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Abstract

Network compression techniques have become
increasingly important in recent years because
the loads of Deep Neural Networks (DNNs)
are heavy for edge devices in real-world appli-
cations. While many methods compress neu-
ral network parameters, deploying these models
on edge devices remains challenging. To ad-
dress this, we propose the fractional Gaussian
filter and pruning (FGFP) framework, which in-
tegrates fractional-order differential calculus and
the Gaussian function to construct fractional Gaus-
sian filters (FGFs). To reduce the computational
complexity of fractional-order differential opera-
tions, we introduce Grünwald-Letnikov fractional
derivatives to approximate the fractional-order dif-
ferential equation. The number of parameters for
each kernel in FGF is minimized to only seven.
Beyond the architecture of Fractional Gaussian
Filters, our FGFP framework also incorporates
Adaptive Unstructured Pruning (AUP) to achieve
higher compression ratios. Experiments on vari-
ous architectures and benchmarks show that our
FGFP framework outperforms recent methods
in accuracy and compression. On CIFAR-10,
ResNet-20 achieves only a 1.52% drop in accu-
racy while reducing the model size by 85.2%. On
ImageNet2012, ResNet-50 achieves only a 1.63%
drop in accuracy while reducing the model size
by 69.1%.
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1. Introduction
Over the past decade, computer vision has experienced rapid
advancements, primarily driven by the emergence of deep
neural networks (DNNs). Modern deep learning models now
achieve state-of-the-art performance across various tasks,
including image classification, object detection, and pose
estimation. To improve accuracy, many tasks leverage an
increased number of trainable parameters by expanding the
depth or width of models. Although larger models can de-
liver higher precision, they also have significant drawbacks,
such as higher memory storage and access costs. This poses
substantial challenges for deploying models on edge devices
in real-world applications, such as smartphones, laptops, or
resource-constrained embedded systems.

Many studies have explored efficient techniques to deploy
large models on edge devices. Unstructured pruning (Zhang
et al., 2018; Han et al., 2015; Frankle & Carbin, 2019) pre-
serves accuracy, but remains high complexity of computing.
Structured pruning (Tang et al., 2020; Yuan et al., 2021;
Zhou et al., 2021; Wang et al., 2024; Yuan et al., 2024;
Pham et al., 2024b; Yang et al., 2024) reduces computation
by removing kernels or channels, though it often sacrifices
important features and leads to significant accuracy loss.
Low-rank compression (Denton et al., 2014; Phan et al.,
2020; Chu & Lee, 2021; Li et al., 2022; Guo et al., 2024;
Liu et al., 2024; Sui et al., 2024) provides another solution
by decomposing the kernels into lower-rank forms, reducing
both parameters and computation. Recent hybrid methods
(Li et al., 2020; 2021; Ruan et al., 2024; Pham et al., 2024a)
combine pruning and low-rank techniques to achieve higher
compression with low accuracy degradation.

The motivation for FGFP comes from previous work
(Zamora et al., 2021), which successfully integrated the
traditional computer vision filters, such as the Gaussian,
Laplacian (Gonzalez & Woods, 2008), and Sobel (Kanopou-
los et al., 1988) filter with CNNs through fractional-order
differentiation. FGFP shares the same fractional Gaussian
filter (FGF) parameters across all channels in each kernel
to reduce parameters. However, applying the same fil-
ter can hurt accuracy, so we apply the channel-attention
mechanism to minimize the accuracy degradation and de-
sign two types of FGFs: the channel-attention fractional
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Gaussian filter (CA-FGF) and three-dimensional fractional
Gaussian filter (3D-FGF). Furthermore, we leverage the
Grünwald–Letnikov fractional derivative (Jalalinejad et al.,
2018) to approximate fractional differential equations to
simplify the computational complexity of fractional-order
differential operations. To maximize the compression ra-
tio, we also explore incorporating the adaptive unstructured
pruning (AUP) strategy into our FGFP.

In summary, the main contributions of this work are as
follows:

• We propose the fractional Gaussian filter and prun-
ing (FGFP) framework, which combines the fractional
Gaussian filter (FGF) and adaptive unstructured prun-
ing (AUP) to reduce the number of parameters signifi-
cantly.

• We use the channel-attention mechanism to design
two forms of the fractional Gaussian filter (FGF): the
channel-attention fractional Gaussian filter (CA-FGF)
and the three-dimensional fractional Gaussian filter
(3D-FGF). Both the FGFs perform excellently in re-
moving the redundant parameters with low degrada-
tion of model accuracy. Moreover, we introduce the
Grünwald–Letnikov fractional derivative into the FGF
and simplify the fractional derivative to the trinomial
polynomial.

• We conducted comprehensive experiments with state-
of-the-art methods on two benchmarks, CIFAR-10 and
ImageNet2012. The experimental results illustrate
our FGFP’s effectiveness, and the FGFP outperforms
several recent works. For instance, when evaluating
the FGFP with ResNet-20 on CIFAR-10, our method
achieves only a 1.58% drop in accuracy while reducing
the model size by 85.1%. Also, on ImageNet2012, our
method achieves only a 1.63% drop in accuracy while
reducing the model size by 69.1% with ResNet-50.

2. Proposed Methods
In this section, we will introduce the detailed Fractional
Gaussian Filter and Pruning (FGFP), and the overall meth-
ods are shown as Fig. 1.

2.1. Grünwald-Letnikov Fractional Derivatives

Ordinarily, the definition of nth-order derivative of function
f is (Jalalinejad et al., 2018):

f (n)(x) =
dnf

dxn
= lim

h→0

1

hn

n∑
r=0

(−1)r
(
n
r

)
f(x− rh).

(1)
According to the Grünwald-Letnikov fractional derivatives
for univariate function f which mentioned in (Scherer et al.,

2011; Jalalinejad et al., 2018), we can redefined eq. (1) as
belows:

Dα
G−Lf(x) = lim

h→0

1

hα

[ x−a
h ]∑

r=0

(−1)r
(
α
r

)
f(x− rh), (2)

where (
α
r

)
=

Γ(α+ 1)

Γ(r + 1)Γ(α− r + 1)

and Γ is the gamma function. We can also approximate and
expand eq. (2) as follows:

Dα
G−Lf(x) ≈ f(x) + (−α)f(x− 1) +

(−α)(−α+ 1)

2
f(x− 2)

+ · · ·+ Γ(−α+ 1)f(x− n)

n!Γ(−α+ n+ 1)
.

(3)

Dα
G−Lf(x) ≈ f(x)− αf(x− 1) +

α(α− 1)

2
f(x− 2)

+ ϵαxf(x),
(4)

where ϵαxf(x) is the corresponding approximate error, and the error
can be ignored in eq. (4). Thus, the Grüwald-Letnikov derivative
can be simplified as follows:

Dα
G−Lf(x) ≈ f(x)− αf(x− 1) +

α(α− 1)

2
f(x− 2), (5)

2.2. Fractional Gaussian Filter (FGF)

The Gaussian filter is widely used in image processing and signal
processing, primarily to reduce high-frequency noise and detail in
images or signals while preserving crucial structural information.
The Gaussian filter applies a convolution operation using a kernel
derived from the Gaussian function, and the 2D Gaussian function
is defined as:

G(x, y) = e
− (x−x0)2+(y−y0)2

σ2 , (6)

where σ represents the standard deviation of the Gaussian distri-
bution and x0 and y0 are the positions of the center of the peak.
Notably, the 2D Gaussian function can be decomposed into the
product of two 1D Gaussian filters, and we can redefined eq. (6)
as below:

G(x, y) = e
− (x−x0)2+(y−y0)2

σ2

= e
− (x−x0)2

σ2 · e−
(y−y0)2

σ2 = G(x)G(y),

(7)

where G(x) and G(y) are the 1D Gaussian function in x- and y-
direction. Furthermore, the first and second derivatives of the Gaus-
sian filter are the Sobel filter and the Laplacian filter, commonly
used to detect edges in images by removing the low-frequency
features. Since different order derivatives of the Gaussian filter
can extract features from various frequencies, general frequency-
adjustable filters can be obtained by applying the fractional deriva-
tives to the Gaussian filter (Zamora et al., 2021). Hence, the
fractional Gaussian filters (FGF), can be defined as follows:

Ffg = Da
xD

b
yG(x, y) = Da

xD
b
yG(x)G(y)

= Da
xG(x)×Db

yG(y),
(8)
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Figure 1. Overview of the FGFS methodology. The FGF conversion process begins with selecting the largest layer in the pre-trained
model and then converting weights into FGF representations to generate the FGF-based model. This process repeats until all selected
layers are converted. The AUP process, where the remaining layers of the FGF-based model undergo adaptive unstructured pruning,
transforms dense kernels into sparse kernels. The final result is a sparse FGF-based model optimized for performance and efficiency.

where Ffg denotes the fractional Gaussian filters, D is the frac-
tional derivatives, a and b are the order of the fractional derivatives.
Moreover, to simplify the computation of the fractional deriva-
tives, we introduce the Grünwald-Letnikov Fractional Derivatives.
According to eq. (5), we can simplify Da

xG(x) and Db
yG(y) as

below:

Da
xG(x) = G(x)− aG(x− 1) +

a(a− 1)

2
G(x− 2); (9)

Db
yG(y) = G(y)− bG(y − 1) +

b(b− 1)

2
G(y − 2). (10)

In the original fractional Gaussian filter, there are five parameters
for each channel, a, b, x0, y0, and σ. Also, the range of them would
be limited as follows: a ∈ [0, 2], b ∈ [0, 2], x0 ∈ (−∞,∞),
y0 ∈ (−∞,∞), and σ ∈ (0,∞). The fractional orders a and b are
constrained to the range [0, 2] to ensure that the learned functions
remain within the domain of traditional filters, facilitating the
identification of suitable filter forms. The remaining parameters
follow the common settings of the classical Gaussian function.
However, generating the FGF for each channel results in poor
model compression efficiency. Specifically, in the case of a 3× 3
filter, the number of trainable parameters is reduced from nine to
five, achieving only a compression ratio of 44.4%. To address
this problem, we propose two types of FGF: the channel-attention
fractional Gaussian filter (CA-FGF) and the three-dimensional
fractional Gaussian filter (3D-FGF).

As shown in Fig. 2, we share the five parameters for all channels
to achieve the maximum compression ratio. However, sharing
these parameters would cause the model accuracy degradation
since all FGFs for each channel are the same. To address this, we
would introduce the weights for each channel in our CA-FGF. The
mechanism of the weighted channel can emphasize the essential
features and suppress the insignificant ones to improve the model’s
accuracy. Furthermore, the mechanism of the weighted channel in
the CA-FGF can reduce the parameters from 5×ch to 5+ch, where
ch is the channel number of the FGF. In the 3D-FGF, we utilize
the fractional derivatives of the Gaussian function to constrain the
weights of channels to improve model generalizability. Therefore,
the 3D-FGF can be defined as follows:

F3d = Da
xD

b
yD

c
chG(x, y, ch) = Da

xD
b
yD

c
chG(x)G(y)G(ch)

= Da
xG(x)×Db

yG(y)×Dc
chG(ch),

(11)
where c is the order of the fractional derivatives in the channel
direction. By using the fractional derivatives of the Gaussian
function as the weights of channels, the 3D-FGF can achieve
the maximum compression ratio. The trainable parameters can
be reduced from 5 × ch to seven, including the fractional order
(a, b, c), the offset of the center(x0, y0, ch0), and the standard
deviation of the Gaussian distribution (σ). Same as the original
FGF, the ranges of parameters are defined as follows: a ∈ [0, 2],
b ∈ [0, 2], c ∈ [0, 2], x0 ∈ (−∞,∞), y0 ∈ (−∞,∞), ch0 ∈
(−∞,∞), and σ ∈ (0,∞).
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Figure 2. The details of FGF Transformation in the FGFS. The composition of the original FGF for a single kernel, where independent
FGFs are applied to each channel, reduces the number of parameters from n× n× ch to 5× ch. On the other hand, the FGFS contains
two FGF forms, the CA-FGF and the 3D-FGF. The FGFS shares the parameters of the FGF across all channels. The CA-FGF can
reduce the parameter count to 5 + ch with the channel-attention mechanism. Additionally, to achieve further compression, the 3D-FGF
constraints the channel weights and reduces the parameter count to just 7.

2.3. Adaptive Unstructured Pruning (AUP)

Adaptive Unstructured Pruning (AUP) eliminates the redundant
parameters by removing those with absolute values smaller than
the pruning threshold during each round. The pruning threshold is
determined by the predefined percentage pr of non-zero parameters
to be removed in each round. However, removing the numerous
parameters in the model causes a decrease in its performance. To
prevent a significant drop in accuracy after pruning, the model
is fine-tuned after each round of pruning to recover its accuracy.
Suppose the fine-tuning model after a pruning round cannot reach
the accuracy threshold θacc. In that case, this pruning round will
be abandoned, and the model will reload the previous round’s
model for additional fine-tuning before continuing pruning. When
the model can not reach the accuracy threshold θacc after several
pruning rounds, we will reduce the predefined percentage pr and
continue attempting to prune. Once the sparsity ratio reaches the
target, we fine-tune the model to restore its accuracy to a higher
level.

2.4. Fractional Gaussian Filter and Pruning (FGFP)

The Fig. 1 demonstrates the fractional Gaussian filter and prun-
ing (FGFP) framework. First, we convert the filters of the pre-
trained model into the FGF. Previous studies (Zamora et al., 2021;
Llanza et al., 2023) have demonstrated that applying fractional
Gaussian filters (FGF) in deeper layers with larger input channels
yields higher compression ratios with minimal accuracy degrada-
tion. Hence, we apply FGF to the deeper layers with larger input
channels. After replacing the large layer with the FGF, we apply
adaptive unstructured pruning (AUP) methods to the remaining

layers. In this step, we define a layer-wise pruning ratio pr , typi-
cally between 3% and 6%, to control the proportion of parameters
removed in each pruning round. Moreover, we independently per-
form the adaptive unstructured pruning for each layer to prevent
concentrating the pruned parameters in a single layer due to the col-
lectively smaller parameter values. After all layers are processed
with the FGF transform and AUP, we can obtain the compressed
model with the FGFP framework.

3. Experimental Results
3.1. Experimental Settings

Datasets. To evaluate the performance of our proposed method,
we employed two widely used benchmarks in image classification:
CIFAR-10 and ImageNet2012. CIFAR-10 is a classic small-scale
image dataset consisting of 10 classes, with 50K training images
and 10K test images, each of size 32× 32. We further partitioned
the CIFAR-10 training set during training into a training subset of
45K images and a validation subset of 5K images. ImageNet2012,
on the other hand, is a large-scale dataset for image classification,
comprising approximately 1.28M training images, 50K validation
images, and 100K test images.

Networks. On the CIFAR-10 dataset, we evaluated the FGFP
with CA-FGF and 3D-FGF using ResNet-20, ResNet-32 (He et al.,
2016), and WRN-28-10 (Zagoruyko & Komodakis, 2016). In ad-
dition, since ResNet-18 and ResNet-50 (He et al., 2016) are larger
networks, we apply the FGFP with the 3D-FGF in ResNet-18 and
ResNet-50 for a higher compression ratio on the ImageNet2012
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Table 1. Results for ResNet-20, ResNet-32 and WRN-28-10 on CIFAR-10 dataset. “∗” denotes validation accuracy since the corresponding
work does not provide test accuracy.

Method Post-Trained Model Type
Top-1 Accuracy (%)

Parameter CR (%)
Baseline Compressed ∆ ↓

ResNet-20

SCOP (Tang et al., 2020) Sparse 92.22 90.75 1.47 56.3
Hinge (Li et al., 2020) Low-Rank + Sparse 92.54 91.84 0.70 55.5
FGFP(CA-FGF) (ours) Fractional Filter + Sparse 91.34 90.77 0.57 59.3
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 91.34 90.34 1.00 66.7
PSTRN-M (Li et al., 2022) Low-Rank 91.25 89.30 1.95 85.2
ELRT (Sui et al., 2024) Low-Rank 91.25 89.64 1.61 83.4
TDLC (Liu et al., 2024) Low-Rank 91.25 88.58 2.65 80.5
FGFP(CA-FGF) (ours) Fractional Filter + Sparse 91.34 90.20 1.14 81.5
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 91.34 89.82 1.52 85.2

ResNet-32

SCOP (Tang et al., 2020) Sparse 92.66 92.13 0.53 56.2
PSTRN-S (Li et al., 2022) Low-Rank 92.49 91.43 1.06 60.9
FGFP(CA-FGF) (ours) Fractional Filter + Sparse 92.64 92.11 0.53 76.1
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 92.64 91.92 0.72 76.1
PSTRN-M (Li et al., 2022) Low-Rank 92.49 90.59 1.90 80.4
ELRT (Sui et al., 2024) Low-Rank 92.49 91.21 1.28 80.4
FGFP(CA-FGF) (ours) Fractional Filter + Sparse 92.64 91.85 0.79 80.4
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 92.64 91.80 0.84 80.4

WRN-28-10

GrowEfficient (Yuan et al., 2021) Sparse 96.20 95.30 0.90* 90.7
BackSparse (Zhou et al., 2021) Sparse 96.20 95.60 0.60* 91.6
FGFP(CA-FGF) (ours) Fractional Filter + Sparse 94.78 93.68 1.10* 91.6
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 94.78 94.24 0.54* 96.8

dataset.

Evaluation Metrics. The model is evaluated using the accuracy
drop and the number of parameters required. Considering the
model’s performance, top-1 accuracy is utilized on classification
tasks. Also, the parameter compression ratio (CR) is defined as
the percentage reduction in the number of parameters compared to
the original model.

Configurations. All experiments use the stochastic gradient de-
scent (SGD) optimizer. The batch sizes are 128 and 256 for CIFAR-
10 and ImageNet2012, respectively. The learning rates in the FGF
training stage are 0.1 for all model architectures. The learning
rates in the adaptive unstructured pruning stage are set at 0.01 to
0.001 for ResNet-20 and ResNet-32, and 0.0001 for WRN-28-10,
ResNet-18, and ResNet-50, respectively.

3.2. Results and Analysis

CIFAR-10. Table 1 presents the comparison results between our
FGFP and recent works on ResNet-20, ResNet-32, and WRN-28-
10. When we evaluate the performance of ResNet-20 on the test
set, the compression ratio of FGFP can reach higher than 80% no
matter using both the 3D-FGF and the CA-FGF. Meanwhile, the
reduction of accuracy is less than the PSTRN-M (Li et al., 2022),

the ELRT (Sui et al., 2024), and the TDLC (Liu et al., 2024). Sim-
ilarly, on ResNet-32, FGFS also achieves excellent performance,
reaching a compression ratio of 80.4% while maintaining higher
accuracy than both PSTRN-M and ELRT. For WRN-28-10, the
FGFP, especially with the 3D-FGF, can compress the network by
96.8% and significantly outperform the GrowEfficient (Yuan et al.,
2021) and BackSparse (Zhou et al., 2021).

ImageNet2012. To evaluate the scalability of the FGFP, we per-
form experiments on the ImageNet2012 dataset using the ResNet-
18 and ResNet-50 architectures, which are shown in Table 2. On
ResNet-18, FGFP with 3D-FGF achieves a 74.7% compression
ratio with only about 1% accuracy degradation, demonstrating
superior performance compared to recent works such as FR (Chu
& Lee, 2021) and LRPET (Guo et al., 2024). Similarly, on ResNet-
50, the FGFP with the 3D-FGF also achieves a higher compression
ratio, 69.1%, than other compression methods, while the accuracy
of the FGFP only drops 1.63%. Also, the FGFP can maintain better
performance when the network model is compressed by various
compression ratios.
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Table 2. Results for ResNet-18 and ResNet-50 on ImageNet2012 dataset.

Method Post-Trained Model Type
Top-1 Accuracy (%)

Parameter CR (%)
Baseline Compressed ∆ ↓

ResNet-18

FR (Chu & Lee, 2021) Low-Rank 69.76 69.04 0.72 57.0
LRPET (Guo et al., 2024) Low-Rank 69.76 67.87 1.89 50.3
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 69.30 68.61 0.69 60.1
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 69.30 68.28 1.02 74.7

ResNet-50

EDP (Ruan et al., 2024) Low-Rank + Sparse 75.90 75.34 0.56 43.9
ARPruning (Yuan et al., 2024) Sparse 76.15 72.31 3.84 56.8
SFI-FP (Yang et al., 2024) Sparse 76.15 75.21 0.94 57.3
CORING (Pham et al., 2024b) Sparse 76.15 75.55 0.60 56.7
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 76.16 75.64 0.52 57.4
Stable (Phan et al., 2020) Low-Rank 76.15 74.68 1.47 60.2
CC (Li et al., 2021) Low-Rank + Sparse 76.15 74.54 1.61 58.6
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 76.16 75.42 0.74 62.7
AHC-A (Wang et al., 2024) Sparse 76.20 74.70 1.50 63.4
LRPET-S (Guo et al., 2024) Low-Rank 76.15 73.72 2.43 64.0
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 76.16 74.82 1.34 66.8
NORTON (Pham et al., 2024a) Low-Rank + Sparse 76.15 74.00 2.15 68.8
FGFP(3D-FGF) (ours) Fractional Filter + Sparse 76.16 74.53 1.63 69.1

3.3. Ablation Study

Comparison of FGFP and AUP. We conducted an ablation study
on CIFAR-10 using ResNet-20 to demonstrate that combining frac-
tional filters and pruning outperforms using adaptive unstructured
pruning alone. The experimental results are shown in Table 3.
We aim to compress the network model to the specified number
of parameters with adaptive unstructured pruning (AUP) and the
FGFP, which combines the AUP and the CA-FGF. In Table 3, the
FGFP shows superior performance compared to using AUP alone,
achieving a 0.33% accuracy improvement when the remaining
parameters are reduced to 0.07M.

Table 3. Performance comparison between FGFP and AUP for
ResNet-20 on CIFAR-10.

Method ∆Acc. ↓(%) #Parameter

AUP 1.19 0.07M
FGFP(CA-FGF + AUP) 0.86 0.07M

Comparison of FGFP(CA-FGF) and FGFP(3D-FGF). To an-
alyze the relationship between CA-FGF, 3D-FGF, and adaptive
unstructured pruning (AUP), we converted the 28th, 29th, 30th,
and 31st layers of ResNet-32 into FGF layers while performing
AUP on the remaining layers. As shown in Table 4, when only
FGF conversion was applied, the accuracy of CA-FGF was 0.25%
higher than that of 3D-FGF. After applying AUP, when the to-
tal number of parameters was reduced to 0.07M, the accuracy of
CA-FGF remained 0.16% higher than that of 3D-FGF. However,
as parameters dropped to 0.05M, excessive AUP pruning caused
significant feature loss, resulting in an additional 0.31% accuracy

drop in CA-FGF compared with 3D-FGF.

Table 4. Comparison of accuracy and compression ratio between
FGFP using CA-FGF and 3D-FGF for ResNet-32 on CIFAR-10.

Method ∆Acc. ↓(%) #Parameter

CA-FGF 0.36 0.33M
3D-FGF 0.61 0.32M
FGFP(CA-FGF) 1.11 0.07M
FGFP(3D-FGF) 1.27 0.07M
FGFP(CA-FGF) 2.26 0.05M
FGFP(3D-FGF) 1.95 0.05M

4. Conclusion
In this paper, we present the novel fractional Gaussian filter and
Pruning (FGFP) framework for network model compression. There
are two principal mechanisms in the FGFP: the fractional Gaussian
filter (FGF) and the adaptive unstructured pruning (AUP). We inte-
grate fractional-order differential calculus with the Gaussian func-
tion to construct the FGF, incorporating the Grünwald–Letnikov
fractional derivatives for simplification. By sharing the parame-
ters of the FGF and utilizing the technique of channel attention,
the number of parameters in the network can be reduced to seven.
Moreover, we apply the AUP to our FGFP to achieve the maximum
compression ratio and maintain the accuracy of the models. We
also utilize comprehensive experiments on CIFAR-10 and Ima-
geNet2012 to validate the effectiveness of our proposed method.
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According to the experimental results, the 85.2% compression
ratio can be achieved with only a 1.52% degradation in accuracy
by using the FGFP to compress the ResNet-20. Also, the FGFP
can achieve the compression ratio of 69.1% while the accuracy
only decreases by 1.63% on ResNet-50 with the ImageNet2012
dataset. In summary, the FGFP, which combines the fractional
Gaussian filter and adaptive unstructured pruning, is a promising
solution to mitigate parameter redundancy in modern deep neu-
ral networks and achieves substantial model compression with
minimal accuracy degradation.

References
Chu, B.-S. and Lee, C.-R. Low-rank tensor decomposition for

compression of convolutional neural networks using funnel
regularization. arXiv preprint arXiv:2112.03690, 2021.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus,
R. Exploiting linear structure within convolutional networks
for efficient evaluation. In Advances in Neural Information
Processing Systems, 2014.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International Conference
on Learning Representations, 2019.

Gonzalez, R. and Woods, R. Digital Image Processing. Prentice
Hall, 2008. ISBN 9780131687288.

Guo, K., Lin, Z., Chen, C., Xing, X., Liu, F., and Xu, X. Compact
model training by low-rank projection with energy transfer.
IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–15, 2024. doi: 10.1109/TNNLS.2024.3400928.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights
and connections for efficient neural network. In Advances in
Neural Information Processing Systems, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning
for image recognition. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Jalalinejad, H., Tavakoli, A., and Zarmehi, F. A simple and flex-
ible modification of grünwald–letnikov fractional derivative
in image processing. Mathematical Sciences, 12(3):205–210,
2018.

Kanopoulos, N., Vasanthavada, N., and Baker, R. Design of an
image edge detection filter using the sobel operator. IEEE
Journal of Solid-State Circuits, 23(2):358–367, 1988. doi: 10.
1109/4.996.

Li, N., Pan, Y., Chen, Y., Ding, Z., Zhao, D., and Xu, Z. Heuristic
rank selection with progressively searching tensor ring network.
Complex & Intelligent Systems, 8(2):771–785, 2022. doi: 10.
1007/s40747-021-00308-x.

Li, Y., Gu, S., Mayer, C., Van Gool, L., and Timofte, R. Group
sparsity: The hinge between filter pruning and decomposition
for network compression. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 8015–8024,
2020.

Li, Y., Lin, S., Liu, J., Ye, Q., Wang, M., Chao, F., Yang, F., Ma,
J., Tian, Q., and Ji, R. Towards compact cnns via collaborative
compression. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6434–6443, 2021.

Liu, W., Liu, P., Shi, C., Zhang, Z., Li, Z., and Liu, C. Tdlc: Tensor
decomposition-based direct learning-compression algorithm
for dnn model compression. Concurrency and Computation:
Practice and Experience, 2024.

Llanza, A., Keddous, F. E., Shvai, N., and Nakib, A. Deep learning
models compression based on evolutionary algorithms and digi-
tal fractional differentiation. In IEEE Congress on Evolutionary
Computation (CEC), pp. 1–9, 2023.

Pham, V. T., Zniyed, Y., and Nguyen, T. P. Enhanced network
compression through tensor decompositions and pruning. IEEE
Transactions on Neural Networks and Learning Systems, pp.
1–13, 2024a. doi: 10.1109/TNNLS.2024.3370294.

Pham, V. T., Zniyed, Y., and Nguyen, T. P. Efficient tensor
decomposition-based filter pruning. Neural Networks, 178:
106393, 2024b. ISSN 0893-6080. doi: 10.1016/j.neunet.2024.
106393. URL https://www.sciencedirect.com/
science/article/pii/S0893608024003174.

Phan, A.-H., Sobolev, K., Sozykin, K., Ermilov, D., Gusak, J.,
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