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ABSTRACT

Algorithmic case-based decision support provides examples to aid people in de-
cision making tasks by providing contexts for a test case. Despite the promising
performance of supervised learning, representations learned by supervised models
may not align well with human intuitions: what models consider similar examples
can be perceived as distinct by humans. As a result, they have limited effectiveness
in case-based decision support. In this work, we incorporate ideas from metric
learning with supervised learning to examine the importance of alignment for effec-
tive decision support. In addition to instance-level labels, we use human-provided
triplet judgments to learn human-compatible decision-focused representations. Us-
ing both synthetic data and human subject experiments in multiple classification
tasks, we demonstrate that such representation is better aligned with human per-
ception than representation solely optimized for classification. Human-compatible
representations identify nearest neighbors that are perceived as more similar by
humans and allow humans to make more accurate predictions, leading to sub-
stantial improvements in human decision accuracies (17.8% in butterfly vs. moth
classification and 13.2% in pneumonia classification).

1 INTRODUCTION

Despite the impressive performance of machine learning (ML) models, humans are often the final
decision maker in high-stake domains due to ethical and legal concerns (Lai & Tan, 2019; Green &
Chen, 2019), so ML models as decision support is preferred over full automation. In order to provide
meaningful information to human decision makers, the model cannot be illiterate in the underlying
problem, e.g., a model for assisting breast cancer radiologists should have a high diagnostic accuracy
by itself. However, a model with high autonomous performance may not provide the most effective
decision support, because it could solve the problem in a way that is not comprehensible or even
perceptible to humans, e.g., AlphaGo’s famous move 37 (Silver et al., 2016; 2017; Metz et al., 2016).
Our work studies the relation between these two objectives that effective decision support must
balance: achieving high autonomous performance and aligning with human intuitions.

We focus on case-based decision support for classification problems (Kolodneer, 1991; Begum et al.,
2009; Liao, 2000; Lai & Tan, 2019). For each test example, in addition to showing the model’s
predicted label, case-based decision support shows one or more related examples retrieved from
the training set. These examples can be used to justify the model’s prediction, e.g., by showing
similar-looking examples with the predicted label, or to help human decision makers calibrate its
uncertainty, e.g., by showing similar-looking examples from other classes. Both use cases require the
model to know what is similiar-looking to the human decision maker. In other words, an important
consideration in aligning with human intuition is approximating human judgment of similarity.

Figure 1 illustrates the importance of such alignment on a classification problem of distinguishing
butterfly from moth. A high-accuracy ResNet (He et al., 2016) produces a highly linearly-separable
representation space, which leads to high classification accuracy. But the nearest neighbor cannot
provide effective justification for model prediction because it looks dissimilar to the test example
for humans. The similarity measured in model representation space does not align with human
visual similarity. If we instead use representations from a second model trained specifically to mimic
human visual similarity rather than to classify images, the nearest neighbor would provide strong
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Figure 1: Nearest neighbor retrieved by the model representation might not align with human
similarity judgment. The MLE representations (512-dim) are visualized using t-SNE (Van der Maaten
& Hinton, 2008). The purple circle represents a specific test instance. The nearest neighbor found by
MLE representations (pink circle) is not as visually similar as the instance in cyan circle found by
optimizing a metric learning objective.

justification for the model prediction. However, using the second model for decision support has
the risk of misleading or even deceiving the human decision maker because the “justification” is
generated based on a representation space that is different from the model used to predict the label; it
becomes persuasion rather than justification.

The goal of this work is to learn a single representation space that satisfies two properties: (i) pro-
ducing easily separable representations for different classes to support accurate classification, and
(ii) constituting a metric space that is aligned with human perception of similarity between exam-
ples. Simultaneously matching the best model on classification accuracy and achieving perfect
approximation of human similarity might not be possible, but we hypothesize that a good trade-off
between the two would benefit decision support. We propose a novel multi-task learning method that
combines supervised learning and metric learning. We supplement the standard maximum likelihood
objective with a triplet margin loss function from Balntas et al. (2016). Our method learns from
human annotations of similarity judgments among data instances in the triplet form.

We validate our approach with both synthetic data and user study. We show that representations
learned from our framework identify nearest neighbors that are perceived as more similar by the
synthetic human than that based on supervised classification (henceforth MLE representations, see §2
for details), and are therefore more suitable to provide decision support. We further demonstrate that
the advantage of human-compatible representations indeed derives from human perception rather
than data augmentation.

We further conduct human subject experiments using two classification tasks: (i) butterfly vs. moth
classification from ImageNet (Krizhevsky et al., 2012), and (ii) pneumonia classification based
on chest X-rays (Kermany et al., 2018). Our results show that human-compatible representations
provide more effective decision support than MLE representations. In particular, human-compatible
representations allow laypeople to achieve an accuracy of 79.1% in pneumonia classification, 15.3%
higher than MLE representations. A similar improvement has been observed on the butterfly vs. moth
classification task (34.8% over MLE representations and 17.8% over random).

To summarize, our main contributions include:
• We highlight the importance of alignment in learning human-compatible representations for case-

based decision support.
• We propose a multi-task learning framework that combines supervised learning and metric learning

to simultaneously learn classification and human visual similarity.
• We design a novel evaluation framework for comparing representations in decision support.
• Empirical results with synthetic data and human subject experiments demonstrate the effectiveness

of our approach.
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2 CASE-BASED DECISION SUPPORT

Consider the problem of using a classification model h : X → Y as decision support for humans.
Simply showing the predicted label from the model provides limited information. Explanations
are commonly hypothesized to improve human performance by providing additional information
(Doshi-Velez & Kim, 2017). We focus on information presented in the form of examples from the
training data, also known as case-based decision support (Kolodneer, 1991; Begum et al., 2009; Liao,
2000; Lai & Tan, 2019). Case-based decision support can have diverse use cases and goals. Given a
test example (x) and its predicted label (ŷ), two common use cases are:
• Presenting the nearest neighbor of x along with label ŷ as a justification of the predicted label. We

refer to this scenario as justification (Kolodneer, 1991).
• Presenting the nearest neighbor in each class without presenting ŷ. This approach makes a best-

effort attempt to provide evidence and leaves the final decision to humans, without biasing humans
with the predicted label. We refer to this scenario as neutral decision support (Lai & Tan, 2019).

Formulation. Building on Kolodneer (1991), we formalize the problem of case-based decision
support in the context of representation learning. The goal is to assist humans on a classification
problem with groundtruth f : X → Y . We assume access to a representation model g, which takes
an input x ∈ X and generates an m-dimensional representation g(x) ∈ Rm. For each test instance
x, an example selection policy π chooses k labeled examples from the training set Dtrain and shows
them to the human (optionally along with the labels); the human then makes a prediction by choosing
a label from Y . As discussed in the two common use cases, we consider nearest-neighbor-based
selection policies in this work. The focus of this work is thus on the effectiveness of g for case-based
decision support.

Given a neural classification model h : X → Y , the representation model is the last layer before
the classification head, which is a byproduct derived from h. We refer to this model as e(h).1 In
justification, the example selection policy is π = NN(x, e(h), Dtrain

ŷ ), where ŷ = h(x), Dtrain
ŷ refers

to the subset of training data with label ŷ (i.e., {(x, y) ∈ Dtrain | y = ŷ}), and NN finds the nearest
neighbor of x using representations from e(h) among the subset of examples with label ŷ. In decision
support, the example selection policy is {NN(x, e(h), Dtrain

y ), ∀y ∈ Y}.

Misalignment with human similarity metric is detrimental. We argue that aligning model
representations with human similarity metric is crucial for case-based decision support; we refer to it
as the metric alignment problem. To illustrate the importance of alignment, we need to reason about
the goal of case-based decision support. Let us start with justification, which is a relatively easy
case. To justify a predicted label, the chosen example should ideally appear similar to the test image.
Crucially, this similarity is perceived by humans (i.e., interpretable), and the example selection policy
identifies the nearest neighbor based on model representation (i.e., faithful). The gap between human
representation and model representation (Fig. 1) leads to undesirable justification.

Neutral decision support, however, represents a more complicated scenario. We start by emphasizing
that the goal is not simply to maximize human decision accuracy, because one may use policies that
intentionally show distant examples to nudge or manipulate humans towards making a particular
decision.2 Choosing the nearest neighbors in each class is thus an attempt to present faithful and
neutral evidence from the representation space so that humans can make their own decisions, hence
preserving their agency. Therefore, the chosen nearest neighbors should be visually similar to the test
instance by human perception, again highlighting the potential gap between model representation and
human representation. Assuming that humans follow the natural strategy by picking the presented
instance that’s most similar to the test instance and answering with the corresponding label, then
ideally, nearest neighbors in each class retain key information useful for classification so that they
can reveal the separation learned in the model.

It is unlikely that we get high alignment by solely optimizing classification even when the model’s
classification accuracy is comparable to the human’s. Models trained with supervised learning

1In general, we can use the representation in any layer, but in preliminary experiments, we find representation
from the last layer is most effective.

2We will consider one such policy for the sake of evaluating the quality of representations in §3.
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almost always exploit patterns in the training data that are (i) not robust to distribution shifts, and
(ii) counterintuitive or even unobservable for humans (Ilyas et al., 2019; Xiao et al., 2020).

Combining metric learning on human triplets with supervised classification. We propose to
address the metric alignment problem with additional supervision on the human similarity metric. We
collect data in the form of human similarity judgment triplets (or triplets for short). Each triplet is an
ordered tuple: (xr, x+, x−), which indicates x+ is judged by humans as being closer to the reference
xr than x− (Balntas et al., 2016). Given a triplet dataset T and labeled classification dataset D, we
learn a model θ using triplet margin loss (Balntas et al., 2016) in conjunction with cross-entropy loss,
controlled by a hyperparameter λ:

λ

− ∑
(x,y)∼D

log (pθ(y|x))


︸ ︷︷ ︸

Cross-entropy loss

+(1− λ)

 ∑
(xr,x+,x−)∼T

max
(
dθ(x

r, x+)− dθ(x
r, x−) + 1, 0

)
︸ ︷︷ ︸

Triplet margin loss

(1)

where dθ(·, ·) is the similarity metric based on model representations; we use Euclidean distance.
In this work, we initialize θ with a pretrained ResNet (He et al., 2016). When λ = 1 and the
triplet margin loss is turned off, the model reduces to a finetuned ResNet. When λ = 0 and the
cross-entropy loss is turned off, the model reduces to the triplet based-learning model of Balntas et al.
(2016); we call it TMLModel and will use it to simulate humans in some synthetic experiments in
the appendix. Our work is concerned with the representations learned by these models. Our approach
uses the representations learned with λ = 0.5 (henceforth human-compatible representations and HC
for short). We refer to the representations fine-tuning ResNet with the cross-entropy loss as MLE
representations (MLE for short) and the representations from TMLModel as TML.

3 EXPERIMENTAL SETUP

In this section, we provide the specific model instantiation and detailed experiment setup.

Models. All models and baselines use ResNet-18 (He et al., 2016) pretrained on ImageNet as the
backbone image encoder. Following Chen et al. (2020), we take the output of the average pooling
layer and feed it into an MLP projection head with desired embedding dimension. We use the output
of the projection head as our final embeddings (i.e., representations), where we add task-specific head
and loss for training and evaluation. We use Euclidean distance as the similarity metric for both loss
calculation and distance measurement during example selection in decision support.

Our first baseline uses representations from ResNet finetuned with classification labels using cross-
entropy loss (i.e., MLE). ResNet typically achieves high classification accuracy but does not necessarily
produce human-aligned representations. Our second baseline uses representations from the same
pretrained model finetuned with human triplets using triplet margin loss (Balntas et al., 2016) (i.e.,
TML). We expect TML to produce more aligned representations but achieve lower classification
accuracy than MLE and may provide limited effectiveness in decision support.

Our representations, HC, are learned by combining the two loss terms following Equation 1. The
hyperparameter λ controls the trade-off between metric alignment and classification accuracy: with
higher λ we expect HC to be more similar to MLE, while lower λ steers HC towards TML. Empirically
tuning λ confirms this hypothesis. For the main paper, we present results with λ = 0.5. More details
about model specification and hyperparameter tuning can be found in the appendix.

Filtering classification-inconsistent triplets. Human triplets may not always align with classification:
triplet annotators may choose the candidate from the incorrect class over the one from the correct class.
We refer to these data points as classification-inconsistent triplets. We consider a variant of human-
compatible representations where we isolate human intuition that’s compatible with classification
and remove these classification-inconsistent triplets from the training set; we refer to this condition
as HC-filtered. Filtering is yet another way to strike a balance between human intuition and
classification. We leave further details on filtering in the appendix.

Evaluation metrics. Our method is designed to align representations with human similarity metrics
and at the same time retain the representations’ predictive power for classification. We can evaluate
these representations with classification and triplet accuracy using existing data, but our main
evaluation is designed to simulate case-based decision support scenarios.
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(a) Decision boundary (b) Vespula 1 (c) Vespula 2 (d) Weevil 1 (e) Weevil 2

Figure 2: VW dataset. (a) shows the dataset where labels are determined (non-linearly) by two
features: the head and the body size of the fictional insects. (b)-(d) show samples of the two classes;
the Weevil has a mid-sized body and mid-sized head, while the Vespula does not. Tail length and
texture are two non-informative features.

• Head-to-head comparisons (“H2H”). To evaluate justification, we set up head-to-head compar-
isons between two representations (R1 vs. R2) and ask: given a test instance and two justifications
retrieved by R1 and R2, which justification do humans consider as closer to the test instance? We
report the fraction of rounds that R1 is preferable. In addition to the typical justification for the
predicted label, we also examine that for classes other than the predicted class, as those examples
will be used in decision support for users to examine the plausibility of each class. We refer to the
nearest example in the predicted class as NI, and the nearest example in the other class as NO.

• Neutral decision support. Following §2, we retrieve the nearest neighbors from each class. We
use the accuracy of humans as the measure of effective decision support.

• Persuasive decision support. We retrieve the nearest example with the predicted label and the
furthest example from the other class. If the representation is aligned with human similarity metric,
this approach encourages people to follow the predicted label, which likely leads to over-reliance
and may be unethical in practice. Here, we use this scenario as a surrogate to evaluate the quality
of the learned representations.

Note that we do not show model predictions so that humans focus on the similarity between examples.

4 SYNTHETIC EXPERIMENT

To understand the strengths and limitations of our method, we first experiment with synthetic datasets.
Using simulated human similarity metrics, we control and vary the level of disagreement between the
classification groundtruth and the synthetic human’s knowledge.

4.1 SYNTHETIC DATASET AND SIMULATED HUMAN SIMILARITY METRICS

We use the synthetic dataset “Vespula vs Weevil” (VW) from Chen et al. (2018b). It is a binary
image classification dataset of two fictional species of insects. Each example contains four features,
two of them—head and body size—are predictive of the label, and the other two—tail length and
texture—are completely non-predictive. We generate 2000 images and randomly split the dataset into
training, validation, and testing sets in a 60%:20%:20% ratio. The labels are determined by various
synthetic decision boundaries, such as the one shown in Fig. 2a.

To generate triplets data, we define simulated human similarity metrics as a weighted Euclidean
distance over the visual features: for any instance a and b, d(a, b) =

√∑
i wi(ai − bi)2, where

i refers to the i-th feature. By changing the weight of each feature, we can control the level of
disagreement between a synthetic human and the groundtruth. All procedures that involve humans
(i.e., triplet data collection and evaluation) are done by the synthetic human in this section.

To quantify the disagreement, we use 1-NN classification accuracy following the synthetic human
similarity metric; we refer to it as the task alignment score. Note that this is different from our main
alignment problem, which is about the representations. The task alignment score ranges from 50%
(setting the informative features’ weights to 0 and distractor weights to 1) to 100%. See the appendix
for more details on how we generate these weights. In each setting, we generate 40,000 triplets.

4.2 RESULTS

We compare HC, MLE, TML on classification accuracy, triplet accuracy, and decision support perfor-
mance for the synthetic human. We train all three representations with a large dimension of 512 and
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Table 1: Experiment results on VW with H2H comparison and decision support evaluations.

Task alignment 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.917 0.914 0.903 0.880 0.872 0.808

NO-H2H

HC vs. MLE 0.916 0.968 0.946 0.958 0.962 0.970

Neutral decision support

MLE 0.753 0.899 0.896 0.897 0.901 0.929
TML 0.568 0.775 0.807 0.868 0.877 1.000
HC 0.759 0.901 0.928 0.949 0.955 1.000

Persuasive decision support

MLE 0.704 0.900 0.903 0.903 0.901 0.919
TML 0.906 0.881 0.863 0.876 0.877 1.000
HC 1.000 1.000 1.000 1.000 1.000 1.000

a small dimension of 50 and observe that the 512-dimension representation is preferable based on
most metrics. We also train HC on filtered vs. unfiltered triplets as well as with different values λ.
For our main results, we report the performance with λ = 0.5 and filtered triplets for the decision
boundary in Fig. 2a. We will discuss the effect of filtering later in this section. λ’s role is relatively
limited and we will discuss its effect and other decision boundaries in the appendix.

In synthetic experiments, HC achieves the same perfect classification accuracy as MLE (100%), and a
triplet accuracy of 96.8%, which is comparable to TML (97.3%). This shows that HC indeed learns
both the classification task and human similarity prediction task. We next present the evaluation of
case-based decision support with the synthetic human, which is the key goal of this work.

HC significantly outperforms MLE in H2H. If there is no difference between HC and MLE, the
synthetic human should prefer HC about 50% of times. However, as shown in Table 1, our synthetic
human prefer HC over MLE by a large margin (about 90% of times) as justifications for both nearest
in-class examples and nearest out-of-class examples, indicating the NIs and NOs selected based on the
HC representations are more aligned with the synthetic human than MLE. For NI H2H, the preference
towards HC declines as the task alignment improves, because if alignment between human similarity
and classification increases, MLE can capture human similarity as a byproduct of classification.

50.0 80.0 83.0 92.0 92.5 100.0
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0.5
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Figure 3: Neutral decision sup-
port with HC and HC-filtered.
HC-filtered leads to improved
performance.

HC provides the best decision support. Table 1 shows that HC
achieves the highest neutral and persuasive decision support ac-
curacies in all task alignments. In neutral decision support, MLE
consistently outperforms TML, highlighting that representation
solely learned for metric learning is ineffective for decision
support. For all models, the decision support performance im-
proves as the task alignment increases, suggesting that decision
support is easier when human similarity judgment is aligned
with the classification task. MLE and TML are more comparable
in persuasive decision support, while HC consistently achieves
100%. The fact that MLE shows comparable performance be-
tween neutral and persuasive decision support further confirms
that MLE does not capture human similarity for examples from
different classes.

Filtering triplets leads to better decision support. Fig. 3 shows that filtering class-inconsistent
triplets improves HC’s decision support performance across all alignments. Further details in the
appendix show that filtering slightly hurts H2H performance. This suggests that in terms of decision
support, the benefit of filtering out human noise may outweigh the loss of some similarity judgment.

The importance of human perception. One may question whether filtering class-inconsistent
triplets essentially provides additional label supervision in the form of triplets. We show this is not the
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Table 2: Experiment results on VW using synthetic human with 92% alignment. Comparing MLE
representations and HC-filtered with HC trained on label-derived triplets and HC trained on
same-class triplets. 40,000 new triplets were generated for each condition.

Evaluations MLE HC label-derived triplets HC same-class triplets HC-filtered

NI-H2H with MLE N/A 0.509 0.890 0.889
NO-H2H with MLE N/A 0.607 0.970 0.958
Neutral DS 0.897 0.723 0.960 0.949
Persuasive DS 0.903 0.803 0.998 1.000

case by experimenting with HC trained on label-derived triplets. Assuming that an instance is more
similar to another instance with the same label than one with a different label, we derive label-derived
triplets directly from groundtruth labels (x+ from the same class as xr and x− from the other class),
containing no human perception information. Table 2 shows decision support results for this setting:
HC label-derived triplets show worse performance than HC-filtered. In fact, HC label-derived
triplets show even worse neutral and persuasive decision support than MLE, which may be due to
label-derived triplets causing overfitting. This suggests that triplets without human perception do not
lead to human-compatible representations.

We also experiment with HC trained on same-class triplets, human-triplets but only those where
the non-reference cases (x+, x−) are from the same class; that is, the triplets cannot provide any
label supervision. We observe from Table 2 that HC trained on these triplets show similar results to
HC-filtered across all decision support evaluations. This suggests that human perception is the
main factor in driving human-compatible representations’ high decision support performance.

5 HUMAN SUBJECT EXPERIMENTS

We conduct human subject experiments on two image classification datasets: a natural image dataset,
Butterflies v.s. Moths (BM) and a medical image dataset of chest X-rays (CXR). For BM, we
followed Singla et al. (2014) and acquired 200 images from ImageNet (Krizhevsky et al., 2012). BM
is a binary classification problem and each class contains two species. CXR is a balanced binary
classification subset taken from Kermany et al. (2018) with 3,166 chest X-ray images that are labeled
with either normal or pneumonia. We randomly split the datasets following 60%:20%:20% ratio. The
classification accuracy with our base supervised learning models are 97.5% for BM and 97.3% for
CXR. We only present results with human subjects in the main paper, but results from simulation
experiments with TML as a synthetic agent, such as filtering triplets providing better results, are
qualitatively consistent. See §D and §E in the appendix for more details.

5.1 TRIPLET ANNOTATION

We recruit crowdworkers on Prolific to acquire visual similarity triplets. In each question, we show
a reference image on top and two candidate images below, and ask a 2-Alternative-Forced-Choice
(2AFC) question: which candidate image looks more similar to the reference image? A screenshot of
the interface can be found in the appendix. To generate triplets for annotation, we first sample the
reference image from either the training, the validation, or the test set. Then for each reference image,
we sample two candidates from the training set. We sample the candidates only from the training set
because in decision support, the selected examples should always come from the training set, and
thus we only need to validate and test triplet accuracies with candidates from the training set.

For BM we recruit 80 crowdworkers, each completing 50 questions, giving us 4000 triplets. For CXR
we recruit 100 crowdworkers, each answering 20 questions, yielding 2000 triplets. Our pilot study
suggests that visual similarity judgment on chest X-rays is a more mentally demanding task, so we
decrease the number of questions for each CXR survey.

5.2 RESULTS ON BUTTERFLIES V.S. MOTHS

We recruit crowdworkers on Prolific to evaluate representations produced by our models by doing
decision support tasks. We acquire examples with different example selection policies from HC
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(b) Pneumonia classification.

Figure 4: Decision support accuracy with human subject studies. Error bars show 95% confidence
intervals. HC dominates MLE in both neutral and persuasive decision support.

and MLE. We choose the dimension and training triplets of the representation based on the models’
classification accuracy, triplet accuracy, and decision support simulation results based on synthetic
agents. See more details in the appendix. We do not include TML in human studies, because in
practice, TML models cannot make predictions on class labels, therefore are unable to distinguish and
select in-class and out-of-class examples and thus cannot be used for decision support.

H2H comparison results show HC NI examples are slightly but significantly preferred over
MLE NI examples according to human visual similarity. We recruit 30 Prolific workers to make
H2H comparisons between HC NI examples and MLE NI examples over the entire test set. The
mean preference for HC over MLE is 0.5316 with a 95% confidence interval of ±0.0302 (p = 0.0413
with one-sample t-test). This means the HC NI examples are closer to the test images than MLE NI
examples with statistical significance according to human visual similarity.

Decision support results show HC is significantly better than MLE both in neutral and persuasive
decision support. Combining two example selection policies with two representations, we have
four conditions: HC neutral, HC persuasive, MLE neutral, MLE persuasive. We also add a baseline
condition with random supporting examples, which we call random in-class random out-of-class
(RIRO). We recruit 30 Prolific workers for each condition and ask them to go through the images in
the test set with supporting examples from each class in the training set. Both the order of the test
images and the order of the supporting images within each test question are randomly shuffled.

Figure 4a shows the human classification accuracies with different decision support scenarios and
different representations. In neutral decision support, we observe that HC achieves much higher
accuracy than MLE (95.3% vs. 60.5%, p = 4e−19 with two-sample t-test). In fact, even RIRO
provides better decision support than MLE representations, suggesting that the supporting images
based on MLE are confusing and hurt human decision making (77.5% vs. 60.5%, p = 3e−6). As
expected, the accuracies are generally higher in persuasive decision support. HC enables an accuracy
of 97.8%, which is much better than MLE at 79.5% (p = 2e−13). HC in neutral decision support
already outperforms MLE in persuasive decision support. These findings confirm our results with VW
synthetic experiments that human-compatible representations provide much better decision support
than MLE representations.

5.3 RESULTS ON CHEST X-RAYS

We use the same experimental setup as BM to evaluate HC and MLE representations in CXR.

H2H comparison results show HC NI examples are slightly preferred over MLE NI examples
but the difference is not statistically significant. We recruit 50 Prolific workers to each make 20
H2H comparisons between HC NI examples and MLE NI examples. The mean preference for HC over
MLE is 0.516 with a 95% confidence interval of ±0.0725 (p = 0.379 with one-sample t-test). H2H
comparison in CXR is especially challenging as laypeople need to differentiate between two chest
X-rays in the same class, hence the slightly worse performance in H2H compared to BM.

Similar to BM, HC outperforms MLE in both neutral and persuasive decision support in CXR.
As expected, Fig. 4b shows that pneumonia classification is a much harder task than butterfly vs. moth
classification, indicated by the lower accuracies across all conditions. In neutral decision support,
HC enables much better accuracy than MLE (79.1% vs. 63.8%, p = 2e−8 with two-sample t-test).
In fact, similar to the BM setting, MLE provides similar performance with RIRO (63.8% vs. 65.9%,
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p = 0.390), suggesting that MLE representations are no different from random representations for
selecting nearest neighbors within a class. To contextualize our results, we would like to highlight
that our crowdworkers are laypeople and have no medical training. It is thus impressive that human-
compatible representations enable an accuracy of almost 80% in neutral decision support, which
demonstrates the potential of human-compatible representations.

In persuasive decision support, HC provides the highest decision support accuracy at 90.0%, also much
higher than MLE at 77.0% (p = 2e−10). Again, while we do not recommend persuasive decision
support as a policy for decision support in practice, these results show that our human-compatible
representations are indeed more compatible with humans than MLE representations.

6 RELATED WORK

Ordinal embedding. The ordinal embedding problem (Ghosh et al., 2019; Van Der Maaten &
Weinberger, 2012; Kleindessner & von Luxburg, 2017; Kleindessner & Luxburg, 2014; Terada &
Luxburg, 2014; Park et al., 2015) seeks to find low-dimensional representations that respect ordinal
feedback. Currently, there exist several techniques for learning ordinal embeddings. Generalized Non-
metric Multidimensional Scaling (Agarwal et al., 2007) takes a max-margin approach by minimizing
hinge loss. Stochastic Triplet Embedding (Van Der Maaten & Weinberger, 2012) assumes the
Bradley-Terry-Luce noise model (Bradley & Terry, 1952; Luce, 1959) and minimizes logistic loss.
The Crowd Kernel (Tamuz et al., 2011) and t-STE (Van Der Maaten & Weinberger, 2012) propose
alternative non-convex loss measures based on probabilistic generative models. These results are
primarily empirical and focus on minimizing prediction error on unobserved triplets. In principle,
one can plugin these approaches in our framework as alternatives to the triplet margin loss in Eq. 1.

AI explanations and AI-assisted decision making. Various explanation methods have been devel-
oped to explain black-box AI models (Guidotti et al., 2018), such as feature importance (Ribeiro et al.,
2016; Shrikumar et al., 2017), saliency map (Zhou et al., 2016; Selvaraju et al., 2017), and decision
rules (Ribeiro et al., 2018). Example-based explanations are also a type of common explanation
methods that use examples to explain AI models. Nearest-neighbor examples can explain a model’s
local decision (Wang & Yin, 2021; Nguyen et al., 2021; Taesiri et al., 2022; Lai & Tan, 2019). To
the best of our knowledge, there has been no prior work that examines the role of representations in
choosing the nearest neighbors in the context of AI explanations. Meanwhile, global example-based
explanations such as prototypes can explain a model’s global behavior or a model’s understanding
of the data distribution (Kim et al., 2016; Chen et al., 2018a; Cai et al., 2019a; Lai et al., 2020).
Explaining a model’s global behavior is also closely related to machine teaching (Zhu et al., 2018).

Many of these explanation methods have been used in AI-assisted decision making to explain
AI predictions or inform users about the AI model or training data (Lai et al., 2021). Among
them, example-based explanations have shown be useful in many high-stake domains where full AI
automation is often not desired, such as recidivism prediction (Hayashi & Wakabayashi, 2017) and
medical diagnosis (Cai et al., 2019b; Rajpurkar et al., 2020; Tschandl et al., 2020). While many of
the current literature in AI-assisted decision making focus on generating explanations of AI without
considering human feedback, our decision support methods offer assistance by learning from human
perceptions and provide examples from human-compatible representations.

7 CONCLUSION

Our work formulates the novel problem of learning human-compatible representations for case-based
decision support. As we identify in this paper, the key to providing effective case-based support
with a model is the alignment between the model and the human in terms of similarity metrics: two
examples that appear similar to the model should also appear similar to the human. But models trained
to perform classification do not automatically produce representations that satisfy this property. To
address this issue, we propose a multi-task learning method to combine two sources of supervision:
labeled examples for classification and triplets of human similarity judgments. With synthetic
experiments and user studies, we validate that human-compatible representations (i) consistently get
the best of both worlds in classification accuracy and triplet accuracy, (ii) select visually more similar
examples in head-to-head comparisons, (iii) and provide better decision support.
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Although coming from a genuine goal to improve human-AI collaboration by aligning AI models
with human intuition, our work may have potential negative impacts for the society. We discuss these
negative impacts from two perspectives: the multi-task learning framework and the decision support
policies.

MULTI-TASK LEARNING FRAMEWORK

Our human-compatible representations models are trained with two sources of data. The first source
of data is classification annotations where groundtruth maybe be derived from scientific evidence
or crowdsourcing with objective rules or guidelines. The second source of data is human judgment
annotations where groundtruth is probably always acquired from crowdworkers with subjective
perceptions. When our data is determined with subjective perceptions, the model that learns from it
may inevitably develop bias based on the sampled population. If not carefully designed, the human
judgment dataset may contain bias against certain minority group depending on the domain and
the task of the dataset. For example, similarity judgment based on chest X-rays of patients in one
gender group or racial group may affect the generalizability of the representations learned from it,
and may lead to fairness problems in downstream tasks. It is important for researchers to audit the
data collection process and make efforts to avoid such potential problems.

DECISION SUPPORT POLICIES

Among a wide variety of example selection policies, our policies to choose the decision support
examples are only attempts at leveraging AI model representations to increase human performance.
We believe that they are reasonable strategies for evaluating representations learned by a model, but
future work is required to establish their use in practice.

The neutral decision support policy aims to select the nearest examples in each class, therefore
limiting the decision problem to a small region around the test example. We hope this policy allow
human users to zoom in the local neighborhood and scrutinize the difference between the relatively
close examples. In other words, neutral decision support help human users develop a local decision
boundary with the smallest possible margin. This could be useful for confusing test cases that usually
require careful examinations. However, the neutral decision support policy adopts an intervention
to present a small region in the dataset and may downplay the importance of global distribution in
human users’ decision making process.

The persuasive decision support policy aims to select the nearest in-class examples but the furthest
out-of-class examples. It aims to maximize the visual difference between examples in opposite class,
thus require less effort for human users to adopt case-based reasoning for classification. It also
helps human users to develop a local decision boundary with the largest possible margin. However,
when model prediction is incorrect, the policy end up selecting the furthest in-class examples with
the nearest out-of-class examples, completely contrary to what it is design to do, may lead to even
over-reliance or even adversarial supports.

In general, decision support policies aim to choose a number of supporting examples without
considering some global properties such as representativeness and diversity. While aiming to reduce
humans’ effort required in task by encouraging them to make decision in a local region, the decision
support examples do not serve as a representative view of the whole dataset, and may bias human
users to have a distorted impression of the data distribution. It remains an open question that how to
ameliorate these negative influence when designing decision support interactions with case-based
reasoning.

10
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REPRODUCIBILITY STATEMENT

Implementation details and computing resources are documented in §B in the appendix. Hyperpa-
rameters and model configuration are reported in both the main paper and the appendix along with
each experiments. Our code and data are available at https://github.com/ChicagoHAI/
learning-human-compatible-representations.
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A LIMITATIONS

We discuss some of the limitations in our work.

Limitations of decision support policies. Our decision support policies are simple first steps
towards a more general example selection policy for decision support. There are certain limitations
of our selection policies. For example in this work, we only look at selecting two examples from the
two classes in binary image classifcation tasks. We encourage future work to explore more selection
methods towards effective decision-support.

In addition to the ethical concerns discussed in the main paper and the ethics statement, our neutral
decision support and persuasive decision support policies have different limitations and use cases.
Neutral decision support selects the nearest example from each class. Therefore when a test example
lies too close to the decision boundary, the test example, in-class example, and out-of-class example
may appear too similar to be distinguished by humans. This is where we may need to select examples
further away with different features so that users are more likely to spot the distinction. Persuasive
decision support selects the most similar example in the predicted class and the least similar example
in the other class, the latter of which has a risk of being an outlier. This may invite biases about the
data distribution of the other class and degrade effectiveness of decision support.

Limitations of experimenting with crowdworkers. There are several limitations of experimenting
with crowdworkers. First, crowdworkers may not invest as much time as domain experts in the tasks.
Therefore, collected triplets may come from superficial or the salient features among the images.
Second, crowdworkers or in general lay people have limited domain knowledge such as basic anatomy
of body parts when working with medical image. Therefore it is less likely for them to notice the
most important feature in the images. In our CXR task, we mitigate this limitation by providing
an instruction and quiz section before our main study that provides basic information about how to
examine chest X-rays. However, in other tasks, we may need to provide more detailed instructions
and quizzes to help crowdworkers understand the task and in this way polish collected triplets.

As the expertise level of the end users increases, HC should be able to learn a high-quality represen-
tation. The effectiveness of our decision support methods may vary due to experts strong domain
knowledge, but we would still expect our human-compatible representation to provide more effective
decision support than MLE representations.

Our ultimate goal is to apply our method to domain experts. We start with crowdworkers and the
positive results are encouraging. We hope these results could be used to convince and invite more
domain experts to get involved and work towards an applicable system together in the future.

Limitations of design choices in the algorithm. A number of decision choices were made in
the algorithm. For example, we use Euclidean distance as the distance metric to be learned for the
representation space. Experimenting with different kinds of metrics (e.g., in the psychology literature)
and exploring the effectiveness of their respective representations in decision support would be an
interesting future direction.

We used ResNet as the backbone network for feature extraction of images due to its competitiveness
and popularity. Although model architecture is not the main concern of this paper, one could also
plug in other common backbones such as DenseNet (Huang et al., 2017) and ViT (Dosovitskiy et al.,
2021) into our representation learning algorithm. We leave the exploration of additional architecture
and the effectiveness of their learned representation on decision support to future work.

B IMPLEMENTATION DETAIL

The architecture of our model is presented in Fig. 5. We first encode image inputs using a Convo-
lutional Neural Network (CNN), and then project the output into an high-dimension representation
space with a projection head made of multi-layer perceptron (MLP). In our experiments we use one
non-linear layer to project the output of the CNN into our representation space. For classifcation task
we add an MLP classifier head. We also use one non-linear layer with softmax activation. For triplet
prediction, we re-index the representations with the current triplet batch and calculate prediction or
loss. We use the PyTorch framework (Paszke et al., 2019) and the PyTorch Lightning framework
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Figure 5: Architecture of the human-compatible representations model.

Table 3: Classification and triplet accuracy of human-compatible representations with different λ.
TMLModel has no classfication head and no classification accuray.

Model Classification accuracy Triplet accuracy
MLE 0.998 ± 0.003 0.673 ± 0.014
HC λ = 0.8 0.998 ± 0.032 0.970 ± 0.024
HC λ = 0.5 0.995 ± 0.000 0.972 ± 0.004
HC λ = 0.2 0.996 ± 0.016 0.973 ± 0.039
TML N/A 0.973 ± 0.016

(Falcon et al., 2019) for implementation. Hyperparameters will be reported in §C for models in the
synthetic experiments and in §D and §E for models in the human experiments.

B.1 COMPUTATION RESOURCES

We use a computing cluster at our institution. We train our models on nodes with different GPUs
including Nvidia GeForce RTX2080Ti, Nvidia GeForce RTX3090, Nvidia Quadro RTX 8000, and
Nvidia A40. All models are trained on one allocated node with one GPU access.

C SYNTHETIC EXPERIMENT RESULTS

C.1 HYPERPARAMETERS

For our MLE backbone we use We use different controlling strength between classification and human
judgment prediction, including λs at 0.2, 0.5, and 0.8, and discuss the effect of λ in the next section.
In contrast to the experiments on BM, we observe that human-compatible representations with
512-dimension embedding shows overall better performance than human-compatible representations
with 50-dimension embedding and show results for the latter in the next section. We use the Adam
optimizer (Kingma & Ba, 2014) with learning rate 1e − 4. We use a training batch size of 40 for
triplet prediction, and 30 for classification.

C.2 ADDITIONAL RESULTS

Classification and triplet accuracy. Table 3 shows how tuning λ affects human-compatible repre-
sentations’s classification and triplet accuracy. Higher λ drives human-compatible representations to
behave more simlar to MLE representations while lower human-compatible representations is more
similar to TMLModel.

Experiment results on VW with confidence intervals. Table 4 presents results on VW with
human-compatible representations λ = 0.5. This is is simply Table 1 in the main paper with 0.95
confidence intervals.

Results for different λ. In Table 5 and Table 6 we show experiment results with human-compatible
representations using λ = 0.2 and λ = 0.8. We do not observe a clear trend between λ and evaluation
metric performances. In the main paper we present human-compatible representations with λ = 0.5
as it shows best overall performance.
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Table 4: Experiment results on VW. Models use 512-dimension embeddings; HC uses λ = 0.5 and
filtered triplets. This is the same table as Table 1 and adds confidence intervals.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.917 ± 0.064 0.914 ± 0.007 0.903 ± 0.016 0.880 ± 0.022 0.872 ± 0.020 0.808 ± 0.017

NO-H2H

HC vs. MLE 0.916 ± 0.093 0.968 ± 0.011 0.946 ± 0.009 0.958 ± 0.031 0.962 ± 0.008 0.970 ± 0.008

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.759 ± 0.080 0.901 ± 0.016 0.928 ± 0.099 0.949 ± 0.034 0.955 ± 0.027 1.000 ± 0.00

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Table 5: Experiment results on VW. Models using 512-dimension embeddings; HC uses λ = 0.2 and
filtered triplets.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.920 ± 0.005 0.890 ± 0.032 0.906 ± 0.053 0.895 ± 0.016 0.862 ± 0.254 0.832 ± 0.058

NO-H2H

HC vs. MLE 0.901 ± 0.439 0.948 ± 0.095 0.970 ± 0.019 0.972 ± 0.095 0.933 ± 0.154 0.981 ± 0.040

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.740 ± 0.540 0.925 ± 0.127 0.933 ± 0.064 0.935 ± 0.000 0.945 ± 0.349 1.000 ± 0.000

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 0.996 ± 0.016 0.995 ± 0.000 0.998 ± 0.000 0.996 ± 0.016 0.995 ± 0.000 0.995 ± 0.032

Number of triplets. We examine the effect of the number of triplets, showing the results in Fig. 6.
We decrease number of triplets by powers of 2 and find that H2H preference towards human-
compatible representations indeed declines as HC is less human-compatible with fewer training
data. As for decision support, in neutral decision support HC performance declines and eventually
approaches MLE representations except an outlier in the end, while in persuasive decision support
HC performance is able to stay 100% even as the number of triplets declines.

Additional details on weight generation. We generate alignment scores by searching through
weight combinations of the simulated human visual similarity metrics. We search the weights in
powers of 2, from 0 to 210, producing a sparse distribution of alignments (Fig. 7). Increasing search
range to powers of 10 produces smoother distribution, but the weights are also more extreme and
unrealistic. We note that the alignment distribution may vary across different datasets. In our
experiments we choose weights and alignments to be as representative to the distribution as possible.

C.3 ADDITIONAL DECISION BOUNDARIES

We create a variant of the VW dataset where the labels are populated by a linear separator. We refer
to this dataset as VW-Linear (Fig. 8). We find the results are overall similar to the original VW data.
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Table 6: Experiment results on VW. Models using 512-dimension embeddings; HC uses λ = 0.8 and
filtered triplets.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.916 ± 0.082 0.869 ± 0.217 0.891 ± 0.029 0.879 ± 0.066 0.853 ± 0.164 0.828 ± 0.138

NO-H2H

HC vs. MLE 0.902 ± 0.193 0.944 ± 0.093 0.959 ± 0.005 0.956 ± 0.090 0.942 ± 0.026 0.969 ± 0.034

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.740 ± 0.095 0.894 ± 0.111 0.929 ± 0.079 0.960 ± 0.032 0.923 ± 0.127 1.000 ± 0.000

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 0.998 ± 0.032 0.995 ± 0.000 0.998 ± 0.000 0.998 ± 0.032 0.995 ± 0.000 0.999 ± 0.016

Table 7: Experiment results on VW. Models use 512-dimension embeddings; HC uses λ = 0.5 and
unfiltered triplets.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.921 ± 0.015 0.900 ± 0.035 0.920 ± 0.023 0.895 ± 0.008 0.867 ± 0.034 0.846 ± 0.016

NO-H2H

HC vs. MLE 0.951 ± 0.034 0.969 ± 0.024 0.991 ± 0.002 0.991 ± 0.004 0.958 ± 0.010 0.980 ± 0.023

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.603 ± 0.051 0.801 ± 0.025 0.848 ± 0.053 0.880 ± 0.000 0.880 ± 0.081 1.000 ± 0.000

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 0.996 ± 0.004 0.999 ± 0.004 0.996 ± 0.004 0.996 ± 0.004 0.996 ± 0.004 0.997 ± 0.004

Classification and triplet accuracy. Table 9 shows classification and triplet accuracy of tuning λ,
showing a similar trend to the previous experiment.

H2H and decision support results In Table 10 we present results with the best set of hyperparam-
eter: filtered triplets, 512-dimension embedding, λ = 0.5. We show results for λ = 0.2 in Table 5
and λ = 0.8 in Table 6.

Similar to the experiment on VW square decision boundary, we see no clear relation between λ,
embedding dimension and our evaluation metrics.

D HUMAN SUBJECT STUDY ON BUTTERFLIES V.S. MOTHS

D.1 DATASET

Our BM dataset include four species of butterflies and moths including: Peacock Butterfly, Ringlet
Butterfly, Caterpiller Moth, and Tiger Moth. An example of each species is shown in Fig 9.
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Figure 6: HC performance declines as the number of triplets decreases, but shows strong persuasive
decision support accuracy even with very few triplets.

Figure 7: Histogram of alignments generated by searching informative weights in powers of 2.

D.2 HYPERPARAMETERS

We use different controlling strength between classification and human judgment prediction, including
λs at 0.2, 0.5, and 0.8. We use the Adam optimizer (Kingma & Ba, 2014) with learning rate 1e− 4.
Our training batch size is 120 for triplet prediction, and 30 for classification. All models are trained
for 50 epoches. The checkpoint with the lowest validation total loss in each run is selected for
evaluations and applications.

D.3 CLASSIFICATION AND TRIPLET ACCURACY

We present the test-time classification and triplet accuracy of our models in Table 13. Both MLE
and HC achieve above 97.5% classification accuracy. HC in the 512-dimension unfiltered setting
achieve 100.0% classification accuracy. Both TML and HC achieve above 70.7% triplet accuracy.
Both TML and HC achieve the highest triplet accuracy in the 50-dimension unfiltered setting with
triplet accuracy at 75.9% and 76.2% respectively. Filtering out class-inconsistent triplets removes
15.75% of the triplet annotations in this dataset.

We also evaluate the pretrained LPIPS metric (Zhang et al., 2018) on our triplet test set as baselines
for learning perceptual similarity. Results with AlexNet backbone and VGG backbone are at 54.5%
and 55.0% triplet accuracy respectively, suggesting that TML and HC provides much better triplet
accuracy in this task.

D.4 EFFECT OF TRIPLET AMOUNT AND TYPE

We evaluate the effect of the number of triplets on our models in Fig. 10. Similar to the VW
experiments, H2H preference towards human-compatible representations and neutral decision support
performance decrease as the number of triplets decreases. Human-compatible representations achieve
strong persuasive decision support performance even with very few triplets.
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Figure 8: VW-Linear

Table 9: HC performance with different λ on VW linear decision
boundary data.

Model Classification accuracy Triplet accuracy
MLE 0.993 ± 0.003 0.673 ± 0.014
HC λ = 0.8 0.988 ± 0.032 0.968 ± 0.030
HC λ = 0.5 0.978 ± 0.013 0.966 ± 0.007
HC λ = 0.2 0.978 ± 0.032 0.970 ± 0.010
TML N/A 0.976 ± 0.012

Table 10: Experiment results on VW-Linear. Models use 512-dimension embeddings; HC uses
λ = 0.5 and filtered triplets.

Alignments 56% 84% 95% 98.5%

Weights [0,1,1,1] [1,0,1,1] [1,1,1,1] [32,256,1,1]

NI-H2H

HC vs. MLE 0.913 ± 0.023 0.922 ± 0.008 0.899 ± 0.020 0.848 ± 0.055

NO-H2H

HC vs. MLE 0.932 ± 0.034 0.960 ± 0.027 0.921 ± 0.013 0.928 ± 0.034

Neutral decision support

MLE 0.778 ± 0.084 0.792 ± 0.144 0.839 ± 0.130 0.927 ± 0.019
TML 0.554 ± 0.175 0.770 ± 0.318 0.950 ± 0.095 0.914 ± 0.075
HC 0.841 ± 0.053 0.911 ± 0.053 0.967 ± 0.009 0.961 ± 0.014

Persuasive decision support

MLE 0.802 ± 0.249 0.815 ± 0.151 0.848 ± 0.188 0.953 ± 0.051
TML 0.473 ± 1.016 0.653 ± 1.747 0.441 ± 0.016 0.381 ± 0.474
HC 0.979 ± 0.014 0.977 ± 0.009 0.977 ± 0.009 0.978 ± 0.013

D.5 MODEL EVALUATION WITH SYNTHETIC AGENT

We trained models with different configurations. We mainly discuss two factors: 1) filtering out
class-inconsistent triplets or not; 2) a large dimension at 512 vs. a small dimension at 50 for the
output representations. We also tried different hyperparameters such as different λs that control the
strength of the classification loss and triplet margin loss as well as different random seeds. We select
the best TML / HC / MLE in each filtering-dimension configuration with the highest average of test
classification accuracy and test triplet accuracies.

Label accuracy and triplet accuracy. As this task is relatively simple, both MLE and HC achieves
test accuracy of above 97.5%. In fact, HC without filtering out class-inconsistent triplets achieved
100%. Note that TML cannot classify alone. As for triplet accuracy, as expected, both HC and TML
outperform MLE. Dimensionality does not affect triplet accuracy, but filtering out class-inconsistent
triplets decrease triplet accuracy (76.2% vs. 70.7% with 50 dimensions, 74.1% vs. 70.9% with 512
dimensions). This is because filtering creates a distribution shift of the triplet annotations, and limits
the models’ ability to learn general human visual similarity.

To run synthetic experiments for case-based decision support, we select the TML with the best test
triplet accuracy as our synthetic agent, and then evaluate the examples produced by all representations.
We do not show results of TML as we use it as the synthetic agent.

Human-compatible representations is prefered over MLE representations in H2H. We compare
examples selected from different models in different configurations to examples selected by the MLE
baseline with the same dimensionality.

Table 15 shows how often the synthetic agent prefers the tested model examples to baseline MLE
examples. In all settings, the preference towards HC is above 50%, but not as high as those in our
synthetic experiments with the VW dataset. Filtering out class-inconsistent triplets improves the
preference for the nearest example with the predicted label, while hurting the preference for the
nearest out-of-class example.
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Table 11: Experiment results on VW-Linear. Models use 512-dimension embeddings; HC uses
λ = 0.2 and filtered triplets.

Alignments 56% 84% 95% 98.5%

Weights [0,1,1,1] [1,0,1,1] [1,1,1,1] [32,256,1,1]

NI-H2H

HC vs. MLE 0.936 ± 0.024 0.921 ± 0.008 0.912 ± 0.074 0.856 ± 0.034

NO-H2H

HC vs. MLE 0.946 ± 0.032 0.974 ± 0.032 0.949 ± 0.003 0.934 ± 0.029

Neutral decision support

MLE 0.778 ± 0.084 0.792 ± 0.144 0.839 ± 0.130 0.927 ± 0.019
TML 0.554 ± 0.175 0.770 ± 0.318 0.950 ± 0.095 0.914 ± 0.075
HC 0.845 ± 0.127 0.880 ± 0.127 0.956 ± 0.016 0.956 ± 0.111

Persuasive decision support

MLE 0.802 ± 0.249 0.815 ± 0.151 0.848 ± 0.188 0.953 ± 0.051
TML 0.473 ± 1.016 0.653 ± 1.747 0.441 ± 0.016 0.381 ± 0.474
HC 0.974 ± 0.016 0.970 ± 0.064 0.968 ± 0.064 0.988 ± 0.032

Table 12: Experiment results on VW-Linear. Models use 512-dimension embeddings; HC uses
λ = 0.8 and filtered triplets.

Alignments 56% 84% 95% 98.5%

Weights [0,1,1,1] [1,0,1,1] [1,1,1,1] [32,256,1,1]

NI-H2H

HC vs. MLE 0.906 ± 0.122 0.909 ± 0.111 0.882 ± 0.135 0.848 ± 0.050

NO-H2H

HC vs. MLE 0.926 ± 0.021 0.955 ± 0.199 0.936 ± 0.053 0.912 ± 0.095

Neutral decision support

MLE 0.778 ± 0.084 0.792 ± 0.144 0.839 ± 0.130 0.927 ± 0.019
TML 0.554 ± 0.175 0.770 ± 0.318 0.950 ± 0.095 0.914 ± 0.075
HC 0.824 ± 0.175 0.895 ± 0.159 0.950 ± 0.032 0.969 ± 0.016

Persuasive decision support

MLE 0.802 ± 0.249 0.815 ± 0.151 0.848 ± 0.188 0.953 ± 0.051
TML 0.473 ± 1.016 0.653 ± 1.747 0.441 ± 0.016 0.381 ± 0.474
HC 0.981 ± 0.048 0.964 ± 0.206 0.961 ± 0.175 0.978 ± 0.064

Decision support simulations shows a large dimension benefits MLE representations but hurts
unfiltered human-compatible representations in neutral decision support. We also run simulated
decision support with the TML synthetic agent. Table 16 shows decision support accuracy for different
settings. MLE have both higher neutral decision support accuracy and persuasive decision support
scores when we use a large dimension at 512. We hypothesize that for MLE, reducing dimension may
force the network to discard dimensions useful for human judgments but keep dimensions useful for
classification. We then use the 512-dimension MLE with the highest intrinsic evaluation scores as our
MLE baseline in later studies.

For HC, neutral decision support accuracy are in general comparable to 87.5% score of the 512-
dimension MLE baseline except unfiltered 512-dimension HC which has only 80%. We hypothesize
that representations of large dimension may struggle more with contradicting signals between metric
learning and supervised classification in the unfiltered settings. For persuasive decision support, HC
achieves perfect scores in all settings.

Overall, to proceed with our human-subject experiments, we choose HC filtered with 50 dimensions
as our best HC as it achieves a good balance between H2H and neutral decision support. For MLE, we
choose the representation with 512 dimensions. We conduct head-to-head comparison between these
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(a) Ringlet Butterfly (b) Peacock Butterfly (c) Caterpiller Moth (d) Tiger Moth

Figure 9: An example of each species in the BM dataset.

Table 13: Classification and triplet accuracy of BM models.

Model Classification accuracy Triplet accuracy
Dimension 50

MLE 0.975 0.610
HC 0.975 0.762
HC-filtered 0.975 0.707
TML N/A 0.759
TML-filtered N/A 0.721

Dimension 512
MLE 0.975 0.631
HC 1.000 0.741
HC-filtered 0.975 0.709
TML N/A 0.748
TML-filtered N/A 0.732

two representations. Our synthetic agent prefers HC in 70% of the nearest in-class examples and in
97.5% of the nearest out-of-class examples.

D.6 INTERFACE

We present the screenshots of our interface at the end of the appendix. Our interface consists of four
stages. Participants will see the consent page at the beginning, as shown in Fig 13. After consent page,
participants will see task specific instructions, as shown in Fig 15. After entering the task, partipants
will see the questions, as shown in Fig 16. We also include two attention check questions in all
studies to check whether participants are paying attention to the questions. Following suggestions on
Prolific, we design the attention check with explicit instructions, as shown in Fig 18. After finishing
all questions, participants will reach the end page and return to Prolific, as shown in Fig 20. Our
study is reviewed by the Institutional Review Board (IRB) at our institution (IRB22-0388).

D.7 CROWDSOURCING

We recruit our participants on a crowdsourcing platform: Prolific (www.prolific.co) [April-May 2022].
We conduct three total studies: an annotation study, a decision support study, and a head-to-head
comparison study. We use the default standard sampling on Prolific for participant recruitment.
Eligible participants are limited to those reside in United States. Participants are not allowed to
attempt the same study more than once.

Triplet annotation study We recruit 90 participants in total. We conduct a pilot study with 7
participants to test the interface, and recruit 83 participants for the actual collection of annotations.
3 participants fail the attention check questions and their responses are excluded in the results. We
spend in total $76.01 with an average pay at $10.63 per hour. The median time taken to complete the
study is 3’22”.

Decision support study We recruit 161 participants in total. 3 participants fail the attention check
questions and their responses are excluded in the results. We take the first 30 responses in each
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Figure 10: HC performance declines as the number of triplets decreases, but shows strong persuasive
decision support accuracy even with very few triplets.

Table 15: BM H2H preference results with syn-
thetic agent.

Dimensions 50 512

NI H2H with MLE

HC 0.838 0.575
HC filtered 0.863 0.725

NO H2H with MLE

HC 0.775 0.925
HC filtered 0.700 0.775

Table 16: BM decision support accuracy with
synthetic agent.

Dimensions 50 512

Neutral Decision Support

MLE 0.675 0.875
HC 0.900 0.800
HC filtered 0.875 0.900

Persuasive Decision Support

MLE 0.825 0.875
HC 1.000 1.000
HC filtered 1.000 1.000

conditon to compile the results. We spend in total $126.40 with an average pay at $9.32 per hour.
The median time taken to complete the study is 3’53”.

Head-to-head comparison study We recruit 31 participants in total, where 1 participant fail the
attention check questions and their responses are excluded in the results. We spend in total $24.00
with an average pay at $9.40 per hour. The median time taken to complete the study is 3’43”.

E HUMAN SUBJECT STUDY ON CHEST X-RAYS

E.1 DATASET

Our CXR dataset is constructed from a subset of the chest X-ray dataset used by Kermany et al.
(2018), which had 5,232 images. We take a balanced subset of 3,166 images, 1,583 characterized as
depicting pneumonia and 1,583 normal. The pneumonia class contains bacterial pneumonia and viral
pneumoia images, but we do not differentiate them for this study. An example of each image class is
shown in Fig 11.

E.2 HYPERPARAMETERS

For CXR experiment, instead of ResNet-18 pretrained from ImageNet, we use a ResNet-18 finetuned
on CXR classifcation as our CNN backbone, as we observe it provides better decision support
simulation results. For training our HC model we use λ of 0.5. We use the Adam optimizer (Kingma
& Ba, 2014) with learning rate 1e− 4. Our training batch size is 16 for triplet prediction, and 30 for
classification. All models are trained for 10 epoches. The checkpoint with the lowest validation total
loss in each run is selected for evaluations and applications.

E.3 CLASSIFICATION AND TRIPLET ACCURACY

We present the test-time classification and triplet accuracy of our models in Table 17. Both MLE and
HC achieve above 95% classification accuracy. Both TML and HC achieve above above 65% triplet
accuracy. Both TMLmodel and HC achieve the highest triplet accuracy in the 512-dimension unfiltered
setting with triplet accuracy at 69.1% and 72.2% respectively. Filtering out class-inconsistent triplets
removes 20.69% of the triplet annotations in this dataset.
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(a) Normal (b) Bacterial pneumonia (c) Viral pneumonia

Figure 11: An example of each image class in the CXR dataset.

Table 17: Classification and triplet accuracy of CXR models.

Model Classification accuracy Triplet accuracy
Dimension 50

MLE 0.973 0.571
HC 0.954 0.576
HC-filtered 0.955 0.574
TML N/A 0.602
TML-filtered N/A 0.587

Dimension 512
MLE 0.973 0.588
HC 0.968 0.602
HC-filtered 0.971 0.561
TML N/A 0.618
TML-filtered N/A 0.591

E.4 MODEL EVALUATION WITH SYNTHETIC AGENT

Similar to the BM setting, we select the TML with the best test triplet accuracy as our synthetic agent,
and then evaluate the examples produced by all representations. As table 18 shows, preference for
HC over MLE in H2H is less significant compared to BM, likely due to the challenging nature of the
CXR dataset. We still observe the patten that filtering improves H2H performance.

Table 19 shows decision support accuracy for different settings. All models benefit from a large
dimension at 512. We observe consistent patterns such as filtering leading to better decision support.

E.5 EFFECT OF TRIPLET AMOUNT AND TYPE

We evaluate the effect of the number of triplets on our models in Fig. 12. Similar to the BM
experiments, H2H preference towards human-compatible representations and neutral decision support
performance decrease as the number of triplets decreases. Human-compatible representations achieve
strong persuasive decision support performance even with very few triplets.

E.6 INTERFACE

Our CXR interface is mostly the same as our BM interface, except that we add basic chest X-ray
instructions as participants may not be familiar with medical images. After the consent page at the
beginning, participants will see basic chest X-ray instructions showing where the lungs and hearts.
Then, they enter an multiple-choice attention check, as shown in Fig 14. The correct answer in “lungs
and adjacent interfaces”. Failing the attention check will disqualify the participant. After correctly
answering the pre-task attention check, participants will see the same task specific instructions as
in the BM studies, as shown in Fig 15. Screenshots of questions are shown in Fig 17. We also
include two in-task attention check questions simlar to the BM study. Our study is reviewed by the
Institutional Review Board (IRB) at our institution with study number that we will release upon
acceptance to preserve anonymity.
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Table 18: CXR H2H preference results with syn-
thetic agent.

Dimensions 50 512

NI H2H with MLE

HC 0.536 0.675
HC filtered 0.472 0.599

NO H2H with MLE

HC 0.535 0.635
HC filtered 0.487 0.494

Table 19: CXR decision support accuracy with
synthetic agent.

Dimensions 50 512

Neutral Decision Support

MLE 0.711 0.726
HC 0.742 0.779
HC-filtered 0.732 0.804

Persuasive Decision Support

MLE 0.881 0.882
HC 0.949 0.966
HC-filtered 0.948 0.946
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Figure 12: HC performance declines as the number of triplets decreases, but shows strong persuasive
decision support accuracy even with very few triplets.

E.7 CROWDSOURCING

We recruit our participants on Prolific (www.prolific.co) [September 2022]. We conduct three total
studies: an annotation study, a decision support study, and a head-to-head comparison study. We use
the default standard sampling on Prolific for participant recruitment. Eligible participants are limited
to those reside in United States. Participants are not allowed to attempt the same study more than
once.

Triplet annotation study We recruit 123 participants in total. 20 partipants fail the pre-task attention
check question and 3 participants fail the in-task attention check questions; their responses are
excluded in the results. We spend in total $80.00 with an average pay at $10.70 per hour. The median
time taken to complete the study is 3’22”.

Decision support study We recruit 296 participants in total. 34 partipants fail the pre-task attention
check question and 10 participants fail the in-task attention check questions; their responses are
excluded in the results. We spend in total $221.67 with an average pay at $11.00 per hour. The
median time taken to complete the study is 3’40”.

Head-to-head comparison study We recruit 57 participants in total. 6 partipants fail the pre-task
attention check question and 1 participants fail the in-task attention check questions; their responses
are excluded in the results. We spend in total $40.00 with an average pay at $10.54 per hour. The
median time taken to complete the study is 3’25”.
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Welcome to our research study! 

Description: We are researchers at [anonymous institution] doing a research study about improving human collaboration with artificial intelligence (AI)
on decision making tasks. The purpose of this study is to understand the human perception of images and build appropriate AI assistance. You will be
asked to judge the similarity between images. You may or may not be asked to recognize the object in an image. You may or may not be asked to
recognize the object in an image. You will also answer a survey at the end of the study. We will not ask any personal or sensitive questions that might be
upsetting. The study should take about 5 minutes. Your participation is voluntary. 

Incentives: You will be compensated $1.00 for completing the study (about $12.00/hr). In the event of an incomplete work, you must contact the
research team and compensation will be determined based on what was completed and at the researchers' discretion. 
PLEASE NOTE: This study contains attention checks to make sure that participants are finishing the tasks honestly and completely. As long as you read
the instructions and complete the tasks, your work will be approved. If you fail these checks, your work will be rejected. 

Risks and Benefits: You may be displayed natural images of birds or insects. If you have ornithophobia or entomophobia, you may experience anxiety
when looking at these images. In this case, please do not participate in this study. Otherwise, your participation in this study does not involve any risk
to you beyond that of everyday life. 
You may benefit from this study by learning to recognize bird and insect species. Insights from this study will help advance possible ways that humans
interact with AI models. Your interaction with our AI model may lead to better training of different professions such as radiologists, and as a result better
healthcare. 

Confidentiality: Your Prolific Worker ID will be used to distribute payment to you but will not be stored with the research data we collect from you. Data
obtained in this study will be processed, analyzed, and possibly published by the research team.

If you decide to withdraw, data collected up until the point of withdrawal may still be included in analysis.
Identifiable data will never be shared outside the research team.
De-identified information from this study may be used for future research studies or shared with other researchers for future research without your
additional informed consent.

Consent: Participation is voluntary. Refusal to participate or withdrawing from the research will involve no penalty or loss of benefits to which you might
otherwise be entitled. 

By clicking on the button below, you confirm that you have read this consent form, are at least 18 years old, and agree to participate in the research.

I Agree

Figure 13: The consent form page on our interface.

(a) Basic instructions about chest X-rays. (b) Multiple-choice attention check for CXR tasks.
The correct answer is “lungs and adjacent interfaces”.

Figure 14: Pre-task instructions and attentions check for CXR tasks

Welcome to the butterfly-moth visual similarity study. 
Please read the instructions below.

Image similarity annotation

In this task, you will see a reference image and several candidate images.
Amongst the candidate images, you will select the one that looks the most
similar to the reference image. There is no right or wrong answer. Try your
best to break ties.

Enter image similarity annotation

(a) The annotation and head-to-head comparision task
instructions.

Welcome to the butterfly-moth visual similarity study. 
Please read the instructions below.

Image classification

In this task, your goal is to decide whether a test image is a butterfly or a
moth. We provide one reference image from each class to support you.
Please classify the test image by determining which reference image looks
the most similar to the test image. Try your best to break ties.

Enter image classification

(b) The decision support task instructions.

Figure 15: The task-specific instruction page on our interface.
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Question#: 1 / 52
Which candidate image looks most similar to the reference image? (You can click on the image to select)

Reference

Candidate image 1 Candidate image 2

(a) The annotation and head-to-head comparision task
questions.

Question#: 1 / 42
Which reference image looks more similar to the test image?

Test

Reference image 1
(Butterfly)

Reference image 2
(Moth)

(b) The decision support task questions.

Figure 16: The task-specific questions for BM.

(a) The annotation and head-to-head comparision task
questions.

(b) The decision support task questions.

Figure 17: The task-specific questions for CXR.

Question#: 21 / 52
Attention Check: Please click on the left image!

Attention Check: Please click on the left image!

Reference

Candidate image 1 Candidate image 2

(a) The annotation and head-to-head comparision task
attention check questions.

Question#: 14 / 42
Attention Check: Please click on the left image!

Attention Check: Please click on the left image!

Test

Reference image 1
(Moth)

Reference image 2
(Butterfly)

(b) The decision support task attention check ques-
tions.

Figure 18: The task-specific attention check questions for BM.
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Thank you! Please answer the survey below.

Submit

1. How many questions do you think you have answered correctly? (except for attention checks) * 

Current: 0%

2. Do you agree that the reference images are helpful when you decide the class of the test image? *

3. Do you have any general feedback for our study? (Optional)

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

Figure 19: The survey page of the decision support task on our interface.

Thank you! This is the end of the current session.

Click the button below to end the study and return to Prolific.

End study

(a) The annotation and head-to-head comparision task
end page.

Thank you! This is the end of the current session.

Great, your got 17 out of 40 correct!

Click the button below to end the study and return to Prolific.

End study

(b) The decision support task end page.

Figure 20: The task-specific end page on our interface.
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