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Abstract Neural architecture search (NAS) has demonstrated success in discovering promising ar-
chitectures for vision or language modeling tasks, and it has recently been introduced
to searching for graph neural networks (GNNs) as well. Despite the preliminary success,
GNN s struggle in dealing with heterophily or low-homophily graphs where connected
nodes may have different class labels and dissimilar features. To this end, we propose
co-optimizing both the input graph topology and the model’s architecture topology simul-
taneously. That yields AutoCoG, the first unified data-model co-search NAS framework
for GNNs. By defining a highly flexible data-model co-search space, AutoCoG is grace-
fully formulated as a principled bi-level optimization that can be end-to-end solved by the
differentiable search methods. Experiments show that AutoCoG achieves an average perfor-
mance gain across all datasets of 3.18% over the following best approach, and ranks best
against all other state-of-the-art methods with an average ranking of 2.5. Code is available
at https://github.com/VITA-Group/AutoCoG.

1 Introduction

Graph neural networks (GNNs) have emerged as promising tools to analyze networked data in
various real-world scenarios, such as social media (Grover and Leskovec, 2016) and biochemical
graph analytics (Zitnik and Leskovec, 2017). Specifically, GNNs apply recursive message passing
to learn the embedding representation of each node via aggregating the representations of its
neighbors and itself. Motivated by the significant success of node embedding learning, plenty
of GNN variants have been explored for the diverse downstream graph analysis tasks, including
GCN (Kipf and Welling, 2016a), GraphSAGE (Hamilton et al., 2018), and GCNII (Chen et al., 2020a).

However, training GNNs is notoriously challenging, more so when they are trained under
heterophily or disassociative graphs, not to mention deep GNNs (Chen et al., 2020a; Zhou et al.,
2020). First, since graphs abstract diverse data sources and present tremendous heterogeneity, the
success of GNNGs is often accompanied by extensive tuning of model architectural hyperparameters
to characterize specific graph data. For example, it was reported that graph attention networks
(GAT) (Velickovi¢ et al., 2018) are sensitive to the number of attention heads, which has to be
carefully searched for the citation networks and the protein-protein interaction data, respectively.
Second, in the real world, graphs often opposites attract which inevitably lead to noisy setting,
where GNNs tend to suffer from overfitting and generalize poorly to the unseen testing data. Third,
despite the potential of deep GNNs in learning the informative high-order neighborhood, the
training of deep GNNs is widely known to be limited by the issues of over-smoothing, gradient
vanishing, and over-squashing (Chen et al., 2020a).

Recently, the automated graph neural architecture search (NAS), graph augmentation tricks,
and deeper architectures have been independently proposed to tackle the above GNN training
challenges partially. Expressly, most of the existing automated efforts are limited to neural ar-
chitecture tuning, while graph augmentation is often overlooked despite often being effective to
gain performance (Li and King, 2020; Zhou et al., 2019a). This is primarily because changes to
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the existing graph structure could have a cascading effect on the process of information aggre-
gation, but adds a new layer of complexity to the above complex architecture tuning problem.
Additionally, existing GNN NAS works are known to scale poorly in deeper architectures. This
is primarily due to the exploding search space which makes searching unstable. Previous efforts
have limited themselves in searching the shallow GNNs with less than 3 layers. Finally, Figure(1)
illustrates circumstances where the aggregation mechanism fails due to unfavorable graph topology
thus, it remains a daunting task to optimize the design philosophy for GNNs comprehensively.
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the graph to the proposed architecture. Addi- ogy under heterophily. This can be mitigated
tionally, by defining the highly flexible data- by learning to place meaningful edges, yel-
model co-search space, AutoCoG is formulated low lines, to facilitate proper message propa-
as a principled bi-level optimization that can be gation. Motivate to solve this performance
end-to-end solved by the differentiable search problem, we propose co-adapting both graph
methods. To scale up our core framework to and model in a end-to-end manner.

searching deep GNN architectures, we curb an

explosive search space as the number of layers increased by performing multiple searching stages
with increasing depth, as inspired by Chen et al. (2019c). Additionally, for each search stage, we
evolve the graph by growing/pruning it at the same time. To stabilize the search landscape from
the shifting topologies of graph and model, we further utilize (Chen et al., 2020a) to combat the
over-smoothing/over-squashing issues.

Together, our framework ensures a reliable way to discover the powerful architectures, a
stable model training environment, and state-of-the-art results to train graphs of different degrees
of homophily. AutoCoG searches for and trains on deep or shallow graph neural networks to
successfully deliver superior results in Web datasets, Actor, Coauthor, and Wikipedia benchmarks.
In summary, our three contributing novelties are:

« We propose AutoCoG, the first NAS framework towards unified data-model co-search for GNNs.
Our bi-level optimization formulation uniquely enables the end-to-end discovery of GNNs’ neural
architecture and graph topology altogether.

« We perform extensive analysis the resulting learned graph-structures for each benchmarks. To
strengthen the co-search framework, we organically integrate several techniques to directly
combat issues of searching unreliability, training instability, and scalability, that have previously
plagued NAS approaches for searching deeper GNNs.

« Experiments show that AutoCoG achieves an average performance gain across all datasets of
3.18% over the following best approach, and ranks best against all other state-of-the-art methods
with an average ranking of 2.5.

Related works

Graph neural networks. Motivated by the state-of-the-art results of GNNs in graph analytics,
there have been numerous GNN variants (Bruna et al., 2013; Hamilton et al., 2017; Xu et al., 2019;



Chen et al.,, 2020a; Wu et al., 2019a; Zhou et al., 2021b). Most of these existing approaches fit within
the category of spatial GNNs. Namely, following the spatial message passing strategy, the core idea
of GNNss is to learn the embedding representation of a node by aggregating the embeddings of
its neighbors and node itself recursively. The previous empirical studies show that GNNs often
achieve the best performance with less than 3 layers (Kipf and Welling, 2016a; Velickovic et al.,
2018). Key limitations of GNNs are their performances decrease significantly with the increasing of
model depth and the degree of graph homophily they operate on. As the graph convolutional layer
increases, the node representations will converge to indistinguishable vectors due to the recursive
neighborhood aggregation and non-linear activation (Li et al., 2018; Oono and Suzuki, 2020; Zhou
et al., 2021a; Guo et al., 2021), which is well known as the over-smoothing issue (NT and Maehara,
2019; Chen et al., 2019a; Alon and Yahav, 2020; Chien et al., 2021; Huang et al., 2020).

Graph augmentation. Data augmentation methods has been widely applied to improve the gen-
eralization performances of deep neural networks, such as convolutional and recurrent neural
networks (Shorten and Khoshgoftaar, 2019; Antoniou et al.,, 2017; Feng et al., 2021). They aim to
craft the out-of-distribution training data to avoid overfitting with the customized augmentation
policies. In the graph analytics, GNNs are prone to overfit the naturally noisy training graphs,
which may miss the ground-truth nodes/edges or contain the erroneous information (Ziigner et al.,
2018). Different from the grid-like image data, the graph augmentation is often operated on the
adjacency structure or node features (You et al., 2020b, 2021, 2022; Lai et al., 2020). Existing graph
augmentations could be categorized into the following two classes. (i) The random augmentation
either drops/adds edges to modify the graph, or masks parts of the node features (Rong et al.,
2020a; You et al., 2020b; Feng et al., 2020). (ii) The differentiable augmentation learns to optimize
the adjacency affinity matrix by minimizing the concerned task loss. Based upon the computed
affinity matrix, the differentiable augmentation either continuously combines it into the original
adjacency matrix (Zhao et al., 2020b; Chen et al., 2020b), or samples the discrete edges to formulate
new graph (Chen et al., 2019b).

Neural architecture search. Targeting at alleviating the laborious hyperparameter tuning, NAS
automates the designing of good neural architectures for any a given application. It is shockingly
reported that the searched neural architectures could outperform the human-designed ones in
many real-world scenarios, such as image classification (Zoph and Le, 2016; Zoph et al., 2018)
and generation (Wang and Huan, 2019; Gong et al., 2019). Most of NAS frameworks apply one
of the following search algorithms: reinforcement learning (RL) (Pham et al., 2018; Baker et al.,
2016), evolution algorithm (EA) (Liu et al., 2017; Miikkulainen et al., 2019; Xie and Yuille, 2017), and
one-shot differentiable search (Liu et al., 2018; Zela et al., 2020). There are several recent efforts
to conjoin the researches of GNNs and NAS (Gao et al., 2019; Zhou et al., 2019a; You et al., 2020a;
Ding et al., 2020; Zhao et al., 2020a). However, all of them are limited in exploring the shallow
GNNS, and fail to denoise the underlying graph to further ameliorate the model performance. In
this work, we aim to simultaneously search the deep GNN models and graph structure to optimize
the downstream graph analytics.

Co-adaptive search between graph’s structure and model’s architecture. GASSO (Qin et al., 2021)
is a recent work that similarly proposes the idea of model-graph co-search. Yet two differentiation
factors uniquely defined our two works. Firstly, GASSO is a technique that learns attention
coeflicients Ge[0, 1] only for existing edges E, which is mathematically equivalent to graph attention
neural networks (Qin et al., 2021). In contrast, Auto-CoG directly modifies the graph’s structure via
pruning poorly attended edges and adding new un-seen edges. Thus the derived graph structure
is unique from the original underlying graph. Finally, GASSO employs a coarse macro-level
search space with only eight operators and two layers. Its design decision space is shallow (small),
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consisting of only 256 unique combinations. Theoretically, by searching the optimal attention
function in our Auto-Cog, we could approximate the "attentional structure learning" in GASSO.

Methodology

Preliminary. We briefly review the basic of the definition of homophily and the message-passing
based graph convolution networks (GCN). The homophily or edge-homophily ratio of a graph
measures the ratio between intra-node pairs (i, j) overall all edges £ and is given as:

£ ) : (i J) € EAyo = yuw}

B (1)

where £ denotes the set of edges in the graph, and |€| denotes the cardinality of edges. Being
defined as the message passing along the edges of graph, the k-th layer of GNNs could be generally
written as:

h® = AGGR({a!P WP XV - j e N (i)}),

(2)
x® = o(COMB(W R x*1 g0y,

xl.(k> denotes the node embedding of node i at the k-th layer. W*) € RP*P represents the learnable
layer-wise weights shared by all the nodes, where D denotes the dimension of hidden units. al@
dictates the attention coefficient between nodes i and j derived from some Attention functions. A (i)
denotes the set of neighboring nodes of node i. hl(k) is the resulting embeddings after applying an
AGGR function to aggregate the set of neighboring embeddings from the previous layer. In addition,
function COMB incorporates information from the node itself with its neighboring embeddings

hl@, and o provides the nonlinear activation.

Unified Data-Model Co-Search Space
Model Search Space. The design of model Table 1: The set of attention functions Gao et al. (2019),

search space should achieve a balanced trade- where || denotes the concatenation operation,
off between the diversity and efficiency Zhou a, a;, d; denote learnable vectors, Wi denotes
et al. (2022). Although a large search space sub- the trainable matrix.

sumes the diverse GNN architectures to adapt
to the different graph analysis tasks, it would
be extremely time-consuming to explore the
optimal design. In the existing search spaces of
GNNs (Gao et al.,, 2019; Zhou et al., 2019b; You
etal., 2020a), they'often con.tain the a?chitecture GAT LeakyReLU(a(w x| |Vl;< RN
corpponents _Of hlldden umts,. att?ntlon, aggre- GAT-SUM. a® + a® based on GAT /
gation, combination, and activation functions, coNsT 1.

as well as the skip connections. To efficiently
search the outperforming shallow and deep GNNs, we compare the effectiveness of each component,
and greatly shrink down the search space to focus on three key components: the activation function,
the attention module, and the skip connections. They are generally believed to impact GNN’s
expressive capability and depth scalability (Chen et al., 2021b). We fix the aggregation function
and combination function to be simple summation, and treat the hidden units as hyperparameter.
Below we lay out our searchable design for them one-by-one:

Attention Choice Expression Form

GCN —L
VINOING)
CoS  a(W®xF | k) 5 (k=1
i j

LINEAR  tanh(gW ®x*||w® (k)
GERE-LINEAR ~ Wgtanh(W® x5 4 w (k) (k1)

« Attention search space: Attention mechanism has been shown by (Velickovi¢ et al., 2018) to
effectively stabilize training by placing proper neighborhood scaling with attention coefficient
a;j. We list our attention choices in Table 1.



« Activation search space: For the activation functions, we search among these operations: {ReLU,
Sigmoid, Tanh, Linear, SoftPlus, LeakyReLU, ReLU6, ELU}.

« Skip connection search space: For a L-Layer GNN, various skip connections can be applied to
overcome the effect of over-smoothing. Previous deep GNN works (Chen et al., 2020a; Zhang et al.,
2020; Chen et al., 2021b) illustrate a significant correlation between the type of skip connections
and the model performance. We include two categories of skip connections: (i) Initial Connection,

and (ii) Jumping-Knowledge aggregation.
Layer-wise search space
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Figure 2: An illustration of AutoCoG framework. We marked the components we searched on as
yellow; this notation also extends to the different skip connections illustrated in the pro-
gressive search box. Furthermore, we narrow down our search choice for each step within
progressive search while extending the model’s layers. We also perform graph augmentation
for every step. Further details on the process can be found in Algorithm(1) in the appendix

3.1.2 Graph Augmentation. We often expect a clustering of liked nodes when operating on graph
data in a “like attracts like" world. However, in reality, when modeling complex relationships,
we may observe the opposite, where node identities are often best described by contrasting with
their neighbors in "different attract" relationships. Under such heterophily circumstance, GNNs’
performances degrade (Pei et al., 2020a; Zhu et al., 2020a; Battaglia et al., 2018), which makes
sense intuitively, since aggregating the unrelated neighbors can lead to class obscurity (Zhu et al.,
2020a), i.e over-smoothing. Thus overcoming heterophily with model architecture alone is difficult
and often requires complicated, and exotic works flow (Abu-El-Haija et al., 2019; Pei et al., 2020b;
Lim et al,, 2021). Lately, a number of works (Srivastava et al., 2014; Zou et al., 2019; Rong et al.,
2020b; Chen et al.,, 2021a; Huang et al.,, 2021) have found that direct graph augmentations with
stochastic policies — drop/add edges — can decelerate both the over-fitting and over-smoothing
issues in training deep GNNs. By learning the graph’s topology and the model’s architecture, we
naturally adapt our data structure around the model’s strength, and co-optimize data flow around
the message passing mechanism.

The scoring function. Graph G(V, £) can be expressed in the form of an adjacent matrix A €
RIVXWI where V is the set of vertices and £ is the set of edges. We learn an edge score matrix
S € RIVXIVI such that we rewrite the aggregation step in Eqn (2) as:

H® = (S0 Ax*E Dy k), (3)
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where H® = {h® . 0 < i < [V|} and X*D = (x*V . 0 < i < |V|}. We formally define
S e [0,1] as:

S = G(I\ALP(ZVSrL | |ZVtgt))

(4)
Z = f(X,G(V,£); Wy)

Where f(.; W;) is simply the classic VGAE model by (Kipf and Welling, 2016b), Zy, /Zy, . are the

source and target nodes available from G(V, £), || denotes the concatenation function, and o is the
sigmoid function. S is therefore a sparse matrix with only |£| number of scores.

Edge growing and pruning. Taking the advantage of Progressive NAS workflow (Chen et al.,
2019c¢), at each searching stage, we prune the bottom p-percentile from S, and at the same-time we
grow our graph by appending k new edges for each node via embedding similarity. This embedding
similarity function is defined as:

1+ Cosine(z;, z;)

Sim(v;,0;) = Tog Dy, (5)
ij

Where Cosine(-) is the cosine similarity between two nodes’ scoring embeddings, while D;; is the
shortest distance between them. We illustrate the process of graph topology modification visually
in Figure 2 and in the pseudo code of Algorithm 1 in the appendix.

Optimization Formulation and Algorithm

A Principled Bi-Level Optimization Formulation. For the sake of conciseness, we use « as the
model space architecture parameters, and denote L,p; as the objective loss function given . With
a defined, we further denote W = W (*) mg as the pruned sub-model from the supernet derived
according to a description, where W, m, € RI*P*P Additionally, we can write our augmented
graph Gas A = A () S, where S is defined as our learned scoring matrix. Let Z represents the node
embedding matrix for a hypothetical 2-layer AutoCoG:

Z = Softmax((Ac(AXW ©)yw®y). (6)

Thus the objective loss function L, for a transductive semi-supervised node classification tasks is
formally denoted as:

A A 1
Lo (G WX, 1) = =5 ) yilog(z0). (7)
yi€Y

Extending from (Dong and Yang, 2019), we formulate our data-model co-search as a joint bi-level
optimization, to solve a, S concurrently with weights W and data space parameters:

min - L34(W (W, @), G(5), Xsalig: Yvatia)

A . 8
s.t. W, G= arg l’glvlgl [’zrbajm(W, G, a, S: Xtraina Ytrain) ( )

Note that « are optimized using the objective loss function on the validation set, while W, S are
optimized under training set. Additionally, G consists of modified edges, not-shown explicitly in
Equation (8), but is illustrated in our Algorithm 1. We adopt the same hard-Gumbel-softmax trick
(Jang et al., 2017) to differentially optimize architectural variables during search.



3.2.2 Scaling And Stabilizing Search. The bi-level optimization problem (8) can be solved by differential
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search methods, and we adopt the GDAS approach in (Dong and Yang, 2019) by default. However,
when exploring deep GNN architectures and larger graphs, the model/data search spaces grow
exponentially with the layer depth/graph size. They can be entangled to cause even more serious
scalability challenge. That is further amplified by the training difficulty and instability of deep GNNs
(Chen et al., 2021b). Indeed, we observe that naively applying GDAS is prone to over-smoothing
and search collapse, only yielding very poor architectures when searching for more than three
layers. Besides, it is not common for the derived graph and model to have considerable performance
variations across repeated experiments, due the stochastic initialization and training.

Progressive search space. We follow the idea proposed by (Chen et al., 2019¢) (also illustrated
in Algorithm 1), to divide search into N progressive stages, with each consecutive stage having a
larger or equal number of layers than those previously. At each stage, we greedily remove the least
selected options (by taking the mean of Soft-Max across L layers and removing the option with
the smallest value) from the data’s p parameters or model space, and pass on the shrunk co-search
space to the next stage. Note that we do not shrink the number of augmentation policies.

Experiments

Experimental Settings.

We first list our shared training hype-parameters for all datasets, and then list each dataset’s
specific particularity. By default, we employ the Adam-optimizer (Kingma and Ba, 2017) to learn
edges’ scores, model’s architecture and model’s weights with equal learning rate of 0.005, and a
L, regularization of 0.0005. We set the hidden-dimension D to be 256 with a dropout rate of 0.6.
As for P-DARTS, for every stage we prune the bottom 10% of edges, and add one new edge per
node, and the number of stages are set to be 4, starting from 2 layers, and with a 2 layers increment.
Furthermore, for Identity-Mapping, y is set to be 0.5. We search/train for 1000 epochs, while setting
our rate of patient to be 400 and 200 respectively. To get our final results, we train the network 10
times to get the average and standard deviation.

The only notable exception to the default settings are the Co-author datasets, where we set the
dropout rate to be 0.8 and 0 for CS and Physics respectively. We typically only search between two
and eight layers. Finally, for all datasets, we average their accuracy over 10 runs, with random seed
between 0 to 9.

Ablation Studies

Table 2: Ablation results comparing the test results between different searching modes at increasing
degree of homophily with fixed depth of eight. Best results are bold.

Experiments | Actor Texas Wisconsin ~ Cornell CS Photo
H 0.375 0.411 0.488 0.567 0.827 0.833

Co-search 38.039+0.16 78.378+2.21 80.392+0.00 64.864+2.97 91.840+0.60 83.204+2.42
Data-only 23.924+1.86 64.324+1.71 46.666+2.41 46.486+1.13  80.225+2.12  82.255+2.72
Model-only | 36.394+0.07 72.070+0.85 70.588+1.60 56.216+1.14  88.599+0.86  62.798+5.51

Model-graph codependancy. We justify the need for model-graph co-search by performing three
experiments, namely — co-search, data-search, and model-search — to illustrate the respective
effectiveness of the individual components which constitutes our framework. We collected these
results from several datasets at a fixed depth of 8 while maintaining identical searching settings for
all experiments. Note that for data-search, we substitute our model with the vanilla GCN (Kipf
and Welling, 2016a). The results are collected in Table(2). Herein our results speak for themselves;
we observe a significant improvement in performance, especially for graphs under heterophily,
utilizing co-search over model-only and data-only search.



Correlation between depth and performance. We observe that an increasing depth does not always
positively correlate to performance gain. Homophily negatively correlates to our performance at
depth. To explain this phenomenon, we offer this hypothesis: since the number of layers in a model
correlates to the number of k-hop neighbors observed, graphs under heterophily need to observe a
much larger sub-graph to aggregate meaning information against the inherent noisy neighbors.

In contrast, with an increasing degree Depth to Performance correlation
of homophily, more layers may induce over-
smoothing sooner, contributing to an overall
degradation in performance. We investigate
the relationship between the model’s depth and
performance. As depth is a hyper-parameter,
we perform a search on 2, 4, 8, and 16 layers
configurations — while maintaining identical
searching parameters — on several datasets at 101
an increasing rate of homophily. We then nor- s
malize our final accuracy results for each graph
against the result of our 2-layer configuration to
obtain relative performance gain in percentage. Figure 3: Illustration of relative performance against
We illustrate our results in Figure(3). 2-layer configuration (not shown).
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Analyzing the augmented graphs. We charac-

terize the newly augmented graphs to understand better how they affect the overall performance
by analyzing those searched under the eight-layers configuration. We first calculate the difference
of the homophily rate between the new and old graphs. Next, we count the difference of total
informative edges, i.e., edges between nodes of similar classes. Finally, we calculate the Intersection
between edges of the original to the augmented graph. Table(3) summarizes our findings. Herein
we observe that our improved graphs do not exhibit a stronger rate of homophily — in comparison
to the original graphs — as initially assumed. However, we also observe that, despite the increasing
heterophily, the searched graphs include more informative edges while retaining most of the
original edges, indicating we are learning new and relevant unseen relationships. Nevertheless, this
observation challenges the current research assumption on the correlation between heterophily
and performance. We show that performance can still be achieved under low homophily given that
enough informative edges are added to the graph and a deeper architecture.

Analyzing the method’s effectiveness and effi- Table 3: We characterize the new graph structured

ciency. To evéluate the efficiency of our design, found after search. From left-to-right, VH
we compare its memory usage and total run represents the change of homophily rate, V|E|
time to other NAS-based approaches such as denotes the change in informative edges, and
GraphNAS (Gao et al., 2019) and SANE (Zhao IoU describes the overlap between the original
et al., 2021). Table(4) summarizes our findings. edges with the current edges
We could observe: that AutoCoG maintains rel-
atively low memory utilization for each of the dataset ‘ VH V|E| Intersection
datasets tested, and Autf)CoG is also the fastf?st Actor | | 0.056 1 4654 99.72%
model to complete both its full-search and train-
: Texas | 10.018 1260 94.31%
ing stages. . )

Wisconsin | | 0.059 T 263 96.93%
Analyzing the effectiveness of progressive Cornell | | 0.162 T 161 89.54%

search. To test the benefit of progressive search,
we perform three ablation studies on Texas, Wisconsin, and Cornell at various depths. As shown in
Table(5), note that, with progressive search, accuracy is positively correlated to a model’s depth,
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Table 4: We characterize the efficiency and effectiveness of our search method by measuring the
memory usage and total run time to search and fully train a model for various datasets.

‘ Actor Texas Wisconsin Cornell

Model | GPU(MiB) Run-time(s) | GPU(MiB) Run-time(s) | GPU(MiB) Run-time(s) | GPUMiB) Run-time(s)
SANE 3890 3788 1070 2686 998 2194 994 3024
GraphNAS | 1088 4320 1268 5161 1326 5262 972 4642
Auto-CoG | 2634 960 992 427 994 450 984 360

while the opposite is true when searching without it. This is due to the search instability from the
resulting search space size, and a deeper network only further exacerbates the problem. Indeed, we
further observe that simply applying GDAS, as in the case of searching without progressive search,
only yields poor architectures. The results align with our reasoning in section 3.2.2.

Analyzing graph-model co-search improve-
ment on model’s robustness. Table (6) summa- Table 5: We study the effectiveness of progressive

rizes our improved robustness on noisy graphs. search (PS) by comparing Auto-CoG’s per-
We validate our robustness by performing node formance at various depth search with and
classification on graphs with added edges. The without it.

number of new edges corresponds to a percent- —

) | Texas Wisconsin Cornell
age relative to the total edges. From the ta- Wi |2 ¢ 5z 1 5 ]z 1 s
ble, we make the following observations: First, WithPS | 77.30 77.57 80.27 | 79.96 8020 8039 | 64.86 64.32 64.59
nOlSy graph data leads tO poor model perfor_ Without PS | 76.76  73.24 64.86 | 77.84 63.92 68.23 | 60.27 59.2 61.08
mance from a lack of robustness. Second,
Graph-search can rectify and improve the model’s robustness by removing artificial noise, leading
to better model performance. Third, random edges can help improve some sparse graphs base
performance, as in the case of Cornell and Wisconsin, by enabling skip-connections between
distance neighborhoods.

Table 6: We analyze the improved robustness provided by graph-model co-search. First taking the
original graphs, we added random noisy edges to the percentage amount, with respect to the
total edges, specified in each column.

‘ Texas Wisconsin Cornell

Mode | 20% 40% 80% | 20% 40% 80% | 20% 40% 80%

Model Only | 74.59 £ 1.39  73.78 + 1.30  71.35+ 2.28 | 65.88 £ 2.11 72.35 £0.62 71.35+2.28 | 54.59 £ 1.13  61.24 £ 2.61 62.70 + 1.13
Co-Search | 80.81+0.85 79.73+191 77.29+1.39 | 80.0+1.24 8156+ 1.01 81.96+0.83 | 66.22 +2.29 63.24 + 1.88 65.40 + 1.70

Results

We compare Auto-CoG to several notable state-of-the-methods inferencing on graphs with increas-
ing degrees of associativity from 0.3 and 0.9. Additionally, we also include average improvement and
average rank for quick performance comparison at a glance. Average improvement is the average
accuracy difference between Auto-CoG and another model across all datasets, so a higher score
indicates a better result. Average rank is a model’s average performance rank for all datasets, so
lower is better. For comparison, we include:

« NAS based graph models: for this category, we include GraphNAS(Gao et al., 2019), SANE(Zhao
et al,, 2021) and GASSO(Qin et al., 2021).

« Handcrafted graph models: we compare against traditional designs such as GCN (Kipf and
Welling, 2016a), SGC (Wu et al., 2019b), GAT (Velickovic et al., 2018), GCNII (Chen et al., 2020a),



Table 7: Test Accuracy (%) comparison with other previous state-of-the-art frameworks. Experiments
are conducted on the WebKB, Coauthor, Amazon, and Actor datasets. To highlight only the
model’s performance, we select the best accuracy from each model among different depths
between two to eight layers for each dataset. (*) best result. (**) second best result.

Model ‘ Actor Texas Wisconsin Cornell Computer Cs Photos Physics ‘ Avg improv. Avg Rank
SGC 26.17+1.15 56.41+4.25 51.29+6.44 58.57+3.44 37.53%0.20 70.52+3.96 26.60+4.64 91.46+0.48 724.30 9.87
GCN 28.82+0.13 65.95+2.76 57.84+1.81 54.05+0.00  81.62+2.11*" 91.83+0.50**  79.76+3.14 93.68+0.22 | 17.43 5.50
GAT 28.24+0.36 62.16+1.21 52.55%1.92 53.78+1.46 77.74+2.02 89.27+0.46 74.56£3.02 93.19+0.36 | T10.18 8.13
GCNII 34.28+1.12"  69.19+6.56 70.31+4.75 61.08+2.76 37.56+0.43 71.67+2.68 62.95+£9.41 93.15+0.92 | T 14.10 5.75
JKNet 28.80+0.97 61.08+6.23 52.76+5.69 57.30+4.95 67.99+5.07 81.82+3.32 78.42+6.95 90.92+1.61 | 71173 8.00
APPNP 28.65+1.28 60.68+4.50 54.24+5.94 58.43+3.74  43.02+10.16  91.61+0.49  59.62+23.27 93.75+0.61** | T 15.74 7.13
Geom-GCN | 31.63£0.02 65.94+1.39 68.63+0.00 59.75+1.80 - — - - 79.40 5.5
H2GCN 33.13£0.10 82.41£0.07*  79.61+1.01**  80.4 +£0.05* 37.48+0.08 28.83+7.95 46.56+0.17 93.90 £0.05* | 7 16.33 4.75
GraphNAS 26.87+2.09 78.11£3.91 63.14+5.13 59.73+4.49 84.66+0.22* 90.11+0.31 91.11£0.18" 93.75+0.60 | T3.18 4.25
SANE 32.05+1.49 71.89+7.77 60.39+10.57  54.59+11.02 78.99+4.3 88.51+0.65 87.72+1.50 OOM 76.50 5.20
GASSO 27.02+0.05 64.86+0.00 78.43+0.00 64.70+0.00 OOM OOM 89.3240.05** OOM 1488 5.00
Auto-CoG ‘ 38.04+0.16*  80.27+2.21"*  80.39+0.00*  64.86+2.97"*  78.91+2.57 92.05+0.40* 85.16+1.12 93.28+0.58 ‘ - 2.50

JKNet (Xu et al., 2018) and APPNP (Klicpera et al., 2018). Additionally, we also compare against
designs that are crafted specifically for disassortative graphs such as Geom-GCN (Pei et al., 2020c)
and H2GCN (Zhu et al., 2020b).

We summarizes our finding in Table(7). From the results, we make the following observations:

« Highlighting the challenge of heterophily, we observe the lack of a dominant approach that can
outperform all datasets. However, when we compare their average ranking overall, we do find
Auto-CoG ranks highly at 2.5 and able to improve against all other approaches on average. This
showcase our method’s robustness in dealing with graphs under different homophily settings

+ In comparison to other NAS approaches, Auto-CoG reliably outperforms all of them when it
comes to disassociative datasets since typical GNNs tend to over-smooth on noisy graph data — an
inherent problem for message-passing. Auto-CoG directly modifies its graph data and network’s
architecture to overcome this weakness. GASSO (Qin et al., 2021) also performs graph structure
search, but it is limited to only learning existing edges attention coeflicients and therefore is still
susceptible to some degree of over-smoothing.

+ In comparison to handcrafted baselines, Auto-CoG comfortably outperforms Geom-GCN (Pei
et al., 2020c) on Actor and WebKB datasets. Our graph-structured learning process provides a
similar function as the "structural neighborhood" concept, which Geom-GCN utilizes for bi-level
aggregation. On the other hand, H2GCN (Pei et al., 2020c) shows impressive performance on
small Webkb datasets, outperforming Auto-CoG in both Texas and Cornell. However, the model’s
‘ego-embeddings’ concept does not scale well on larger datasets such as CoAuthor and Amazon,
where it repeatedly fails to produce competitive results.

Conclusion and Limitations

In this paper, we present AutoCoG the first NAS framework towards unified data-model co-search
for GNNs. Our results convincingly demonstrate the benefit of data-graph co-search for both deep
and shallow graph neural networks. Our ablation study shows that controlled variances in graph
heterophily can result in a better, more generalized model and the necessity for graph-augmentation
to be model-aware. We confidently demonstrate AutoCoG to be a reliable way to discover robust
architectures, a stable model training environment, and state-of-the-art results. Additionally, we
show that the localized disturbance of graph structure motivates node position learning, allowing
for greater generalizability of the model.

However, there are still limitations that need to be addressed: large graph scalability and
understanding heterophily’s relationship to performance. To address this, we first plan to follow
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up by learning meaningful model/graph using Auto-CoG via graph-batching. Secondly, we want
to conduct a study to understand better the phenomenon between heterophily and performance
observed in our ablation. There is no negative societal impact to our best knowledge, except that
the NAS process is resource-consuming - but even that excessive cost can be amortized by the
re-usability of the searched model, which can achieve superior accuracy-resource trade-off.
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Appendix
Datasets

We evaluate AutoCoG on several popular semi-node classification datasets including (i) the WebKB
datasets —Cornell, Texas, Wisconsin— (Craven et al., 1998), (ii) Actor dataset (Tang et al., 2009),
(iii) Co-author datasets —CS, Physics— (Shchur et al., 2019), and (iv) Amazon datasets — Photo,
Computers — (Shchur et al., 2019). We select these datasets to represent a wide range of graphs
under different degrees of homophily, which will serve to demonstrate Auto-CoG robustness in
comparison to the different SOTA methods. The specifics on each datasets, in sorted order under
homophily, is recorded in Table(8).
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Table 8: The Statistics of each dataset. From left to right: unique classes, nodes, edges and embedding
dimension and edge-homophily degree.

dataset ‘ Y| V] |E]| |D| H
Actor 5 7,600 33,544 931 0.375
Texas 5 183 295 1,703 0411
Wisconsin 5 251 499 1703 0.488
Cornell 5 183 295 1,703 0.567
Computers | 10 13,752 491,722 767 0.783
CS 40 18,333 163,788 6,805 0.827
Photos 10 7,650 238,162 745 0.833
Physics 5 34,493 495924 8,415 0.936

Algorithm 1: AutoCoG Searching Algorithm

Input: W;, X, G(V, E), searchSpace, epochs, startNumLayer, endNumLayer, stages ;
Output: a, G(V,E), S;
E«—E;
for s = 0 to stages-1do
#Initialize new model and architecture parameters
a < OnesInitParameters(searchSpace);
W « initModel(min(startNumLayer+s, endNumLayer));
for e=0 to epochs-1do
§ — o(MLP(f(X, G(V, E); Wy));
a « Sample(a);
BackPropgate Lop; (@ W, S, X¢rain, G(V, E)) — W, Wy;
BackPropgate Lop; (@, W, S, Xpatia, G(V, E)) — a;
end
#Reduce search space and augment edges
E «— PruneAndGrow(f(.; Wy));
searchSpace < ReduceSearchSpace(searchSpace, «);

end
S «— o(MLP(f(X,G(V, E); Wy));
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