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Fig. 1. Training pipeline combining imitation learning from AMASS and
reinforcement learning in LocoMuJoCo for goal-conditioned whole-body
control.

Abstract—Humanoid robots must coordinate locomotion with
upper-body motion while responding to high-level goals. This
work presents a goal-conditioned controller trained through
Archive of motion capture as surface shapes (AMASS)-based
imitation learning and reinforcement learning (RL) in the Lo-
coMuJoCo framework. A policy is first pretrained on AMASS
trajectories to acquire humanlike gait dynamics and coordinated
arm–leg motion, then fine-tuned with RL to track target root
velocities and hand poses using a lightweight DeepMimic-inspired
reward.

Using a Unitree H1–scale model, we find that AMASS-
initialized RL converges faster and yields higher stability,
smoother motion, and more accurate goal tracking than RL-
from-scratch. These results demonstrate an effective and scalable
strategy for developing natural whole-body humanoid control
suitable for future loco-manipulation tasks.

Index Terms—Humanoid Locomotion, Imitation Learning,
Reinforcement Learning, Motion Capture (AMASS), Goal-
Conditioned Control

I. RELATED WORK

Learning humanoid control from motion capture has gained
significant traction in recent years. The AMASS dataset [1]
provides high–quality human motion sequences that have been
widely used to build expressive motion priors for physics-
based control. Several imitation-learning frameworks leverage
such data to initialize policies with humanlike coordination
before reinforcement learning (RL) refinement.

Benchmark systems such as LocoMuJoCo [2] enable scal-
able imitation and RL experiments for locomotion, offer-
ing consistent evaluation settings across controllers. Beyond
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datasets and benchmarks, adversarial imitation approaches
have demonstrated that motion discriminators can guide hu-
manoids toward natural whole-body behaviors [5]. Recent
advances further explore bi-level optimization [6] and latent
motion representations [7] to bridge the gap between mocap
data and robot dynamics.

Complementary to imitation learning, robust RL has
achieved impressive results in locomotion and transfer to
real hardware [8]. These works collectively motivate our
approach, which integrates AMASS-based imitation with goal-
conditioned RL for unified locomotion and upper-body con-
trol.

II. METHOD

Our approach trains a goal-conditioned humanoid controller
using a two-stage pipeline: (i) AMASS-based imitation learn-
ing to acquire natural locomotion patterns, and (ii) reinforce-
ment learning (RL) in the LocoMuJoCo simulator to enable
goal-aware whole-body control.

A. Demonstration Pretraining
AMASS motion clips are retargeted to the humanoid model

and used to initialize the policy πθ(a|s), parameterized by θ,
where s represents the robot state and a the joint action (torque
commands).

Given reference motion from AMASS at time step t, the
policy is trained to match: qref

t reference joint angles, eref
t

reference end-effector (hand and foot) positions, rref
t reference

root orientation.
The imitation loss is defined as:

Limit = wq∥qt− qref
t ∥2+we∥et− eref

t ∥2+wr∥rt− rref
t ∥2, (1)

where: qt current joint angles of the humanoid, et current
end-effector positions, rt current root orientation, wq, we, wr

scalar weights balancing the importance of each tracking term.
This stage biases the policy toward stable gaits, correct

posture, and humanlike coordination.

B. Goal-Conditioned Reinforcement Learning

After pretraining, the policy is fine-tuned to follow task-
specific goals:

gt = (v∗x, v
∗
y , ψ̇

∗, p∗L, p
∗
R), (2)

where: v∗x, v
∗
y desired root linear velocities in the horizontal

plane, ψ̇∗ desired yaw (turning) angular velocity, p∗L, p
∗
R

desired left and right hand positions relative to the pelvis.



Fig. 2. Comparison of imitation-pretrained learning (blue) and RL-from-
scratch (black). Left: mean episode return. Right: episode length. Imitation
learning accelerates convergence and yields significantly higher returns.

The RL objective is to maximize the expected discounted
return:

J(θ) = Eπθ

[
T∑

t=0

γtrt

]
, (3)

where: γ ∈ (0, 1) discount factor, rt reward at timestep t.
The reward function is defined as:

rt = −λv∥vt−v∗t ∥2−λh∥ph,t−p∗h,t∥2−λs∥at∥2+λpriorϕ(st, s
ref
t ),

(4)
where: vt current measured root velocity, ph,t current
hand position vector, at action vector (joint torques),
λv, λh, λs weights controlling tracking and smoothness penal-
ties, ϕ(st, sref

t ) motion prior term encouraging similarity to
reference motion, λprior weight for human-motion regulariza-
tion.

Policy optimization is performed using Proximal Policy
Optimization (PPO) with parallel rollouts enabled by MJX for
efficient simulation.

C. Integrated Training Pipeline

The imitation-trained policy provides a strong initializa-
tion that reduces exploration complexity during RL. Fine-
tuning then adapts the controller to dynamic goal variations
while preserving smooth and physically plausible motion. This
two-stage approach results in stable, humanlike, and goal-
responsive whole-body control, significantly outperforming
controllers trained purely with reinforcement learning.

III. EXPERIMENTS AND RESULTS

We evaluate our method using the LocoMuJoCo pipeline,
which provides AMASS retargeting, MJX-based physics sim-
ulation, and large-batch PPO training. The robot model is
a Unitree-H1–scale humanoid (22-DoF). AMASS walking
and upper-body motion clips are retargeted to the robot
and used to pretrain the policy before goal-conditioned RL
fine-tuning. During RL, the agent receives commands gt =
(v∗x, v

∗
y , ψ̇

∗, p∗L, p
∗
R) that change every 1–2 s to evaluate respon-

siveness and stability.
Figure 2 shows the training curves for imitation-pretrained

learning compared to RL-from-scratch. The AMASS-
initialized policy rapidly improves within the first 50–80M
steps and reaches substantially higher episode returns. In con-
trast, RL-from-scratch requires several hundred million steps

to reach moderate performance and exhibits larger variance
due to unstable early-phase exploration.

The episode-length curve further highlights the benefit of
motion priors. Imitation-trained policies achieve long, uninter-
rupted episodes early in training, indicating stable balance and
coherent whole-body motion. RL-only policies show shorter
and inconsistent episodes, reflecting frequent falls and unstable
transitions.

Qualitatively, imitation-pretrained policies produce
smoother gaits, reduced foot slippage, and more consistent
arm–leg coordination while following changing velocity and
hand-pose goals. Across tasks such as forward walking,
sidestepping, and turning while reaching, the AMASS+RL
controller maintains stability and natural motion patterns long
before RL-from-scratch becomes reliable.

Overall, these results show that initializing RL with
AMASS-based imitation dramatically improves data effi-
ciency, training stability, and the resulting whole-body motion
quality.

IV. CONCLUSION

We presented a goal-conditioned humanoid controller that
combines AMASS-based imitation learning with reinforce-
ment learning. Experiments show that imitation pretraining
provides strong motion priors, leading to faster convergence,
higher returns, and more stable rollouts compared to RL-from-
scratch. The approach enables natural and responsive whole-
body behaviors for a wide range of velocity and hand-pose
goals. Future work will focus on hardware transfer and vision-
conditioned goal generation.
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