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Abstract

We investigate whether biomedical language models create register-invariant se-
mantic representations of sentences: a cognitive ability that allows consistent and
reliable clinical communication across different language styles. Using aligned
sentence pairs (technical vs. plain language abstracts that mean the same thing),
we analyze how BioBERT, SciBERT, Clinical-T5, and BioGPT react to vary-
ing registers through similarity measures, trajectory visualization, and activation
patching. Results show models converge to shared semantic states in mid-to-late
layers through internal processes that preserve meaning across stylistic variation.
Code for all experiments is available at https://github.com/ngourise/Mechanistic-
Interpretability-of-Semantic- Abstraction-in-Biomedical-Texts.

1 Introduction & Motivation

Biomedical communication requires translating technical content into plain language without altering
meaning. Prior work shows transformer layers progress from surface features to abstract semantics,
but this shift has not been examined in biomedical models or under stylistic variation. We ask: How
do biomedical LLMs represent semantically equivalent sentences, and which components preserve
meaning across registers? Using aligned pairs from the PLABA dataset (Attal et al.| [2023)), we
analyze BioBERT (Lee et al., 2020), Clinical-T5 (Lu et al.,|2022), SciBERT (Beltagy et al.,[2019)
and BioGPT (Luo et al.| 2022). Through representational similarity, attention comparison, and causal
probing, we locate depths and components where technical and plain-language inputs converge,
offering a mechanistic view of semantic preservation in biomedical NLP.

2 Approach

2.1 Models & Dataset

We analyze BioBERT/SciBERT (encoder-based), Clinical-T5 (encoder-decoder), and BioGPT
(decoder-only).

The PLABA dataset provides aligned technical and plain-language biomedical sentences, serving as
a natural experiment in semantic stability under register change.
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2.2 Layerwise Representation Analysis

For each model, we extract hidden states at every transformer layer and compute: Cosine simi-
larity (Manning et al., |2008)), Euclidean Distance, Centered Kernel Alignment (CKA) (Kornblith
et al.| 2019), Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008, and Canonical
Correlation— based metrics (SVCCA, PWCCA) (Raghu et al., 2017; Morcos et al., [2018)).

2.3 Trajectory & Attention Analysis

We visualize representational trajectories with PCA (Jolliffe, [2011) and t-SNE (van der Maaten and
Hinton, |2008)), defining them as the layerwise evolution of sentence representations. By comparing
the shapes and endpoints of paired trajectories, we assess whether models follow similar abstraction
paths across registers. Self-attention maps (Vig and Belinkov, 2019) are analyzed with overlap
measures, with semantically analogous tokens aligned via embedding-based cosine mapping to
enable direct comparison of attention on technical and plain-language terms.

2.4 Causal Component Analysis Through Activation Patching

We implement activation patching with token alignment via embedding similarity, donor bank
construction from technical-sentence activations, and patched forward passes using cosine similarity
(encoder-only), seq2seq loss (encoder-decoder), and causal LM loss (decoder-only). Donor banks
store full-layer and attention-head activations, selectively patched into plain-language streams to
reveal components essential for semantic preservation. Loss functions mirror training objectives
(MLM, seq2seq, causal LM). Tokens are aligned by cosine similarity to address length mismatches,
with activations patched across heads, MLPs, blocks, and cross-layer combinations.

2.5 Experimental Controls

We validate through three control categories: random activation patching with equivalent dimension-
ality vectors, semantic control pairs from unaligned biomedical domains, and architectural controls
using scrambled connections.

3 Expected Outcomes

We expect CKA similarity above 0.85 in layers 8-12 for BioBERT, 6-10 for Clinical-T5 encoder,
and 12-18 for BioGPT, as prior work shows that transformer models converge to shared semantic
representations in mid-to-late layers (Kumar et al.| [2024). Trajectory visualization should show
converging paths in later layers with technical-plain pairs clustering together. We also expect MLP
components to show stronger patching effects than attention heads.

4 Results

4.1 Representation Similarity Across Registers

Across models, similarity analyses showed technical and plain inputs converge in mid-to-late layers.
Cosine, RSA, and CKA curves rose to a plateau, indicating early layers capture surface features while
deeper layers encode shared semantics.

* BioBERT and SciBERT (encoder-only): stable by layers 8—12 (CKA > 0.85), Average
Cohen’s d per-layer per-neuron of around 0.16.

* Clinical-T5: encoder convergence at layers 6—10, Average Cohen’s d per-layer per-neuron
of around 0.13.

* BioGPT (decoder-only): stabilization at layers 14—18. Average Cohen’s d per-layer per-
neuron of around 0.22; the notably higher value means that this model treats the register-
varying sentences more differently.

These results indicate that biomedical LLMs progressively eliminate stylistic variation and converge
to register-invariant semantic states in layers X-Y.



4.2 Trajectory and Attention Analysis

Layerwise trajectory visualizations (Figs. 1-8) showed that technical and plain-language pairs
diverged in shallow layers but converged later. This indicates that lexical differences are abstracted
into equivalent representations. Attention analysis revealed mid-layer heads consistently attending to
biomedical entities across registers, with stronger alignment than in shallow or final layers. These
results support the hypothesis that convergence emerges in layers X-Y.
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Activation patching experiments, performed on the testing split (Figures 10-25), identified components
that causally preserve semantic equivalence under register change.

component cohens_d
attn_block 0.082130
attn_head 0.160439
mlp -0.019219
(2) BioBERT
component cohens_d
attn_block 0.108544
attn_head 0.329702
mlp 0.110789
(c) T5

component cohens_d
attn_block 0.152498
attn_head 0.102844
mlp -0.151025
(b) SCiBERT
component cohens_d
attn_block 0.021057
attn_head 0.007130
mlp 0.021057
(d) BioGPT

Fig. 26: Cohen’s d values comparing sufficiency and random patching across components for all four

biomedical models.

* Attention vs. MLPs: Causal analysis using Cohen’s d (Figure 26) shows that attention
components, not MLPs, are the primary mediators of register-invariant semantics. For
BioBERT, SciBERT, and T5, attention heads consistently show a stronger positive effect,
while MLPs in BERT models perform no better than a random baseline.

* Model-Specific Architectures: Causal effects are concentrated in the attention heads of
BioBERT, SciBERT, and especially T5 (Cohen’s d = 0.33). In contrast, the decoder-only

BioGPT exhibits weak and diffuse effects across all components.

* Baseline Interpretation: The high scores from random patching in BERT and T5 models
(Figures 13, 21) highlight architectural robustness. This makes Cohen’s d essential for
isolating the true causal effect of a component above this strong baseline.

4.4 Summary of Findings

Our analyses supply evidence that biomedical LLMs develop register-invariant semantic represen-
tations. Activation patching pinpoints attention heads as the main causal mediators of this ability,
especially in BioBERT and T5. These findings clarify that LLMs use primarily attention heads to
handle style variation, providing a foundation for more interpretable and trustworthy clinical Al.



5 Conclusion

This framework identifies that attention heads are the primary components preserving meaning across
stylistic registers in biomedical LLMs. This discovery has direct practical implications, suggesting
that targeting specific attention heads with fine-tuning or model editing could efficiently enhance
robustness in applications like medical Q&A. Future work will extend this analysis to new contexts,
like patient-clinician interactions, to further characterize the algorithms enabling register-independent
semantic processing. Furthermore, while PLABA’s sentence-level pairs isolate register variation
cleanly, future work should extend this framework to longer clinical narratives, mixed-register
dialogues, and cross-domain shifts to test the generality of our findings.
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