S., Subudhi, K., Gonzalez, E., Jose,
D., Awadallah, A. H., and Gao, J. Sparsely activated
mixture-of-experts are robust multi-task learners. arXiv
preprint arXiv:2204.07689, 2022.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning
Representations, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W,,
Vinyals, O., and Sifre, L. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://github.com/jondurbin/airoboros
https://github.com/jondurbin/airoboros

Learning to Route Among Specialized Experts for Zero-Shot Generalization

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp. In
International Conference on Machine Learning, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2021.

Huang, C., Liu, Q., Lin, B. Y., Pang, T., Du, C., and Lin, M.
Lorahub: Efficient cross-task generalization via dynamic
lora composition. arXiv preprint arXiv:2307.13269,
2023.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing mod-
els with task arithmetic. arXiv preprint arXiv:2212.04089,
2022.

Jang, J., Kim, S., Ye, S., Kim, D., Logeswaran, L., Lee, M.,
Lee, K., and Seo, M. Exploring the benefits of training
expert language models over instruction tuning. arXiv
preprint arXiv:2302.03202, 2023.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. In The Eleventh International Conference on
Learning Representations, 2022.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Lepikhin, D., Lee, H., Xu, Y., Chen, D, Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461, 2019.

Lialin, V., Deshpande, V., and Rumshisky, A. Scaling down
to scale up: A guide to parameter-efficient fine-tuning.
arXiv preprint arXiv:2303.15647, 2023.

Liu, H., Tam, D., Mugeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems, 2022.

10

Liu, J. Llamalndex, a data framework for your LLM ap-
plications. https://github.com/run-1llama/
llama_index, 2024.

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W.,
Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., et al. The
flan collection: Designing data and methods for effec-
tive instruction tuning. arXiv preprint arXiv:2301.13688,
2023.

Loshchilov, I. and Hutter, F. Decoupled weight de-
cay regularization. In International Conference on
Learning Representations, 2017. URL https://api.
semanticscholar.org/CorpusID:53592270.

Lu, K., Yuan, H., Lin, R., Lin, J., Yuan, Z., Zhou, C.,
and Zhou, J. Routing to the expert: Efficient reward-
guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Matena, M. S. and Raffel, C. A. Merging models with fisher-
weighted averaging. Advances in Neural Information
Processing Systems, 35:17703—-17716, 2022.

Maxine. Llama-2, mo’ lora.
https://crumbly.medium.com/

llama-2-molora—-£5£909434711, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, 2017.

Mishra, S., Khashabi, D., Baral, C., and Hajishirzi, H. Cross-
task generalization via natural language crowdsourcing
instructions. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics, 2022.

Mugeeth, M., Liu, H., and Raffel, C. Soft merging of experts
with adaptive routing. arXiv preprint arXiv:2306.03745,
2023.

Ostapenko, O., Caccia, L., Su, Z., Le Roux, N., Charlin,
L., and Sordoni, A. A case study of instruction tuning
with mixture of parameter-efficient experts. In NeurIPS

2023 Workshop on Instruction Tuning and Instruction
Following, 2023.

Ostapenko, O., Su, Z., Ponti, E. M., Charlin, L., Roux,
N. L., Pereira, M., Caccia, L., and Sordoni, A. Towards
modular llms by building and reusing a library of loras.
arXiv preprint arXiv:2405.11157, 2024.

https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://crumbly.medium.com/llama-2-molora-f5f909434711
https://crumbly.medium.com/llama-2-molora-f5f909434711

Learning to Route Among Specialized Experts for Zero-Shot Generalization

Pfeiffer, J., Kamath, A., Riicklé, A., Cho, K., and Gurevych,
I. Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247, 2020.

Ponti, E. M., Sordoni, A., Bengio, Y., and Reddy, S. Com-
bining parameter-efficient modules for task-level gener-
alisation. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational
Linguistics, pp. 687-702, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text

transformer. The Journal of Machine Learning Research,
21(1), 2020.

Ramé, A., Ahuja, K., Zhang, J., Cord, M., Bottou,
L., and Lopez-Paz, D. Recycling diverse models
for out-of-distribution generalization. arXiv preprint
arXiv:2212.10445, 2022.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing, 2019.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L.,
Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja,
A., et al. Multitask prompted training enables zero-shot
task generalization. arXiv preprint arXiv:2110.08207,
2021.

Shah, V., Ruiz, N., Cole, F,, Lu, E., Lazebnik, S., Li, Y., and
Jampani, V. Ziplora: Any subject in any style by effec-
tively merging loras. arXiv preprint arXiv:2311.13600,
2023.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.

In International Conference on Learning Representations,
2016.

Shnitzer, T., Ou, A., Silva, M., Soule, K., Sun, Y., Solomon,
J., Thompson, N., and Yurochkin, M. Large language
model routing with benchmark datasets. arXiv preprint
arXiv:2309.15789, 2023.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.
Federated multi-task learning. Advances in Neural Infor-
mation Processing Systems, 2017.

Suzgun, M., Scales, N., Schirli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., , and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

11

Tam, D., Bansal, M., and Raffel, C.
matching models in task subspaces.
arXiv:2312.04339, 2023.

Merging by
arXiv preprint

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, £.., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 2017.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F,, Levy, O., and Bowman, S. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information
processing systems, 32, 2019.

Wang, H., Vasu, P. K. A., Faghri, F., Vemulapalli, R., Fara-
jtabar, M., Mehta, S., Rastegari, M., Tuzel, O., and
Pouransari, H. Sam-clip: Merging vision foundation mod-
els towards semantic and spatial understanding. arXiv
preprint arXiv:2310.15308, 2023.

Wang, Y., Agarwal, S., Mukherjee, S., Liu, X., Gao, J.,
Awadallah, A. H., and Gao, J. Adamix: Mixture-of-
adaptations for parameter-efficient model tuning. arXiv
preprint arXiv:2210.17451, 2022a.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran,
A. S., Naik, A., Stap, D., et al. Super-naturalinstructions:
Generalization via declarative instructions on 1600+ nlp
tasks. arXiv preprint arXiv:2204.07705, 2022b.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V.,Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35, 2022.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference time.
In International Conference on Machine Learning, pp.
23965-23998. PMLR, 2022.

Wu, C., Wang, T., Ge, Y., Lu, Z., Zhou, R., Shan, Y., and
Luo, P. pi-tuning: Transferring multimodal foundation
models with optimal multi-task interpolation. In Inter-

national Conference on Machine Learning, pp. 37713—
37727. PMLR, 2023.

Wu, X., Huang, S., and Wei, F. Mixture of lora experts.
arXiv preprint arXiv:2404.13628, 2024.

Learning to Route Among Specialized Experts for Zero-Shot Generalization

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal,
M. TIES-merging: Resolving interference when merging
models. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023.

Yang, E., Wang, Z., Shen, L., Liu, S., Guo, G., Wang, X.,
and Tao, D. Adamerging: Adaptive model merging for
multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Ye, Q., Zha, J., and Ren, X. Eliciting and understanding
cross-task skills with task-level mixture-of-experts. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2022, pp. 2567-2592, 2022.

Zadouri, T., Ustiin, A., Ahmadian, A., Ermis, B., Locatelli,
A., and Hooker, S. Pushing mixture of experts to the
limit: Extremely parameter efficient moe for instruction
tuning. arXiv preprint arXiv:2309.05444, 2023.

Zhou, J., Lin, Z., Zheng, Y., Li, J., and Yang, Z. Not all tasks
are born equal: Understanding zero-shot generalization.
In The Eleventh International Conference on Learning
Representations, 2022.

12

Learning to Route Among Specialized Experts for Zero-Shot Generalization

A Joint training of gates and expert parameters

While PHATGOOSE trains the gate as a separate step after training the expert module, we also explored the possibility of
jointly training both the gate and module. Specifically, within the TO Held-in setting utilizing the LM adapted T5.1.1 Large
model, we found that joint training underperforms PHATGOOSE, exhibiting a notable 5.6% decrease in performance on TO
evaluation. Full results comparing these methods on TO Held-Out datasets are detailed in Table 2. A possible explanation
for this performance drop could be that model might update the module parameters in such a way that reduces the effect of
scaling introduced by gates and consequently making the gates less useful when combined across modules from different
datasets.

Method Avg RTE H-Swag COPA WIC "m0 Story ANLIRI ANLI-R2 ANLI-R3 WSC
grande Cloze

Joint training 462 545 253 571 502 523 512 60.6 304 31.7 32 62.9

PHATGOOSE 51.8 627 28 731 505 53 549 906 30 31.3 26 634

Table 2. Results on TO Held-Out datasets. Both the methods use expert modules trained from LM-adapted T5.1.1 Large on TO Held-in
datasets. Joint training trains gate and module parameters at the same time, whereas PHATGOOSE trains gate parameters post-hoc freezing
the trained module and pretrained backbone. A considerable drop in performance with joint training indicates that gates are effective
when learned post-hoc as in PHATGOOSE

B BIG-bench datasets

We removed certain datasets from BIG-bench during evaluation as they cannot be tokenized by the TS tokenizer. Specifically,
one dataset (Dyck Languages) is removed from BIG-bench Hard benchmark and seven datasets (Auto Debugging, Code
Line Description, Emoji Movie, Language Identification, Misconceptions Russian, Parsinlu Reading Comprehension, and
Symbol Interpretation) are removed from the BIG-bench Lite benchmark. Most of these datasets either have emojis or curly
braces or are non-English languages, none of which can be tokenized using the T5 tokenizer.

C Results from T0O Held-in setting
D Results from FLAN setting

13

Learning to Route Among Specialized Experts for Zero-Shot Generalization

8¢S '8¢ 1% as €96 L1L 6'6S 90S I'l6 1'6C 6'S9 69 IS00DIVHd
6'8Y 'S¢ 6°€¢ 6°€¢ 108 L'19 ¢'8¢ €os ¢€IL 86T TES TOS UONBANOR 9FRIOAY
Sey vee vee I'€¢ 8¢9 9GH €'¢s €0s 819 L'ST L'SS 'S s1adxyg pasIoN
))) . .)))) oe1oAe 19j0wRIRd -
6Ty %3 33 [§%3 v'6v 9¢ €IS 861 LS 1'€C LIS T sy0dxg poSIo
A4S 0°LE 0S¢ 9°6¢ 0€8 9¢L 0°LS 0IS TI8 1’82 0L 1°SS MOLIY
886 L€ The 8T¢ 8°6L 616 6'CS 86V €L L'LT LSS 0S [eASINOY
[4S 8b¢ €he v¥e TY6 09$ 'S 00S 1°S8 9'8C 9LS 87TS [enpIAIpU] 159
9°¢9 L9¢ 8¢ Sve 696 6'6S 9L v'TS 968 89¢ 699 TLS 3[orI0
679 gee €€ LYE 'S8 LTS 6°0S ¢1S 8L 6'9C 1’09 91§ d¢ 0L
OSM €4TINV CTYTINV TITINV 93zoDAro)s gD odpueidourpy DIM VJOD SemS-H ALY SAV POYIIN

Table 3. Complete results on TO Held-Out datasets.

14

Learning to Route Among Specialized Experts for Zero-Shot Generalization

3uI)os ul-pH (L UI SPOYIAW JUSIIP JO SINSAI (HFH) PICH Youdq-DIe # d[quL

0 es 91 €¢Il 1S 194 g'ec IS00DLVHd

€1 (49 €Ll L'€T oS ¥'ov 1'8¢ UONEANOY 93eIoAY

60 91§ L1 g6l L'1S 8y 6'vC spradxy paSIop

. oSe1oAe 1910weIRd -

8T 8'8Y S91 €9¢ €0S 9ty gel sadxq poSIoly

0 ¥0S I'LT el 661 (Y% 1°s¢ Moy

o 8y €6l L81 £0S 6’16 S91 [eAdLNoYy

't IS 91 LCl £0S 9'LE 4! [enpIAIpU] }sog

8'C 6S 1'0c '8¢ 6°0S €19 Lt 9[oBIO

0 9IS VLI 191 c0s ¥'ov 8'LT AseInmA

uondNRQ
dunJaos Sary $12l40 suanbag Suipuejsiepun JOXIH
pagynys syaeug Jdxyg
PIOAA JO QM YorIL [eaoduway, sja0dg uone[sue.],
jusifes
8'9¢ 8Ly 6°0¢ ¥'0C 0s 80 8'0¢ (0% IS00DIVHd
133 891 ye Sy 0¢ 80 ¥'eC L'LT UONEANOY 9ZeIoAY
9'9¢ S'LY 9°¢¢ ¥'SC 0s 70 €C ey siadxy paSIo
. aSe1oae J1930wered -
SC 9°LT '8¢ 90 0S 0 9C 8'6¢ syadxq poSIoy
8¢l 'Ly 9°¢e 0 0¢ 80 v’y L6¢ MO
8'0¢ 19¢ 14! ¥ 0s 70 A %3 £ee [eAQLNoY
4! vey (2% 0 0¢ 70 8'¢€C 8°Sy [enpIAIpU] 3sog
9'6v ces 69¢ '8¢ 0s 91 ooy 8'CY 9[oBIO
96l (44 6°C¢ §ee (Y 0 8'vE 6Ly JseInmA
saureN vuuwa_ﬂwo_,a“WOnu QW_MWH w:u.msoo apesiaey u%o::_:._< UOHEPUIWIUOINY :oﬁom&oﬁ o
umy Suruoseay sumguag 131q0 ASHMIA IIAOJN [B21507]
0¢ S'6 1'0S '8¢ 6¢ VLS 143 6'1¢ IS00D1VHd
ey €0l 0s Sy V'LE 8'9¢ LS §'€E UONEBANDY 95LIAY
0¢ 01 [0S €Sy G'8¢ ¥'8¢ 809 £6¢ spadxy paSIo
. oFeroAr 1010wered -
[8'61 0s (974 8¢ ces 8'8Y 6'1¢ sadxq oSO
0°0S (Y 96y 6'9Y 09¢ 8'9¢ LS 9¢e Moy
Sov Y81 L0S '8y 8'9¢ £ov 8y 60¢ [BAQLOY
66y 1"0C L'1S LS 69¢ S'ov 9Ly 143 [enpIAIpU] 1sog
LTS 1'0¢ LTS 1°S9 L1y S'6S Y9 Ty 9[oBIO
0¢ 901 SIS 143 (443 €S 96y 6'v¢ AseIn
uorequadAyy sadeys sae[e] vO Surpuejsidpu) jJuwwidpnf uorssdadxy Say Jiadxy
JLIPWI0d) [euniof Jojengiquuesiq AReq [esne) uedjooq

15

Learning to Route Among Specialized Experts for Zero-Shot Generalization

3uI)os U[-pOH (L UI SPOYIAW JUIIJIP JO SINSAI (TAE) M Youaq-DIF S JquL

vy LS 9'CS <¢'¢9 0 LE dS00DLVHd
L'y 9'9¢ £'es 79 0 6’67 UOTIBATIOY dBRIOAY
€y €19 (%Y £9¢ 0 6'9¢ spadxyg pasIoN
. . . . oFeroAe 1010tIRIRd -
[47 1874 8°CS I'ey 0 8'LE syadxqg oS
(3724 ¥'C9 TS 6'CS 0 6'9¢ MOy
L'vy 144 6'CS 9'v¢ 0 6’y [BAQLIIOY
oy 9'vy 9'¢S €09 0 1'¢€9 [enpIAlpu] 3sog
S0s I'’s 196 7’89 0 €'¢€9 EIE1210)
(3724 (4% (SY4Y L'Ly 0 8°Sy AseImnN
JLRRIq
Agmourpy UONEOYLIA %w<0 mwo_.::m &d u_wcqn J10 dwes 1rdxqq
1o) UIWEBA ens Isueng 0)) yeaday Sopeiq Le1q
v'T s oy €'6¢ 0 s 4S0001VHd
[SLE L'LT 6'17¢ 0 LSy UOIBATNY 9FRISAY
'L 1'8¢C 19744 9'6¢ 0 LSy syadxy IS
. . . oFe1oae 1010weIed -
6'C 9'0% 8'6¢ LE 0 0S syadxg pasIoly
I e L'6E 9Ty 0 0¢S MOy
1 443 g£ee Lee 0 L'8S [eASLIIOY
€e 7've 'Sy 6'6¢ 0 609 [enpIAIpU] 1Sog
9'8 8¢ty 4% L'y 0 <9 EI8I2(0)
I 9'0% 1'8% 6'S¢ 0 8Ly AseIn A
Jzzng
s10e10d() sjdaouo) uondIdNRq o sazzng sumowu) Jaodxy
[PAON [eddo : Jnsmaury umouy|
J1301
'Ly 0S 1'SC 8'8¢ 8y €LE dS00DLVHd
'y 0s 9'9¢ LT ey §°GE UONBAINY 35BIOAY
ot 10§ 6'8C €€ STy 9¢ siadxy paSIo
. oSe10A® 1010weIRd -
98¢ 0S §9C €Y '8¢ 8°C¢ syadxq oSO
L'LE 961 6'8 [43 (Y% (SN%3 M0y
9'9¢ L'0S 6'L I'1re 144 9'¢ce [eAQLIOY
9ty 9IS 9'6¢ 9Ly S48 6'6¢ [enplAlpu] 3sog
(1% 9'1¢ 8'6¢C 129 [SY Ser CIE12(0)
90t SIS 9C L'vy 80F 9'9¢ Asemnmn
ISpomouy] SIPE[B] UonE[SUBI], SUONBUIqUIO)) uosf Say Jaadxy
npurg [eurioq Suoquo) remdasuo) M1 Og9d

16

Learning to Route Among Specialized Experts for Zero-Shot Generalization

"Bumes NV'Td 9U) UT SPOYIOW JUISHIP JO sNsa1 (HEF) PIeH Youaq-DId ‘9 d/quL

40 129 Ll €6 6'6v Ly 1C IS00DLVHd

[(439 181 L9T L0S Ly 9°9¢ UONEANOY 93eIoAY

(4! 96y €91 ¥'ee 667 6'0v ¥'9¢C spradxy paSIop

. oSe1oAe 1910weIRd -

60 0s 91 9T ¥'0S (% 4% LT sy0dxq pasSIoy

0 9IS 681 91 L0S 6'1S 661 moLry

€0 oLy €81 981 81§ VIS L'LT [eAdLNoYy

6l 9°¢S S I'Le £0S 866 £ [enpIAIpU] Jsog

6'C 919 £0¢ 197 §'es €19 g'le 9[oBIO

0 9°¢S LS LT IS L'6S 6¢ AseInmA

uondNRQ
dunJaos Sary $12l40 suanbag Suipuejsiepun JOXIH
pagynys syaeug Jdxyg
PIOAA JO QM YorIL [eaoduway, sja0dg uone[sue.],
jusifes
A% Ly 6°C¢ v 0s 80 8'9¢ vy IS00DIVHd
€C L'y €8¢ 1oc 0¢ 70 c9C 6'9¢ UONBATDY 05eIoAy
€8¢ Sy (%% I'vc 0s 80 el 6'CY siadxy paSIo
. aSe1oae J1930wered -
(44 '8¢ 6°0¢ 9v¢ 0¢ 0 € 8¢y syadxq poSIoy
49! ey 6'8C 0 0¢ (4! 70¢ YT MmolLTy
¥'€T I'rec 8'YC 91 0s 0 Se ¢'8¢ [eAQLNoY
£ee g9¢ $'6¢ 791 0¢ 70 8'CC (A% [enpIAIpU] 3sog
9'6v ges 9LE LSy R 4Y 91 ooy 8'8Y 9[oBIO
61 9°9¢ 9°6¢ L'Se (Y 0 8'CE 9’61 JseInmA
saureN vuuwa_ﬂwo_,a“WOnu QW_MWH w:u.msoo apesiaey u%o::_:._< UOHEPUIWIUOINY :oﬁom&oﬁ o
umy Suruoseay sumguag 131q0 ASHMIA IIAOJN [B21507]
S8y €01 gos LS I've 6'LS 9°1¢ 9°6¢ IS00D1VHd
0s 6°01 (4% 8'1¢ 9°¢e ys 96 $'€E UONBANOY dFeIoAY
s Cl 0S LSy 6'9¢ 8'9¢ 9°¢S 9ve spadxy paSIo
. oFeroAr 1010wered -
I'1S 1'0¢ 6'0S Loy 8¢ L'es ¥'es €ve sadxq oSO
L'1S 6'8 108 T0¢ I'vc 9'¢cs A% 9°0¢ Moy
687 Y81 €0¢ 6'6¢ L'1g 8¢Sy 0S8 v'le [BAQLOY
oS €0l 0s €Cs 6¢ 6'LY 8¢S 9ve [enpIAIpU] 1sog
€69 ['o¢ 6'CS 169 £y S'6S 99 97 9[oBIO
I'rs L6 ccs 6°S9 99¢ o 0S 6'8¢ AseIn
uorequadAyy sadeys sae[e] vO Surpuejsidpu) jJuwwidpnf uorssdadxy Say Jiadxy
JLIPWI0d) [euniof Jojengiquuesiq AReq [esne) uedjooq

17

Learning to Route Among Specialized Experts for Zero-Shot Generalization

“3umios N1 U} Ul SPOYIOW JUSIDHIP JO SNsaI (T) AT Youaq-DId £ oqeL

Ly 979 ALY 8¢9 0 €LE dS00DLVHd
1'9% €19 1S 268 0 1'8¢ UONRATIOY JZBIOAY
€y 6'Ly [¢s 99y 0 6'9¢ spadxyg pasIoN

. oFeroAe 1010tIRIRd -
[47 6’7y 1'0S I'ey 0 6'9¢ syadxqg oS
Sh7%4 40 oS 6'LE 0 1'LE MOy
L'0S 7'0S [Y 49 0 ey [BAQLIIOY
vy €€ 6'¢S I'vL 0 6'SY [enpIAlpu] 3sog
8¢S L'99 196 'L 0 €'¢€9 EIE1210)
(Y4 8L LS9 6'SL 0 Yy AseInmn

JLRRIq
o N Sty oS
T Sorerq Keid
[Y4 vy 9°¢¢ 0 LE IS009D1VHd
9L v've 6'9C ce 0 (849 UOIBATNY 9FRISAY
9°L Yve 6'Cy 6'LE 0 Sey syadxy IS
. . . . oFe1oae 1010weIed -
'8 SLE 8Ty 6'S¢ 0 0s sp0dxg oSO
6'1 e C 8'1¢ 0 [4Y MOy
9'8 vve 6'8¢ re 0 8Ly [eASLIIOY
L9 1'8¢C gy 80 0 ¢9¢ [enpIAIpU] 1Sog
vl 0S 9'8Y% (Y474 0 S9 EIE1270)
eel SLE 6’67 8y 0 L'8S AseIn A
Jzzng
s10e10d() sjdaouo) uondIdNRq P15 sazzng sumowu) Jaodxy
[PAON [eddo : Jnsmaury umouy|
J1301
(474 Y el 6'LE 6% 433 dS00DLVHd
€8¢ (A4 99 '8¢ 87 143 UOTBATOY dTeIOAY
9'9¢ 0S 1'6C TLT oy 14 siadxy paSIo
. oSe10A® 1010weIRd -
v'le 6'0S §3 79T 6¢ L'Eee syadxq oSO
£e 1'0s 0 6l (33 9'6C MOLLY
'S¢ €0S 801 6'S¢ 8°¢¢ I'ee [eAQLIOY
L1y 0s €8¢ S 0s €19 9'8¢ [enpIAlpU] 1s9g
€9y 6'CS 9¢ 129 €19 Sov CIE12(0)
(014 s 6'LC 8CL 699 144 AseImnN

ISpomouy] SIPE[B] UonE[SUBI], SUONBUIqUIO)) uosf Say Jaadxy

npurg [eurioq Suoquo) remdasuo) M1 Og9d

18

