
AutoCoG: A Unified Data-Model Co-Search Framework
for Graph Neural Networks

Duc Hoang1 Kaixiong Zhou2 Tianlong Chen1 Xia Hu2 Zhangyang Wang1

1University of Texas at Austin
2Rice University

Abstract Neural architecture search (NAS) has demonstrated success in discovering promising ar-
chitectures for vision or language modeling tasks, and it has recently been introduced
to searching for graph neural networks (GNNs) as well. Despite the preliminary success,
GNNs struggle in dealing with heterophily or low-homophily graphs where connected
nodes may have different class labels and dissimilar features. To this end, we propose
co-optimizing both the input graph topology and the model’s architecture topology simul-
taneously. That yields AutoCoG, the first unified data-model co-search NAS framework
for GNNs. By defining a highly flexible data-model co-search space, AutoCoG is grace-
fully formulated as a principled bi-level optimization that can be end-to-end solved by the
differentiable search methods. Experiments show that AutoCoG achieves an average perfor-
mance gain across all datasets of 3.18% over the following best approach, and ranks best
against all other state-of-the-art methods with an average ranking of 2.5. Code is available
at https://github.com/VITA-Group/AutoCoG.

1 Introduction
Graph neural networks (GNNs) have emerged as promising tools to analyze networked data in
various real-world scenarios, such as social media (Grover and Leskovec, 2016) and biochemical
graph analytics (Zitnik and Leskovec, 2017). Specifically, GNNs apply recursive message passing
to learn the embedding representation of each node via aggregating the representations of its
neighbors and itself. Motivated by the significant success of node embedding learning, plenty
of GNN variants have been explored for the diverse downstream graph analysis tasks, including
GCN (Kipf and Welling, 2016a), GraphSAGE (Hamilton et al., 2018), and GCNII (Chen et al., 2020a).

However, training GNNs is notoriously challenging, more so when they are trained under
heterophily or disassociative graphs, not to mention deep GNNs (Chen et al., 2020a; Zhou et al.,
2020). First, since graphs abstract diverse data sources and present tremendous heterogeneity, the
success of GNNs is often accompanied by extensive tuning of model architectural hyperparameters
to characterize specific graph data. For example, it was reported that graph attention networks
(GAT) (Veličković et al., 2018) are sensitive to the number of attention heads, which has to be
carefully searched for the citation networks and the protein-protein interaction data, respectively.
Second, in the real world, graphs often opposites attract which inevitably lead to noisy setting,
where GNNs tend to suffer from overfitting and generalize poorly to the unseen testing data. Third,
despite the potential of deep GNNs in learning the informative high-order neighborhood, the
training of deep GNNs is widely known to be limited by the issues of over-smoothing, gradient
vanishing, and over-squashing (Chen et al., 2020a).

Recently, the automated graph neural architecture search (NAS), graph augmentation tricks,
and deeper architectures have been independently proposed to tackle the above GNN training
challenges partially. Expressly, most of the existing automated efforts are limited to neural ar-
chitecture tuning, while graph augmentation is often overlooked despite often being effective to
gain performance (Li and King, 2020; Zhou et al., 2019a). This is primarily because changes to

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:hoangduc@utexas.edu
mailto:Kaixiong.Zhou@rice.edu
mailto:tianlong.chen@utexas.edu
mailto:xia.hu@rice.edu
mailto:atlaswang@utexas.edu
https://github.com/VITA-Group/AutoCoG
https://creativecommons.org/licenses/by/4.0/

the existing graph structure could have a cascading effect on the process of information aggre-
gation, but adds a new layer of complexity to the above complex architecture tuning problem.
Additionally, existing GNN NAS works are known to scale poorly in deeper architectures. This
is primarily due to the exploding search space which makes searching unstable. Previous efforts
have limited themselves in searching the shallow GNNs with less than 3 layers. Finally, Figure(1)
illustrates circumstances where the aggregation mechanism fails due to unfavorable graph topology
thus, it remains a daunting task to optimize the design philosophy for GNNs comprehensively.

?

Message aggregating failure
due to topology

Message aggregating success
from augmented graph

Model-only search Model-data co-search

Figure 1: In red outline are nodes with poor aggre-
gation, black arrows, due to a graph topol-
ogy under heterophily. This can be mitigated
by learning to place meaningful edges, yel-
low lines, to facilitate proper message propa-
gation. Motivate to solve this performance
problem, we propose co-adapting both graph
and model in a end-to-end manner.

To bridge the gaps, we propose AutoCoG,
the first NAS framework towards unified data-
model co-search for GNNs to specifically tame
the problem training under heterophily con-
dition. Besides automatically optimizing the
GNNs’ neural architecture, we propose to si-
multaneously optimize the input graph topol-
ogy, via progressively growing and pruning us-
ing a separate GNN model to learn to attune
the graph to the proposed architecture. Addi-
tionally, by defining the highly flexible data-
model co-search space, AutoCoG is formulated
as a principled bi-level optimization that can be
end-to-end solved by the differentiable search
methods. To scale up our core framework to
searching deep GNN architectures, we curb an
explosive search space as the number of layers increased by performing multiple searching stages
with increasing depth, as inspired by Chen et al. (2019c). Additionally, for each search stage, we
evolve the graph by growing/pruning it at the same time. To stabilize the search landscape from
the shifting topologies of graph and model, we further utilize (Chen et al., 2020a) to combat the
over-smoothing/over-squashing issues.

Together, our framework ensures a reliable way to discover the powerful architectures, a
stable model training environment, and state-of-the-art results to train graphs of different degrees
of homophily. AutoCoG searches for and trains on deep or shallow graph neural networks to
successfully deliver superior results in Web datasets, Actor, Coauthor, and Wikipedia benchmarks.
In summary, our three contributing novelties are:

• We propose AutoCoG, the first NAS framework towards unified data-model co-search for GNNs.
Our bi-level optimization formulation uniquely enables the end-to-end discovery of GNNs’ neural
architecture and graph topology altogether.

• We perform extensive analysis the resulting learned graph-structures for each benchmarks. To
strengthen the co-search framework, we organically integrate several techniques to directly
combat issues of searching unreliability, training instability, and scalability, that have previously
plagued NAS approaches for searching deeper GNNs.

• Experiments show that AutoCoG achieves an average performance gain across all datasets of
3.18% over the following best approach, and ranks best against all other state-of-the-art methods
with an average ranking of 2.5.

2 Related works

Graph neural networks. Motivated by the state-of-the-art results of GNNs in graph analytics,
there have been numerous GNN variants (Bruna et al., 2013; Hamilton et al., 2017; Xu et al., 2019;

2

Chen et al., 2020a; Wu et al., 2019a; Zhou et al., 2021b). Most of these existing approaches fit within
the category of spatial GNNs. Namely, following the spatial message passing strategy, the core idea
of GNNs is to learn the embedding representation of a node by aggregating the embeddings of
its neighbors and node itself recursively. The previous empirical studies show that GNNs often
achieve the best performance with less than 3 layers (Kipf and Welling, 2016a; Veličković et al.,
2018). Key limitations of GNNs are their performances decrease significantly with the increasing of
model depth and the degree of graph homophily they operate on. As the graph convolutional layer
increases, the node representations will converge to indistinguishable vectors due to the recursive
neighborhood aggregation and non-linear activation (Li et al., 2018; Oono and Suzuki, 2020; Zhou
et al., 2021a; Guo et al., 2021), which is well known as the over-smoothing issue (NT and Maehara,
2019; Chen et al., 2019a; Alon and Yahav, 2020; Chien et al., 2021; Huang et al., 2020).

Graph augmentation. Data augmentation methods has been widely applied to improve the gen-
eralization performances of deep neural networks, such as convolutional and recurrent neural
networks (Shorten and Khoshgoftaar, 2019; Antoniou et al., 2017; Feng et al., 2021). They aim to
craft the out-of-distribution training data to avoid overfitting with the customized augmentation
policies. In the graph analytics, GNNs are prone to overfit the naturally noisy training graphs,
which may miss the ground-truth nodes/edges or contain the erroneous information (Zügner et al.,
2018). Different from the grid-like image data, the graph augmentation is often operated on the
adjacency structure or node features (You et al., 2020b, 2021, 2022; Lai et al., 2020). Existing graph
augmentations could be categorized into the following two classes. (i) The random augmentation
either drops/adds edges to modify the graph, or masks parts of the node features (Rong et al.,
2020a; You et al., 2020b; Feng et al., 2020). (ii) The differentiable augmentation learns to optimize
the adjacency affinity matrix by minimizing the concerned task loss. Based upon the computed
affinity matrix, the differentiable augmentation either continuously combines it into the original
adjacency matrix (Zhao et al., 2020b; Chen et al., 2020b), or samples the discrete edges to formulate
new graph (Chen et al., 2019b).

Neural architecture search. Targeting at alleviating the laborious hyperparameter tuning, NAS
automates the designing of good neural architectures for any a given application. It is shockingly
reported that the searched neural architectures could outperform the human-designed ones in
many real-world scenarios, such as image classification (Zoph and Le, 2016; Zoph et al., 2018)
and generation (Wang and Huan, 2019; Gong et al., 2019). Most of NAS frameworks apply one
of the following search algorithms: reinforcement learning (RL) (Pham et al., 2018; Baker et al.,
2016), evolution algorithm (EA) (Liu et al., 2017; Miikkulainen et al., 2019; Xie and Yuille, 2017), and
one-shot differentiable search (Liu et al., 2018; Zela et al., 2020). There are several recent efforts
to conjoin the researches of GNNs and NAS (Gao et al., 2019; Zhou et al., 2019a; You et al., 2020a;
Ding et al., 2020; Zhao et al., 2020a). However, all of them are limited in exploring the shallow
GNNs, and fail to denoise the underlying graph to further ameliorate the model performance. In
this work, we aim to simultaneously search the deep GNN models and graph structure to optimize
the downstream graph analytics.

Co-adaptive search between graph’s structure and model’s architecture. GASSO (Qin et al., 2021)
is a recent work that similarly proposes the idea of model-graph co-search. Yet two differentiation
factors uniquely defined our two works. Firstly, GASSO is a technique that learns attention
coefficients G∈[0, 1] only for existing edges E, which is mathematically equivalent to graph attention
neural networks (Qin et al., 2021). In contrast, Auto-CoG directly modifies the graph’s structure via
pruning poorly attended edges and adding new un-seen edges. Thus the derived graph structure
is unique from the original underlying graph. Finally, GASSO employs a coarse macro-level
search space with only eight operators and two layers. Its design decision space is shallow (small),

3

consisting of only 256 unique combinations. Theoretically, by searching the optimal attention
function in our Auto-Cog, we could approximate the "attentional structure learning" in GASSO.

3 Methodology

Preliminary. We briefly review the basic of the definition of homophily and the message-passing
based graph convolution networks (GCN). The homophily or edge-homophily ratio of a graph
measures the ratio between intra-node pairs (𝑖, 𝑗) overall all edges E and is given as:

|{(𝑖, 𝑗) : (𝑖, 𝑗) ∈ E ∧ 𝑦𝑣 = 𝑦𝑤}|
|E | , (1)

where E denotes the set of edges in the graph, and |E | denotes the cardinality of edges. Being
defined as the message passing along the edges of graph, the 𝑘-th layer of GNNs could be generally
written as:

ℎ
(𝑘)
𝑖

= AGGR({𝑎 (𝑘)
𝑖 𝑗

𝑊 (𝑘)𝑥 (𝑘−1)
𝑗

: 𝑗 ∈ N (𝑖)}),

𝑥
(𝑘)
𝑖

= 𝜎 (COMB(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖

, ℎ
(𝑘)
𝑖
)) .

(2)

𝑥
(𝑘)
𝑖

denotes the node embedding of node 𝑖 at the 𝑘-th layer.𝑊 (𝑘) ∈ R𝐷×𝐷 represents the learnable
layer-wise weights shared by all the nodes, where 𝐷 denotes the dimension of hidden units. 𝑎 (𝑘)

𝑖 𝑗

dictates the attention coefficient between nodes 𝑖 and 𝑗 derived from someAttention functions. N (𝑖)
denotes the set of neighboring nodes of node 𝑖 . ℎ (𝑘)

𝑖
is the resulting embeddings after applying an

AGGR function to aggregate the set of neighboring embeddings from the previous layer. In addition,
function COMB incorporates information from the node itself with its neighboring embeddings
ℎ
(𝑘)
𝑖

, and 𝜎 provides the nonlinear activation.

3.1 Unified Data-Model Co-Search Space

Table 1: The set of attention functions Gao et al. (2019),
where | | denotes the concatenation operation,
𝑎, 𝑎𝑖 , 𝑎 𝑗 denote learnable vectors,𝑊𝐺 denotes
the trainable matrix.

Attention Choice Expression Form

GCN 1√
|N (𝑖) | |N (𝑗) |

COS 𝑎(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
| |𝑊 (𝑘)𝑥 (𝑘−1)

𝑗
)

LINEAR tanh(𝑎𝑙𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
| |𝑊 (𝑘)𝑥 (𝑘−1)

𝑗
)

GERE-LINEAR 𝑊𝐺 tanh(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖

+𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
)

GAT LeakyReLU(𝑎(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
| |𝑊 (𝑘)𝑥 (𝑘−1)

𝑗
))

GAT-SUM 𝑎
(𝑘)
𝑖 𝑗
+ 𝑎 (𝑘)

𝑖 𝑗
based on GAT

CONST 1

3.1.1 Model Search Space. The design of model
search space should achieve a balanced trade-
off between the diversity and efficiency Zhou
et al. (2022). Although a large search space sub-
sumes the diverse GNN architectures to adapt
to the different graph analysis tasks, it would
be extremely time-consuming to explore the
optimal design. In the existing search spaces of
GNNs (Gao et al., 2019; Zhou et al., 2019b; You
et al., 2020a), they often contain the architecture
components of hidden units, attention, aggre-
gation, combination, and activation functions,
as well as the skip connections. To efficiently
search the outperforming shallow and deep GNNs, we compare the effectiveness of each component,
and greatly shrink down the search space to focus on three key components: the activation function,
the attention module, and the skip connections. They are generally believed to impact GNN’s
expressive capability and depth scalability (Chen et al., 2021b). We fix the aggregation function
and combination function to be simple summation, and treat the hidden units as hyperparameter.
Below we lay out our searchable design for them one-by-one:

• Attention search space: Attention mechanism has been shown by (Veličković et al., 2018) to
effectively stabilize training by placing proper neighborhood scaling with attention coefficient
𝑎𝑖 𝑗 . We list our attention choices in Table 1.

4

• Activation search space: For the activation functions, we search among these operations: {ReLU,
Sigmoid, Tanh, Linear, SoftPlus, LeakyReLU, ReLU6, ELU}.

• Skip connection search space: For a 𝐿-Layer GNN, various skip connections can be applied to
overcome the effect of over-smoothing. Previous deep GNNworks (Chen et al., 2020a; Zhang et al.,
2020; Chen et al., 2021b) illustrate a significant correlation between the type of skip connections
and the model performance. We include two categories of skip connections: (i) Initial Connection,
and (ii) Jumping-Knowledge aggregation.

la
ye
r-
2

la
ye
r-
1

la
ye
r-
2

la
ye
r-
1

la
ye
r-
4

la
ye
r-
3

…

A
tte
nt
io
n

A
gg
re
ga
te

C
om

bi
ne

A
ct
iv
at
io
n

S
ki
p

Layer-wise search space

Progressive search

Graph search

Figure 2: An illustration of AutoCoG framework. We marked the components we searched on as
yellow; this notation also extends to the different skip connections illustrated in the pro-
gressive search box. Furthermore, we narrow down our search choice for each step within
progressive search while extending the model’s layers. We also perform graph augmentation
for every step. Further details on the process can be found in Algorithm(1) in the appendix

3.1.2 Graph Augmentation. We often expect a clustering of liked nodes when operating on graph
data in a “like attracts like" world. However, in reality, when modeling complex relationships,
we may observe the opposite, where node identities are often best described by contrasting with
their neighbors in "different attract" relationships. Under such heterophily circumstance, GNNs’
performances degrade (Pei et al., 2020a; Zhu et al., 2020a; Battaglia et al., 2018), which makes
sense intuitively, since aggregating the unrelated neighbors can lead to class obscurity (Zhu et al.,
2020a), i.e over-smoothing. Thus overcoming heterophily with model architecture alone is difficult
and often requires complicated, and exotic works flow (Abu-El-Haija et al., 2019; Pei et al., 2020b;
Lim et al., 2021). Lately, a number of works (Srivastava et al., 2014; Zou et al., 2019; Rong et al.,
2020b; Chen et al., 2021a; Huang et al., 2021) have found that direct graph augmentations with
stochastic policies — drop/add edges — can decelerate both the over-fitting and over-smoothing
issues in training deep GNNs. By learning the graph’s topology and the model’s architecture, we
naturally adapt our data structure around the model’s strength, and co-optimize data flow around
the message passing mechanism.

The scoring function. Graph 𝐺 (V, E) can be expressed in the form of an adjacent matrix 𝐴 ∈
R |V |× |V | , where V is the set of vertices and E is the set of edges. We learn an edge score matrix
𝑆 ∈ R |V |× |V | such that we rewrite the aggregation step in Eqn (2) as:

𝐻 (𝑘) = (𝑆 ⊙ 𝐴)𝑋 (𝑘−1)𝑊 (𝑘) , (3)

5

where 𝐻 (𝑘) = {ℎ (𝑘)
𝑖

: 0 ≤ 𝑖 ≤ |V |} and 𝑋 (𝑘−1) = {𝑥 (𝑘−1)
𝑖

: 0 ≤ 𝑖 ≤ |V |}. We formally define
𝑆 ∈ [0, 1] as:

𝑆 = 𝜎 (MLP(𝑍𝑉src | |𝑍𝑉tgt))
𝑍 = 𝑓 (𝑋,𝐺 (𝑉 , E);𝑊𝑠)

(4)

Where 𝑓 (.;𝑊𝑠) is simply the classic VGAE model by (Kipf and Welling, 2016b), 𝑍𝑉src/𝑍𝑉src are the
source and target nodes available from 𝐺 (𝑉 , E), | | denotes the concatenation function, and 𝜎 is the
sigmoid function. 𝑆 is therefore a sparse matrix with only |E | number of scores.

Edge growing and pruning. Taking the advantage of Progressive NAS workflow (Chen et al.,
2019c), at each searching stage, we prune the bottom 𝑝-percentile from 𝑆 , and at the same-time we
grow our graph by appending 𝑘 new edges for each node via embedding similarity. This embedding
similarity function is defined as:

Sim(𝑣𝑖 , 𝑣 𝑗) =
1 + Cosine(𝑧𝑖 , 𝑧 𝑗)

log𝐷𝑖 𝑗

(5)

Where Cosine(·) is the cosine similarity between two nodes’ scoring embeddings, while 𝐷𝑖 𝑗 is the
shortest distance between them. We illustrate the process of graph topology modification visually
in Figure 2 and in the pseudo code of Algorithm 1 in the appendix.

3.2 Optimization Formulation and Algorithm

3.2.1 A Principled Bi-Level Optimization Formulation. For the sake of conciseness, we use 𝛼 as the
model space architecture parameters, and denote Lobj as the objective loss function given 𝛼 . With
𝛼 defined, we further denote �̂� =𝑊

⊙
𝑚𝛼 as the pruned sub-model from the supernet derived

according to 𝛼 description, where �̂� ,𝑚𝛼 ∈ R𝐿×𝐷×𝐷 . Additionally, we can write our augmented
graph𝐺 as 𝐴 = 𝐴

⊙
𝑆 , where 𝑆 is defined as our learned scoring matrix. Let 𝑍 represents the node

embedding matrix for a hypothetical 2-layer AutoCoG:

𝑍 = Softmax((𝐴𝜎 (𝐴𝑋�̂� (0))�̂� (1))) . (6)

Thus the objective loss function Lobj for a transductive semi-supervised node classification tasks is
formally denoted as:

Lobj(𝐺,�̂� , 𝑋,𝑌) = − 1
|𝑌 |

∑︁
𝑦𝑖 ∈𝑌

𝑦𝑖 log(𝑧𝑖) . (7)

Extending from (Dong and Yang, 2019), we formulate our data-model co-search as a joint bi-level
optimization, to solve 𝛼, 𝑆 concurrently with weights𝑊 and data space parameters:

min
𝛼

Lvalid
obj (�̂� (𝑊,𝛼),𝐺 (𝑆), 𝑋valid, 𝑌valid)

s.t. �̂� ,𝐺 = arg min
𝑊,𝑆

Ltrain
obj (𝑊,𝐺, 𝛼, 𝑆, 𝑋train, 𝑌train)

(8)

Note that 𝛼 are optimized using the objective loss function on the validation set, while𝑊,𝑆 are
optimized under training set. Additionally, 𝐺 consists of modified edges, not-shown explicitly in
Equation (8), but is illustrated in our Algorithm 1. We adopt the same hard-Gumbel-softmax trick
(Jang et al., 2017) to differentially optimize architectural variables during search.

6

3.2.2 Scaling And Stabilizing Search. The bi-level optimization problem (8) can be solved by differential
search methods, and we adopt the GDAS approach in (Dong and Yang, 2019) by default. However,
when exploring deep GNN architectures and larger graphs, the model/data search spaces grow
exponentially with the layer depth/graph size. They can be entangled to cause even more serious
scalability challenge. That is further amplified by the training difficulty and instability of deep GNNs
(Chen et al., 2021b). Indeed, we observe that naively applying GDAS is prone to over-smoothing
and search collapse, only yielding very poor architectures when searching for more than three
layers. Besides, it is not common for the derived graph and model to have considerable performance
variations across repeated experiments, due the stochastic initialization and training.

Progressive search space. We follow the idea proposed by (Chen et al., 2019c) (also illustrated
in Algorithm 1), to divide search into 𝑁 progressive stages, with each consecutive stage having a
larger or equal number of layers than those previously. At each stage, we greedily remove the least
selected options (by taking the mean of Soft-Max across 𝐿 layers and removing the option with
the smallest value) from the data’s 𝑝 parameters or model space, and pass on the shrunk co-search
space to the next stage. Note that we do not shrink the number of augmentation policies.

4 Experiments
4.1 Experimental Settings.

We first list our shared training hype-parameters for all datasets, and then list each dataset’s
specific particularity. By default, we employ the Adam-optimizer (Kingma and Ba, 2017) to learn
edges’ scores, model’s architecture and model’s weights with equal learning rate of 0.005, and a
𝐿2 regularization of 0.0005. We set the hidden-dimension 𝐷 to be 256 with a dropout rate of 0.6.
As for P-DARTS, for every stage we prune the bottom 10% of edges, and add one new edge per
node, and the number of stages are set to be 4, starting from 2 layers, and with a 2 layers increment.
Furthermore, for Identity-Mapping, 𝛾 is set to be 0.5. We search/train for 1000 epochs, while setting
our rate of patient to be 400 and 200 respectively. To get our final results, we train the network 10
times to get the average and standard deviation.

The only notable exception to the default settings are the Co-author datasets, where we set the
dropout rate to be 0.8 and 0 for CS and Physics respectively. We typically only search between two
and eight layers. Finally, for all datasets, we average their accuracy over 10 runs, with random seed
between 0 to 9.

4.2 Ablation Studies
Table 2: Ablation results comparing the test results between different searching modes at increasing

degree of homophily with fixed depth of eight. Best results are bold.

Experiments Actor Texas Wisconsin Cornell CS Photo
H 0.375 0.411 0.488 0.567 0.827 0.833

Co-search 38.039±0.16 78.378±2.21 80.392±0.00 64.864±2.97 91.840±0.60 83.204±2.42
Data-only 23.924±1.86 64.324±1.71 46.666±2.41 46.486±1.13 80.225±2.12 82.255±2.72
Model-only 36.394±0.07 72.070±0.85 70.588±1.60 56.216±1.14 88.599±0.86 62.798±5.51

Model-graph codependancy. We justify the need for model-graph co-search by performing three
experiments, namely — co-search, data-search, and model-search — to illustrate the respective
effectiveness of the individual components which constitutes our framework. We collected these
results from several datasets at a fixed depth of 8 while maintaining identical searching settings for
all experiments. Note that for data-search, we substitute our model with the vanilla GCN (Kipf
and Welling, 2016a). The results are collected in Table(2). Herein our results speak for themselves;
we observe a significant improvement in performance, especially for graphs under heterophily,
utilizing co-search over model-only and data-only search.

7

Correlation between depth and performance. We observe that an increasing depth does not always
positively correlate to performance gain. Homophily negatively correlates to our performance at
depth. To explain this phenomenon, we offer this hypothesis: since the number of layers in a model
correlates to the number of k-hop neighbors observed, graphs under heterophily need to observe a
much larger sub-graph to aggregate meaning information against the inherent noisy neighbors.

4-layers 8-layers 16-layers

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

pe
rfo

rm
an

ce
 g

ai
n

in
 %

Depth to Performance correlation
Actor
Texas
Wisconsin
Cornell

Figure 3: Illustration of relative performance against
2-layer configuration (not shown).

In contrast, with an increasing degree
of homophily, more layers may induce over-
smoothing sooner, contributing to an overall
degradation in performance. We investigate
the relationship between the model’s depth and
performance. As depth is a hyper-parameter,
we perform a search on 2, 4, 8, and 16 layers
configurations — while maintaining identical
searching parameters — on several datasets at
an increasing rate of homophily. We then nor-
malize our final accuracy results for each graph
against the result of our 2-layer configuration to
obtain relative performance gain in percentage.
We illustrate our results in Figure(3).

Analyzing the augmented graphs. We charac-
terize the newly augmented graphs to understand better how they affect the overall performance
by analyzing those searched under the eight-layers configuration. We first calculate the difference
of the homophily rate between the new and old graphs. Next, we count the difference of total
informative edges, i.e., edges between nodes of similar classes. Finally, we calculate the Intersection
between edges of the original to the augmented graph. Table(3) summarizes our findings. Herein
we observe that our improved graphs do not exhibit a stronger rate of homophily — in comparison
to the original graphs — as initially assumed. However, we also observe that, despite the increasing
heterophily, the searched graphs include more informative edges while retaining most of the
original edges, indicating we are learning new and relevant unseen relationships. Nevertheless, this
observation challenges the current research assumption on the correlation between heterophily
and performance. We show that performance can still be achieved under low homophily given that
enough informative edges are added to the graph and a deeper architecture.

Table 3: We characterize the new graph structured
found after search. From left-to-right, ∇H
represents the change of homophily rate, ∇|𝐸 |
denotes the change in informative edges, and
IoU describes the overlap between the original
edges with the current edges

dataset ∇H ∇|𝐸 | Intersection

Actor ↓ 0.056 ↑ 4654 99.72%
Texas ↑ 0.018 ↑ 260 94.31%

Wisconsin ↓ 0.059 ↑ 263 96.93%
Cornell ↓ 0.162 ↑ 161 89.54%

Analyzing the method’s effectiveness and effi-
ciency. To evaluate the efficiency of our design,
we compare its memory usage and total run
time to other NAS-based approaches such as
GraphNAS (Gao et al., 2019) and SANE (Zhao
et al., 2021). Table(4) summarizes our findings.
We could observe: that AutoCoG maintains rel-
atively low memory utilization for each of the
datasets tested, and AutoCoG is also the fastest
model to complete both its full-search and train-
ing stages.

Analyzing the effectiveness of progressive
search. To test the benefit of progressive search,
we perform three ablation studies on Texas, Wisconsin, and Cornell at various depths. As shown in
Table(5), note that, with progressive search, accuracy is positively correlated to a model’s depth,

8

Table 4: We characterize the efficiency and effectiveness of our search method by measuring the
memory usage and total run time to search and fully train a model for various datasets.

Actor Texas Wisconsin Cornell

Model GPU(MiB) Run-time(s) GPU(MiB) Run-time(s) GPU(MiB) Run-time(s) GPU(MiB) Run-time(s)

SANE 3890 3788 1070 2686 998 2194 994 3024
GraphNAS 1088 4320 1268 5161 1326 5262 972 4642
Auto-CoG 2634 960 992 427 994 450 984 360

while the opposite is true when searching without it. This is due to the search instability from the
resulting search space size, and a deeper network only further exacerbates the problem. Indeed, we
further observe that simply applying GDAS, as in the case of searching without progressive search,
only yields poor architectures. The results align with our reasoning in section 3.2.2.

Table 5: We study the effectiveness of progressive
search (PS) by comparing Auto-CoG’s per-
formance at various depth search with and
without it.

Texas Wisconsin Cornell

Mode 2 4 8 2 4 8 2 4 8

With PS 77.30 77.57 80.27 79.96 80.20 80.39 64.86 64.32 64.59
Without PS 76.76 73.24 64.86 77.84 63.92 68.23 60.27 59.2 61.08

Analyzing graph-model co-search improve-
ment on model’s robustness. Table (6) summa-
rizes our improved robustness on noisy graphs.
We validate our robustness by performing node
classification on graphs with added edges. The
number of new edges corresponds to a percent-
age relative to the total edges. From the ta-
ble, we make the following observations: First,
noisy graph data leads to poor model perfor-
mance from a lack of robustness. Second,
Graph-search can rectify and improve the model’s robustness by removing artificial noise, leading
to better model performance. Third, random edges can help improve some sparse graphs base
performance, as in the case of Cornell and Wisconsin, by enabling skip-connections between
distance neighborhoods.

Table 6: We analyze the improved robustness provided by graph-model co-search. First taking the
original graphs, we added random noisy edges to the percentage amount, with respect to the
total edges, specified in each column.

Texas Wisconsin Cornell

Mode 20% 40% 80% 20% 40% 80% 20% 40% 80%

Model Only 74.59 ± 1.39 73.78 ± 1.30 71.35 ± 2.28 65.88 ± 2.11 72.35 ± 0.62 71.35 ± 2.28 54.59 ± 1.13 61.24 ± 2.61 62.70 ± 1.13
Co-Search 80.81 ± 0.85 79.73 ± 1.91 77.29 ± 1.39 80.0 ± 1.24 81.56 ± 1.01 81.96 ± 0.83 66.22 ± 2.29 63.24 ± 1.88 65.40 ± 1.70

4.3 Results

We compare Auto-CoG to several notable state-of-the-methods inferencing on graphs with increas-
ing degrees of associativity from 0.3 and 0.9. Additionally, we also include average improvement and
average rank for quick performance comparison at a glance. Average improvement is the average
accuracy difference between Auto-CoG and another model across all datasets, so a higher score
indicates a better result. Average rank is a model’s average performance rank for all datasets, so
lower is better. For comparison, we include:

• NAS based graph models: for this category, we include GraphNAS(Gao et al., 2019), SANE(Zhao
et al., 2021) and GASSO(Qin et al., 2021).

• Handcrafted graph models: we compare against traditional designs such as GCN (Kipf and
Welling, 2016a), SGC (Wu et al., 2019b), GAT (Veličković et al., 2018), GCNII (Chen et al., 2020a),

9

Table 7: Test Accuracy (%) comparison with other previous state-of-the-art frameworks. Experiments
are conducted on the WebKB, Coauthor, Amazon, and Actor datasets. To highlight only the
model’s performance, we select the best accuracy from each model among different depths
between two to eight layers for each dataset. (*) best result. (**) second best result.

Model Actor Texas Wisconsin Cornell Computer CS Photos Physics Avg improv. Avg Rank

SGC 26.17±1.15 56.41±4.25 51.29±6.44 58.57±3.44 37.53±0.20 70.52±3.96 26.60±4.64 91.46±0.48 ↑ 24.30 9.87
GCN 28.82±0.13 65.95±2.76 57.84±1.81 54.05±0.00 81.62±2.11** 91.83±0.50** 79.76±3.14 93.68±0.22 ↑ 7.43 5.50
GAT 28.24±0.36 62.16±1.21 52.55±1.92 53.78±1.46 77.74±2.02 89.27±0.46 74.56±3.02 93.19±0.36 ↑ 10.18 8.13
GCNII 34.28±1.12** 69.19±6.56 70.31±4.75 61.08±2.76 37.56±0.43 71.67±2.68 62.95±9.41 93.15±0.92 ↑ 14.10 5.75
JKNet 28.80±0.97 61.08±6.23 52.76±5.69 57.30±4.95 67.99±5.07 81.82±3.32 78.42±6.95 90.92±1.61 ↑ 11.73 8.00
APPNP 28.65±1.28 60.68±4.50 54.24±5.94 58.43±3.74 43.02±10.16 91.61±0.49 59.62±23.27 93.75±0.61** ↑ 15.74 7.13

Geom-GCN 31.63±0.02 65.94±1.39 68.63±0.00 59.75±1.80 — — — — ↑ 9.40 5.5
H2GCN 33.13±0.10 82.41±0.07* 79.61±1.01** 80.4 ±0.05* 37.48±0.08 28.83±7.95 46.56±0.17 93.90 ±0.05* ↑ 16.33 4.75

GraphNAS 26.87±2.09 78.11±3.91 63.14±5.13 59.73±4.49 84.66±0.22* 90.11±0.31 91.11±0.18* 93.75±0.60 ↑ 3.18 4.25
SANE 32.05±1.49 71.89±7.77 60.39±10.57 54.59±11.02 78.99±4.3 88.51±0.65 87.72±1.50 OOM ↑ 6.50 5.20
GASSO 27.02±0.05 64.86±0.00 78.43±0.00 64.70±0.00 OOM OOM 89.32±0.05** OOM ↑ 4.88 5.00

Auto-CoG 38.04±0.16* 80.27±2.21** 80.39±0.00* 64.86±2.97** 78.91±2.57 92.05±0.40* 85.16±1.12 93.28±0.58 – 2.50

JKNet (Xu et al., 2018) and APPNP (Klicpera et al., 2018). Additionally, we also compare against
designs that are crafted specifically for disassortative graphs such as Geom-GCN (Pei et al., 2020c)
and H2GCN (Zhu et al., 2020b).

We summarizes our finding in Table(7). From the results, we make the following observations:

• Highlighting the challenge of heterophily, we observe the lack of a dominant approach that can
outperform all datasets. However, when we compare their average ranking overall, we do find
Auto-CoG ranks highly at 2.5 and able to improve against all other approaches on average. This
showcase our method’s robustness in dealing with graphs under different homophily settings

• In comparison to other NAS approaches, Auto-CoG reliably outperforms all of them when it
comes to disassociative datasets since typical GNNs tend to over-smooth on noisy graph data — an
inherent problem for message-passing. Auto-CoG directly modifies its graph data and network’s
architecture to overcome this weakness. GASSO (Qin et al., 2021) also performs graph structure
search, but it is limited to only learning existing edges attention coefficients and therefore is still
susceptible to some degree of over-smoothing.

• In comparison to handcrafted baselines, Auto-CoG comfortably outperforms Geom-GCN (Pei
et al., 2020c) on Actor and WebKB datasets. Our graph-structured learning process provides a
similar function as the "structural neighborhood" concept, which Geom-GCN utilizes for bi-level
aggregation. On the other hand, H2GCN (Pei et al., 2020c) shows impressive performance on
small Webkb datasets, outperforming Auto-CoG in both Texas and Cornell. However, the model’s
’ego-embeddings’ concept does not scale well on larger datasets such as CoAuthor and Amazon,
where it repeatedly fails to produce competitive results.

5 Conclusion and Limitations

In this paper, we present AutoCoG the first NAS framework towards unified data-model co-search
for GNNs. Our results convincingly demonstrate the benefit of data-graph co-search for both deep
and shallow graph neural networks. Our ablation study shows that controlled variances in graph
heterophily can result in a better, more generalized model and the necessity for graph-augmentation
to be model-aware. We confidently demonstrate AutoCoG to be a reliable way to discover robust
architectures, a stable model training environment, and state-of-the-art results. Additionally, we
show that the localized disturbance of graph structure motivates node position learning, allowing
for greater generalizability of the model.

However, there are still limitations that need to be addressed: large graph scalability and
understanding heterophily’s relationship to performance. To address this, we first plan to follow

10

up by learning meaningful model/graph using Auto-CoG via graph-batching. Secondly, we want
to conduct a study to understand better the phenomenon between heterophily and performance
observed in our ablation. There is no negative societal impact to our best knowledge, except that
the NAS process is resource-consuming - but even that excessive cost can be amortized by the
re-usability of the searched model, which can achieve superior accuracy-resource trade-off.

References

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan, H., Steeg, G. V.,
and Galstyan, A. (2019). Mixhop: Higher-order graph convolutional architectures via sparsified
neighborhood mixing.

Alon, U. and Yahav, E. (2020). On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205.

Antoniou, A., Storkey, A., and Edwards, H. (2017). Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340.

Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network architectures using
reinforcement learning. arXiv.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J.,
Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli,
P., Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep
learning, and graph networks.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally connected
networks on graphs. arXiv.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X. (2019a). Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. arXiv preprint
arXiv:1909.03211.

Chen, D., Liu, X., Lin, Y., Li, P., Zhou, J., Su, Q., and Sun, X. (2019b). Highwaygraph: Modelling
long-distance node relations for improving general graph neural network.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020a). Simple and deep graph convolutional
networks.

Chen, T., Sui, Y., Chen, X., Zhang, A., and Wang, Z. (2021a). A unified lottery ticket hypothesis
for graph neural networks. In International Conference on Machine Learning, pages 1695–1706.
PMLR.

Chen, T., Zhou, K., Duan, K., Zheng, W., Wang, P., Hu, X., and Wang, Z. (2021b). Bag of tricks
for training deeper graph neural networks: A comprehensive benchmark study. arXiv preprint
arXiv:2108.10521.

Chen, X., Xie, L., Wu, J., and Tian, Q. (2019c). Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1294–1303.

Chen, Y., Wu, L., and Zaki, M. (2020b). Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in Neural Information Processing Systems, 33.

11

Chien, E., Peng, J., Li, P., and Milenkovic, O. (2021). Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations. https://openreview.
net/forum.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., and Slattery, S. (1998).
Learning to extract symbolic knowledge from the world wide web. In Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence,
AAAI ’98/IAAI ’98, page 509–516, USA. American Association for Artificial Intelligence.

Ding, Y., Yao, Q., and Zhang, T. (2020). Propagation model search for graph neural networks. arXiv
preprint arXiv:2010.03250.

Dong, X. and Yang, Y. (2019). Searching for a robust neural architecture in four gpu hours.

Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., and Hovy, E. (2021). A survey
of data augmentation approaches for nlp. arXiv preprint arXiv:2105.03075.

Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Kharlamov, E., and Tang, J. (2020).
Graph random neural networks for semi-supervised learning on graphs. Advances in Neural
Information Processing Systems, 33.

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. (2019). Graphnas: Graph neural architecture
search with reinforcement learning.

Gong, X., Chang, S., Jiang, Y., and Wang, Z. (2019). Autogan: Neural architecture search for
generative adversarial networks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3224–3234.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.

Guo, K., Zhou, K., Hu, X., Li, Y., Chang, Y., and Wang, X. (2021). Orthogonal graph neural networks.
arXiv preprint arXiv:2109.11338.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs.
In NeuIPS, pages 1024–1034.

Hamilton, W. L., Ying, R., and Leskovec, J. (2018). Inductive representation learning on large graphs.

Huang, W., Rong, Y., Xu, T., Sun, F., and Huang, J. (2020). Tackling over-smoothing for general
graph convolutional networks. arXiv e-prints, pages arXiv–2008.

Huang, W., Rong, Y., Xu, T., Sun, F., and Huang, J. (2021). Tackling over-smoothing for general
graph convolutional networks.

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with gumbel-softmax.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Kipf, T. N. and Welling, M. (2016a). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Kipf, T. N. and Welling, M. (2016b). Variational graph auto-encoders.

Klicpera, J., Bojchevski, A., and Günnemann, S. (2018). Personalized embedding propagation:
Combining neural networks on graphs with personalized pagerank. CoRR, abs/1810.05997.

12

Lai, K.-H., Zha, D., Zhou, K., and Hu, X. (2020). Policy-gnn: Aggregation optimization for graph
neural networks. In SIGKDD.

Li, Q., Han, Z., and Wu, X.-M. (2018). Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence.

Li, Y. and King, I. (2020). Autograph: Automated graph neural network. In International Conference
on Neural Information Processing, pages 189–201. Springer.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V., Bhalerao, O., and Lim, S.-N. (2021). Large scale
learning on non-homophilous graphs: New benchmarks and strong simple methods.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2017). Hierarchical represen-
tations for efficient architecture search. arXiv.

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. arXiv.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., et al. (2019). Evolving deep neural networks. In Artificial Intelligence in
the Age of Neural Networks and Brain Computing, pages 293–312. Elsevier.

NT, H. and Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550.

Oono, K. and Suzuki, T. (2020). Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B. (2020a). Geom-gcn: Geometric graph
convolutional networks.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B. (2020b). Geom-gcn: Geometric graph
convolutional networks. In ICLR.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B. (2020c). Geom-gcn: Geometric graph
convolutional networks.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search
via parameter sharing. arXiv.

Qin, Y., Wang, X., Zhang, Z., and Zhu, W. (2021). Graph differentiable architecture search with
structure learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.,
editors, Advances in Neural Information Processing Systems, volume 34, pages 16860–16872. Curran
Associates, Inc.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020a). Dropedge: Towards deep graph convolu-
tional networks on node classification. In International Conference on Learning Representations.
https://openreview. net/forum.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020b). Dropedge: Towards deep graph convolutional
networks on node classification. In International Conference on Learning Representations.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. (2019). Pitfalls of graph neural network
evaluation.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48.

13

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958.

Tang, J., Sun, J., Wang, C., and Yang, Z. (2009). Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’09, page 807–816, New York, NY, USA. Association for Computing Machinery.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention
networks. In International Conference on Learning Representations.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention
networks.

Wang, H. and Huan, J. (2019). Agan: Towards automated design of generative adversarial networks.
arXiv.

Wu, F., Zhang, T., de Souza Jr. au2, A. H., Fifty, C., Yu, T., and Weinberger, K. Q. (2019a). Simplifying
graph convolutional networks.

Wu, F., Zhang, T., Jr., A. H. S., Fifty, C., Yu, T., and Weinberger, K. Q. (2019b). Simplifying graph
convolutional networks. CoRR, abs/1902.07153.

Xie, L. and Yuille, A. (2017). Genetic cnn. In ICCV, pages 1379–1388.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In
International Conference on Learning Representations.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., and Jegelka, S. (2018). Representation learning
on graphs with jumping knowledge networks. CoRR, abs/1806.03536.

You, J., Ying, Z., and Leskovec, J. (2020a). Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33.

You, Y., Chen, T., Shen, Y., and Wang, Z. (2021). Graph contrastive learning automated. In
International Conference on Machine Learning, pages 12121–12132. PMLR.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020b). Graph contrastive learning with
augmentations. Advances in Neural Information Processing Systems, 33:5812–5823.

You, Y., Chen, T., Wang, Z., and Shen, Y. (2022). Bringing your own view: Graph contrastive learning
without prefabricated data augmentations. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 1300–1309.

Zela, A., Siems, J., and Hutter, F. (2020). Nas-bench-1shot1: Benchmarking and dissecting one-shot
neural architecture search. arXiv preprint arXiv:2001.10422.

Zhang, H., Yan, T., Xie, Z., Xia, Y., and Zhang, Y. (2020). Revisiting graph convolutional network on
semi-supervised node classification from an optimization perspective.

Zhao, H., Wei, L., and Yao, Q. (2020a). Simplifying architecture search for graph neural network. In
International Conference on Information and Knowledge Management.

Zhao, H., Yao, Q., and Tu, W. (2021). Search to aggregate neighborhood for graph neural network.

14

Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., and Shah, N. (2020b). Data augmentation for
graph neural networks. arXiv preprint arXiv:2006.06830.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X. (2020). Towards deeper graph neural
networks with differentiable group normalization. Advances in Neural Information Processing
Systems, 33.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H., and Hu, X. (2021a). Dirichlet energy
constrained learning for deep graph neural networks. Advances in Neural Information Processing
Systems, 34:21834–21846.

Zhou, K., Liu, Z., Duan, K., and Hu, X. (2022). Graph neural networks: Automl. In Graph Neural
Networks: Foundations, Frontiers, and Applications, pages 371–389. Springer.

Zhou, K., Song, Q., Huang, X., and Hu, X. (2019a). Auto-gnn: Neural architecture search of graph
neural networks. arXiv preprint arXiv:1909.03184.

Zhou, K., Song, Q., Huang, X., and Hu, X. (2019b). Auto-gnn: Neural architecture search of graph
neural networks.

Zhou, K., Song, Q., Huang, X., Zha, D., Zou, N., and Hu, X. (2021b). Multi-channel graph neural
networks. In Proceedings of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pages 1352–1358.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and Koutra, D. (2020a). Beyond homophily in
graph neural networks: Current limitations and effective designs.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and Koutra, D. (2020b). Beyond homophily in
graph neural networks: Current limitations and effective designs.

Zitnik, M. and Leskovec, J. (2017). Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for
scalable image recognition. In CVPR, pages 8697–8710.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q. (2019). Layer-dependent importance sampling
for training deep and large graph convolutional networks.

Zügner, D., Akbarnejad, A., and Günnemann, S. (2018). Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2847–2856.

A Appendix

A.1 Datasets

We evaluate AutoCoG on several popular semi-node classification datasets including (i) the WebKB
datasets —Cornell, Texas, Wisconsin— (Craven et al., 1998), (ii) Actor dataset (Tang et al., 2009),
(iii) Co-author datasets —CS, Physics— (Shchur et al., 2019), and (iv) Amazon datasets — Photo,
Computers — (Shchur et al., 2019). We select these datasets to represent a wide range of graphs
under different degrees of homophily, which will serve to demonstrate Auto-CoG robustness in
comparison to the different SOTA methods. The specifics on each datasets, in sorted order under
homophily, is recorded in Table(8).

15

Table 8: The Statistics of each dataset. From left to right: unique classes, nodes, edges and embedding
dimension and edge-homophily degree.

dataset |𝑌 | |𝑉 | |𝐸 | |𝐷 | H
Actor 5 7,600 33,544 931 0.375
Texas 5 183 295 1,703 0.411

Wisconsin 5 251 499 1703 0.488
Cornell 5 183 295 1,703 0.567

Computers 10 13,752 491,722 767 0.783
CS 40 18,333 163,788 6,805 0.827

Photos 10 7,650 238,162 745 0.833
Physics 5 34,493 495,924 8,415 0.936

Algorithm 1: AutoCoG Searching Algorithm
Input:𝑊𝑠 , 𝑋 , 𝐺 (𝑉 , 𝐸), searchSpace, epochs, startNumLayer, endNumLayer, stages ;
Output: 𝛼 , 𝐺 (𝑉 , 𝐸), 𝑆 ;
𝐸 ← 𝐸 ;
for s = 0 to stages-1 do

#Initialize new model and architecture parameters
𝛼 ← OnesInitParameters(searchSpace);
𝑊 ← initModel(min(startNumLayer+s, endNumLayer));
for e=0 to epochs-1 do

𝑆 ← 𝜎 (MLP(𝑓 (𝑋,𝐺 (𝑉 , 𝐸);𝑊𝑠));
𝑎 ← Sample(𝛼);
BackPropgate 𝐿𝑜𝑏 𝑗 (𝛼,𝑊 , 𝑆, 𝑋𝑡𝑟𝑎𝑖𝑛,𝐺 (𝑉 , 𝐸)) →𝑊,𝑊𝑠 ;
BackPropgate 𝐿𝑜𝑏 𝑗 (𝛼,𝑊 , 𝑆, 𝑋𝑣𝑎𝑙𝑖𝑑 ,𝐺 (𝑉 , 𝐸)) → 𝛼 ;

end
#Reduce search space and augment edges
𝐸 ← PruneAndGrow(𝑓 (.;𝑊𝑠));
searchSpace← ReduceSearchSpace(searchSpace, 𝛼);

end
𝑆 ← 𝜎 (MLP(𝑓 (𝑋,𝐺 (𝑉 , 𝐸);𝑊𝑠));

16

	Introduction
	Related works
	Methodology
	Unified Data-Model Co-Search Space
	Model Search Space
	Graph Augmentation

	Optimization Formulation and Algorithm
	A Principled Bi-Level Optimization Formulation
	Scaling And Stabilizing Search

	Experiments
	Experimental Settings.
	Ablation Studies
	Results

	Conclusion and Limitations
	Appendix
	Datasets

