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Abstract
Humans usually choose not to answer questions001
on which they are likely to be incorrect. In or-002
der to equip NLP systems with this selective003
answering capability, several task-specific ap-004
proaches have been proposed. However, which005
approaches work best across tasks or even if006
they consistently outperform the simplest base-007
line ‘MaxProb’ remains to be explored. To008
this end, we systematically study ‘selective pre-009
diction’ in a large-scale setup of 17 datasets010
across several NLP tasks. Through comprehen-011
sive experiments under in-domain (IID), out-of-012
domain (OOD), and adversarial (ADV) settings,013
we show that despite leveraging additional re-014
sources (held-out data/computation), none of015
the existing approaches consistently and con-016
siderably outperforms MaxProb in all three set-017
tings. Furthermore, their performance does018
not translate well across tasks. For instance,019
Monte-Carlo Dropout outperforms all other ap-020
proaches on Duplicate Detection datasets but021
does not fare well on NLI datasets, especially in022
the OOD setting. Thus, we recommend that fu-023
ture selective prediction approaches should be024
evaluated across tasks and settings for reliable025
estimation of their capabilities.026

1 Introduction027

Despite impressive progress made in Natural Lan-028

guage Processing (NLP), it is unreasonable to ex-029

pect models to be perfect in their predictions. They030

often make incorrect predictions, especially when031

inputs tend to diverge from their training data dis-032

tribution (Elsahar and Gallé, 2019; Miller et al.,033

2020; Koh et al., 2021). While this is acceptable034

for tolerant applications like movie recommenda-035

tions, high risk associated with incorrect predic-036

tions hinders the adoption of these systems in real-037

world safety-critical domains like biomedical and038

autonomous robots. In such scenarios, selective039

prediction becomes crucial as it allows maintaining040

high accuracy by abstaining on instances where041

error is likely.042

Selective Prediction (SP) has been studied in 043

machine learning (Chow, 1957; El-Yaniv et al., 044

2010) and computer vision (Geifman and El-Yaniv, 045

2017, 2019), but has only recently gained atten- 046

tion in NLP. Kamath et al. (2020) proposed a post- 047

hoc calibration-based SP technique for Question- 048

Answering (QA) datasets. Garg and Moschitti 049

(2021) distill the QA model to filter out error-prone 050

questions. Unfortunately, despite the shared goal 051

of making NLP systems robust and reliable for 052

real-world applications, SP has remained underex- 053

plored; the community does not know which tech- 054

niques work best across tasks/settings or even if 055

they consistently outperform the simplest baseline 056

‘MaxProb’ (Hendrycks and Gimpel, 2017). 057

In this work, we address the above point and 058

study selective prediction in a large-scale setup of 059

17 datasets across NLI, Duplicate Detection, and 060

QA tasks. We conduct comprehensive experiments 061

under In-Domain (IID), Out-Of-Domain (OOD), 062

and Adversarial (ADV) settings that result in the 063

following findings: 064

1. None of the existing SP approaches consistently 065

and considerably outperforms MaxProb. 066

Slight improvement in IID: Most of the ap- 067

proaches outperform MaxProb in the IID set- 068

ting; however, the magnitude of improvement 069

is very small (Figure 1). For instance, MCD 070

achieves an average improvement of just 0.28 071

on AUC value across all NLI datasets. 072

Negligible improvement in OOD: The magni- 073

tude of improvement is even lesser (0.08) than 074

that observed in the IID setting (Figure 2a). In a 075

few cases, we also observe performance degra- 076

dation (higher AUC than MaxProb). 077

Performance degradation in ADV: All the ap- 078

proaches fail to even match the MaxProb perfor- 079

mance in ADV setting (Figure 2b). For instance, 080

MCD degrades the AUC value by 1.76 on dupli- 081

cate detection datasets and calibration degrades 082

by 1.27 on NLI datasets in ADV setting. 083
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2. Approaches do not translate well across tasks:084

We find that a single approach does not achieve085

the best performance across all tasks. For in-086

stance, MCD outperforms all other approaches087

on Duplicate Detection datasets but does not088

fare well on the NLI datasets.089

3. Existing approaches require additional re-090

sources: MCD requires additional computation091

and calibration-based approaches require a held-092

out dataset. In contrast, MaxProb does not re-093

quire any such resources and still outperforms094

them, especially in the ADV setting.095

Overall, our results highlight that there is a need096

to develop stronger selective prediction approaches097

that perform well across tasks while being compu-098

tationally efficient. To foster development in this099

field, we release our code and experimental setup.100

2 Selective Prediction101

2.1 Formulation102

A selective prediction system comprises of a pre-103

dictor (f ) that gives the model’s prediction on an104

input (x), and a selector (g) that determines if the105

system should output the prediction made by f i.e.106

(f, g)(x) =

{
f(x), if g(x) = 1
Abstain, if g(x) = 0

107

Usually, g comprises of a confidence estimator108

g̃ that indicates f ′s prediction confidence and a109

threshold th that controls the abstention level:110

g(x) = 1[g̃(x)) > th]111

An SP system makes trade-offs between112

coverage and risk. For a dataset D, coverage113

at a threshold th is defined as the fraction of total114

instances answered by the system (where g̃ > th)115

and risk is the error on the answered instances:116

coverageth =

∑
xi∈D 1[g̃(xi)) > th]

|D|
117

118

riskth =

∑
xi∈D 1[g̃(xi)) > th]li∑
xi∈D 1[g̃(xi)) > th]

119

where, li is the error on instance xi.120

With decrease in th, coverage will increase, but121

the risk will usually also increase. The overall122

SP performance is measured by the area under123

Risk-Coverage curve (El-Yaniv et al., 2010) which124

plots risk against coverage for all threshold values.125

Lower the AUC, the better the SP system as it126

represents lower average risk across all thresholds. 127

We note that confidence calibration and OOD detec- 128

tion are related tasks but are non-trivially different 129

from selective prediction as detailed in section A. 130

2.2 Approaches 131

Usually, the last layer of models has a softmax 132

activation function that gives the probability distri- 133

bution P (y) over all possible answer candidates Y . 134

Y is the set of labels for classification tasks, answer 135

options for multiple-choice QA, all input tokens 136

(for start and end logits) for extractive QA, and 137

all vocabulary tokens for generative tasks. Thus, 138

predictor f is defined as: argmax
y∈Y

P (y) 139

Maximum Softmax Probability (MaxProb): 140

Hendrycks and Gimpel (2017) introduced a simple 141

method that uses the maximum softmax probability 142

as the confidence estimator g̃ i.e. maxy∈Y P (y) 143

Monte-Carlo Dropout (MCD): Gal and Ghahra- 144

mani (2016) proposed to make multiple predictions 145

on the test input using different dropout masks and 146

ensemble them to get the confidence estimate. 147

Label Smoothing (LS): Szegedy et al. (2016) 148

proposed to compute cross-entropy loss with a 149

weighted mixture of target labels during training 150

instead of ‘hard’ labels. This prevents the network 151

from becoming over-confident in its predictions. 152

Calibration (Calib): In calibration, a held-out 153

dataset is annotated based on the correctness of 154

the model’s predictions (correct as positive and in- 155

correct as negative) and another model (calibrator) 156

is trained on this annotated binary classification 157

dataset. The softmax probability assigned to the 158

positive class is used as the confidence estimator for 159

SP. Kamath et al. (2020) study a calibration-based 160

SP technique for Question Answering datasets. 161

They train a random forest model as calibrator 162

over features such as input length and probabili- 163

ties of top 5 predictions. We refer to this approach 164

as Calib C. Inspired by calibration technique pre- 165

sented in Jiang et al. (2021), we also train calibrator 166

as a regression model (Calib R) by annotating the 167

heldout dataset on a continuous scale instead of 168

categorical labels (positive and negative as done 169

in Calib C). We compute these annotations using 170

MaxProb as: 171

s =

{
0.5 + maxProb

2 , if correct
0.5− maxProb

2 , otherwise
172
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Furthermore, we train a transformer-based model173

for calibration (Calib T) that leverages the entire174

input text instead of features derived from it (Garg175

and Moschitti, 2021).176

3 Experimental Setup177

3.1 Tasks and Settings:178

We conduct experiments with 17 datasets across179

NLI, Duplicate Detection, and QA tasks and eval-180

uate the efficacy of various SP techniques in IID,181

OOD, and adversarial (ADV) settings.182

NLI: We train our models with SNLI (Bowman183

et al., 2015) / MNLI (Williams et al., 2018) / DNLI184

(Welleck et al., 2019) and use HANS (McCoy et al.,185

2019) , Breaking NLI (Glockner et al., 2018), NLI-186

Diagnostics (Wang et al., 2018) , Stress Test (Naik187

et al., 2018) as adversarial datasets. While training188

with SNLI, we consider SNLI evaluation dataset as189

IID and MNLI, DNLI datasets as OOD. Similarly,190

while training with MNLI, we consider SNLI and191

DNLI datasets as OOD.192

Duplicate Detection: We train with QQP (Iyer193

et al., 2017) / MRPC (Dolan and Brockett, 2005)194

and use PAWS-QQP, PAWS-Wiki (Zhang et al.,195

2019) as adversarial datasets.196

QA: We train with SQuAD (Rajpurkar et al.,197

2016) and evaluate on NewsQA (Trischler et al.,198

2017), TriviaQA (Joshi et al., 2017), SearchQA199

(Dunn et al., 2017), HotpotQA (Yang et al., 2018),200

and Natural Questions (Kwiatkowski et al., 2019).201

3.2 Approaches:202

Training: We run all our experiments using bert-203

base model (Devlin et al., 2019) with batch size of204

32 and learning rate ranging in {1−5}e−5. All ex-205

periments are done with Nvidia V100 16GB GPUs.206

Calibration: For calibrating QA models, we use207

input length, predicted answer length, and softmax208

probabilities of top 5 predictions as the features209

(similar to Kamath et al. (2020)). For calibrat-210

ing NLI and duplicate detection models, we use211

input lengths (of premise/sentence1 and hypothe-212

sis/sentence2), softmax probabilities assigned to213

the labels, and the predicted label as the features.214

We train calibrators using random forest imple-215

mentations of Scikit-learn (Pedregosa et al., 2011)216

for Calib C and Calib R approaches, and train217

a bert-base model for Calib T. In all calibration218

approaches, we calibrate using the IID held-out219

dataset and use softmax probability assigned to the220

positive class as the confidence estimate for SP.221

Figure 1: Comparing AUC of risk-coverage plot of
various SP approaches with MaxProb in IID settings.

Label Smoothing: For LS, we use MaxProb 222

of the model trained with label smoothing as the 223

confidence estimator for SP. To the best of our 224

knowledge, LS is desinged for classification tasks 225

only. Hence, we do not evaluate it for QA tasks. 226

4 Results and Analysis 227

Slight Improvement in IID: We compare SP 228

performance of various approaches under IID set- 229

ting in Figure 1. Though all the approaches except 230

Calib T outperform MaxProb in most cases, the 231

magnitude of improvement is very small. For in- 232

stance, MCD achieves an average improvement of 233

just 0.28 on AUC value across all NLI datasets. 234

Calib C and Calib R achieve the highest im- 235

provement on DNLI: We find that they benefit 236

from using the predicted label as a feature for 237

calibration. Specifically, the model’s prediction 238

accuracy varies greatly across labels (0.94, 0.91, 239

and 0.76 for entailment, contradiction, and neu- 240

tral labels respectively). This implies that when 241

the model’s prediction is neutral, it is relatively 242

less likely to be correct (at least in the IID set- 243

ting). Calib C and R approaches leverage this signal 244

and tune the confidence estimator using a held-out 245

dataset and thus achieve superior SP performance. 246

Negligible Improvement / Degradation in OOD 247

and ADV: Figure 2a, 2b compare the SP per- 248

formance in OOD and ADV setting respectively. 249

The results have been averaged over all the task- 250

specific OOD/ADV datasets mentioned in Section 251

3 to observe the general trend1. In the OOD set- 252

ting, we find that the approaches lead to a negligi- 253

ble improvement in AUC. Notable improvement is 254

achieved only by MCD in the case of QQP dataset. 255

1Refer supplementary for more details
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(a) Out-Of-Domain (b) Adversarial

Figure 2: Comparing AUC of risk-coverage plot of various approaches with MaxProb in OOD and ADV settings.
The results have been averaged over all the task-specific OOD/ADV datasets mentioned in Section 3 to highlight the
general trend. Results of individual datasets have been provided in supplementary.

In ADV setting, all approaches degrade SP256

performance: Surprisingly, MCD that performed257

relatively well in IID and OOD settings, degrades258

more (by 1.74 AUC) in comparison to other ap-259

proaches (except Calib T which does not perform260

well in all three settings). This is because ensem-261

bling degrades the overall confidence estimate as262

the individual models of the ensemble achieve poor263

prediction accuracy in the ADV setting.264

Calib T Degrades Performance: Calib C and265

Calib R slightly outperform MaxProb in most IID266

and OOD cases. However, Calib T considerably de-267

grades the performance in nearly all the cases. We268

hypothesize that associating correctness directly269

with input text embeddings could be a harder chal-270

lenge for the model as embeddings of correct and271

incorrect instances usually do not differ signifi-272

cantly. In contrast, as discussed before, provid-273

ing features such as predicted label and softmax274

probabilities explicitly may help Calib C and R275

approaches in finding some distinguishing patterns276

that improve the selective prediction performance.277

Existing Approaches Require Additional Re-278

sources: Unlike typical ensembling, MCD does279

not require training or storing multiple models but,280

it requires making multiple inferences and can still281

become practically infeasible for large models such282

as BERT as their inference cost is high. Further-283

more, calibration-based approaches need additional284

held-out data for training the calibrator. Despite285

being computationally expensive, these approaches286

fail to consistently outperform MaxProb that does287

not require any such additional resources.288

Effect of Increasing Dropout Masks in MCD:289

With the increase in number of dropout masks used290

in MCD, the SP performance improves (from MCD 291

lite with 10 masks → MCD with 30 masks). We 292

hypothesize that combining more predictions on the 293

same input results in a more accurate overall out- 294

put due to the ensembling effect. However, we note 295

that both MCD lite and MCD degrade SP perfor- 296

mance in the ADV setting as previously explained. 297

No Clear Winner: None of the approaches con- 298

sistently and considerably outperforms MaxProb in 299

all three settings. Most approaches do not fare well 300

in OOD and ADV settings. Furthermore, a single 301

approach does not achieve the highest performance 302

across all tasks. For instance, MCD outperforms all 303

other approaches on Duplicate Detection datasets 304

but does not perform well on NLI datasets (as Calib 305

C beats MCD, especially in the OOD setting). This 306

indicates that these approaches do not translate 307

well across tasks. 308

5 Conclusion 309

We studied selective prediction in a large-scale 310

setup of 17 datasets across several NLP tasks and 311

evaluated existing selective prediction approaches 312

in IID, OOD, and ADV settings. We showed that 313

despite leveraging additional resources (held-out 314

data/computation), they fail to consistently and con- 315

siderably outperform the simplest baseline (Max- 316

Prob) in all three settings. Furthermore, we demon- 317

strated that these approaches do not translate well 318

across tasks as a single approach does not achieve 319

the highest performance across all tasks. Overall, 320

our results highlight that there is a need to develop 321

stronger selective prediction approaches that per- 322

form well across multiple tasks (QA, NLI, etc.) 323

and settings (IID, OOD, and ADV) while being 324

computationally efficient. 325
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A Related Tasks527

A.1 Confidence Calibration528

Selective Prediction is closely related to confidence529

calibration (Platt et al., 1999) i.e aligning model’s530

output probability with the true probability of its531

predictions. Calibration focuses on adjusting the532

overall confidence level of a model, while selective533

prediction is based on relative confidence among534

the examples i.e systems are judged on their ability535

to rank correct predictions higher than incorrect536

predictions.537

A.2 Out-of-Domain Detection538

Using OOD Detection systems for selective pre-539

diction (abstain on all detected OOD instances)540

would be too conservative as it has been shown541

that models are able to correctly answer a signifi-542

cant fraction of OOD instances (Talmor and Berant,543

2019; Hendrycks et al., 2020).544

B Why Lower AUC is Better?545

Small magnitude values of area under curve (AUC)546

are preferred as they represent low average risk547

across all confidence thresholds.548

C Comparing SP Approaches549

Table 1 compares SP performance (AUC of risk-550

coverage curve) of various approaches for Dupli-551

cate Detection datasets. Table 2 compares SP per-552

formance (AUC of risk-coverage curve) of various553

approaches for QA datasets. Table 3 compares554

SP performance (AUC of risk-coverage curve) of555

various approaches for NLI datasets.556

D MaxProb for Selective Prediction557

Figure 3a shows the trend of accuracy against max-558

Prob for various models in the IID setting. It can be559

observed that with the increase in MaxProb the ac-560

curacy usually increases. This implies that a higher561

value of MaxProb corresponds to more likelihood562

of the model’s prediction being correct. Hence,563

MaxProb can be directly used as the confidence564

estimator for selective prediction. We plot the risk-565

coverage curves using MaxProb as the SP tech-566

nique in Figure 3b. As expected, the risk increases567

with the increase in coverage for all the models.568

We plot such curves for all techniques and compute569

area under them to compare their SP performance.570

This shows that MaxProb is a simple yet strong571

baseline for selective prediction.572

Train On Method IID↓ OOD avg.↓ ADV avg.↓

QQP

MaxProb 2.0 31.72 60.9
MCD lite 1.85 23.83 62.53
MCD 1.8 23.61 62.52
LS 2.08 27.92 61.92
Calib C 2.04 31.09 61.22
Calib R 2.07 28.53 60.68
Calib T 4.21 38.25 60.25

MRPC

MaxProb 6.13 40.46 63.88
MCD lite 5.48 38.23 65.76
MCD( 5.35 38.21 65.62
LS 6.08 39.05 64.99
Calib C 6.17 39.82 64.99
Calib R 6.52 39.99 65.13
Calib T 13.35 39.75 64.22

Table 1: Comparing selective prediction performance
(AUC of risk-coverage curve) of various approaches
for Duplicate Detection datasets. Lower AUC is better
in SP. MaxProb baseline scores are underlined, best
performance is in bold, and scores that considerably
outperform MaxProb are highlighted .

Train On Method IID↓ OOD avg.↓ ADV avg.↓

SQuAD

MaxProb 6.71 46.73 33.69
MCD lite 6.06 44.56 33.34
MCD 6.00 44.35 33.05
Calib C 6.15 45.93 33.27
Calib R 6.25 45.94 33.18
Calib T 14.72 60.31 47.87

Table 2: Comparing selective prediction performance
(AUC of risk-coverage curve) of various approaches
for QA datasets. Lower AUC is better in SP. MaxProb
baseline scores are underlined, best performance is in
bold, and scores that considerably outperform MaxProb
are highlighted .

E Comparing Risk-Coverage Curves of 573

MCD and Calib C for DNLI Dataset in 574

IID Setting 575

We compare the risk-coverage curves of MCD and 576

Calib C approaches on DNLI in Figure 4. We ob- 577

serve that at all coverage points, Calib C achieves 578

lower risk than MCD and hence is a better SP tech- 579

nique. We find that they benefit from using the 580

predicted label as a feature for calibration. Specifi- 581

cally, the model’s prediction accuracy varies greatly 582

across labels (0.94, 0.91, and 0.76 for entailment, 583

contradiction, and neutral labels respectively). This 584

implies that when the model’s prediction is neutral, 585

it is relatively less likely to be correct (at least in 586

the IID setting). Calib C and R approaches lever- 587

age this signal and tune the confidence estimator 588

using a held-out dataset and thus achieve superior 589

SP performance. 590
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(a) With increase in MaxProb, the accuracy usually
increases.

(b) With increase in coverage (i.e decrease in ab-
stention threshold), the risk usually increases.

Figure 3: Trend of Accuracy vs. MaxProb, Risk vs. Coverage for various models in the IID setting.

Train On Method IID↓ OOD avg.↓ ADV avg.↓

SNLI

MaxProb 2.78 23.34 32.4
MCD(K=10) 2.52 23.96 32.61
MCD(K=30) 2.47 23.81 32.47
LS 2.7 22.42 31.7
Calib C 2.57 22.47 33.0
Calib R 2.61 23.12 33.95
Calib T 7.02 34.74 40.68

MNLI

MaxProb 5.47 16.48 28.39
MCD(K=10) 5.07 16.29 29.42
MCD(K=30) 4.92 16.18 29.18
LS 5.18 16.94 28.55
Calib C 5.16 14.16 29.57
Calib R 5.28 14.84 29.67
Calib T 13.51 26.12 35.79

DNLI

MaxProb 7.36 53.59 51.85
MCD(K=10) 7.17 53.77 53.23
MCD(K=30) 6.69 53.67 53.24
LS 5.13 53.04 53.67
Calib C 3.88 52.35 52.91
Calib R 3.9 53.08 52.83
Calib T 5.46 53.58 58.13

Table 3: Comparing selective prediction performance
(AUC of risk-coverage curve) of various approaches
for NLI datasets. Lower AUC is better in SP. MaxProb
baseline scores are underlined, best performance is in
bold, and scores that considerably outperform MaxProb
are highlighted .

F Composite SP Approach:591

We note that calibration techniques can be used in592

combination with Monte-Carlo dropout to further593

improve the SP performance. However, it would594

require even more additional resources i.e held-out595

datasets in addition to multiple inferences.596

Figure 4: Comparing risk-coverage curves of MCD and
Calib C for DNLI dataset in IID setting.
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