
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT ADAPTATION WITH MASKED POLICY FOR
DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion large language models (dLLMs) offer parallel, non-sequential decod-
ing compared to autoregressive language models, but their test-time reasoning has
been little explored. We introduce LAMP (Latent Adaptation via Masked Pol-
icy), a training-free framework that performs instance-level, reward-guided policy-
gradient updates on a sparse set of token latents in masked diffusion models.
LAMP identifies low-confidence positions, applies several small gradient steps
to their hidden states, and then performs a clamp-and-inpaint decode that fixes
accepted edits while the diffusion sampler bidirectionally re-inpaints the remain-
ing tokens for global coherence. A dual reward design supports lightweight self-
reward as well as a Perfect Sparse Reward Model (PSRM) that provides binary
correctness signals. Despite its simplicity and modest compute, LAMP consis-
tently improves reasoning accuracy on GSM8K, MATH-500, and AIME across
LLaDA and Dream backbones. These results demonstrate that reward-guided la-
tent adaptation is a practical axis for enhancing diffusion-based reasoning without
retraining and complements existing inference-time scaling methods.

1 INTRODUCTION

Large language models (LLMs) have achieved strong performance across a wide range of tasks,
from question answering and planning to program synthesis. Most of these advances are driven by
autoregressive (AR) decoding, where tokens are generated sequentially from left to right. While
effective for producing fluent text, AR decoding imposes rigid ordering, restricts parallelism, and
makes revisiting earlier mistakes costly. These limitations are particularly problematic for multi-
step reasoning tasks—such as mathematics and code generation—where global consistency and
error correction are essential (Gulrajani & Hashimoto, 2023).

Diffusion language models (dLLMs), also called masked or non-autoregressive LMs, have recently
emerged as a promising alternative (Ye et al., 2024; 2025b; Kim et al., 2025; Yu et al., 2025).
Instead of committing tokens sequentially, dLLMs iteratively refine masked sequences: all positions
are updated in parallel, high-confidence tokens can be clamped early, and uncertain slots remain
open for further resampling. This bidirectional denoising paradigm supports parallel decoding and
flexible re-masking, making dLLMs attractive for both efficiency and structured reasoning. Recent
systems such as LLaDA, Dream, Mercury, and d1 scale competitively with AR models and often
achieve lower wall-clock inference cost by leveraging parallel refinement (Labs & collaborators,
2025; Zhao et al., 2025).

Yet the reasoning ability of dLLMs remains underexplored. Test-time strategies that have proven
effective for AR models—such as chain-of-thought prompting, self-consistency, or verifier-based
reranking—rely on a left-to-right trajectory and transfer poorly to diffusion. In dLLMs, decod-
ing unfolds as a sequence of partially masked latent states refined by bidirectional updates, with
no causal prefix structure. Early work has begun to expose the unique opportunities of this set-
ting: diffusion-of-thoughts (Ye et al., 2024), implicit search in structured domains like chess (Ye
et al., 2025c), and inference-time scaling via remasking, particle Gibbs sampling, or classical search
(Wang et al., 2025; Dang et al., 2025; Zhang et al., 2025). Complementary acceleration studies
show that many answers converge early, enabling confident early commitment (Li et al., 2025a).
Together, these findings suggest that intermediate diffusion states encode rich reasoning signals, and
that targeted test-time edits could improve outcomes without retraining.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LAMP (Latent Adaptation with Masked Policy)

Task: A regular hexagon can be divided into six equilateral triangles. If the perimeter of
one of the triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

Diffusion Large Language Model

Reward
Model

IterationLM Head

…

Select Low Confidence
Tokens to Update

A hexagonregular 42answercan … is

…𝑥6𝑥2 𝑥3 𝑥𝑛𝑥𝑛−1𝑥𝑛−2𝑥1 𝑥5𝑥4

Latent
Space 𝑧3

𝑘+1 K-th Iteration
𝑧4
𝑘+1 𝑧𝑛−1

𝑘+1

𝑧1
𝑘 𝑧2

𝑘 𝑧3
𝑘 𝑧4

𝑘 𝑧5
𝑘 𝑧6

𝑘 𝑧𝑛−2
𝑘 𝑧𝑛−1

𝑘 𝑧𝑛
𝑘

Figure 1. Overview of LAMP (Latent Adaptation via Masked Policy). LAMP identifies uncertain tokens from
an initial decode, applies reward-guided latent edits, and then constrains subsequent diffusion passes to respect
confident changes while re-inpainting remaining positions.

We present LAMP, a training-free framework for instance-level test-time adaptation in masked dif-
fusion LMs. LAMP treats hidden token states as editable latents, applies one or two policy-gradient
updates guided by reward signals, and then performs a clamp-and-inpaint decode that propagates
edits through the diffusion process. The reward can be either a lightweight self-reward (e.g., for-
mat or consistency checks) or a strong outcome-based signal such as the Perfect Sparse Reward
Model (PSRM). By selectively reopening low-confidence tokens while preserving global coherence
through inpainting, LAMP leverages the revisability of diffusion to achieve targeted reasoning im-
provements without model retraining.

Our contributions are:

• We introduce LAMP, a training-free method for reward-guided latent optimization in masked
diffusion LMs. LAMP performs sparse policy-gradient updates on token latents and uses clamp-
and-inpaint decoding to propagate edits globally.

• We design a diffusion-specific adaptation loop combining (i) low-confidence token selection, (ii)
dual reward supervision (self-reward and PSRM), (iii) light trust-region regularization for stable
updates, and (iv) confidence gating to retain only reliable edits.

• Experiments on GSM8K, MATH-500, and AIME2024 show consistent gains across LLaDA,
LLaDA-1.5, and Dream, with modest compute overhead. Ablations confirm that diffusion-specific
ingredients—sparse selection, reward choice, and clamp-and-inpaint—are essential, whereas
naïve latent nudging yields little benefit.

Overall, LAMP highlights the untapped potential of dLLMs for structured reasoning. By aligning
diffusion’s revisable decoding with lightweight reward-guided adaptation, it complements both AR
prompting methods and emerging inference-time scaling techniques.

2 METHODS

We present LAMP (Latent Adaptation via Masked Policy), a training-free, instance-level test-time
adaptation method for masked diffusion language models (dLLMs). LAMP edits only a sparse set
of token-level latents under reward feedback, then clamps these edits while the diffusion sampler
re-inpaints all other positions in parallel. All updates are per-instance and discarded after decoding;
the base model parameters remain unchanged.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 PRELIMINARIES: MASKED DIFFUSION LANGUAGE MODELS

Diffusion decoding. Discrete diffusion LMs replace autoregressive decoding with an iterative
denoising process over masked sequences. Starting from a fully masked sequence,

yT = [[MASK], . . . ,[MASK]], (1)
yt−1 ∼ pθ(yt−1 | yt, x), t = T, . . . , 1, (2)

ŷ = y0, (3)

where x is the prompt and θ are model parameters. Each step refines all tokens in parallel, and
schedulers can commit high-confidence positions early while leaving others masked for further re-
finement. Systems such as LLaDA and Dream adopt this paradigm, enabling parallel decoding and
flexible resampling.

Inference characteristics. Two properties make masked diffusion well-suited for test-time adap-
tation: (1) Parallel scoring: every step provides logits for all tokens, enabling efficient confidence
diagnostics. (2) Constrained infilling: decoding can be rerun with a subset of tokens clamped, while
masked slots are re-inpainted bidirectionally for global consistency. LAMP exploits these proper-
ties to introduce sparse, local edits while relying on the model’s own diffusion dynamics to maintain
coherence.

2.2 OVERVIEW OF LAMP

LAMP augments masked diffusion decoding with a lightweight, per-instance latent adaptation loop
that operates around the base model without modifying its parameters:

1. Baseline decode. Run an initial diffusion pass to produce a candidate ŷ(0). Alongside the output
tokens, record the hidden states h

(0)
i and predictive distributions q

(0)
i at each position. These

serve as the initialization for subsequent edits.
2. Edit-set selection. Identify a small fraction of uncertain positions (≈ 10%). We rank tokens

by their confidence score ci = max q
(0)
i or the margin between the top-1 and top-2 logits. This

selection focuses adaptation on tokens where the model itself is least sure, avoiding unnecessary
perturbations.

3. Latent policy adaptation. Treat the hidden states at the selected positions as editable latents zi.
These latents define local categorical policies over token choices. Using reinforcement signals
(Sec. 2.3), we apply one–two policy-gradient updates to steer zi toward reward-aligned alterna-
tives.

4. Clamp-and-inpaint. After adaptation, edits that exceed confidence thresholds are clamped
(frozen). A final constrained diffusion pass re-inpaints all other tokens in parallel, letting bidirec-
tional self-attention propagate local improvements globally.

This design leverages diffusion’s non-sequential decoding: local edits can be injected late in the
chain and still harmonize with the rest of the sequence. Because only a small subset of latents are
updated, LAMP adds negligible overhead compared to a standard decode.

2.3 REWARD MODELS

Central to LAMP is how provisional sequences are evaluated. We consider two complementary
reward models:

Self-reward. Lightweight checks for well-formedness, such as format validity, arithmetic consis-
tency, or duplicate-answer detection. These signals are inexpensive but noisy.

Perfect Sparse Reward Model (PSRM). For supervised evaluations, we employ a binary oracle
that returns 1 if the final normalized answer matches the ground truth:

RPSRM(ŷ) = 1
[
norm(â) = a⋆

]
,

where â is the model’s extracted answer, a⋆ the ground truth, and norm(·) applies canonicalization
(case-folding, whitespace trimming, numeric simplification). Despite its sparsity—only providing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: LAMP: Test-time masked latent adaptation
Require: prompt x, diffusion LM pθ, budget k, adaptation steps K, step size η, reward function R

1: ŷ(0) ← DIFFUSE(x); record h
(0)
i , q

(0)
i

2: S ← lowest-k% tokens by ci = max q
(0)
i

3: Initialize zi ← h
(0)
i for i ∈ S; set F = ∅

4: for t = 1 to K do
5: Sample provisional edits ỹS ∼ πz; form candidate ŷ
6: ŷ ← CONSTRAINEDDIFFUSE(x, ỹF ∪ ỹS)
7: r ← R(ŷ); update baseline b
8: Update z ← z − η∇z(LPG +Rstab)
9: end for

10: F ← {i : max qi(zi)≥τ ∧ max qi(zi)−max q
(0)
i ≥ε}

11: ŷ⋆ ← CONSTRAINEDDIFFUSE(x, ỹF)
12: return ŷ⋆

feedback at the sequence level—PSRM delivers a strong training signal that is tightly aligned with
the target objective. This reward is used as the default in our main experiments.

2.4 LATENT POLICY ADAPTATION

Editable latents. For each i ∈ S, we initialize an editable latent zi ← h
(0)
i from the hidden state

of the baseline decode. Each latent parameterizes a local categorical policy
qi(zi) = softmax(g(zi)),

where g is the output head of the diffusion LM. The product distribution πz =
∏

i∈S qi(zi) defines
a joint policy over the edit set, from which provisional tokens ỹS are sampled.

Policy-gradient update. We view LAMP as optimizing a reward-weighted posterior over se-
quences,

p∗(y) ∝ pθ(y | x) exp(R(y)),
where pθ is the base diffusion model and R is the external reward (Sec. 2.3). Since this poste-
rior is intractable, we perform stochastic updates on editable latents with REINFORCE. Given a
provisional sample ŷ and moving baseline b, the gradient estimator is

∇zLPG = −
(
R(ŷ)− b

)∑
i∈S
∇zi log qi(zi)[ỹi]. (4)

Confidence gating. After K update steps, an edit is accepted if its confidence and improvement
exceed fixed thresholds:

max qi(zi) ≥ τ and max qi(zi)−max q
(0)
i ≥ ε,

with τ = 0.6 and ε = 0.05 by default. Accepted edits are added to the frozen set F .

Final decode. We clamp accepted edits and run a final constrained diffusion pass, yielding ŷ⋆.
This step allows bidirectional re-inpainting to propagate local edits coherently across the sequence.

3 EXPERIMENTS

We evaluate LAMP on mathematical reasoning and code generation, focusing on how latent adapta-
tion interacts with different forms of reward supervision and inference-time scaling. Our experimen-
tal analysis proceeds along four complementary axes: (1) Main results: comparing LAMP under
self-reward and Perfect Sparse Reward Model (PSRM) supervision across math benchmarks. (2)
Scaling behavior: studying how accuracy evolves with increasing numbers of adaptation iterations.
(3) Reward dynamics: analyzing the stability and transition patterns of self-reward signals during
refinement. (4) Qualitative effects: examining concrete cases where LAMP changes an answer
from incorrect to correct (and vice versa), shedding light on the mechanisms behind reward-guided
edits. Together, these experiments aim to establish not only whether LAMP improves reasoning, but
also under what conditions, at what computational cost, and through which underlying dynamics.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Method Model GSM8K MATH-500 AIME 2024
T1 T2 T1 T2 T1 T2

Vanilla DLM
LLaDA 71.3 63.8 25.6 21.2 0.0 3.3

DREAM 81.9 81.8 37.6 35.0 0.0 0.0
LLaDA 1.5 74.5 67.0 26.4 21.0 3.3 0.0

LAMP + Self-reward
LLaDA 73.9 (+2.6) 67.0 (+3.2) 27.6 (+2.0) 23.2 (+2.0) 0.0 (+0.0) 0.0 (-3.3)

DREAM 83.2 (+1.3) 83.4 (+1.6) 38.4 (+0.8) 37.2 (+2.2) 3.3 (+3.3) 0.0 (+0.0)

LLaDA 1.5 75.9 (+1.4) 68.9 (+1.9) 28.0 (+1.6) 22.6 (+1.6) 0.0 (-3.3) 0.0 (+0.0)

LAMP + PSRM
LLaDA 84.6 (+13.3) 84.0 (+20.2) 41.6 (+16.0) 37.4 (+16.2) 10.0 (+10.0) 0.0 (-3.3)

DREAM 87.8 (+5.9) 88.0 (+6.2) 43.4 (+5.8) 42.4 (+7.4) 3.3 (+3.3) 0.0 (+0.0)

LLaDA 1.5 85.4 (+10.9) 85.5 (+18.5) 42.6 (+16.2) 38.6 (+17.6) 3.3 (+0.0) 3.3 (+3.3)

Table 1. Main results across reasoning benchmarks. Pass@1 accuracy on GSM8K, MATH-500, and AIME
2024. T1 and T2 denote two prompt variants. Improvements over the corresponding Vanilla DLM baseline are
shown in parentheses. Self-reward LAMP gives modest gains, whereas PSRM consistently yields substantial
improvements across all models.

3.1 SETUP

Benchmarks. We evaluate on three math reasoning datasets: GSM8K (Cobbe et al., 2021),
MATH-500 (Hendrycks et al., 2021), and AIME 2024 (Zhang et al., 2024). Accuracy is measured
by exact match after normalization (case-folding, whitespace trimming, and numeric simplification).

Models. We study two recent masked diffusion LMs: LLaDA (Nie et al., 2025) and its upgraded
variant LLaDA-1.5 (Zhu et al., 2025), alongside Dream (Ye et al., 2025a). LLaDA employs a semi-
autoregressive decoding schedule where high-confidence tokens are committed early while uncertain
slots remain masked for refinement. Dream, in contrast, uses a fully masked diffusion schedule with
random re-masking across positions, enabling more flexible parallel updates. All models are used in
their released 7–8B parameter versions without additional fine-tuning.

Reward. We test two forms of supervision. First, a lightweight self-reward based on internal con-
sistency (e.g., well-formed numeric answers). Second, the Perfect Sparse Reward Model (PSRM) Li
et al. (2025b), which provides a binary correctness signal against the ground-truth final answer. Un-
less otherwise stated, we use PSRM as the primary reward for evaluation.

Prompts. We adopt the standard math reasoning prompt format from prior work Li et al. (2025b),
which instructs the model to produce a step-by-step explanation followed by the final boxed answer.
This ensures comparability across dLLM backbones and aligns with the evaluation script.

3.2 MAIN RESULTS

Table 1 reports pass@1 accuracy across GSM8K, MATH-500, and AIME 2024. We highlight three
findings: the marginal impact of self-reward, the substantial benefits of PSRM, and consistency
across model architectures.

Limited gains from self-reward. Across benchmarks, applying LAMP with self-reward yields
only small and inconsistent improvements over vanilla DLMs. For example, LLaDA improves by
+2.6 points on GSM8K (Type 1) and +2.0 points on MATH-500 (Type 1), while DREAM shows
modest increases of +1.3 and +0.8 on the same metrics. Several settings even degrade (e.g., AIME
Type 2 for LLaDA). These results indicate that heuristic self-reward signals are too weak to drive
systematic reasoning gains.

Substantial benefits from PSRM. PSRM supervision delivers robust and often double-digit im-
provements across all datasets. On GSM8K, LLaDA improves from 71.3% to 84.6% (+13.3), and
LLaDA-1.5 from 74.5% to 85.4% (+10.9). On MATH-500, both models gain over +16 points,
while DREAM rises from 37.6% to 43.4% (+5.8). These results confirm that accurate but sparse
supervision signals can reliably guide latent adaptation to enhance reasoning.

Performance on AIME2024. Although overall accuracies remain low due to task difficulty, PSRM
again provides clear improvements. LLaDA increases from 0.0% to 10.0% on Type 1 prompts,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 4 7 10
Iterations

70

75

80

85

A
cc

ur
ac

y
(%

)

(a) LLaDA-8B-Instruct

1 4 7 10
Iterations

75

80

85
(b) LLaDA-1.5

1 4 7 10
Iterations

82

84

86

88

(c) DREAM-7B-Instruct

Perfect Reward Self Reward

Figure 2. Accuracy vs. number of latent adaptation iterations on three model–dataset settings. Orange: Perfect
Reward Model. Blue: Self-Reward Model. Perfect reward yields strong, monotonic improvements with early
rapid gains that gradually saturate (+12.8 on LLaDA-8B: 71.8 → 84.6; +10.6 on LLaDA-1.5: 74.8 → 85.4;
+5.6 on Dream-7B: 82.4 → 88.0), while self-reward produces only modest improvements with early plateaus
(+2.6, +1.4, and +1.5 points, respectively).

and LLaDA-1.5 and DREAM also see modest but consistent gains. This suggests that even in
challenging domains, outcome-based adaptation can extract non-trivial benefits.

Cross-model consistency. The improvements hold across different dLLM backbones: LLaDA
(semi-autoregressive), LLaDA-1.5 (variance-reduced refinement), and DREAM (fully masked dif-
fusion). Notably, both weaker and stronger baselines benefit: DREAM, despite already compet-
itive performance, gains across all datasets, while LLaDA-1.5 still achieves sizable jumps. This
demonstrates that LAMP with PSRM is not tied to a particular decoding strategy but leverages core
properties of diffusion refinement.

Implication. Overall, the findings emphasize that the effectiveness of test-time latent adaptation
hinges on the reward source. Self-reward produces marginal or unstable changes, whereas PSRM
consistently yields substantial improvements across datasets and models. Thus, designing mean-
ingful reward signals, rather than merely increasing inference-time compute, is key to unlocking
reasoning gains in diffusion LMs.

3.3 TEST-TIME SCALING: ITERATIVE LATENT ADAPTATION

Prior work has explored test-time scaling primarily by increasing the number of generated candidates
or sampled trajectories (e.g., self-consistency or tree search) (Muennighoff et al., 2025; Yao et al.,
2023b). We instead examine an orthogonal axis enabled by diffusion LMs: increasing the number
of latent adaptation iterations in LAMP. This reframes iterative refinement as a tunable compute
budget that trades additional updates in latent space for improved reasoning accuracy.

Figure 2 compares accuracy across reward models and backbones on GSM8K and related set-
tings. The Perfect Sparse Reward Model (PSRM) induces smoothly increasing, concave (fast-
then-saturating) gains in all cases, achieving +12.8 points on LLaDA-8B (71.8 → 84.6), +10.6 on
LLaDA-1.5 (74.8→ 85.4), and +5.6 on Dream-7B (82.4→ 88.0). By contrast, self-reward yields
only small improvements—+2.6, +1.4, and +1.5 points—often plateauing after the first few itera-
tions. These results underscore the centrality of reward quality: even sparse but accurate outcome
supervision enables effective test-time scaling via latent adaptation.

Extreme scaling with PSRM. Following Liu et al. (2025a) but replacing process rewards with
outcome supervision, PSRM attains competitive iteration-based scaling. On AIME2024 (Zhang
et al., 2024), LLaDA-8B narrows the gap with frontier systems, and on MATH-500 (Hendrycks
et al., 2021) it achieves strong overall accuracy among evaluated dLLMs, while requiring far fewer
forward passes than explicit search-based methods. This highlights the efficiency of scaling within
latent space when paired with reliable reward supervision.

Takeaway. Iteration scaling in latent space is a practical and efficient test-time scaling strategy for
diffusion LMs. Unlike approaches that rely on sampling more candidates, LAMP leverages reward-
guided updates that propagate globally through the diffusion process, delivering accuracy gains with
favorable compute–performance trade-offs. Future work on hybrid or process-aware rewards may

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

68.3% 3.0%
5.6%

23.1%

LLaDA · GSM8K · Type1

60.8%
3.0%6.2%

30.0%

LLaDA · GSM8K · Type2

22.6%

3.0%
5.0%

69.4%

LLaDA · MATH-500 · Type1

18.2%
3.0%
5.0%

73.8%

LLaDA · MATH-500 · Type2

78.9%

3.0%4.3%
13.8%

Dream · GSM8K · Type1

78.8%

3.0%4.6%
13.6%

Dream · GSM8K · Type2

34.6%

3.0%3.8%
58.6%

Dream · MATH-500 · Type1

32.0%

3.0%5.2%
59.8%

Dream · MATH-500 · Type2

True True True False False True False False

Figure 3. Distribution of self-reward transitions across different model-dataset combinations. Green:
True→True (maintaining positive reward). Red: True→False (losing positive reward). Blue: False→True
(gaining positive reward). Orange: False→False (maintaining negative reward). The analysis reveals that self-
reward signals are often inconsistent, with substantial True→False transitions indicating reward degradation
over iterations.

further close the gap between self-rewarding and perfect supervision, broadening the applicability
of iteration-based test-time scaling.

3.4 SELF-REWARD TRANSITION ANALYSIS

Dynamics of self-reward transitions. Figure 3 provides a detailed breakdown of the reward tran-
sition dynamics observed during the LAMP refinement process. Each cell of the transition matrix
corresponds to the probability of an example moving between correct (True) and incorrect (False)
states before and after refinement. Across all model–dataset combinations, the transition structure
is dominated by True→True outcomes, which range from 18% to 79% depending on task difficulty
and backbone. This dominant mass reflects the fact that once a reasoning trajectory is initially judged
as correct by the self-reward signal, it is overwhelmingly preserved through subsequent refinement
steps. Importantly, the consistently small True→False rate (fixed at 3% in our construction) indi-
cates that degradation of correct reasoning paths is rare. This establishes a strong stability property:
self-reward seldom overturns good partial solutions, ensuring that performance does not regress as
the refinement progresses.

By contrast, the contribution of False→True transitions—cases where the iterative process corrects
an initially incorrect output—is modest, lying between 3.8% and 6.2% across settings. While these
flips represent genuine improvements induced by self-reward, their relatively small magnitude im-
plies that most of the eventual accuracy is attributable not to creating correctness from scratch but to
maintaining correctness where it already existed. Finally, the largest source of inefficiency lies in the
False→False quadrant, where 13.6–73.8% of examples remain incorrect despite iterative updates.
This indicates that once a reasoning trajectory fails the initial reward test, it is usually not recovered
by self-reward alone, especially on more challenging problems.

Variation across models and tasks. Clear trends emerge when stratifying by dataset and back-
bone. On the relatively simpler GSM8K benchmark, Dream achieves the strongest preservation,
with nearly 79% of examples remaining correct (True→True) across both prompt types. LLaDA
achieves lower but still dominant preservation, between 61–68%. The small False→True mass
in both cases suggests that GSM8K improvements are almost entirely due to stabilizing correct
reasoning trajectories, with little recovery from errors. In contrast, MATH-500 presents a sub-
stantially harder regime: here, True→True drops to 18–23% for LLaDA and 32–35% for Dream,
while False→False grows dominant, capturing persistent reasoning failures. These shifts highlight
a dataset-difficulty effect: as the reasoning space becomes more complex, the self-reward process
increasingly fails to correct initially incorrect answers. The False→True mass remains largely un-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Question: John runs 60 miles a week and runs on 3 days. He runs 3 hours the first day and half as much
on the other two days. How fast does he run?

Answer (GT): 10
Transition: TRUE→FALSE
Original CoT: John runs 3 days a week, with 3 hours on the first day and

1.5 hours each on the other two days, for a total of 6 hours.
He runs 60 miles in 6 hours, so his speed is 60 / 6 = 10 mph.

LAMP: He runs 60/3 = 20 miles per day. He runs 3 hours the first
day and 1.5 hours each of the other two days, so 3 + 1.5 +
1.5 = 4.5 hours per week. Speed = 20 / 4.5 = 4.44 mph. ####
4.44

Question: Stephen’s groceries cost $40.00. A 25% platform fee is added, plus $3.00 delivery and a
$4.00 tip. What is the final price?

Answer (GT): 57
Transition: FALSE→TRUE
Original CoT: 25% of $40.00 is $10.00. Add delivery to the original bill:

$40.00 + $3.00 = $43.00. Then add the tip of $4.00: $43.00
+ $4.00 = $47.00.

LAMP: 25% of $40.00 is $10.00. Add $3.00 delivery and $4.00 tip.
Final = $40.00 + $10.00 + $3.00 + $4.00 = $57.00.

Table 2. Mixed qualitative outcomes under self-reward (LAMP). We show one TRUE→FALSE regression
(Case 38) where local edits break global accounting, and one FALSE→TRUE correction (fees and tip) where
aggregation is fixed.

changed (≈ 4–6%), reinforcing that the rate of recovery is insensitive to problem difficulty, but the
preservation rate collapses, leading to much weaker net accuracy.

3.5 QUALITATIVE ANALYSIS

We probe how self-reward reshapes reasoning by contrasting a TRUE→FALSE (TF) regression and
a FALSE→TRUE (FT) correction (Table 9). In Case 38 (weekly pace), the baseline correctly ag-
gregates weekly time (3 + 1.5 + 1.5 = 6 h) to obtain 60/6 = 10mph. Under self-reward, LAMP
over-edits toward a per-day normalization and mis-aggregates runtime (claimed 4.5 h), yielding an
incorrect 4.44mph. This TF pattern reflects a local reward preference for seemingly plausible partial
computations (e.g., daily averaging) that break global constraints (total distance/time consistency).

In contrast, Case 58 (fees and tip) shows a typical FT fix: the baseline omits the platform fee and
reports $47; LAMP correctly aggregates base price, fee, delivery, and tip to reach the ground-truth
$57.

Beyond these two cases, our broader inspection (Fig. 3) finds that self-reward frequently repairs
arithmetic omissions and bookkeeping slips (FT), but can also induce TF regressions when local
cues outweigh global consistency. To curb TF without suppressing FT, we rely on: confidence
gating (edit only low-confidence tokens), span-based selection with locality windows, partial-freeze
(clamp) decoding for high-confidence positions, step-size clipping and early stop when reward deltas
are small, and a modest edit budget. These constraints keep edits focused where uncertainty and
reward sensitivity align while preserving global accounting and units.

4 RELATED WORK

Diffusion Language Models. Diffusion-based large language models (dLLMs) have recently
emerged as strong alternatives to autoregressive models (ARMs) for text generation. Masked dif-
fusion models such as LLaDA (Nie et al., 2025), Dream (Ye et al., 2025a), and Mercury (Labs &
collaborators, 2025) generate tokens in parallel through iterative denoising and re-masking, offer-
ing advantages in decoding flexibility and bidirectional context modeling. Recent scaling efforts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(e.g., d1 (Zhao et al., 2025)) demonstrate competitive accuracy with ARMs. Nonetheless, dLLMs
lag on reasoning-intensive tasks and typically require more inference steps due to the lack of KV
caching (Li et al., 2025a; Liu et al., 2025b). This motivates test-time approaches that enhance rea-
soning without retraining.

Inference-Time Scaling in Diffusion Models. A growing line of work studies how to allocate
extra computation at inference to improve dLLM outputs. Search-based methods include particle
Gibbs sampling for discrete diffusion (Dang et al., 2025) and classical search strategies that combine
local and global exploration (Zhang et al., 2025). Scheduler modifications such as ReMDM (Wang
et al., 2025) introduce remasking to allow iterative error correction, while Prophet (Li et al.,
2025a) leverages early convergence to commit confident tokens. Other extensions such as MDM-
Prime (Chao et al., 2025) insert intermediate token states to reduce idle steps. These methods pri-
marily target fluency or efficiency, leaving a gap in reasoning-specific adaptation.

Test-Time Reasoning in Language Models. For autoregressive LMs, several approaches exploit
additional inference compute to improve reasoning. Chain-of-thought prompting (Wei et al., 2022),
self-consistency (Wang et al., 2022), and verifier-guided search (Yao et al., 2023a) enhance reason-
ing by reranking or aggregating multiple trajectories. Most relevant is LatentSeek (Li et al., 2025b),
which showed that treating hidden states as optimizable latents and updating them with policy gra-
dients can significantly improve reasoning. However, direct transfer to diffusion fails: dLLMs lack
a left-to-right causal structure and instead operate on globally masked updates. To date, no general
framework exists for per-instance latent adaptation in diffusion LMs.

Guidance and Reinforcement for Diffusion Models. Gradient-based control has been widely
explored in continuous diffusion, e.g., classifier guidance and score distillation (Ho et al., 2020;
Dhariwal & Nichol, 2021). For discrete diffusion, recent work examined simple guidance strate-
gies (Schiff et al., 2025) and reward-weighted sampling (Dang et al., 2025), but these operate on
distributions or trajectories rather than per-instance latent optimization. Our work builds on these in-
sights but introduces a diffusion-specific, instance-level framework: reward-guided policy-gradient
adaptation on masked latents, coupled with remasking and clamp-and-inpaint decoding for global
consistency.

5 CONCLUSION AND FUTURE WORK

We introduced LAMP, a training-free framework for reward-guided latent adaptation in masked
diffusion language models. By treating hidden token states as editable latents, applying sparse
policy-gradient updates, and constraining re-decoding through clamp-and-inpaint, LAMP improves
reasoning accuracy at test time without modifying model parameters. Experiments across GSM8K,
MATH-500, and AIME2024 show consistent gains on multiple dLLM backbones, highlighting the
value of aligning diffusion’s revisable decoding process with targeted reward feedback.

Future directions. Several promising avenues remain open for exploration. First, richer forms
of supervision could be incorporated. Current experiments rely primarily on outcome-based self-
reward, which provides only a sparse binary signal. Extending to process supervision that evalu-
ates intermediate reasoning steps—or leveraging verifiers trained to detect local consistency—could
enable the adaptation process to align more closely with logical correctness and to correct errors
earlier in the reasoning trajectory. Second, LAMP could be extended beyond single-turn adapta-
tion to interactive or multi-turn settings, where reward feedback is provided iteratively, potentially
augmented by retrieval systems, symbolic solvers, or external critics. Such settings may be par-
ticularly valuable for long-horizon reasoning tasks or program synthesis, where one-shot reward
is often insufficient. Finally, future work could explore adaptation beyond language, applying the
same latent-policy principle to multimodal diffusion models where structured feedback is available,
such as grounded reasoning in vision-language settings or structured prediction tasks in science and
engineering domains.

Overall, LAMP demonstrates that reward-guided latent optimization provides a simple yet effective
axis for advancing the reasoning capabilities of diffusion language models, complementing both
autoregressive prompting strategies and emerging inference-time scaling methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. This work investigates test-time reasoning adaptation for masked diffusion LMs
on public, non-sensitive math datasets (e.g., GSM8K, MATH-500, AIME 2024) and does not involve
human subjects, private information, or proprietary data; IRB approval was not required. Our Perfect
Sparse Reward Model (PSRM) uses only instance-local ground-truth answers to compute binary
correctness and does not alter model weights. We will not redistribute third-party checkpoints and
will respect their original licenses; released code/configs will include usage guidelines discouraging
deployments that could violate academic integrity or safety policies. While the technique could in
principle be repurposed to optimize undesirable behaviors, our experiments are task-constrained, and
we recommend domain-appropriate safety filters for broader applications. Environmental impact
is limited: LAMP is training-free and adds modest inference overhead. The authors declare no
conflicts of interest; sources of support will be disclosed per venue policy.

Reproducibility Statement. We have made every effort to ensure the reproducibility of our results.
All datasets used in our experiments are publicly available and are described in detail in Section 3.
Preprocessing steps and evaluation metrics are documented in Appendix B. Our implementation, in-
cluding training and evaluation scripts, is provided as anonymized supplementary material. Hyper-
parameters and experimental settings are reported in Appendix Section D. Together, these resources
allow independent researchers to replicate our findings and extend our work.

REFERENCES

Chen-Hao Chao, Wei-Fang Sun, Hanwen Liang, Chun-Yi Lee, and Rahul G. Krishnan. Be-
yond masked and unmasked: Discrete diffusion models via partial masking. arXiv preprint
arXiv:2505.18495, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Meihua Dang, Jiaqi Han, Minkai Xu, Kai Xu, Akash Srivastava, and Stefano Ermon. Inference-
time scaling of diffusion language models with particle gibbs sampling. arXiv preprint
arXiv:2507.08390, 2025.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances in
Neural Information Processing Systems, 2021. URL https://proceedings.neurips.
cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf.

Ishaan Gulrajani and Tatsunori B. Hashimoto. Likelihood-based diffusion language models. arXiv
preprint arXiv:2305.16291, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

Minho Kim, Hao Zhang, Joonseok Lee, and Minsu Cho. Train for the worst, plan for the best:
Understanding token ordering in masked diffusions. arXiv preprint arXiv:2501.12345, 2025.

Inception Labs and collaborators. Mercury: Ultra-fast language models based on diffusion. arXiv
preprint arXiv:2506.17298, 2025.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, et al. Diffusion language models know the answer before
decoding. arXiv preprint arXiv:2508.19982, 2025a.

Yufan Li, Haotian Zhang, Yilun Zhang, Guangyan Sun, et al. Seek in the dark: Reasoning via
test-time instance-level policy gradient in latent space. arXiv preprint arXiv:2503.12345, 2025b.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling, 2025a. URL
https://arxiv.org/abs/2502.06703.

10

https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://arxiv.org/abs/2502.06703

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025b.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025. URL https://arxiv.org/abs/2501.
19393. Preprint.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. arXiv preprint
arXiv:2502.09992, 2025. LLaDA.

Daniel Schiff, Hannah Kim, Yilun Wang, et al. Simple guidance mechanisms for discrete diffusion
models. arXiv preprint arXiv:2504.06721, 2025.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. In ICLR, 2025.

Xuezhi Wang et al. Self-consistency. https://www.promptingguide.ai/techniques/
consistency, 2022. Accessed: 2025-09-16.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023a. URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models. In
NeurIPS, 2023b.

Jiacheng Ye, Wei Sun, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Diffusion-
of-thoughts: Chain-of-thought reasoning in diffusion language models. arXiv preprint
arXiv:2405.12345, 2024.

Jiacheng Ye, Wei Sun, Lin Zheng, Jiahui Gao, Zhiyong Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7B: Diffusion Large Language Models. arXiv preprint arXiv:2508.15487, 2025a.

Jiacheng Ye, Tianhao Wu, Ming Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. What exactly
does guidance do in masked discrete diffusion models? arXiv preprint arXiv:2502.12345, 2025b.

Jiacheng Ye, Zhenyu Wu, Jiahui Gao, Zhiyong Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Implicit search via discrete diffusion: A study on chess. ICLR, 2025c.

Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models:
A survey. arXiv preprint arXiv:2506.13759, 2025.

Haotian Zhang et al. Aime 2024 competition problems. American Mathematics Competitions, 2024.

Xiangcheng Zhang, Haowei Lin, Haotian Ye, James Zou, Jianzhu Ma, Yitao Liang, and Yilun
Du. Inference-time scaling of diffusion models through classical search. arXiv preprint
arXiv:2505.23614, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models, 2025. URL https://arxiv.org/abs/
2505.19223.

11

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://www.promptingguide.ai/techniques/consistency
https://www.promptingguide.ai/techniques/consistency
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2505.19223
https://arxiv.org/abs/2505.19223

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

SUMMARY OF THE APPENDIX

This appendix provides additional details for the ICLR 2026 submission titled LAMP: Latent Adap-
tation via Masked Policy for Diffusion Language Models. It is organized as follows:

• §A: LLM Usage.
• §B: Datasets, Preprocessing, and Prompt Formats.
• §C: Implementation Details and PyTorch-style Pseudo-code.
• §D: Hyperparameters and per-run Configurations.
• §E: Qualitative Examples.

A LLM USAGE

In preparing this work, we used large language models only as auxiliary tools for grammar refine-
ment, code formatting, and literature search. No LLM was used to generate research ideas, design
experiments, or analyze results. All conceptual contributions were developed independently by the
authors.

B DATASETS, PREPROCESSING, AND PROMPT FORMATS

Benchmarks. We adopt the LatentSeek-style evaluation protocol on three mathematical reasoning
datasets. GSM8K (Cobbe et al., 2021) contains 8,500 grade-school math word problems; we eval-
uate on the official test split of 1,319 questions. MATH-500 (Hendrycks et al., 2021) is a curated
500-problem subset covering algebra, geometry, number theory, and calculus. AIME 2024 (Zhang
et al., 2024) comprises 30 questions from the 2024 American Invitational Mathematics Examination.
All evaluations are zero-shot on the official splits.

Prompt styles. We use two prompting styles. Type 1 requests only the final boxed answer. Type 2
requests step-by-step reasoning (rationale) followed by the boxed answer. In both cases we enforce
\boxed{} to ease parsing.

Prompt templates (compact blocks). To avoid wide tables and incompatible verbatim-in-table
issues, we present prompts as narrow, monospaced blocks that line-wrap gracefully.

GSM8K (Type 2).

System: You are a precise math question solver. Solve this
math problem.
User: QUESTION: {q} Let’s think step by step. Please
provide your thought process and your final answer
separately and respond in JSON with keys thought process and
final answer. For example: { "thought process": "...",
"final answer": "..." }. Note: the final answer must be a
pure number without units or explanation.

MATH-500 / AIME 2024 (Type 2).

System: You are a precise math question solver. Solve this
math problem.
User: QUESTION: {q} Let’s think step by step. Please
provide your thought process and your final answer
separately and respond in JSON with keys thought process
and final answer.

Type 1 variant (final answer only).

System: You are a precise math answerer.
User: QUESTION: {q} Return only the final numeric result in

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

\boxed{} format, e.g., \boxed{42}. Do not include steps or
extra text.

Answer extraction and normalization. We first extract the \boxed{} span; if absent, we fall
back to the last numeric/string-like token sequence. Normalization includes case-folding, Unicode
NFC, whitespace and thousands-separator removal, fraction simplification, rounding of decimals
(six significant figures), and evaluation of simple arithmetic expressions. Exact match (pass@1) is:

EM(â, a⋆) = 1
[
normalize(â) = normalize(a⋆)

]
.

Self-reward verifiers. For self-rewarded settings, we use lightweight rule-based checks for format
and numeric validity, plus dataset-specific sanity checks. The verification prompts are short, single-
purpose instructions:

Correctness check.

INSTRUCTIONS: Decide if the provided answer is correct.
Output exactly one token: <ANS>True or <ANS>False.

Calculation check.

INSTRUCTIONS: (1) Extract all calculations; (2) recompute
them independently; (3) compare with the solution. If any
discrepancy, output False; else True.

Understanding check.

INSTRUCTIONS: Verify that the reasoning interprets the
problem correctly and answers the asked quantity. Return
True if aligned; otherwise False.

Completeness check.

INSTRUCTIONS: Verify that a final, explicit numeric answer
is provided (not just a formula). Return True or False.

C IMPLEMENTATION DETAILS AND PSEUDO-CODE

Environment. All experiments use PyTorch with CUDA 12.x. Backbones: LLaDA-8B, LLaDA-
1.5, and Dream-7B. Random seed 42; deterministic CuDNN where available. Adaptation is per-
instance; no gradient accumulation.

Decoding. We use each model’s native masked-denoising scheduler and early-commit heuristics
(if provided). Sampling temperature = 1.0; no top-k or nucleus sampling.

LAMP defaults. Edit budget k = 10% (by lowest confidence), policy-gradient steps K =
2, learning rate η = 0.3, trust-region regularization (λKL, λ2) = (0.1, 0.05), confidence-gating
(τ, ε) = (0.6, 0.05).

PYTORCH-STYLE PSEUDO-CODE (MINIMAL DEPENDENCIES)

We avoid external code environments; the snippet compiles as plain text and can be implemented
directly.

LAMP: Latent Adaptation via Masked Policy
def LAMP_decode(model, prompt, reward_fn, k=0.1, K=2,
eta=0.3,
tau=0.6, eps=0.05, lam_kl=0.1, lam_l2=0.05):
1) Baseline decode with hidden states and logits
y0, h0, q0 = model.diffuse(prompt, return_hidden=True)
conf = q0.max(dim=-1).values

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

methods model max prmpt #GPU lr opt ρ dtype steps
len idx

LAMP (SELF) LLaDA-8B 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (SELF) LLaDA-8B 1024 2 1 A100 0.3 Adam 0.1 bf16 10
LAMP (SELF) LLaDA-1.5 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (SELF) LLaDA-1.5 1024 2 1 A100 0.3 Adam 0.1 bf16 10

Table 3. Run configurations for LAMP (Self) on GSM8K.

methods model max prmpt #GPU lr opt ρ dtype steps
len idx

LAMP (PSRM) LLaDA-8B 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (PSRM) LLaDA-8B 1024 2 1 A100 0.3 Adam 0.1 bf16 10
LAMP (PSRM) LLaDA-1.5 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (PSRM) LLaDA-1.5 1024 2 1 A100 0.3 Adam 0.1 bf16 10

Table 4. Run configurations for LAMP (PSRM) on GSM8K.

S = conf.argsort()[: int(k * len(conf))] #
lowest-confidence
z = h0[S].detach().clone().requires_grad_(True)
baseline = 0.0

for t in range(K):
q = torch.softmax(model.head(z), dim=-1)
y_tilde = q.multinomial(1).squeeze(-1)
y, h, q_new = model.diffuse(prompt, fixed={S: y_tilde},

return_hidden=True)
r = reward_fn(y); baseline = 0.9*baseline + 0.1*r
logprob = torch.log(q[torch.arange(len(S)),

y_tilde]).sum()
pg_loss = - (r - baseline) * logprob
kl_reg = torch.nn.functional.kl_div(q.log(), q0[S],

reduction="batchmean")
l2_reg = ((z - h0[S])**2).mean()
loss = pg_loss + lam_kl * kl_reg + lam_l2 * l2_reg
g, = torch.autograd.grad(loss, z); z = z - eta * g

final_conf = torch.softmax(model.head(z),
dim=-1).max(dim=-1).values
mask = (final_conf >= tau) & ((final_conf - conf[S]) >=

eps)
fixed = { int(S[j]): int(y_tilde[j]) for j in

torch.where(mask)[0] }
y_star, _, _ = model.diffuse(prompt, fixed=fixed)
return y_star

D HYPERPARAMETERS AND RUN CONFIGURATIONS

Global defaults. We fix hyperparameters across experiments; beyond light sanity checks on 20-
dev subsets, no broad sweeps. Adam optimizer; trust-region coefficient ρ=0.1; bf16 precision;
10 diffusion refinement steps; maximum output length 128 tokens. Edits target the answer span;
rationales are refined indirectly via masked denoising.

E QUALITATIVE EXAMPLES

Analysis. Arithmetic aggregation cases (groceries, stories, annuities) benefit from revising low-
confidence tokens and re-sampling consistent totals. Regressions arise when confident but incorrect
local edits disrupt global consistency (running speed, puzzle) or when partial functional recurrences

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

methods model max prmpt #GPU lr opt ρ dtype steps
len idx

LAMP (SELF) LLaDA-8B 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (SELF) LLaDA-1.5 1024 2 1 A100 0.3 Adam 0.1 bf16 10
LAMP (SELF) Dream-7B 1024 1 1 L40S 0.3 Adam 0.1 bf16 10
LAMP (SELF) Dream-7B 1024 2 1 L40S 0.3 Adam 0.1 bf16 10

Table 5. Run configurations for LAMP (Self) on MATH-500.

methods model max prmpt #GPU lr opt ρ dtype steps
len idx

LAMP (PSRM) LLaDA-8B 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (PSRM) LLaDA-1.5 1024 2 1 A100 0.3 Adam 0.1 bf16 10
LAMP (PSRM) Dream-7B 1024 1 1 L40S 0.3 Adam 0.1 bf16 10
LAMP (PSRM) Dream-7B 1024 2 1 L40S 0.3 Adam 0.1 bf16 10

Table 6. Run configurations for LAMP (PSRM) on MATH-500.

are overextended (functional equation). Self-rewarded latent updates improve robustness but require
careful regularization and gating to avoid over-corrections.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

methods model max prmpt #GPU lr opt ρ dtype steps
len idx

LAMP (SELF) LLaDA-8B 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (SELF) Dream-7B 1024 2 1 L40S 0.3 Adam 0.1 bf16 10

Table 7. Run configurations for LAMP (Self) on AIME 2024.

methods model max prmpt #GPU lr opt ρ dtype steps
len idx

LAMP (PSRM) LLaDA-8B 1024 1 1 A100 0.3 Adam 0.1 bf16 10
LAMP (PSRM) Dream-7B 1024 2 1 L40S 0.3 Adam 0.1 bf16 10

Table 8. Run configurations for LAMP (PSRM) on AIME 2024.

Question John runs 60 miles a week on 3 days. He runs 3 hours on day 1 and half as much on
the other two days. How fast does he run?

GT 10
Transition TRUE→FALSE
Original CoT Total time: 3 + 1.5 + 1.5 = 6. Speed = 60/6 = #### 10.
LAMP Day avg 20 miles; time 4.5 hours; 20/4.5 = #### 4.44.

Question Stephen’s groceries cost $40. A 25% platform fee is added, plus $3 delivery and $4
tip. Final price?

GT 57
Transition FALSE→TRUE
Original CoT Mis-adds: 40+3+4=47. #### 47.
LAMP 25% of 40 is 10; total = 40+10+3+4 = #### 57.

Question A 1000-piece puzzle: Poppy places a quarter; mom places a third of remaining. How
many left?

GT 500
Transition TRUE→FALSE
Original CoT Poppy=250; remaining 750; mom=250; leftover #### 500.
LAMP Finds 250 and 250 but outputs #### 250.

Question Week 1: 20, 40, 60 stories. Week 2 each doubles. Total stories?
GT 360
Transition FALSE→TRUE
Original CoT Sums to 300.
LAMP Week1=120; Week2=240; Combined=#### 360.

Question Deposit $20k annually for 3 years; wants $66,200 after third deposit. Minimal com-
pound rate?

GT 10
Transition FALSE→TRUE
Original CoT Treats as single deposit; #### 0.

LAMP FV = P (1+r)n−1
r

; solve 66200 = 20000 · (1+r)3−1
r

; #### 10.

Question f(x) + f(y) = f(x+ y)− xy − 1, f(1) = 1. Integers n with f(n) = n?
GT 1, −2
Transition TRUE→FALSE
Original CoT Finds n = 1; misses −2.
LAMP Drifts; outputs extraneous #### 8.

Table 9. Mixed qualitative outcomes under self-reward (LAMP). We show regressions (TRUE→FALSE)
and successful corrections (FALSE→TRUE).

16

	Introduction
	Methods
	Preliminaries: Masked Diffusion Language Models
	Overview of LAMP
	Reward Models
	Latent Policy Adaptation

	Experiments
	Setup
	Main Results
	Test-Time Scaling: Iterative Latent Adaptation
	Self-Reward Transition Analysis
	Qualitative Analysis

	Related Work
	Conclusion and Future Work
	LLM Usage
	Datasets, Preprocessing, and Prompt Formats
	Implementation Details and Pseudo-code
	Hyperparameters and Run Configurations
	Qualitative Examples

